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Abstract

Statistical design of experiments allows for multiple factors influencing a process to

be systematically manipulated in an experiment, and their effects on the output of the

process to be studied via statistical modeling and analysis. Classical designs offer general

nice performance but have limited applications due to restricted design size, region, and

randomization structure. Computer generated optimal designs become more popular in

recent decades due to the rapid growth in computing power. Most existing work in opti-

mal design of experiments involves designing experiments with optimal performance on

a single chosen objective or a single response. However, with the increasing limitation in

resources and emergence of complex engineering problems, more and more experiments

aim to simultaneously achieve multiple objectives or study multiple responses.

Recent developments have made enhancements on methodologies for selecting opti-

mal designs based on multiple criteria for a single response from a physical experiment.

However, there has been limited work on constructing optimal designs for a physical ex-

periment with multiple responses. In the area of design of computer experiments, despite

space-filling designs have been most popular due to their flexibility on model choices, ex-

isting space-filling designs are mainly built for optimizing a single criterion, which is

often associated with worse performance on other characteristics. In addition, modern

design of experiment techniques which provide powerful tools for efficient data collec-

tion and inferential analysis have not been broadly used in the field of reliability analysis.

This dissertation adds to the growing research in optimal design of experiments in

three different areas: 1. It develops new cost-efficient optimal designs for obtaining pre-

cise estimation of multiple responses from a single experiment by leveraging prior infor-

vi



mation from earlier screening experiment; 2. It proposes new Latin hypercube designs for

computer experiments based on balancing multiple space-filling characteristics; and 3. It

utilizes Bayesian optimal design technique for selecting optimal test plans for accelerated

degradation tests with two or more accelerating factors and more general degradation

path models.

vii



Chapter 1: Introduction

In scientific studies, the form of research to be carried out is usually influenced by

the problem(s) of interest or the question(s) to be answered. Different data collection

strategies could be used to answer different questions. Based on data collection tech-

niques, scientific research is divided into observational studies and experimental studies.

In observational studies, scientists can only passively observe the data without interfer-

ing with the course of the study. While in experimental studies, scientists intervenes with

the study by controlling the levels of one or more controllable factors. Experimental stud-

ies are planned to describe the causal relationship between the input(s) and output of a

process while controlling other noise factors. In experimental studies, statistical design

of experiment techniques are often used to guide the efficient allocation of experimental

resources, in order to obtain the most information about a process subject to the limited

resources and natural variability of the experimental process.

Statistical design of experiments is a branch of applied statistics used for conducting

scientific studies of a system, process or product in which input factors are manipulated

to investigate their effects on measured response. It is a systematic approach to problem-

solving, where principles and techniques are applied at the data collection stage of an

experiment, with the aim of controlling systematic error, reducing random variations, in-

creasing precision of parameter estimates, making predictions about future observations,

and/or discriminating between competing models.

Statistical design of experiments are often categorized into classical designs and the

optimal designs. Classical designs include the commonly used factorial designs, frac-

tional factorial designs, and many response surface designs. They are often associated
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with specific run size and regular design region (cuboidal or spherical), and are not flex-

ible to adapt for specific randomization structures. However, there are situations when

classical designs do not fit the experimental requirements, for example, when the experi-

ment has specific requirement on the run size, or there are constraints on the design region

(i.e. irregular shaped design region), or the model of interest is in a particular form. Op-

timal designs, on the other hand, offer more flexibility for broader design problems and

are generally more useful for situations involving resource constraints, irregular design

regions, special randomization structures or model formulations [49]. Applications of op-

timal designs have become increasingly popular when compared to classical designs due

to their flexibility and ability to handle a variety of design problems. However, most of

the existing work involve experiments with a single response or a single objective.

There has been limited work that addresses optimal designs for experiments with mul-

tiple responses. With an increasing limit in resources, more and more experiments now

involve multiple response variables which can be characterized in different models. In

this case, choosing an optimal design would involve simultaneously optimizing design

characteristics on multiple responses. Therefore, traditional optimal designs focusing on

a single response is inadequate, and there is a desire for optimal designs for experiments

with multiple responses. This dissertation adds to the growing research by designing ex-

periments that offer good estimation prediction for all the responses. For an experiment

that aims to simultaneously study multiple responses, sometimes prior information is

available from an earlier screening experiment or subject expert knowledge, about which

subset of design factors might affect each individual responses. Traditional methods rely

on the central composite design based on the full set of design factors, which often re-

quires a large design size. In the first project of this dissertation, we propose to leverage

such prior knowledge from screening experiment to construct more cost-effective opti-

mal designs for simultaneously achieving precise estimation of multiple response models.

2



Particularly, the method utilizes the Pareto front approach [67] based on simultaneously

optimizing D-efficiencies based on individual responses.

In recent decades, there has been increasing work on design selection based on mul-

tiple objectives [10, 67, 68]. As engineering problems become more complex in nature

and with the possibility of resource constraints and other experimental challenges, most

experiments are now conducted for achieving multiple objectives. These objectives of-

ten capture different characteristics of the design performance and are competitive due

to the cost restriction, and different objectives may pull resources in different directions.

Therefore optimal designs based on a single objective may be associated with poor perfor-

mance on other criteria. The second project in this dissertation focuses on enhancing ex-

isting space-filling designs for computer experiments based on considering multiple ob-

jectives. Latin hypercube designs have been commonly used for creating space-filling de-

signs with a nice uniform distribution when projected on each individual dimension. The

maximin distance designs are popular for achieving maximum spread of design points,

which maximally avoid collecting similar information from close-by locations. The min-

imax distance designs ensure maximum coverage over the full design space, which is

useful to obtain good prediction throughout the entire input region. The Maximum pro-

jection designs offer nice space-filling properties when projected onto any subspace of

design factors, which is desirable when only a subset of the factors are actively affecting

the underlying process. To combine the merits of the above different designs, we propose

using the Pareto front optimization approach to simultaneously optimize multiple space-

filling criteria for Latin hypercube designs to achieve balanced performance on multiple

objectives.

Despite the rapid advancements in design of experiment methodologies in the field of

industrial statistics, many modern design techniques have not been adopted in the field

of reliability analysis. The third project in this dissertation adopts the Bayesian optimal

design method for developing optimal reliability test plans. Selecting optimal test plans

3



given a fixed budget is an important issue in planning for accelerated degradation tests

(ADTs). Accelerated degradation tests are engineering procedures often used to eval-

uate the reliability of a product when the product is expected to have few or even no

failures during a traditional life test. Particularly, the test units are exposed to elevated

stress conditions to accelerate the failure process and a direct measurement of the physi-

cal degradation level at multiple points is used to model the underlying degradation path

and then used for making inference about product reliability. Often in ADT planning, the

decision about testing conditions and the number of test units that should be tested at

each test condition is a bit ad hoc. Current work on optimal ADT test plans is primarily

focusing on a single accelerating factor or two accelerating factors with a linear regres-

sion model. There has been little work on developing optimal test plans for more general

degradation path models with two or more accelerating factors. In the third project, we

develop a method based on utilizing Bayesian optimal designs to select optimal test plans

for ADTs with two accelerating factors and using mixed effects models for characterizing

the degradation paths. The general methodology can be adapted for more than two ac-

celerating factors and more general forms of degradation path models.

1.1 Motivating Applications

1.1.1 Screening Experiments with Multiple Responses

Several designs have been proposed in literature for data collection and analysis with

a single response and one or more input factors. However, there are situations where

multiple responses are connected with a process, and need to be jointly considered for

decision making. For instance, consider a multi-response experiment with ten input fac-

tors and four response variables [70]. Although common classical designs such as the

central composite designs can be used to collect data and the full second-order models

can be fitted for each of the four response independently, the immediate challenge with
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these designs is that they often require more experimental runs and consequently leads to

more computational time. In design problem where prior information is available from a

screening experiment or previous process knowledge, a possibility is that each individual

response is often affected by only a subset of all design factors. For instance, based on the

past experiences of engineers in the production of a product, they can often suggest the

factors having the most influence on each response. Information like this can be leveraged

when estimating each response. Thus, resulting in a reduction in experimental runs.

Applying optimal design of experiments to the multi-response experiment described

above, the specific goal would be to identify the set of operating conditions for simul-

taneously achieving precise estimation of the responses. In the first project discussed in

this dissertation, we propose a design selection methodology for achieving this goal. The

proposed methodology is illustrated on two screening experiment examples.

1.1.2 Space-filling Designs for Computer Experiments

There are generally two application categories of design of experiments; physical ex-

periments and computer experiments. Design of physical experiments involves applica-

tion of design of experiment techniques on physical processes. However, many physi-

cal processes are difficult or impossible to explore directly by conventional experimen-

tal methods. With advancement in computer power, computer experiments are increas-

ingly used by engineers and scientists in many fields as the alternative when physical

experiments are impracticable and intractable. For instance, computational fluid dy-

namics models are used to calculate air flow over a wing in the design of an aircraft

wing [1]. Computer experiments are designed to study relationships between the inputs

and outputs of a system or process using computer simulator rather than a physical ex-

periment [96].

Despite the merits of computer experimentation over physical experimentation, ob-

taining data from complex computer models can be time consuming and computation-

5



ally expensive. A single run of the experiment could take longer minutes, hours and even

days for execution. A surrogate function is a statistical model built to approximate the

output from an expensive computer model. Gaussian process regression [94] is a popu-

larly used surrogate model in computer experiments because of its adaptive, flexible and

non-parametric nature [92].

In computer experiments, the design problem is how to choose a set of points where

the computer model will be run to obtain simulated data that allows precise predictions

from the surrogate model. In the design of computer experiments, the two major cate-

gories of design criteria are; the distance-based criteria and the model-based criteria. The

distance-based criteria do not rely on model assumptions and generally result in a family

of design called space-filling designs. The common space-filling designs for computer

experiments are Latin hypercube designs that are optimal in one aspect of space-filling.

In the second project of this dissertation, we propose a design selection methodology that

uses the Pareto front optimization approach to optimize multiple space-filling character-

istics in order to generate optimal Latin hypercube designs with improve and balanced

performance for design of computer experiments.

1.1.3 Accelerated Degradation Test of Optical Media

Optical media are typically designed with high reliability such that, it is often impos-

sible to observe sufficient failures under their normal use condition during traditional life

test. Engineers often need to expose products like this to accelerating factors such as; volt-

age, temperature, or humidity, to speed up the failing process, so that degradation mea-

surements can be obtained, analyzed, and extrapolated to make prediction about product

life time under normal operating conditions.

We demonstrate our proposed application of Bayesian design of experiments method

for accelerating degradation test plan, using an optical media data from the international

organization for standardization (ISO) [101]. The ISO optical media data used consist of
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four different testing conditions, where each testing condition is a combination of a level

of temperature and a level of relative humidity. According to ISO standard, exposing

optical media to these accelerating factors is believed to accelerate it degradation rate.

More discussion on how we illustrate the proposed methodology on the ISO data is given

in Chapter 5.

1.2 Aim and Objectives

The aim of this dissertation is to advance the methodology and application of optimal

design of experiments in different areas. The objectives for three different problems are

summarized below:

1. to demonstrate the process of leveraging on prior information from a screening

study about the subset of the design factors that influence each response and appli-

cation of the Pareto front optimization approach to develop a cost-effective design

selection methodology for finding optimum locations in the input space, that offers

balance and improve performance on simultaneously obtaining precise estimation

of the responses in a multi-response experiment.

2. to demonstrate the proposed method of simultaneously optimizing multiple space-

filling characteristics of design of computer experiments using the Pareto front op-

timization approach in order to generate optimal Latin hypercube designs that si-

multaneously balance good performance in multiple design objectives.

3. to extend the idea of design of experiments to accelerated degradation test planning.

Specifically, applying Bayesian design of experiment method to finding optimum

test plan and optimum units allocation for accelerated degradation tests where mul-

tiple accelerating factors are considered.
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1.3 Dissertation Organization

This dissertation consists of three main projects. Chapter 2 provides general review on

statistical design of experiments. Chapter 3 centers on the first project, titled “D-optimal

Designs for Experiments with Multiple Responses”. It addresses objective 1. Chapter

4 addresses objective 2. The project here is titled; “Multiple Objective Latin Hypercube

Designs for Computer Experiments”. Some contents of Chapter 3 and Chapter 4 have

been presented by the author of this dissertation during the 2020 and 2021 Joint Statisti-

cal Meetings by the American Statistical Association [2, 3]. Chapter 5 addresses objective

3. The title of the project here is; “Bayesian Optimal Design for Accelerated Degrada-

tion Tests with Multiple Accelerating Factors”. Finally, Chapter 6 presents the general

conclusion that summarises the research presented in this dissertation.
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Chapter 2: Review on Statistical Design of Experiments

2.1 Classical Design of Experiments

The concept of design of experiments was first introduced by Sir Ronald Fisher in

a small agricultural research station in England [34, 115]. Fisher’s pioneering work in

design of experiments showed how experiments can be conducted in the presence of un-

controllable field conditions, such as temperature, soil condition, and rainfall. Fisher note

that the effects of these uncontrollable factors can either be unsystematic (measurement

error or random error) or systematic (bias). He introduced basic design principles for

tackling random error and bias. The three major basic design principles are, randomiza-

tion, replication and blocking [81]. Randomization is the random process of assigning

treatments to the experimental units so as to remove bias. Replication means some runs

or even the whole experiment could be performed more than once in order to directly es-

timate the magnitude and distribution of random error. Blocking is the sorting of experi-

mental units into homogeneous groups to reduce variability of treatment effects. Over the

years, these principles have been used by experimenters when conducting experiments.

Prior to Fisher’s pioneering work, a traditional method of carrying out experiment

is one factor at a time evaluation. In this method, all other factors are held constant

during the experiment except the factor that is being studied. The limitation of this type

of experiment is that it only provides an estimate of the effect of a single factor at selected

fixed conditions of the other factors. Fisher proposed varying all the factors at once using

a factorial design. That is, experiments should be run for all combinations of levels for all

of the factors, in order to be able to estimate the effect of each factor when the other factors
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are changing. This Fisher pioneering work is regarded as classical design of experiments

[34].

A factorial design offers more useful information at a limited cost and time and is

able to identify the optimal conditions much better and faster than a one factor at a time

method [6]. Factorial designs are commonly used for experiments involving several de-

sign factors to investigate the joint effects of the factors on the response variable [81]. In

particular, investigating main effects of design factors and the effects of their interactions

on the response. A special case is one where each of the k factors of interest has only two

levels. These designs are often called 2k factorial designs and they allow full estimation of

all main effects, all interactions of every order, and an intercept. The 2k factorial designs

are useful for screening experiments to identify important design factors. They also serve

as a building block for response surface designs [6, 81].

A full factorial design is not always a feasible option in the presence of experimen-

tal constraints. As the number of factors in a 2k factorial design increases, the number

of experimental runs needed for a full replicate of the design can quickly outgrows the

resources. For instance, a full replicate of a 25 design would need 32 runs. In this de-

sign, only 5 of the 31 degrees of freedom are used to estimate the main effects, and only

10 degrees of freedom are used to estimate the two-factor interactions. The remaining

16 degrees of freedom are connected with three-factor and higher order interactions. If

the experimenter assumes that high-order interactions are likely trivial (based on the ef-

fect sparsity and hierarchical principles), then information on the main effects and low-

order interactions may be obtained by running only a fraction of the full factorial experi-

ment [81].

A fraction of the experimental runs produced by a full factorial design is called a frac-

tional factorial design. It involves experimental manipulation of all k factors but includes

fewer runs when compared to a full factorial design with the same k factors. The number

of fraction is chosen based on the available resources and the effect sparsity principle [6].
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Although a fractional factorial design allows for a more efficient use of resources as it

reduces the design size, it however comes with loss of information. Fractional factorial

designs are often used in screening experiments to identify active factors from a set of sev-

eral factors. Thus, they are among the most widely used types of design in industry [78].

Fractional factorial designs can be projected into larger designs in the subset of signifi-

cant factors and it is possible to combine the runs of two (or more) fractional factorials

to assemble sequentially a larger design to estimate the factor effects and interactions of

interest [81].

The factorial designs and fractional factorial designs allow one to fit first-order mod-

els [6]. To accommodate the possibility of curvature, second-order (quadratic) models are

required. Two common response surface designs for estimating second-order models are;

the central composite design [7] and the Box-Behnken design [6, 81]. The central compos-

ite design consists of a two-level factorial or fractional factorial design, axial points and

center points [78]. The center points (experimental runs where all factors are set to zero)

provide information about the presence of curvature in the process while the addition of

the axial points allows efficient estimation of the quadratic terms. The axial points are

experimental runs where all factors are held constant at zero except for the factor that is

being varied. The varied factor is set to +α for one run and −α for another run, where α

is often called a “design parameter” [70]. This is done for each factor, thus, there are 2k

axial points for k factors. The Box-Behnken [8] design is the common alternative to the

central composite design. Box-Behnken designs are second-order designs based on three-

level incomplete factorial designs [33]. Box-Behnken designs usually have fewer runs

than central composite designs, thus, they are less expensive to run with the same num-

ber of factors. However, they do not have the flexibility of including runs from a factorial

experiment. Central composite designs are particularly useful in sequential experiments

because previous factorial experiments can be built upon by simply adding axial points
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and center points [81]. More discussion on central composite designs is given in Chapter

3.

2.2 Optimal Design of Experiments

The applications of design of experiments in process development and quality im-

provement have grown rapidly over the years [6, 28]. Although, practitioners are often

only familiar with standard designs, such as the factorial designs, fractional factorial de-

signs, central composite designs and the Box-Behnken designs. These standard designs

work well when the research problem and the requirements of a classical design are a

good match. However, there are many situations where the requirements of a classical

design and the research problem do not align. For instance, classical designs are gener-

ally less flexible for experimental situations with a run size restriction, constrained design

space, or when a nonstandard model is needed for estimating the response.

Designing experiments for situations like these often requires creating a design that

suit the specific problem. This lead to the theory of optimal design of experiments. Op-

timal design of experiments involves understanding and implementing the underlying

statistical model and assumptions to describe the true (and unknown) form of the rela-

tionship between the input and output variables. It seek to improve the statistical in-

ference regarding the quantities of interest by the optimal selection of points for design

factors under the control of the investigator, in the presence of existing constraints on

experimental resources. Earlier research on the theory of design optimality started with

Kiefer [55] and Kiefer and Wolfowitz [56]. In their work, they proposed computer algo-

rithms that allowed ”best” designs to be generated by a software package based on the

aim of the experiment, choice of sample size, model, ranges on variables and other con-

straints. These designs are generally known as optimal designs or computer-generated

designs [81].
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Typically, experiments are conducted in order to understand the effects that different

parameters of interest make on the response. Evaluation of these effects allows experi-

menters to make valid interpretations and comparisons regarding the scale and the form

of the relationships between process parameters and measured output. When the exact

true nature of relationships is unknown, some form of approximation about the relation-

ships can be established. Usually, a second-order response surface model is fitted to the

data obtained after an experiment. The response measured at each of the n experimental

runs can then be presented as a linear combination of the design factors, their interactions

and the quadratic terms. Although some of the terms of the model might be excluded,

but unless stated otherwise, a second-order model is usually explored [81].

Therefore, a designed experiment can be express in a linear regression model form

[78, 81]

Y = Xβ + ϵ,

where Y is an n× 1 vector of the observation (that is, the response vector), X is the model

matrix with dimension n× p, β is a p× 1 vector of the regression coefficients, ϵ is an n× 1

vector of random errors, n is the number of runs in the experimental design, and p is

the number of model parameters. From the theory of linear models, the fitted regression

model is Ŷ = Xβ̂, where Ŷ is regarded as the predicted response and β̂ = (X′X)−1X′Y is

the least squares estimation of the regression parameters. The scaled prediction variance

is the variance of the predicted response at a specific point(s) in the design space relative

to the error variance σ2, and it is defined as:

var [Ŷ]

σ2
×′(X′X)−1× = V (X)

where × is a vector of the point(s) of interest in the design space.
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2.2.1 Design Optimality Criteria

Optimal design of experiments express the goal of an experiment in terms of optimis-

ing an objective function, which is often regarded as “optimality criteria”. An optimality

criteria is a mathematical function defined to reflect the objective of the experiment as

accurately as possible and it is use to summarize how good a design is. Many design

optimality criteria have been proposed in literature, and they can be group into several

categories based on the aim of the experiment and area of application. These optimality

criteria are often labelled by the letters of the alphabet and are sometimes called alpha-

betic optimality criteria. Two of the classifications are; the distance-based criteria and the

information-based criteria [91].

When the goal of the experiment is capturing the different behaviors of the response(s)

in different areas of the design region, the criteria used in quantifying these objectives are

regarded as the distance-based criteria. The distance-based criteria are criteria based on

the distance d(X ,A) from a point X in the P–dimensional Euclidean space RP to a set

A ⊂ RP [91]. They are used for selecting a design based on a metric that quantifies the

spread of a set of points. They do not rely on understanding of the underlying model

of the process and are flexible in application. They are commonly used in the design of

computer experiments. Common examples are; the minimax distance criterion, the max-

imin distance criterion and the maximum projection criterion. These criteria are further

discussed in Chapter 4.

The information-based criteria are optimality criteria that are based on the information

matrix of a design [91]. The information matrix is the inverse of the variance-covariance

matrix for the least-squares estimates of the linear parameters of the model. When the un-

known underlying model is approximated by a second-order linear model, information-

based optimality criteria are commonly used [32, 91]. They can be summarized into two

categories depending on the aspects of design characteristics that the experimenter is
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interested in optimizing. They are, optimality criteria for precision in estimation of pa-

rameters and optimality criteria for precision in prediction.

2.2.1.1 Optimality Criteria for Precision in Estimation of Parameters

For experimental problems with the goal of identifying factors or effects with signifi-

cant impact on the response variable, precision in the estimation of the regression coeffi-

cients is desired. The two common information-based optimality criteria for precision in

estimation of regression coefficients are, the D-optimality criterion and the A-optimality

criterion. While the D-optimality criterion seeks to maximize the determinant of the de-

sign moment, the A-optimality criterion seek to minimize the total variance of parameter

estimates. The A-optimality criterion is less commonly used compare to the D-optimality

criterion. More on the discussion of these criteria is given in Chapter 3.

2.2.1.2 Optimality Criteria for Precision in Prediction

Though precise estimates of the regression coefficients are important for some experi-

ments, however, in experiments where precision in prediction is important, design opti-

mality criteria that seek precision in the prediction ability of the model are most certainly

desirable [49]. The prediction variance is the basic metric for measuring model precision.

The optimality criteria in this category are mostly information-based and the two most

commonly used are, the I-optimality criterion and the G-optimality criterion. While the

G-optimality criterion [99] seeks to minimize the maximum prediction variance in the de-

sign region, the I-optimality criterion seeks to minimize the average prediction variance

over the design region [49]. More discussion on these criteria is given in Chapter 3.

2.2.2 Bayesian Optimal Design of Experiment

When conducting an experiment, certain decisions needs to be made by the experi-

menter before data collection and, since data collection is often restricted by limitation in
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experimental resources or time, an efficient use of available resources is desired. Optimal

designs generally depend on the true values of the model parameters. Since the values of

the parameters are unknown, and data has not been collected to estimate them, the exper-

imenter must suggest values for the model parameters from which to construct an experi-

mental design. Use of inappropriate parameter values may result in sub-optimal designs.

When specific instructions are available prior to experimentation, Bayesian methods can

play an important role in deciding how to allocate treatments efficiently, leading to more

informative experiments. These instruction can be prior information from earlier similar

experiments or process knowledge of the experimenters. The Bayesian approach to ex-

perimental design creates a formal way to include prior information in the form of prob-

ability distributions on the model parameters, into the design process for better statistical

precision [40, 45, 80].

Bayesian methods involves combining prior knowledge about the unknown param-

eters of a model with the information provided by the data to the unknown parameters

to produce the posterior distribution, from which inferences on the unknown parameters

of interest can be made. In experimental design, Bayesian methods allows incorporating

prior information and or uncertainties about the statistical model with a utility function

(which can be regarded as a criterion function) which describes the goal of the experi-

ment. Bayesian experimental design is based on a decision-theoretic approach [12, 63],

where an optimal allocation of experimental resources is determined via maximization of

the expected utility. The Bayesian optimal design, η∗, maximises the posterior expected

utility function U(η) over the design space Ω with respect to the future data y and model

parameters θ:

η∗ = maxη∈ΩE{U(η, θ, y)}

= maxη∈Ω

∫
Y

∫
Θ
U(η, θ, y)p(θ, y|η)dθdy

= maxη∈Ω

∫
Y

∫
Θ
U(η, θ, y)p(y|η, θ)p(θ)dθdy, (2.1)
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where p(y|η, θ) is the likelihood for observing a new set of measurements y at the design

points η, given parameter values θ, and a prior distribution p(θ) for the parameters. Equa-

tion 2.1 does not usually have a closed form solution to allow analytical evaluation of the

integration problem. When a closed form does not exist, numerical approximations and

stochastic methods are used to solve the maximisation and integration problem [11, 12].

Chaloner and Verdinelli [12] illustrate using large-sample approximations to estimate the

posterior expected utility. Overstall and Woods [86] demonstrate how a Gaussian process

emulator can be used to approximate the expected utility as a function of a single design

coordinate in a series of conditional optimization steps. Methods like these are often used

when the criterion function is analytically intractable and computationally burdensome.

Just like with the design optimality criteria discussed above, it is important that the

selected Bayesian utility function tailored the experimental aim. For instance, designs

which are optimal for precise estimations of model parameters may not be useful for pre-

diction of future observations. Many Bayesian utility functions have been proposed in lit-

erature [12]. They can be classified into three categories; utilities for parameter estimation,

utilities for model discrimination and utilities for prediction of future observations [93].

The common goal in experimental design is obtaining precise estimation of model

parameters and several utility functions have been proposed in literature for achieving

this. A common utility function for this is the maximization of the Shannon information

between the posterior and prior distributions [16, 58], which corresponds to the classi-

cal D-optimality criterion when designing for normal linear models with a normal prior

distributions for the model parameters [12, 107]. When there is an interest in obtaining

a point estimate of the parameters, the quadratic loss function is often used as the utility

function [12, 40]. This utility function is the Bayesian form of the classical A-optimality

criterion. For model discrimination, mutual information is commonly used as the utility

function. The optimal design η is the one that maximises the mutual information between

the model and the future observation [25, 72].
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If the aim of the experiment is predicting future observation yn+1 from y = (y1, ..., yn),

then the expected gain in Shannon information for a future observation, yn+1, from the

prior predictive distribution to the posterior predictive distribution can be used as the

utility function [12]. For minimising the variance of the expected response, Solonen et

al. [100] proposed placing the next design point where the prior variance of the mean re-

sponse is largest. Utility functions that minimize the variance of an estimator of a quantity

of interest have also been proposed for prediction of future observations [90, 118].

More discussion on Bayesian experimental designs can be found in exiting review

papers [12, 16, 20]. Chapter 5 of this dissertation discuss our proposed application of

Bayesian design of experiments method for accelerated degradation test plan with two

accelerating factors.

2.3 Multiple Objective Optimization

Sometimes, experimenters have multiple interest in the properties of the model pa-

rameters. Thus, the quality of the desired design is a function of multiple criteria, each

representing different aspects of design performance. In this context, a “good” design is

the one that demonstrate expected performance in multiple attributes. For instance, sup-

pose the the goal of an experiment is precision in the estimation of regression coefficients,

then the D-optimality criterion, known to quantify the overall precision of the estimated

model parameters is evaluated in the experiment. Suppose further that another criterion

might be of interest to the experimenter, for example, the I-optimality criterion, that is

minimising average prediction variance, then the experimenter seek for a design with

balance performance in precise estimation of parameter estimates and minimising aver-

age prediction variance. Simultaneously optimizing the two criteria would result in some

trade-offs being made. This is the goal in multi-objective optimization.

Although there are different variety of optimality criteria used in quantifying different

design objectives, but a design which is optimal according to a particular criterion might
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perform poorly in respect of another criterion. Thus, for experiments with competitive

objectives, it is desired that designed experiments should simultaneously optimize these

objectives. Earlier works in generation of optimal designs have seen applications in ex-

periments with multiple responses or objectives [13, 18, 32]. These earlier methods often

require strong statistical assumptions. Atkinson et al. [4] introduced the idea of weighted

combination of the criteria, which allows finding a compromise between two or more

desirable properties while searching for optimal designs. This method explores how the

changes in the allocation of weights between the individual criteria affect the performance

of the optimal designs [26]. Thus, selection of optimal designs for multiple objective stud-

ies requires studying the trade-offs between the criteria in order to achieve balance in the

competing objectives. The desirability function approach [23] and the Pareto front opti-

mization approach [67] are the commonly used techniques for simultaneously combining

multiple objectives, particularly in the area of design of experiments [14].

2.3.1 Review of Algorithms for Constructing Optimal Designs

For any kind of optimality criteria consider in a design problem, generating opti-

mal designs requires the use of optimization (computer) algorithms, otherwise known

as search or heuristic algorithms. An optimization algorithm is a procedure which is exe-

cuted iteratively by comparing various solutions till an optimum or a satisfactory solution

is found. The literature on search algorithms for finding optimal designs is a huge and

diverse one. Overall, an effective algorithm should be flexible, computationally efficient,

easy to implement, and usable for the intended purpose. A single algorithm is not ex-

pected to perform well for all types of optimization problems. For instance, algorithms

that scale well for small dimensional problems may not scale well for high dimensional

problems. Most algorithms usually starts with a starting design, an improvement is then

made on the current design based on a procedure specific to the choice of algorithm.

Also, a stopping rule is usually required for the algorithm to terminate its search pro-
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cess. Common choices are, setting the number of iterations that the algorithm will run

at the initiation of the algorithm or stopping the search process when the criterion values

converges to a specified value.

The development of optimal design in theory is based on the use of a continuous de-

sign measures that determines the proportion of runs that should be made at a number of

points in predetermined design space. Since the concept of continuous design is usually

not feasible in practice, the idea therefore is to determine discrete designs that approx-

imate the optimal continuous design. Generally, algorithms for optimization problems

can be grouped as; enumerative, deterministic, or stochastic. An enumerative approach

involves evaluating all possible designs based on the criterion of interest and selecting the

design with the best criterion value. This approach is often infeasible even for a region of

moderate size [10].

Deterministic algorithms uses specific rules for moving from one solution to another

and they result in the same design when they are run repeatedly using the same set of

input parameters. There is no randomness built into these algorithms and they typically

have a proof of convergence to the theoretical optimum. Common examples are, the

Wynn algorithm [113], the Fedorov algorithm [32] and the exchange algorithms [17]. Ex-

change algorithms are the most commonly used deterministic algorithms and they are

found to be effective for finding exact optimal designs when the model has several dis-

crete factors [76]. The two common types of exchange algorithms are; the point exchange

algorithm and the coordinate exchange algorithm [17, 84].

Applications of deterministic algorithms can be infeasible and or computationally

prohibitive for some experimental situations. This lead to the introduction of stochas-

tic optimization algorithms. Stochastic algorithms introduces one or more probabilistic

components to the search, so that a particular starting design may produce a variety of

solutions. They usually do not guarantee convergence to the global optimum, but unlike

the deterministic algorithms, they generally do not require the user to make assumptions
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on the criteria to be optimized. Moreover, the criteria do not have to be differentiable and

can easily escape being trapped in the local optimum. However, their major drawback

is that, they usually involve tuning parameters, which tend to have significant impact on

the performance of the algorithms [19]. The class of stochastic algorithms that have been

extensively discussed in literature are the nature-inspired algorithms. Examples of these

algorithms are; the simulated annealing [75], genetic algorithms [42, 77] and the particle

swarm optimization [109].

For optimization of multiple objectives, several search algorithms have been proposed

for selecting optimal designs. These algorithms can be modification of standard stochastic

algorithms [47, 79, 89] or modification of standard deterministic algorithms [67, 95] and

some are hybridization of deterministic and stochastic algorithms [10, 22, 98, 114]. The

most commonly used of these set of algorithms are the ones that uses an exchange method

for searching through the design space.

More discussions on the specific algorithms used in the projects discussed in this dis-

sertation are given in relevant Chapters.
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Chapter 3: D-optimal Designs for Experiments with Multiple Responses

3.1 Introduction

With increasing limitation on resources and experimenters wanting to achieve more

from running the experiments, there has been growing interest in considering multiple

responses in a single experiment. In this case, the goal for such an experiment often in-

volves obtaining good estimation of the underlying input and response relationship for

multiple responses. The current literature on optimal designs has been primarily focus-

ing on consideration of a single response. There has been limited work on design of

experiments considering multiple responses. In addition, existing work on experiments

with multiple responses are often built in the super space of all design factors that may

be related to any of the response of interest and are based on a general model for all re-

sponses. This requires a large number of experimental runs to explore the full design

space. However, in real applications, there is often only a subset of design factors that

are relevant to each response. Therefore, there is room to save experimental resources by

considering different models for individual response and optimizing design performance

on estimating multiple different models that tailored for each individual response.

Response surface designed experiments are often used to describe relationships be-

tween several design factors and response(s) of a process of interest. One of the most

popular response surface designs is the central composite design (CCD) [7]. A CCD of-

ten includes a two-level full factorial or fractional factorial design with center runs, plus

a group of axial runs (otherwise known as star runs) that allow estimation of quadratic

terms. When constructing a fractional factorial design, one or more of the factor effects
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are aliased with higher order interactions, therefore allowing the use of fewer runs to es-

timate the low order factor effects of interest. Typically, to allow clear estimates of the

main effects and maybe some two factor interactions, a fractional factorial design with

the maximum resolution given the affordable run size is preferred.

The resolution of the fractional factorial in a CCD determines how the factor effects

are aliased with other effects [7]. Resolutions III, IV, and V are commonly seen in frac-

tional factorial designs. For resolution III designs, main effects are not aliased with each

other, but they are aliased with two-factor interactions (i.e. their estimates cannot be

separated). For resolution IV designs, main effects are not aliased with any other main

effect or two-way interactions, but the two-factor interactions are aliased with some other

two-factor interactions. For resolution V designs, no main effect or two-factor interaction

is aliased with another main effect or two-factor interaction, hence all the main effects

and two-way interactions can be clearly estimated. Resolution V fractional factorials are

commonly used in CCDs because they allow clear estimation of all the first order and

two-way interaction terms in a response surface model. Because designs of greater reso-

lutions require more experimental runs, fractional factorials of resolutions higher than V

are usually avoided in CCDs.

The CCDs are often used to estimate full second-order response surface models in a

cuboidal or spherical input space. When a CCD is used to collect data for estimating

multiple response models, the CCD is often built in the design space spanned with all

the factors which may affect any of the response, which we refer to as the super design

space. Considering the fact that often only a small subset of the factors may affect each

individual response, the CCD based on the super design space is often much larger than

what is needed for estimating each individual response. In this case, if a screening exper-

iment or process knowledge could be used to identify potential active factor effects for

each response, then this information can be leveraged to select smaller experiment that

allows precise estimation of the candidate models for individual response.
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For example, the production of co-fire fuel pellets involves several input factors in-

cluding coal particle size, coal moisture content, pellet aging temperature and amount

of bio-oil binder and multiple response variables including the heating value, moisture

content, carbon content and strength of the pellets. Constructing a CCD even based on

aliasing some effects would require many experimental runs. Friend [35] in an experi-

ment considered varying only the four input factors mentioned above while holding the

others constant to investigate the effects of the factors on the four properties (response

variables) mentioned above. This experiment can be regarded as a screening study that

helps to identify the factors influencing each response. For instance, one of the result from

Friend’s experiment is that coal particle size and coal moisture content are related to the

heating value, but pellet aging temperature and the amount of bio-oil binder are not. The

result from an experiment like this can then be used to design a follow-up experiment for

efficient estimation of each response variable.

A screening experiment is a study focused on identifying factors with much influence

on each response, rather than a more detailed study of quantifying relationships between

the input and response. Information from a screening experiment could suggest that dif-

ferent subsets of the design factors would affect different responses and what are some

of the two-factor interactions that are likely to affect a particular response. By leverag-

ing subject matter knowledge and/or information from an earlier screening experiment,

Marget and Morris [70] proposed a unique factor central composite designs (UF-CCD) by

modifying the fractional factorial portion of the CCD. Particularly, for an experiment that

involves k factors, the fractional factorial portion of the UF-CCD is constructed such that,

for each response, the factors associated with that response based on information from the

earlier screening experiment form either a full factorial or a resolution IV or V fractional

factorial. That is, the design will be a full or fractional factorial for only the factors known

to relate to each response, but not for all k factors, and hence will require fewer runs than

the traditional CCD based on all k factors. Also, in the construction of the UF-CCD, pairs
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of effects that do not appear in any model are aliased. For instance, if factor 1 and factor

2 do not appear together in the same response model, then the levels for factor 1 can be

exactly repeated for factor 2 in the factorial part of the CCD, thereby allowing the design

size to be reduced further. More details about the construction of UF-CCD is available in

Marget and Morris [70].

Both CCDs and UF-CCDs are classical designs. Despite their numerous applications,

classical designs are generally less flexible in terms of the design size, region of input val-

ues, and the constraints on the randomization structure. Optimal experimental designs

have become popular due to their flexibility on the above mentioned aspects, especially

when constraints on the design size, region or the randomization structure preclude the

use of classical designs. Computer-aided designs are often generated based on a user se-

lected design optimality criterion, and are generally referred to as optimal designs [47].

The choice of the design optimization criterion depends on the goal of the experiment.

Some focus on obtaining precise estimation of the model parameters while others empha-

size on obtaining precise prediction of the response values throughout the input space.

The commonly used criteria include D-, A-, G-, and I-optimality, where the first two focus

on design estimation while the last two emphasize more on prediction.

In this chapter, we propose a cost-efficient design selection strategy based on utilizing

information from a screening experiment to construct D-optimal designs with balanced

performance on simultaneously obtaining precise estimation of the multiple responses.

Particularly, we seek the Pareto front based on D-efficiencies of the multiple responses and

then further select best designs based on exploring secondary criteria that examine the

design performance on other key aspects. To efficiently search through the design space

and identify the Pareto front based on the D-efficiencies of the multiple responses, we

developed a Pareto aggregate coordinate exchange (PACE) algorithm that scales well for

experiments with a larger number of design factors. The proposed methods are demon-

strated with examples of varied number of input factors.
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The rest of the chapter is organized as follows. Section 3.2 describes some commonly

used optimality criteria for capturing different characteristics of the design performance.

Section 3.3 introduces the Pareto front optimization approach for simultaneously opti-

mizing the precision of multiple estimated response surface models, and it describes the

proposed PACE algorithm and its implementation in identifying the Pareto front. Sec-

tion 3.4 illustrates the proposed method using two examples with varied dimensions and

demonstrates advantage of the generated D-optimal designs over alternative classical de-

signs. Section 3.5 renders the conclusion.

3.2 Common Criteria for Optimal Designs

Based on the goal of an experiment, an optimality criterion is selected for seeking the

optimal design. The criterion measures the design performance on a certain aspect of

interest. The most commonly used optimality criteria in optimal experimental designs

include D-, A-, G-, and I-optimality criteria [91].

When the goal of the experiment is to maximize the precision of the estimated model

parameters, D-optimality is the most commonly used optimality criterion. The D-criterion

measures the determinant of the design moment matrix, which is equivalent to minimiz-

ing the volume of the confidence region of the regression parameters [81]. The D-criterion

is defined as

|M(ξ)| = |X ′(ξ)X (ξ)|
Np

, (3.1)

where X (ξ) is the N × p model matrix for design ξ with p design parameters and β is the

p × 1 vector of regression coefficients. The D-optimal design, denoted by ξ∗D, maximizes

|M(ξ)| over the design space spanned by all possible designs, ξ ∈ Ω, i.e. |M(ξ∗D)| =

Maxξ∈Ω|M(ξ)|. Then the D-efficiency of a design, ξ is given by

Deff (ξ) =

(
|M(ξ)|
|M(ξ∗D)|

) 1
p

, (3.2)
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which measures the relative performance compared to the D-optimal design.

Different from D-efficiency that measures the generalized variance of the confidence

region of the estimated model parameters, the A-optimality criterion evaluates only the

total variance of the estimated parameters. The A-optimality criterion is defined as

A(ξ∗A) = minξ∈Ω{trace
[
X (ξ)′X (ξ)

]−1},

where ξ∗A is the A-optimal design. Then the A-efficiency of a design ξ is given by

Aeff (ξ) =
tr [M−1(ξ∗A)]

tr [M−1(ξ)]
.

Instead of emphasizing good estimation, there are some other criteria primarily fo-

cusing on good prediction. The G-optimality criterion seeks to minimize the maximum

prediction variance over the design space and it is defined as

G (ξ∗G) = min
ξ∈Ω

max
xϵχ

var(ŷx|ξ),

where ξ∗G denotes the G-optimal design and var(ŷx) = σ2f T (x)(X (ξ)TX (ξ))−1f (x). The

G-efficiency of a design ξ is defined as

Geff (ξ) =
p

maxxϵχ var(ŷx|ξ)
,

where p is the number of parameters in the model.

Different from the G-optimal design that emphasizes the optimal performance on

the worst case scenario, the I-otpimal design focuses on the average predictive ability

throughout the input space. The I-optimality criterion minimizes the average prediction

variance across the design space and it is defined as
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I (ξ∗I ) =
N

σ2

∫
χ
var(ŷx|ξ)dx,

where χ is the region of interest and
∫

χ is uniform measure on χ, with total measure 1.

This integral simplifies to give

I (ξ∗I ) = trace[(MM−1
x ))],

where M =
∫

χ f
T (x)f (x)dx is the moment matrix of the region of interest [91]. The I-

efficiency of a design ξ is defined as

Ieff (ξ) =
tr [MM−1(ξ∗I )]

tr [MM−1(ξ)]
,

where ξ∗I is the I-optimal design. Note that, all the D-, A-, G-, and I-efficiencies measure

the performance of a design relative to the optimal design based on the chosen criterion,

and hence take values in the [0, 1] range.

3.3 Optimal Experimental Designs for Multiple Responses

There have been some existing work on optimal designs for experiments with multi-

ple responses. These existing methods have varying degrees of flexibility and result in

limitations in applications. The MD-optimality as an extention of D-optimality for mul-

tiple responses proposed by Fedorov [32] requires the variance-covariance matrix of the

responses to be known. However, such information is often not easy to obtain before

data collection. To avoid this assumption, Cooray-Wijesinha and Khuri [18] suggest esti-

mating variance-covariance matrix via an initial design, and then the augmented design

locations are selected by leveraging the estimated variance-covariance matrix. Chang [13]

proposes a design that allows each response to have either a complete first or second or-

der model based on all design factors. Although this approach avoids estimating the
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variance-covariance matrix, it does not allow the flexibility of using customized models

for each individual response as suggested by screening experiment to reduce experimen-

tal runs.

The goal of this work is to select D-optimal designs that simultaneously optimize the

estimation precision of all the responses by leveraging prior information on the model

forms of individual responses. In the derivation of the D-criterion value for each re-

sponse model, X (ξ) from Equation 3.1 describe the design matrix based on each specified

response surface model. As suggested by the screening experiment, the subset of the

design factors affecting each response is used to construct the design matrix for each re-

sponse model. For each individual response, the full second-order model based on the

identified influencing factors is used. Hence, the design matrix for each response varies

due to the difference in the subsets of factors influencing each response. Note that if more

information on active factor effects is available from the earlier screening experiment, it

can also be included in the model formation for seeking the D-optimal designs.

3.3.1 Pareto Front Optimization

There has been rich literature on design optimization based on considering multiple

objectives. The conditional optimization approach [50] involves finding designs with op-

timal performance on a selected primary criterion while achieving the thresholds for other

secondary criteria. Another classical method is to combine the multiple criteria into a sin-

gle metric and then select an optimal design based upon this metric. The most common

way of doing this is the desirability function (DF) approach [23, 41]. The DF approach

combine multiple criteria into a single metric and then selects a design that optimizes the

metric based on a set of user specified weights. The weights are regarded as the relative

contribution of individual criterion. The DF approach involves transforming the differ-

ent criteria considered to a 0-1 desirability scale, where 0 represent the worst value of the

criteria and 1 represent the best value of the criteria. The two basic forms of the DF are;
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the additive DF and the multiplicative DF. While the scaled criteria are combined as a

weighted sum in the additive DF, the scaled criteria are combined into a product with the

weights entering as exponents in multiplicative DF.

Different approaches can be used to search for optimal designs that maximize the over-

all metric (desirability). The point exchange and coordinate exchange algorithms (dis-

cussed further in Subsection 3.3.2) are commonly used in the search for optimal designs.

The Direct search methods are often used for nondifferentiable desirability functions [59].

Heuristic approaches such as simulated annealing [57] and genetic algorithms [42] are

frequently used for more complicated problems with highly nonlinear or multimodal ob-

jective functions.

Although the desirability function approach has been used extensively, it fails to di-

rectly consider the trade-offs between criteria and the selected optimal designs depend

heavily on the user specified weights and scaling schemes. On the other hand side, the

weight choice is often subject to ambiguity. Exploring a variety of different weight choices

in a sensible range can be time consuming and computationally inefficient since every set

of weights requires a separate search and is likely to require repeated evaluations of the

same candidate designs across different searches using different weights [67].

An alternative to the desirability approach is the Pareto front optimization approach,

which has been extensively used for multi-objective optimization in many disciplines

[38, 104]. Lu et al. [67] first introduced the Pareto front optimization to design optimiza-

tion based on simultaneously considering multiple objectives. The method identifies the

Pareto frontier based on multiple objectives and select best deigns based on explicitly

evaluating trade-offs between the competing criteria and the impacts of weighting, scal-

ing and DF forms on the selected solutions. Various algorithms have been proposed for

constructing and populating the Pareto front [67, 89, 95] and for evaluation and compar-

ison of designs identified on the front [65, 67, 69]. A major advantage of the Pareto front

approach is that, the population for Pareto optimal solutions occurs along the search and
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avoid repeated evaluation of candidate designs. The method is flexible to adapt for using

different design optimization criteria for meeting different experimental goals.

Below we describe the mechanisms for constructing a Pareto front based on consider-

ing multiple criteria. Without loss of generality, assume the goal of a multiple-objective

design optimization problem is to maximize C (≥ 2) criteria simultaneously given con-

straints on the input factors. Let ξ = (d′1,d
′
2, ...,d

′
N)

′ ∈ Ω be a design matrix of dimension

N × k where N is the number of design points and k is the number of design factors, the

set of all possible N × k design matrices for a given candidate set of points is denoted

by Ω. The candidate set, otherwise known as the design space, is a collection of treat-

ment combinations from which the search algorithm chooses the treatment combinations

to include in the design. Let F (ξ) = (f1(ξ), f2(ξ), ..., fC (ξ))
T denote the vector of criteria

values corresponding to the design matrix, ξ, then the space containing all obtainable cri-

teria vectors is called the criterion space. A solution ξ1 is said to Pareto dominate another

solution ξ2, (i.e, ξ1 > ξ2), if fj (ξ1) ≥ fj (ξ2) for all j ∈ {1, 2, ...,C} and there exists at least

one j ∈ {1, 2, ...,C} such that fj (ξ1) > fj (ξ2). In this case, the criteria vector F (ξ2) is said

to be Pareto dominated by F (ξ1). In this work, the criteria vector for a particular solution

is regarded as a point in the criterion space. A solution is Pareto optimal if and only if no

other solution Pareto dominates it and its corresponding criteria vector is a non-dominated

vector. We refer to the set of Pareto optimal solutions as the Pareto optimal set and the cor-

responding set of criteria vectors forms the Pareto front. Marler and Arora [71] provide a

detailed review on the Pareto front concepts.

3.3.2 Pareto Aggregate Coordinate Exchange Algorithm

Enumerating all possible designs in the experimental region can be prohibitive or

computationally challenging, even for a region of a small candidate set. Instead, an ini-

tial design can be generated and successfully improved by using an exchange algorithm.

A commonly used approach is the point exchange algorithm, which iteratively replaces
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each row in the current design by a better alternative from the candidate set until no

improvement can be made based on the chosen criterion. Although the point exchange

algorithm is very popular for design optimization, it can be computationally expensive

for experiments of high dimensions (hence a large candidate set) and/or complex design

criteria, thereby precluding efficient evaluation [91]. An alternative to avoid the computa-

tional difficulty associated with dealing with a large candidate set is to use the coordinate

exchange algorithm [84], which replaces each element in the design matrix by best alter-

native treatment level for improving the designs. Since the result from each single search

is dependent on the selected initial design, multiple random starting designs are often

employed to seek the global optimal design.

When multiple objectives are considered, the point exchange procedure searches the

entire candidate set for a replacement of each run in the design matrix to improve at least

one of the criteria without deteriorating others. This search procedure can become com-

putationally challenging as the number of design factors increases and results in a quick

growth of the size of the design space. Since the point exchange only updates the current

design with a strict improvement on the criteria values, designs which do not dominate

and are not dominated by the current design are discarded, when there is a possibility

that the discarded designs might be promising solutions in the Pareto optimal set and

could be optimal solutions when different user priorities are considered. Although re-

peating the search with multiple random starts might help identify more points on the

Pareto front, however, identifying the Pareto front based on directly combining the opti-

mal designs from multiple random starts would not be efficient as it will require a very

large number of random starts and unavoidably requires repeated evaluations of same

designs across the search with multiple random starts. To eliminate this challenge, Lu

et al. [67] developed the Pareto aggregate point exchange algorithm (PAPE), to improve

the efficiency of the traditional point exchange algorithm for populating the Pareto front
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by keeping track of all the non-dominated points and building the Pareto front along the

searching process.

The coordinate exchange on the other hand does not require a candidate set. Instead

it randomly generates a starting design and exchanges each entries of the design ma-

trix to search for an improvement. The absence of a candidate set for the coordinate

exchange procedure reduces demand on computer memory which makes it scale well for

high-dimensional regular design space. In this chapter, we adapt the Pareto front opti-

mization for the coordinate exchange algorithm, and proposed a new Pareto aggregate

coordinate exchange (PACE) algorithm for simultaneously optimizing the estimation of

multiple responses based on D-optimality. The proposed method can be easily adapted

for considering other optimality criteria.

The proposed PACE algorithm begins with a randomly generated initial design with

a non-singular moment matrix, and then replaces each coordinate in the design matrix

by the best alternative level to improve at least one of the criteria without deteriorating

others. The steps of the PACE algorithm are given below:

1. Randomly generate an initial design of N runs and k factors with a non-singular

moment matrix (|X ′X | ̸= 0) to ensure all parameters of the specified model are es-

timable. Denote the current design as ξ and evaluate the user-specified C-dimension

criteria vector, F (ξ) = (f1(ξ), f2(ξ), ..., fC (ξ))
T . Note, for our application, F (ξ) is a

vector of D-efficiencies for multiple responses.

2. Initialize two null sets: the Pareto optimal set (i.e the set of Pareto designs) denoted

as P and the set containing the corresponding criteria vector that forms the Pareto

front, denoted as PF ; then add the current design ξ to P and add the criteria vector

of the current design F (ξ) to PF .
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3. For the current design, ξ, the search process is carried out as follows; for i = 1, ...,N

and j = 1, ..., k , swap each (i , j) coordinate of ξ with an alternative factor level to

produce a new design ξ∗. Two comparisons are then made:

(a) The first comparison is to determine whether the current design ξ should be

replaced by the new design, ξ∗. If the new design improves at least one of the

criteria without deteriorating any other criteria (i.e if ξ∗ > ξ), then the current

design is replaced with the new one (i.e., ξ = ξ∗).

(b) The second comparison is to determine how to update the current Pareto front

and the Pareto optimal set at the presence of the new design, ξ∗. If ξ∗ dominates

at least one of the designs in the “current” set, then ξ∗ is added to P and the de-

signs dominated by ξ∗ are removed. If ξ∗ neither dominates nor is dominated

by any designs in the current set, then simply add ξ∗ to P . If ξ∗ is dominated

by at least one of the designs in the current Pareto set, then both the Pareto set

and the Pareto front remain the same and the new design is discarded.

(c) Repeat steps 3(a) and 3(b) iteratively for all coordinates in the design and all

possible alternative factor levels. The search terminates if no improvement can

be made by replacing any coordinate with any alternative factor level. At the

end of the search, there are d non-dominated designs in the Pareto optimal set

P (i.e P = {ξ1, ξ2, ..., ξd}) and d associated criteria vectors in the set PF (i.e

PF = {F (ξ1),F (ξ2), ...,F (ξd )}).

4. Repeat steps 1 to 3 with S different random starts. The final set of Pareto optimal

designs and the Pareto front are obtained by combining the results from S separate

searches.
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3.3.2.1 Further Design Selection Techniques

After finding the set of optimal solutions, the decision-making involves examining the

trade-offs between the individual criteria and selection of a single or reduced set of so-

lutions from the Pareto optimal set. In this work, we explore other design characteristics

to further evaluate the performance of the designs in the Pareto optimal set in order to

facilitate informed decision making.

3.4 Applications

In this section, the proposed method and the implementation of the PACE algorithm is

illustrated using two examples of varied dimensions of the input space. The performance

of the selected D-optimal designs is then compared with that of the UF-CCDs [70] on a

variety of design characteristics.

3.4.1 Five Factor Experiment with Multiple Responses

First, we consider the example from Marget and Morris [70]. The experiment involves

studying four response variables with the prior knowledge from an earlier screening ex-

periment given in Table 3.1. For each response, the factors that may be related to that

response are labeled by an “X” in the row. For example, Response 1 is likely to be affected

by Factors 1,2 and 3 but not by Factor 4 or 5 in the experiment, while Response 4 is likely

to be only affected by Factors 1 and 4. We can see that each individual response is asso-

ciated with a different subset of the design factors and no response is affected by all the

factors involved in the experiment.

Our goal here is to select the best design to provide good estimation of all the response

models. Hence, we seek for the optimal designs with balanced performance in the D-

efficiencies for all the responses. We consider a 20-run design of five factors and five levels

for each factor with the coded values at −2,−1, 0, 1, 2. We select the same factor levels as
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Table 3.1: Result of a screening experiment with five factors

Factor
Response 1 2 3 4 5

1 X X X
2 X X X
3 X X X
4 X X

in the example from Marget and Morris [70] to ensure an easy comparison between D-

optimal designs selected by the PACE algorithm and the resolution IV unique factor CCD

(Res IV UF-CCD) of the same size suggested by Marget and Morris [70] (see Appendix

A.1). The Res IV UF-CCD consists of 8 fractional factorial points, 8 axial points and 4

center points.

Four criteria are considered by calculating the D-efficiency of the design for the full

second-order model based on the subset of relevant factors identified in Table 3.1 for each

individual response. Then the PACE algorithm is used to populate the Pareto front based

on the D-efficiencies for all four responses. We explored 40000 random starts, the iden-

tified Pareto front contains only a single point. Note that the result remains stable after

20000 random starts and no other design has been found to have higher D-efficiency val-

ues for any of the four responses. Note that this example is unusual in that there exists

a universal best design that simultaneously optimize the estimation precision for all four

responses. However, for general applications, there are often trade-offs between the dif-

ferent objectives which may pull resources in different directions. Hence it requires more

thoughtful balance between multiple objectives based on understanding the amount of

trade-offs between alternative designs. A rich set of numerical and graphical tools can be

borrowed to facilitate informed decision making [67, 69].

To further compare the optimal design selected by the proposed method and the UF-

CCD suggested by Marget and Morris [70], we evaluate the design performance based

on multiple characteristics. Since we are most interested in the precision of the estimated
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model coefficients for any of the response, we evaluate the normalized standard devia-

tion of the estimated effects for different response models. Note, the normalized standard

deviation of an estimated effect/coefficient is dependent on the design matrix of the par-

ticular response. For each response, a second order linear regression model is fitted for

the selected D-optimal design and the Res IV UF-CCD, and the normalized standard de-

viations of the model coefficients are estimated. Figure 3.1 shows each response average

normalized standard deviations for all the coefficients (all effects), first-order term coeffi-

cients (main effects), interaction term coefficients (interaction effects), and quadratic term

coefficients (quadratic effects) for both designs. These indices are estimated to reflect the

performance of a design with respect to estimation of different groups of coefficients in

each response model.
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Figure 3.1: Average normalized standard deviations of model coefficients for the
D-optimal design and the Res IV UF-CCD

As observed in Figure 3.1, the standard deviations of model coefficients for each re-

sponse model are substantially higher for the Res IV UF-CCD compare to those of the

D-optimal design, implying that the D-optimal design appears more efficient in terms

37



of providing precise estimates of the model parameters. To further compare the perfor-

mance of the designs for estimating each individual responses, we obtained the individ-

ual response D-, A-, G- and I-efficiency values for both designs. In Figure 3.2, it can

be seen that, the efficiency values of these criteria for each response model are signifi-

cantly higher for the D-optimal design, further justifying the better performance of the

D-optimal design on both the estimation and prediction aspects. For both designs, the

D-efficiency value for response 4 is slightly lower than those of the remaining responses

and its A-, G- and I- efficiency values are considerably higher than those of the remaining

responses. We think this is a result of having a reduced number of parameters in response

4 model.
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Figure 3.2: The plot showing the D-, A-, G- and I-efficiency values for the D-optimal
design and the Res IV UF-CCD

The geometric structures of the D-optimal design and the Res IV UF-CCD are given in

Appendix A.2. The D-optimal design structure shows that there is no center run selected

for the D-optimal design and most of the runs are located at the edge of the design space.

This is expected because in order to optimize D-efficiencies of multiple responses, more
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design points are likely to be pushed to the edge rather than located around the center of

the design space.

3.4.2 Ten Factor Experiment with Multiple Responses

In this section, we consider a larger scale experiment with 10 design factors and 4

responses. Table 3.2 provides the information about the relationship between the design

factors and responses from the earlier screening experiment [70].

Table 3.2: Result of a screening experiment with ten factors

Factor
Response 1 2 3 4 5 6 7 8 9 10

1 X X X X X
2 X X X X
3 X X X X
4 X X X X

Similar to the previous example, the goal here is to identify optimum locations in the

input space that provides good precision of estimation for all the responses. Here, we

consider a 30-run design with 10 factors and five levels (−2,−1, 0, 1, 2) for each factor.

The choice of the factor level was to ensure an easy comparison with the resolution V

unique factor CCD (Res V UF-CCD) of the same size from Marget and Morris [70] (see

Appendix A.3 for the design structure). The design space has 510 = 9765625 candidate

locations and the starting design with 30 runs for the PACE algorithm is randomly se-

lected from the candidate locations. Unlike the previous example, the search for optimal

designs did not result in a single design, instead a suite of competing non-dominated D-

optimal designs is obtained. With 100, 000 random starts, the PACE algorithm identified

a Pareto front consisting of eight competing designs. For the eight D-optimal designs and

the Res V UF-CCD (denoted as design number 9), Figure 3.1 shows each response average

normalized standard deviations for all the coefficients (all effects), first-order term coeffi-

cients (main effects), interaction term coefficients (interaction effects), and quadratic term
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coefficients (quadratic effects). As with the five factors case, the result indicates that the

D-optimal designs significantly have lower normalized standard deviations for each re-

sponse model, implying that the D-optimal designs obtained provide consistently better

efficiency for estimating all responses.
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Figure 3.3: Average normalized standard deviations of model coefficients for the eight
D-optimal designs and the Res V UF-CCD

Although the D-optimal designs clearly outperform the Res V UF-CCD based on the

estimated standard deviations for model coefficients, yet, for informed decision making,

it is helpful to look at other design criteria to further evaluate the design performance

on other aspects. It is essential to examine trade-offs among criteria for the competing

designs when balancing multiple criteria in design optimization.

Selection of D-optimal designs is dependent on the specified model forms. In addition

to obtaining precise estimation of the specified model, another important aspect in design

selection is to protect against potential model misspecification (what if the information
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obtained from the screening experiment was not quite accurate). Model misspecification

could result in bias of estimated model parameters and the error variance. Therefore, in

addition to ensuring precise estimation of the chosen models, we also want to protect

against the impact of potential misspecification on the estimation of coefficients and error

variance if any of the omitted factor (based on the screening experiment) is potentially

active. Let the specified model for a particular response be, Y = Xsβs + ε, where Xs

is an N × ks design matrix of factors specified for that response (based on the screening

experiment), while the full response surface model for all design factors is denoted by

Y = Xsβs + Xoβo + ϵ. In our application, the set of terms Xsβs contains the first order

terms, two factor interactions and quadratic terms of factors specified for a particular

response, while Xoβo contains all the omitted terms, including the first order terms, two

factor interactions and quadratic terms of the factors not identified to be related to the

response.

For each response model, the bias of the estimated model parameter estimates is given

by

E (β̂s)− βs = [βs + (X′
sXs)

−1X′
sXoβo ]− βs = Aβ0, (3.3)

where A = (X′
sXs)−1X′

sXo is regarded as the alias matrix [81]. The sum of the squared

transmitted bias (SSB) is given by, SSB = β′
oA

′Aβo , where βo is unknown and often

assumed to follow the multivariate normal distribution, βo ∼ N(0, σ2
βo
I) [24]. A measure

of the impact of model misspecification on the estimated coefficients is given by tr(AA′)

[9]. We define the bias on the estimated coefficients efficiency for a particular design

as tr(AminA
′
min)/tr(AA

′), where “min” designation denotes the D-optimal design with

the minimum tr(AA′). Bias can also be transmitted to the estimate of σ2 due to model

misspecification since

E (MSEuser )− σ2 = β′
o [XsA−Xo ]

′[XsA−Xo ]βo/ks = β′
oR

′Rβo/ks , (3.4)
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where MSEuser is the residual mean squared error from the misspecified model and R =

XsA−Xo . The impact of model misspecification on the estimated error variance is mea-

sured by tr(R′R) [81]. We define the bias on the estimated error variance minimization

efficiency for a particular design as tr(R′
minRmin)/tr(R′R), where “min” designation de-

notes the D-optimal design with the minimum tr(R′R).

For the competing designs on the Pareto front, the D-, tr(AA′)- and tr(R′R)-efficiency

values were estimated for each response model. As expected, the result in Figure 3.4

shows that, the eight optimal designs found on the Pareto front have high D-efficiency

values, thus satisfying our goal of precise parameter estimation. From the result, it ap-

pears that design 6 has the best performance to protect against model misspecification for

response 1 while design 5 performs generally well for other responses. Overall, design 5

appears superior in offering protection against model misspecification.
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Figure 3.4: The plot showing the D-, tr(AA′)- and tr(R ′R)-efficiency values for the eight
D-optimal designs
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In addition to the precision and bias of the estimated models, we also care about the

prediction ability of the fitted models. Therefore, we examine the A-, G- and I-efficiency

values of the competing designs. From Figure 3.5, we can deduce which design(s) provide

the best prediction ability for each response. For example, design 5 and design 7 seems

to provide the best prediction of the worst case scenario for response 1, while design 4

seems to be the best for response 3. Comparing the responses in general, design 5 appears

to offer better prediction performance. For this example, we also explore an alternative

case with different design size. The general patterns of selected designs are consistent

with the 30-runs case.
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Figure 3.5: The plot showing the A-eff, G-eff and I-eff for the eight D-optimal designs

In terms of the computing efficiency, the PACE algorithm takes an average of 48 sec-

onds to run 100 random starts on a standard desktop computer for the five factors 20-run

design and about five minutes for the ten factors 30-run design. Multiple random starts

were run in parallel to improve the computational efficiency of the algorithm. For the

five factors example, the Pareto front was identified after running 20000 random starts.
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Further increasing the number of random starts up to 40000 did not result in any change

in the identified Pareto front. For the ten factors example, the number of points found on

the Pareto front initially increases as the number of random starts increases and then it

begins to stabilize after 20000 random starts upward.

3.5 Conclusion

For experiments with multiple responses, the central composite designs are the com-

monly used response surface designs, which typically require a large number of runs

across the super space of all design factors. When an earlier screening experiment or sub-

ject matter expert knowledge can help identify active factors for each response, leveraging

this information can significantly reduce the run size while still achieving good efficiency

in estimation.

This work describes how the prior knowledge can be utilized to seek optimal designs

for simultaneously maximizing precision of the estimated model parameters based on uti-

lizing the Pareto front. Particularly, the Pareto front optimization approach is employed

to generate the Pareto set of non-dominated designs based on D-efficiencies of all the

estimated responses. A search algorithm based on coordinate exchange was developed

to efficiently search through the design space for populating the Pareto front of optimal

solutions.

Examples of varied dimensions were used to illustrate the scalability of the proposed

methodology and the implementation of the algorithm. The D-optimal designs generated

via the methodology in this work show improve performance on precision of estimated

model parameters when compared to designs from existing methods, such as the recently

developed UF-CCDs. We also illustrate how the evaluation of secondary criteria could

help gain a better understanding of design performance on multiple aspects and hence

aid for an informed design selection.
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Chapter 4: Multiple Objective Latin Hypercube Designs for Computer Experiments

4.1 Introduction

Computer experiments are experimental techniques that use computer simulations to

emulate the relationship between inputs and outputs rather than using a physical experi-

ment. Computer experiments have been frequently used in scientific and engineering re-

search to substantially reduce cost of physical experimentation and or for situations when

physical experiments can be prohibitive. Some applications however, involve complex

computer simulations and exploration of large input spaces such that computer experi-

ments can still be computationally expensive and time consuming. Fortunately, growth

in computer power has brought about methodological developments for computer simu-

lations to be successfully applied to a variety of problems [108]. When computer simula-

tions are complex, it has become a common practice in computer experiments to provide

a computable surrogate models (also known as meta-models) to replace the expensive

computer simulations [5]. Surrogate models are trained models designed to learn the

function mapping between inputs and outputs. Among the family of surrogate models,

Gaussian process regression has been popularly used [94] in the field of computer exper-

iments due to its flexibility in approximating expensive complex surfaces [1]. It enables

tasks like sensitivity analysis, uncertainty quantification, validation, and calibration fea-

sible [31, 96].

One major characteristic that differentiate computer experiments from physical exper-

iments is that the process of a computer experiment is deterministic. That is, the computer

simulator produces the same output if run multiple times with the same set of inputs. For
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physical experiment, the process is stochastic. This is because the output of a physical ex-

periment can be influenced by many uncontrollable factors like, the natural variations in

a process, errors due to measurements and unknown noise factors. Due to the determin-

istic nature of computer experiments, the principles of randomization, replication and

blocking that are relevant in physical experiments are irrelevant in computer simulator

experiments [78].

A major task in statistical modeling of computer simulations is proper planning and

configuration of the inputs. In practice, resources are often limited, so an experimental

design plays a key role in identifying the set of inputs to be used in computing the output

of a computer experiment to achieve specific goals. Such a set of points is called the

design of the computer experiment. There has been extensive work in the literature for

constructing designs for computer experiments. They can be divided into two main broad

categories viz; space-filling designs and model-based optimal designs. The space-filling

designs are only concern with the geometric locations of the design points. These designs

aim to achieve maximum spread or coverage of the design space. On the contrary, the

model-based designs rely on a pre-specified model to construct designs for achieving

certain optimal performance.

Space-filling designs have been quite popular in computer experiments due to the fact

that they do not rely on any model assumptions and hence are very flexible and easy to

adapt for broad applications. For example, space-filling designs are used in the computer

simulator of a knee implant to minimize the maximum strain that occurs at the bone and

prosthesis boundary of a knee implant [96]. Another example is in the curing process of

a material. It is important that the temperatures and speeds of the conveyor belt moving

through the oven are set properly in the curing process of a material in order to produce

viable material [66]. For instance, a very high temperature and a very low speed would

damage the material while a very low temperature with a very fast speed would result

in a material not being fully cured. Space-filling designs can be used in the computer
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simulator experiment of this process to determine the right input locations to consider

when performing the actual experiment in order to achieve the aim of the experiment and

avoid wastage of experimental resources. Different aspect of space-filling characteristics

has resulted in different space-filling designs. This chapter will focus on enhancing the

existing space-filling designs by creating well-rounded space-filling designs with good

performance on multiple characteristics.

Latin hypercube designs (LHDs) were among the earliest introduced space-filling de-

signs [73]. Such designs have the nice property of having uniformly distributed design

locations when projected in each single input dimension. A variety of different distance-

based criteria have been developed to capture different space-filling characteristics of the

design across the input space such as the maximin and minimax distance criteria [48].

To combine the nice space-filling characteristics in individual and full input space, LHDs

that are optimal based on a single distance-based criterion [79, 106] have been broadly

used as the common space-filling designs for computer experiments.

In this chapter, we propose to further improve the performance of the LHDs by con-

sidering multiple distance-based criteria to create well-rounded space-filling designs with

good performance on multiple characteristics. To search through the design space for

optimal designs, a column-wise exchange simulated annealing algorithm and a non-

dominated sorting genetic algorithm are explored, with the later demonstrating much

better computing efficiency. The rest of the chapter is organized as follows. In Section 4.2,

we review the literature on distance-based criteria and space-filling designs. Section 4.3

provides a brief review on the Pareto front approach for multi-objective optimization and

presents a discussion on the use of the Utopia point method for selecting a smaller set of

designs when the Pareto frontier is a large set. Section 4.4 describes the newly developed

search algorithms. In Section 4.5, we illustrate the proposed methodology using examples

of varied dimensions. The summary and conclusion are provided in Section 4.6.
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4.2 Space-filling Designs and Distance-Based Criteria

Space-filling designs are very popular for computer experiments. They generally of-

fer a good spread or coverage across the design space and great flexibility in capturing

behaviors of the responses in different areas of the design region. Depending on the goal

of the experiment, the term “space-filling” could be used to describe different principles

for “filling” the design space. Spacing-filling could mean to spread out the design points

by avoiding any pair of design points to be too close to each other, with the assumption

that the information provided by two close points will be similar. Thus, points are placed

in the experimental region such that they are as far apart as possible. Johnson et al. [48]

proposed the maximin distance criterion (Mm), which seeks to maximize the minimum

distance between any pair of design points. The minimum distance among the points in

the design is given by minijd(xi , xj ). Therefore, the maximin distance criterion is given by

max
D

min
i ,j

d(xi , xj ). (4.1)

Alternatively, space-filling could also imply, to provide the best coverage of the design

space. That is, for any given point in the design space, there should be a design point

close by. The assumption here is that any region of the design space could be of interest

in understanding the underlying relationship of the process. Let p represent the number

of design factors and χ be the experimental region, which in most cases, can be scaled to

a unit hypercube, χ = [0, 1]p. Let D ′ = {x1, ..., xn} denote a design of n runs, where each

point xi ∈ [0, 1]p. Then for any point x ∈ [0, 1]p, the distance to the nearest design point

is given by minni=1d(x , xi ). Intuitively, if the goal of the experiment is to predict well over

the entire input space, then the closer a point is to the nearest design point, the better

precision its prediction will have. Hence, the worst prediction is likely to occur at the

point with the farthest distance from the nearest design point. The worst nearest distance

is given by maxx∈[0,1]pminni=1d(x , xi ). Johnson et al. [48] proposed the minimax distance
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criterion (mM). This criterion minimizes the maximum distance of any given point in the

design space to the nearest design point. The minimax distance criterion is expressed as,

min
D

max
x∈χ

min
i∈{1,··· ,n}

d(x , xi ). (4.2)

Computation wise, a maximin distance design is much easier to construct than a mini-

max distance design. This is simply because the maximin distance design only requires

evaluating the distances among the design points while the minimax distance design re-

quires to evaluate the distances from the design points to a fine grid of points spanning

the design region.

Both the maximin distance designs and the minimax distance designs ensure good

space-filling in the full dimension of all input factors. However, space-filling property

is not guaranteed when the designs are projected onto the univariate space or subspaces

formed by a subset of the design factors [52]. Based on the factor sparsity property [78],

i.e. the response is likely to depend on only a few factors, then designs with good space-

filling property when projected onto the subspace of active design factors is desired.

The Latin hypercube design (LHD) [73] was developed to ensure a uniform marginal

distribution for each design factor. To construct a LHD of n runs, the range of each factor

is divided into n equally spaced intervals. Then, only one coordinate of a design point is

sampled from each of the non-overlapping interval (see Figure 4.1). Although the LHD

ensures good space-filling for projections in the univariate space, a random LHD is not

guaranteed to have a good space-filling for projections in full dimension or any other

subspace of the design factors. For example, the right image of Figure 4.1 is a LHD that

defects a good coverage of the design space. All the design points are located on a straight

line (diagonal line), with the rest of the space unexplored.
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Figure 4.1: Examples of Latin hypercube designs with two factors and ten points

To improve the space-filling characteristic of the LHDs over the full design space,

distance based criteria have been used to optimize the placement of design points over

the input space. Morris and Mitchell [79] proposed constructing the LHD, such that the

minimum distance among the points are maximized. This design is called the maximin

Latin hypercube design (MmLHD). Their proposed maximin criterion is given by

min
D

{
Σn−1
i=1Σ

n
j=i+1

1

dk(xi , xj )

} 1
k

, (4.3)

as k → ∞, this criterion becomes the maximin distance criterion in Equation 4.1. They

suggested using the smallest value of k that result in a maximin distance design. Such a

design is incline to have fewer pairs of points with minimum distance, which is referred to

as the index of the maximin distance design. Similarly, Edwin and Dam [106] investigated

the minimax criterion for LHDs (mMLHD). They suggested that design points for LHD

should be chosen such that the maximal distance of any point in the input space to the

design is minimal.

For MmLHD and mMLHD, the Latin hypercube arrangement ensures good spread for

projections in one dimension, where as the maximin distance criterion and the minimax
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distance criterion respectively ensure good spread or coverage in the full dimension. In

particularly, design points are spread as far as possible in MmLHD, therefore pushing

more points towards the corners and edges of the design space. In contrast, to ensure

mamximum coverage, mMLHD rarely places any point in the corner or edge but instead

put more points in the interior region. Even though MmLHD and mMLHD are single-

criterion optimized LHD, the projection of the points onto any subspace of more than one

factor may not have good space-filling property.

The maximum projection criterion (MaxPro) was proposed by Joseph et al. [53] to

ensure good space-filling properties for projections in all possible subsets of the design

factors. That is, having projections as maximin distance designs, across all the subspaces

of 2 to p − 1 design factors. When a design is projected onto a subspace, the distances

between the points are calculated with respect to the factors that define the subspace. The

weighted Euclidean distance between the points xi and xj is define as

d(xi , xj ; θ) =
{
Σp
i=1θl |xil − xjl |2

} 1
2
,

where θl = 1 for the factors defining the subspace and θl = 0 for the remaining factors.

The weights are used to reflect the importance of the factors. Let 0 ≤ θl ≤ 1 be the weight

assigned to factor l and Σp
l=1θl = 1. To ensure good projections in all possible subspaces,

an appropriate distribution is assigned to θ and the reciprocal distance criterion in Equa-

tion 4.3 is integrated over that distribution, the criterion is given as

min
D

∫
Σn−1
i=1Σ

n
j=i+1

1

dk(xi , xj ; θ)
p(θ)dθ, (4.4)

where p(θ) is a prior distribution for θ. If a uniform prior distribution is assumed for θ

and k = 2p, the criterion simplifies to

min
D

Σn−1
i=1Σ

n
j=i+1

1

∏p
l=1 |xil − xjl |2

. (4.5)
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The product in Equation 4.5 ensures that no two coordinates can be similar (enforcing

the Latin hypercube arrangement), otherwise, the objective function can become ∞. The

MaxPro criterion has also been used to improved the uniformity of a random LHD. The

resulting design is called maximum projection LHD (MaxProLHD) [52].

The variations of LHDs discussed above, MmLHD, mMLHD, and MaxProLHD, are

indeed substantial improvements to the random LHDs and have been used extensively

for computer experiments. However, these designs can only ensure the optimal perfor-

mance on a single characteristic, which might lead to suboptimal performance on other

characteristics of interest.

4.3 Pareto Front Optimization and Utopia Point Method

The Pareto front approach has been extensively discussed in Chapter 3. The Pareto

optimal set can sometimes have many solutions. When this is the case, it is necessary to

move from a large set of candidate solutions to a reduced set of solutions. The Utopia

point method is commonly used for strategically selecting a smaller set from the Pareto

optimal set with large solutions [67].

The standard Utopia point method uses a norm and a defined set of weights to de-

scribe each solution’s closeness to the Utopia point. Based on the defined set of weights

for combining the criteria, the solution closest to the Utopia point is then chosen as the

’best’ solution. A Utopia point, F 0, in the criterion space satisfies:

F0 = max
ξ

{fi (ξ)|ξ ∈ Ω)} for all i ∈ {1, 2, ...,C}. (4.6)

A solution ξ∗ ∈ Ω that satisfies F(ξ∗) = F0 is regarded as the Utopia solution. For

multiple criteria optimization however, the Utopia solution ξ∗ generally does not exist,

but it can be used as an “ideal” standard for the criteria values in order to identify the

most performing solution(s) from the Pareto optimal set. Figure 4.2 is an illustration of the
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Pareto front and the Utopia point for a maximization problem involving two criterions.

In the plot, coordinates of the Utopia point are the maximum values for both criteria. The

Pareto front is on the borderline of the criterion space that is nearest to the Utopia point.

Clearly from the Figure, no points on the Pareto front can improve one criterion without

deteriorating the other. The implication of this is that the Utopia point is not feasible in

practice. However, based on a chosen metric, points on the Pareto front which minimize

the distance to the Utopia point are selected by the Utopia point method.

Figure 4.2: Pareto front and the Utopia point in a maximization problem involving two
criterions

The common method for calculating the distances to the Utopia point is the L1-norm,

formulated as:

min
ξ∈Ω∗

ΣC
j=1wj

∣∣sj (ξ)− s0j
∣∣ , (4.7)

where Ω∗ is the set of Pareto solutions, wj for j ∈ {1, 2, ...,C} are the weights assigned to

the C individual criteria, sj (ξ) is the jth objective function transformed to a desirability
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scale (i.e 0-1 scale) for the jth criterion corresponding to solution ξ , and s0j (typically set

at 1) denotes the Utopia point value for the jth criterion on the same scale. Every weight

combination identifies one optimal solution from the Pareto front. However, based on

the scaling scheme and the method used in calculating the distances of the solutions to

the Utopia point, not all the solutions on the Pareto front will be optimal for at least one

weight combination. The Utopia point approach selects a subset of the solutions in the

Pareto front, thereby reducing the potential solutions to consider for decision making.

Experimenting with different weight choices takes minimal computational effort in

the Utopia point approach since every set of weights utilize the same Pareto front found

by the search algorithm. In this study, we explore a fine grid of weight combinations to

examine the trade-offs between the different criteria for designs in the Pareto optimal set.

Decisions can then be recommended based on the trade-offs and robustness of candidate

solutions to different subjective choices. Compared to the standard desirability function

approach, the Pareto front approach and the Utopia point method allows more intuition

about the relative performance of different solutions and quantitative information for

informed decision making [67].

4.4 Search Algorithms

A LHD is an n× p matrix such that each column is a random permutation of (1, ..., n)

which can be mapped onto the range of the p factors. This random permutation process

in the construction of a LHD allows possibility of producing many LHDs from a given

design space or candidate set, each satisfying the Latin hypercube condition of only one

point in each level. However, as mentioned earlier, this random procedure poses the

possibility of generating a LHD with poor space-filling quality. This leads to the idea of

optimizing a design criterion in the construction of LHDs in order to generate optimal

LHDs. Several search algorithms like, the simulated annealing [79], the columnwise-

pairwise algorithms [54], the stochastic evolutionary algorithms [47, 82] have been pro-
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posed for generating optimal LHDs. In this work, first we employed the column-wise

exchange simulated annealing algorithm which works sufficiently for low dimensional

input space but does not scale well for high dimensional problems. Then we adapted the

non-dominated sorting genetic algorithm for constructing LHDs and demonstrate sub-

stantial improvement in populating the Pareto front for higher dimensional problems.

4.4.1 Column-wise Exchange Simulated Annealing Algorithm

The column-wise exchange simulated annealing algorithm has been commonly used

in design of computer experiments due to its natural ability to preserve the Latin hyper-

cube structure [79]. In the mechanism of this algorithm, the search begins with an initially

constructed LHD, and proceeds through the examination of a sequence of designs, each

generated as a “modification” of the preceding one. By modification, it means a new

design is created from the current design by the process of interchanging two randomly

chosen observations within a randomly selected column in the current design. The new

design replaces the current design if it leads to an improvement. Otherwise, it will re-

place the current design via the simulated annealing [57] approach-a method commonly

for approximating the global optimum of any given function. That is, the new design is

allowed to replace the existing design (even if it does not lead to an improvement) with

gradually decreasing probability to ensure extensive search over the solution space.

For the multiple criteria optimization, given that the number of criteria to simultane-

ously optimize is k , we define the set w, with each element as a weight vector (w1, ...,wk),

where Σk
i=1wi = 1 and wi ∈ [0, 1]. Now, let C = Σk

i=1wici be the weighted combination

of the criteria values for a particular design, referred to as the weighted criteria, where ci

is the scaled value for each criterion [44]. A different set of weight values will be used to

lead the search in different direction for locating points on different regions of the Pareto

front. An overview of the column-wise exchange simulated annealing algorithm for seek-

ing the Pareto front based on multiple criteria is described by the following steps:
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1. Construct a n × p LHD matrix as the starting design. For this current design, ξ,

evaluate the weighted criteria, denoted as Cc .

2. Initialize two null sets: the Pareto optimal set (i.e the set that will contain the Pareto

designs), denoted as P, and the set that will contain the weighted criteria of the

Pareto designs (this forms the Pareto front), denoted as PF. ξ is added to P and Cc is

added to PF.

3. A new design, ξ∗ is generated by a column-wise exchange procedure on the current

design. That is, two randomly selected observations of a randomly selected column

of the current design are interchanged. The weighted criteria of the new design, Cn,

is evaluated.

4. Next, the difference between the weighted criteria value for the current design and

that of the new design, that is, ∆C = (Cn − Cc) is evaluated. Since the goal is to

minimize C , if the value of ∆C is negative, the new design replaces the current

design and search continues. Else, the new design will be accepted with a proba-

bility of P = exp(−∆C/t), where t is a time-varying parameter tuned to gradually

approach zero as the number of iterations increases.

5. The next step is to update the current Pareto front and Pareto optimal set by check-

ing for improvements. The comparison made here is between the new design, ξ∗

and the ones in the “current” set of non-dominated designs. If ξ∗ dominates at least

one of the designs in the “current” set, then ξ∗ is added to P and the designs dom-

inated by ξ∗ are removed. If ξ∗ neither dominates nor is dominated by any design

in the current set, then just add ξ∗ to P. If at least one of the designs in the “current”

set dominate ξ∗, then no update is needed for the current Pareto set.

6. Repeat Steps 3 to 5 for a pre-specified set of weights of interest and combine the

Pareto optimal sets and the Pareto fronts from multiple searches based on different
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weights. At the end, there would be d non-dominated designs in the combined

Pareto optimal set P (i.e P={ξ1, ξ2, ..., ξd}) and d associated weighted criteria in the

combined PF (i.e PF={F (ξ1),F (ξ2), ...,F (ξd )}).

7. Repeat steps 1 to 6 with S different random starts. The final set of Pareto optimal

designs and the Pareto front are obtained by combining the results from S separate

searches.

4.4.2 Non-dominated Sorting Genetic Algorithm

Genetic algorithms have been commonly used in optimization problems [77]. They

rely on operations of selection, crossover, and mutation, inspired by evolution theory.

The Genetic algorithm is an iterative process, and the population in each iteration (other-

wise known as generation) are potential solutions evolving towards better solutions for

the optimization problem. To adapt for our application, the initial population should be

generated as LHDs. Moreover, the genetic operators of crossover and mutation should be

defined such that they operate directly on LHD matrices, thus preserving the LHD prop-

erties. In our analysis, solutions for the GA are coded as LHDs and the initial population

is generated randomly, thereby allowing sampling from the range of all possible LHDs in

the design space.

At each generation, new solutions (often regarded as “children”) are created via the

operations of crossover and mutation. The fitness of each individual at each generation

impacts its likelihood of being selected to create new solutions for the next generation.

Fitness is defined as the value of an objective function defined for the optimization prob-

lem and it is use to quantify the suitability of each solution. The more suitable solutions

have higher chance of surviving to the next generation. Several selection methods have

been proposed for rating the fitness of each solution and for making selection of the best

solutions. Liefrendahl and Stocki [61] and De Jong [21] proposed ranking the solutions

in each generation from best to worst fitness and then selecting half of the best solutions
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as survivors at each generation. To ensure that each generation is at least as fit as the

previous generation, Eiben and Smith [27] proposed an elitist strategy. That is, offspring

solutions and parent solutions compete together for survival into the next generation.

The operation of crossover often involve multiple parents while the mutation opera-

tion often consider one parent. In this work, crossover is used to keep the good attributes

of two existing solutions, while mutation is used to generate a slight modification of an

existing solution in order to allow diversity in the population [27]. We employed the

rank-proportional selection [39, 69] to select parents for the crossover and mutation op-

erations. The probability of selecting the rth ranked candidate of the Npop solutions is
(Npop−r+1)

(Npop(Npop+1)/2) . Once probabilities have been assigned to each solution in the parent set,

a crossover operation is used to generate offspring solutions as follows; two parents are

randomly selected from the “parents set”, then a random integer ki (1 ≤ ki ≤ n− 1, i =

1, 2, ..., p) is selected as the cut-off point for each variable. To generate each ith variable

of the “child”, values in runs 1 to ki from the ith variable of the “first parent” are selected

and values in runs ki + 1 to n from the ith variable of the “second parent” are selected.

A “repair” function is use to replace repeated values in each variable with the missing

values in a random order to ensure each column is a permutation of {1, · · · , n} [44].

For instance, consider a 10-run design, if the cut-off point for generating a particular

variable of the child solution is 6, the runs of that variable is determine as shown in Table

4.1. The child variable takes its first six runs from parent 1 variable and the remaining

four runs from parent 2 variable. As observed in Table 4.1, value 9 is repeated in the

child variable. This can then be corrected by a repair function, where the duplicate of the

repeated value is replaced with the unselected value from the parents variables (i.e 6).

Table 4.1: An example of crossover operation

Parent1 variable 1 9 8 7 4 3 5 10 2 6
Parent2 variable 6 4 7 1 3 8 10 2 5 9
Child variable 1 9 8 7 4 3 10 2 5 9

Repaired Child variable 1 9 8 7 4 3 10 2 5 6
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For the mutation operation, one parent design is randomly sampled from the “parents

set” and switching is done on two randomly sampled observations for each variable. In

this work, at each generation, half of the children’s solutions are created via crossover

and the remaining half via mutation.

For the multiple criteria optimizations, we employed the non-dominated sorting ge-

netic algorithm II (NSGA-II) [22]. It is a fast-elitist non-dominated sorting GA that uses

a rank-based fitness function for generating the Pareto front. It generates offsprings us-

ing the specified crossover and mutation operations, and then selects the next generation

according to non-dominated sorting and crowding distance comparison. The execution

of the algorithm is as follows; for each solution S in the current population, the number

of solutions that dominate S (regarded as domination count) is calculated and solutions

dominated by S are identified. Solutions with domination count of 0 are non-dominated,

thus they are on the first tier Pareto front (PF1). After determining the domination count

of each solution and identifying the solutions that each solution dominates, the algorithm

then loops through the solutions on PF1. For each solution S on PF1, each solution domi-

nated by S has its domination count reduced by one. The dominated solutions with new

domination count of 0 will be on the second tier PF (PF2). This process is repeated for all

solutions on the lower tier PFs.

After sorting the solutions in the current population into tiers of PFs, the solutions

on each tier of PF are then sorted based on their crowding distance [22]. The crowding

distance is a measure of a solution’s criteria values from those of other solutions. Solu-

tions that are farther from others are given a larger crowding distance and a higher rank.

The values of each criterion are sorted from smallest to largest. The highest and lowest

values of a criterion are assigned an infinite crowding distance. For all other values of a

criterion, the crowding distance of each value is evaluated by finding the range of values

immediately on both sides of the value, which is then scaled based on the range of the

criterion. After separately computing the crowding distances for the values of each crite-
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rion, the overall crowding distance for a solution is evaluated as the sum of that solution’s

crowding distances for all criteria.

When the NSGA-II is initialized using randomly generated solutions, a possibility

is that few of the solutions would be on the PF1. The consequence of this is that the

lower tier PFs solutions would potentially be used to produce offspring solutions for the

next generation if fixed population size is used. Thus, resulting in offsprings that are

likely to be inferior and computation time would be wasted in evaluating these inferior

solutions. On the other hand, for later generations, as the PF continue to grow, its size

could potentially exceed the initial population size. Hence, using fixed population size

could result in elimination of superior solutions on the Pareto front. To prevent these

challenges, Chapman et al. [15] proposed using adaptive population sizing [29] for the

NSGA-II algorithm. This procedure allows the number of offspring solutions produced

at each generation to be dynamically determined. In this work, our modification on the

NSGA-II follows the modification proposed in Chapman et al. [15].

To incorporate adaptive population sizing in NSGA-II, a maximum population size

(maxpro) and a maximum number of offspring (maxoff ) to be generated is specified. At

the initialization of the algorithm, popsize = maxpop solutions would be randomly gener-

ated. The algorithm is then used to determine solutions that would be on the PF1. The

number of offspring (noffg ) solutions to be created in generation g is dynamically deter-

mined as

noffg = min{cg + [dg × |(PF1)g |,maxoff ]},

where cg stands for the minimum number of offspring solutions to be created in genera-

tion g , while dg stands for the rate at which the number of offspring created in generation

g grows as the number of solutions on PF1 grows. For the implementation in this work,

we set cg = 20 and dg = 4. That is, at each generation, a minimum of 20 offspring solu-

tions are generated, and for every solution on the PF1, four extra offspring solutions are

generated. At the end of generation g , there would be PF1g solutions on the PF1. Then
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the population size for generation g + 1 is determined as

popsizeg+1 = min{ag + [bg × |(PF1)g |,maxpop]},

where, ag stands for the minimum number of solutions to include in the population be-

yond the PF1 while bg stands for how the size of the population grows in relation to the

size of the PF1. We define ag to be relative to the specified maximum population size

(ag = 0.2 ∗ maxpop) and bg = 1. This allows the population size to be slightly larger

than the number of PF1 solutions at each generation. The highest ranked solutions of

popsizeg+1 are the ones that move on to generation g + 1. However, there is a disadvan-

tage to specifying a maximum population size. If |(PF1)g | > maxpop, it implies that some

solutions on PF1 fails to move on to the next generation, that is, the PF will be truncated.

This could result in a situation where reasonable contending solutions are not available

in the decision-making stage. To avoid this situation, if |(PF1)g | > maxpop, then maxpop

should be allowed to grow based on the size of the PF1 [15].

In genetic algorithms search procedure, the cycle of fitness evaluation, reproduction,

and survival continues until the specified termination condition is met. In this work, the

termination condition is when the specified number of generations is reached. However,

it should be noted that, being an heuristic search algorithm, the genetic algorithm does

not guarantee finding the global optimal solutions. In general, as the number of iterations

increases, the better the approximation to the true Pareto front. In practice, a balance is

sort between the accuracy of the approximation and the computation time.

4.5 Applications

Using the Pareto front optimization approach, the column-wise exchange simulated

annealing algorithm and the NSGA-II were used to seek optimal LHDs that simultane-

ously balance multiple space-filling characteristics. The optimal LHDs generated via this
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proposed methodology are then compared with optimal LHDs generated from single cri-

terion optimization based on design characteristics and simulation studies via Gaussian

process regression.

The analyses in this work revealed the column-wise exchange simulated annealing

algorithm to be less effective for broad exploration of the design space, and consequently

unable to effectively populate the PF. We think that the column-wise exchange mechanism

makes the solutions largely dependent on the starting design points, hence limited the

space and efficiency of the algorithm. On the contrary, the NSGA-II procedure proved to

be more efficient in the exploration of the design space and populating the PF. Since the

NSGA-II is more efficient for the analyses in this work, only the results via the NSGA-II

algorithm are presented.

4.5.1 Low Dimensional Design Example

Consider the problem of constructing a design of computer experiment with 20 runs

and two design factors. For this scenario, there is no need to consider maximum pro-

jection criterion since the only subspace is the univariate space and the LHD structure

already ensured a uniform distribution in univariate dimension. Therefore, we only con-

sider the maximin distance criterion and minimax distance criterion for simultaneously

maximizing the spread and coverage of the design locations throughout the input space.

After several searches for the single criterion optimization, the optimal MmLHD and opti-

mal mMLHD found achieve the optimal criterion values at 4.0947 and 0.1646 respectively.

In calculating the maximin distance criterion value for the LHD, we employed the sim-

plified alternative maximin distance criterion proposed by Morris and Mitchell [77], such

that minimizing their proposed maximin distance criterion is the same as maximizing the

standard maximin distance criterion.

For the multiple criteria optimization, the Pareto front optimization approach and the

search algorithms were used to simultaneously optimize the maximin distance criterion
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and the minimax distance criterion in the construction of the LHDs. The NSGA-II algo-

rithm takes an average of 2 minutes to run 100 generations on a standard desktop com-

puter. Thus, it takes an average of about 3 hours for 10000 generations. Multiple separate

NSGA-II searches were run in parallel to speed up the search process for populating the

Pareto front. The final Pareto front, containing 16 optimal LHDs (including the optimal

MmLHD and mMLHD from the single criterion optimization) was identified after run-

ning 70 separate NSGA-II searches of 10000 generations each. Figure 4.3 is the plot of the

Pareto front in two scale; the raw value of the criteria (on the top and right axes) and the

desirability scale (on the bottom and left axes).
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Figure 4.3: Pareto front for the maximin criterion and minimax criterion optimization.

The designs on the Pareto front were subjected to further evaluation to examine ro-

bustness to different weighting choices and the trade-offs between criteria among com-
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peting designs. First, we use the Utopia point method to select the most performing de-

signs from the Pareto front. For a given set of wj in Equation 4.7, the Utopia point method

rank the solutions on the Pareto front and then selects the best design. It iterate through

a user specified grid of weights combinations to evaluate each point on the Pareto front.

The selected solutions are those which are optimal for at least one of the combinations

of the w’s. In our application, since there is little prior information about relative con-

tributions from the criteria, we propose exploring all possible weights combinations and

observe how the optimum designs changes. Also, we transform each of the criteria to

a desirability scale so that the best and the worst values on the Pareto front are 1 and

0 respectively. This is to allow consistency in the range of best to worst values for each

criterion, and easy interpretation of the relative weights. In the Utopia point method, we

employ the additive desirability function approach to combined the criteria, i.e the scaled

criteria are combined as weighted sum.

The Utopia point method using the L1 norm across a fine grid of all possible weights

selects six optimum designs from the Pareto front. Figure 4.4 is a mixture plot that shows

the distributions of weights for the selected designs. Every point within this rectangular-

like shape corresponds to a weight combination with the sum of the two weights (i.e

weights for both criterions) equaling one. The Figure shows that design 10 and design

1 are optimal for large range of weights. Particularly, design 10 is optimal for weights

between 0.25 and 0.6 for the maximin distance criterion, which indicates that this design

is optimal when two criteria are considered similarly important. Design 1 is optimal

for weights between 0.725 and 1 for the maximin distance, which suggests this design

should be selected if maximin distance criterion is the dominating criterion. Designs 16,

15 and 4 are optimal for small ranges of weights while design 11 is optimal for only very

specific values of weights. A plot like this can be useful for decision makers when there

is uncertainty about the relative importance of different criteria. From the mixture plot,

we can also deduce that; design 4 and design 10 offer some balances when both criteria
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are simultaneously considered, designs 1 appears optimal when the maximin criterion

is valued the most while design 15 and design 16 appears optimal when the minimax

criterion is considered more important.

Figure 4.4: The mixture plot for the six optimum designs

Figure 4.5 is the trade-off plot [67] showing the criteria values for the six designs se-

lected by the Utopia point method. The plot has two scales: the desirability scale of the

criteria values (inner vertical axis) and the original scale of the criteria values (outer ver-

tical axis).
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Figure 4.5: The plot showing trade-offs between the 6 optimum designs
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The designs are sorted based on the maximin distance criterion. The observations from

the trade-off plot are similar to that from the mixture plot discussed above. From Fig-

ure 4.5, notice that design 1, which has optimal performance for the maximin distance

criterion has a poor performance for the minimax distance criterion. Similarly, design

16 which has optimal performance for the minimax distance criterion, has a poor perfor-

mance for the maximin distance criterion. Again, design 10 and design 4 are clearly seen

as choices with some balance when both criteria are considered simultaneously.

Next, the performance of the six optimum designs selected from the mixture plot are

further examined through simulation studies. A response surface model of the form,

z(x) = x1exp(−x21 − x22 ), x1, x2 ∈ [−2, 2]2, is used to simulate data from each design and

a Gaussian process regression model with a constant mean is fitted to each data. For the

covariance function of the Gaussian process, we considered the product power exponen-

tial correlation function, using three different choices of the smoothing parameter, that is,

v at 1, 1.5 and 2. The mean square prediction errors of the fitted Gaussian process models

are evaluated over a fine grid of points spanning the input space.
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Figure 4.6: FDS plot for comparing the six optimum designs selected by the Utopia point
method, using data simulated from the model z(x) = x1exp(−x21 − x22 ), x1, x2 ∈ [−2, 2]2
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Figure 4.6 is the fraction of design space (FDS) plot for comparing the six optimum

designs. Each design is represented by a curve in the FDS plot. Each curve reflects the

fraction of the design that has the prediction variance below certain percentage. Intu-

itively, a low flat curve in the FDS plot corresponds to a small mean square prediction

error through the design space. Figure 4.6 shows that the designs with some balance in

the minimax distance and the maximin distance criteria (Design 10 in light blue, Design

4 in blue, Design 11 in green and Design 15 in yellow) generally perform better in terms

of the prediction errors when compared with designs that are optimal based on a single

criterion (Design 1 (MmLHD) and Design 16 (mMLHD)). Specifically, Design 15 has the

lowest mean square prediction error. Two alternative forms of the response surface model

are explored to further observe the performance of the six designs. The results obtained

are consistent with the ones presented here.

4.5.2 High Dimensional Design Example

In this section, a design problem of higher dimensions (more design factors and run

size) is used to illustrate the proposed methodology. Alongside the maximin criterion and

minimax criterion, the maximum projection criterion is also considered in this example

since the number of design factors exceed two and space-filling for projections in all pos-

sible subspaces is desired. We consider the problem of constructing a design of computer

experiment with 50 runs and 4 input factors. After several searches for the single criterion

optimization, the optimal MmLHD, MaxProLHD and mMLHD found achieve optimal

criterion values at 2.5854, 37.1714 and 0.4062 respectively. The NSGA-II took an average

of 16 minutes to run 100 generations on a standard desktop computer. The Pareto front,

containing 536 optimal LHDs (including the MmLHD, MaxProLHD and mMLHD from

the single criterion optimization) was identified after running up to 50 separate NSGA-II

searches of 10000 generations each.
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Similar to the previous example, the impact of different subjective choices and weight-

ings on selecting further solutions from the Pareto front are examined via graphical sum-

maries. Using additive desirability function approach, five optimum designs were se-

lected from the 536 designs on the Pareto front by the Utopia point method. Figure 4.7

shows the 3D mixture plot of the selected 5 optimum designs. Every point in the triangle

corresponds to a weight combination with the sum of the three weights equaling one. The

vertices and the edges correspond to optimizing a single criterion and optimizing two of

the three criteria, respectively. Different colors are used to distinguish different selected

designs.
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Figure 4.7: The 3D mixture plot of the five optimum designs

From Figure 4.7, we see that Designs 163, 41 and 162 are optimal for large ranges of

weights, which indicates good robustness to weight ambiguity. Design 162 is optimal

when the minimax distance criterion is valued the most while the maximum projection

criterion is valued the least. Design 163 is optimal when the minimax and maximum

projection criteria are considered more important than the maximin criterion. While De-

sign 41 is otpimal when the maximin is considered the dominating criterion. It should be

noted that the 5 optimum designs identified by the Utopia point method do not include

the optimal MmLHD MaxProLHD and mMLHD from the single criterion optimization,
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which suggests the single-criterion optimal solution is optimal only when that criterion

is considered and offers inferior performance on other characteristics of interest.

The trade-offs between the reduced set of designs are shown in Figure 4.8. The designs

are sorted based on the maximin distance criterion. The observations from the plot are

similar to that from the 3D mixture plot. From both plots, Design 41 is the best solution

when the maximin distance criterion is favored, Design 162 is desired when the minimax

criterion is valued more and Design 210 is considered optimal when maximum projection

criterion becomes the dominating criterion.
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Figure 4.8: The plot showing trade-offs between the criteria for the 5 optimum designs

The performances of the five optimum designs together with the optimal designs from

the single criterion optimization were then examined via simulation studies. A response

model of the form, z(x) = exp(sin(0.9 × (x1 + 0.48)10)), x1 ∈ [0, 1], is used to simulate

data from individual designs and Gaussian process models are fitted to each data. Then

the mean square prediction errors of the designs were estimated over a fine grid of points

spanning the four dimensional input space. Figure 4.9 is the FDS plot for comparing the

designs in terms of the prediction variance. Design 1 (MmLHD), Design 530 (MaxPro-
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LHD) and Design 534 (mMLHD) are also included, the optimal designs based on a single

criterion optimization.

v=1 v=1.5 v=2

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5

Quantile

P
re

di
ct

io
n 

E
rr

or

Design 163

Design 210

Design 162

Design 82

Design 41

Design 1

Design 530

Design 534

Figure 4.9: FDS plot for comparing the five optimum designs selected by the Utopia
point method and the optimal designs from the single criterion optimization, using data

simulated from the model z(x) = exp(sin(0.9× (x1 + 0.48)10)), x1 ∈ [0, 1]

The Figure shows that the MaxProLHD (purple) performs well for about 90% of the

design space but really poorly for the remaining region. The Pareto front designs: 41

(light-blue), 162 (light-green) and 163 (red) have more robust performance, especially in

terms of preventing the worst-case scenario. Design 41 generally performs well across

the entire design space. Two alternative response models are explored, the results are

consistent with the illustrated example. In general, optimal LHDs generated from the

multiple criteria optimizations are better choices compared to optimal LHDs based on a

single criterion optimization.

4.6 Conclusion

In design of computer experiments, most of the existing space-filling designs are gen-

erated based on optimizing a single criterion. These designs are found to perform well

on one aspect of design characteristics and relatively inferior on other aspects. Simultane-
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ously optimizing multiple criteria is desired to generate better designs that have balanced

performance in multiple aspects of design characteristics. Moreover, considering multi-

ple objectives for an experiment, in principle, generally result in a set of Pareto-optimal

solutions, instead of a single optimal solution.

Utilizing the Pareto front optimization approach, the column-wise exchange simu-

lated annealing algorithm and the NSGA-II algorithm were used to search for optimal

designs. The NSGA-II algorithm is shown to have a better performance than the column-

wise exchange simulated annealing algorithm. The methodology in this work is illus-

trated with two examples of varied dimensions. The performance of the generated op-

timal LHDs are evaluated via graphical summaries and simulation studies, and com-

pared with designs from single criterion optimization to demonstrate their improved

performance. The NSGA-II algorithm proved more efficient in eliminating noncontend-

ing choices from the solution space, thereby allowing identification of the most promising

designs.

Although, this work considers simultaneous optimization based on the minimax cri-

terion, maximin criterion and maximum projection criterion, the proposed methodology

is very general to be adapted for other space-filling criteria.
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Chapter 5: Bayesian Optimal Design for Accelerated Degradation Tests with Multiple

Accelerating Factors

5.1 Introduction

Manufacturers are often faced with the challenges of developing highly reliable prod-

ucts in a timely fashion. This has encouraged the development of statistical methods for

reliability testing. A common approach to describing the reliability of products is estima-

tion of the failure-time distribution of the products based on data obtained from life tests.

That is, to observe failure or survival time of products under their normal use conditions.

However, the development in technology has instigate many modern products to be de-

signed to have a very long lifetime under their normal use conditions. Thus, traditional

life tests and even accelerated life tests yield few or no failure for highly reliable products.

To obtain reliability data in a more timely fashion, engineers choose to measure the degra-

dation process of the products and relate it with the evaluation of the product reliability.

The reliability of a product is the probability that it would perform its required functions

under defined conditions for a specified operating period. Degradation testing is used

to measure the physical degradation in a product quality or performance characteristic

as a function of time, providing more direct information about product’s reliability than

traditional life test.

For some products with high reliability, the degradation rates at normal use conditions

can be too low to offer sufficient information for precisely predicting product reliability

at future time point of interest. For instance, because of the organic nature of the dye

layer of an optical device, the degradation and breakdown of the transparent portion of
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the dye layer can take many years in a normal environmental condition [85]. Engineers

therefore use accelerated tests to elevate the degradation process of highly reliable prod-

ucts, by putting them under elevated stress or environmental conditions, such as higher

temperature, voltage, pressure, or humidity level [74] to aid timely availability of data

for reliability analysis. This process is called accelerated degradation test (ADT). Under

these conditions, degradation measurements are obtained and used to fit a model for de-

scribing the relationship between the accelerating conditions and degradation measures.

This relationship can then be extrapolated to predict the degradation path and reliability

under normal use conditions. The degradation measurements can be obtained as a single

measurement in one shot experiment or as repeated measurements at specific points in

time. We focus on repeated measurement experiments in this work.

In practice, limitation in experimental resources due to time and budget restrictions

is a common challenge. Thus, effective planning of a test before the actual experimen-

tation is important. Optimal test plans are often explored to maximize the information

gain subject to the resource limitations. A common approach to this is to construct an

optimal accelerated degradation test (ADT) plan for a selected criterion that can be used

to guide the construction of efficient practical test. The selection of the criterion is of-

ten based on the aim of the experiment and the reliability metric of interest. A common

aim in ADT plan is to estimate a particular quantile of the failure-time distribution at

the normal use condition. The criterion for this is to minimize the variance of the esti-

mated quantile lifetime of interest at the normal use condition, which is often regarded as

the C-criterion. Other common criteria include the D-criterion, which maximizes the de-

terminant of fisher information matrix of the model parameters for achieving maximum

precision in estimated model parameters, and the entropy approach which maximizes the

relative entropy to maximize the information gain about the expected responses [74].

When constructing an ADT with repeated measurements, the following planning val-

ues have to be specified: the overall test duration, how often the repeated measurements
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will be taken, the number of test units, and the testing conditions (particularly, the level

combinations of the accelerating factors) that test units will be exposed and the number

of units that will be allocated to each testing condition. In addition, information about the

form of the degradation model, model parameters and the failure threshold (i.e. the level

of degradation at which a unit is deemed to fail) needs to be specified for seeking an opti-

mal test plan [112]. Frequentist methods for test planning require specification of values

of the model parameters [74]. Such values are generally not known precisely during the

test planning stage. Thus, a test plan based on a subjective choice of the planning values

may fail to get the most useful information from the data given the limited resources. In

contrast, Bayesian approach allows the use of prior distributions for capturing the uncer-

tainty of planning parameters and hence offers more robust and realistic solutions to test

planning. In some applications, certain information regarding the underlying models or

possible range of parameter values are often available from previous studies or expert

knowledge about the failure process from previous experiments. Bayesian methods can

easily incorporate those prior information about model parameters into planning and es-

timation of the criterion of interest, providing test plans with better statistical precision.

As mentioned earlier, the testing conditions that test units will be exposed to and the

number of units to be tested at each testing condition are essential planning values to

be specified by the experimenter in ADT. Often, the choice of these values are ad hoc,

which could result in a loss of opportunity to improve our understanding of the failure

mechanism given the available resources. This chapter develops a novel approach of

selecting optimal accelerated degradation tests plans. Particularly, we propose using the

Bayesian optimal design and heuristic search algorithm to select optimal designs (testing

conditions and the number of units be tested at each testing condition) for ADT with two

accelerating factors, where the goal is to precisely estimate the quantile of the failure time

distribution at the normal use condition. That is, given the total number of affordable

test units, how should the experimenter allocate resources in order to optimize the model
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performance and consequently increase the information learned about the degradation

path and the reliability performance of the product of interest.

A Bayesian criterion based on precise estimation of the failure-time quantile of the

degradation model at the normal use condition is used for seeking optimum designs. The

large-sample approximation approach [12] is used to estimate the posterior distribution in

the Bayesian analysis. To search through the design space for optimal solutions, a genetic

algorithm is used in this work to optimize the Bayesian criterion function. It should be

noted that, in order to suit the language used in design of experiments literature, the

terms ”testing condition” and ”testing location” are used interchangeably in this work.

5.1.1 Related Work

This subsection will review existing work in accelerated degradation test planning,

and Bayesian accelerated degradation test plans.

Several work have been done on planning ADT with repeated measures. Although

not much work has been done for developing optimal ADT plans with two or more

accelerating factors [30, 88]. Nelson [83] and Meeker et al. [74] discussed different lin-

ear models and models made linear through transformation for ADT. Stochastic models

have also been broadly used for analyzing ADT data. A few commonly used models

include, the Wiener process [62], the Gamma process, and the inverse Gaussian process

models [60, 116]. Other types of models that have been used for analyzing ADT data

include the exponential-dispersion models [105], nonlinear regression for physics-based

models [102], the lognormal distribution [117], hierarchical models [30, 87], and mixed-

effects linear models [110].

Bayesian methods have been applied for ADT test planning. Shi and Meeker [97] dis-

cussed a Bayesian method for seeking optimal accelerated destructive degradation test

plans for nonlinear degradation models with a single accelerating factor by maximizing

the precision of an estimated life time quantile under the normal use condition. Li et
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al. [60] propose a Bayesian ADT design based on the inverse Gaussian process, by con-

sidering three optimization criteria including the relative entropy, quadratic loss func-

tion, and Bayesian D-optimality. Recently, Weaver and Meeker [111] develop a Bayesian

method for planning repeated measures ADT with one accelerating factor, where a linear

model is assumed for the degradation path. They defined a Bayesian criterion based on

precision in estimation of the failure-time quantile at use conditions for finding optimum

test plans and a large-sample approximation for the posterior distribution was used to

evaluate the planning criterion. In their analysis, the optimality of a given test plan was

checked via the general equivalence theorem [118].

In this current work, as opposed to Weaver and Meeker [111], we consider test plan-

ning for repeated measures ADT with two accelerating factors and we use an heuristic

search algorithm to find the optimum test plan.

5.1.2 Motivating Application

The motivating application considered in this work is the accelerated degradation test

conducted by the international organization for standardization (ISO) for predicting the

life expectancy of an optimal media [30, 101]. The ISO is responsible for developing and

maintaining standards in information and communications technology. Particularly, it

uses an accelerated degradation test for investigating the effects of temperature and rel-

ative humidity on the lifetime of optical media and then build a regression model for

estimating the degradation process and predicting the life expectancy of an optical me-

dia [101].

Table 5.1: Testing conditions

Test Cell Temperature (◦C ) Relative Humidity (%RH) Number of Specimens
1 85 85 20
2 85 70 20
3 65 85 20
4 70 75 30
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Four testing conditions were selected in the ISO ADT, as shown in Table 5.1. The

specimens tested in test cells 1 and 2 are measured at 0, 250, 500, 750, and 1000 hours

of testing; 0, 500, 1000, 1500, and 2000 hours in test cell 3; and 0, 625, 1250, 1875, and

2500 hours in test cell 4. The raw data is given in Appendix B.3. Figure 5.1 shows the

degradation paths (measurements in log scale) as a function of time (measured in hours).

We can observe different degradation rates across the varied test conditions. The highest

degradation rate occurs at the test condition with the highest temperature, 85◦C , and

highest relative humidity, 85%. The units tested under lower levels of temperature and

relative humidity generally have lower degradation rates.
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Figure 5.1: Degradation path of the ISO optical media data

Figure 5.1 also shows the presence of unit-to-unit variation in the initial degradation

levels and the degradation rates. For instance, at the initial time point (time 0), each degra-

dation path starts with different initial values, suggesting varied starting conditions of the

test units. Similarly, units with higher initial degradation values are generally associated
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with higher degradation rates over time. We assume a linear mixed-effects model for the

degradation paths. The random effects in the model is use to capture the unit-to-unit

variation while the fixed effects is use to capture the effects of testing conditions on the

degradation rates. Also, a general linear trend can be observed in the degradation paths,

further justifying the appropriateness of using a linear mixed-effects model.

The end of life of a disc is the time when the information recorded on the disc cannot

be recovered without losses. For the ISO optical media data, a failure is defined to occur

when the degradation measure on the PI Sum8 reaches the failure threshold value at 280

[101]. In other words, the test unit is considered to fail when its degradation level exceeds

this threshold value. This threshold is often referred to as the soft failure threshold in

the reliability literature. PI Sum8 refers to the parity inner error rate, summed over 8

consecutive error correction blocks, a common indicator used in monitoring the error

rate of a disc device. As observed in Figure 5.1, all the units tested at the toughest test

condition (85◦C and 85% RH) failed and the testing period for this condition lasted for

1000 hours. However, no failure was observed during the testing conditions; (65◦C , 85%

RH) and (70◦C , 75% RH). Intuitively, it would take a very long time before any failure

can be observed under the normal use condition, a much lower temperature and relative

humidity level (25◦C , 50% RH) [101]. Thus, the accelerating factors play an important

role in accelerating the degradation process of the optical media.

Engineers are interested in finding the optimal design with the optimal testing loca-

tions that the optical media should be exposed to and the number of units that should

be tested at each test location subject to the resource restriction. We consider the scenario

when the objective is to precisely estimate the quantile of the lifetime distribution at the

normal use condition. The goal will dictate our choice of the design criterion when seek-

ing the optimal test plan. The remainder of this chapter is organized as follow. Section

5.2 describes the accelerated degradation model, the failure time distribution, and the

reliability metric of interest which is the p-quantile of the lifetime distribution. Section
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5.3 discuss the proposed Bayesian optimal design for ADT with repeated measurements

based on linear mixed effects model and describes the genetic algorithm developed for

seeking optimal test plans based on the chosen criterion. Section 5.4 illustrates the pro-

posed method via the ISO example. Section 5.5 renders the conclusion and discusses

potential future work.

5.2 Accelerated Degradation Path Model

Predicting the product lifetime for an ADT requires two key components: the degrada-

tion path model and the accelerating factor(s). One class of most popular models used for

analyzing degradation data is the general path models [64]. Consider the ADT with two

accelerating factors such as the ISO data, the true degradation level for an observational

unit at time t is generally denoted by, D = D(τ, x1, x2, θ), where τ = ht(t) is a monotone

increasing transformation of time t, x1 and x2 are vectors of (possibly transformed) accel-

erating factor(s), and θ is the unknown parameter vector. We assume µ(τ, x1, x2, θ) has

the form of mixed effects model given by

Y = hd (D) + ϵ

= µ(τ, x1, x2) + ϵ

= x1γ′
1 + x2τγ′

2 + b0 + b1τ + ϵ

= x1γ′
1 + x2τγ′

2 + zb′ + ε. (5.1)

In the above formula, µ(τ, x1, x2) = hd (D) is a location parameter for the distribution of

Y that depends on the unknown parameters θ = (γ′
1,γ′

2)
′, z = (1, τ), ε ∼ iidN(0, σ2) is a

random variable that describes the within unit variation and hd is a monotone increasing

or decreasing transformation of D. In Equation 5.1, the term x1γ′
1 describe how the in-

tercept or initial value of degradation changes as a function of the accelerating factors(s),

x2γ′
2 describe how the degradation slope or rate changes as a function of the accelerating
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factors(s), and zb′ describes the variability in the degradation slope and intercepts among

the test units. In the equation above, x1 = g1(x) and x2 = g2(x) are possibly transforma-

tions of the accelerating factors. They are treated as vectors and hence could include more

than one accelerating factor that influence both the initial value and the degradation rate.

For the ISO optical media application introduced in Section 5.1.2, the following model

specification is employed. Let Yijk be the log transformed degradation measure for unit

i , at time point j , at the test location k (with a certain combination of the temperature

and relative humidity level). Let x1k be the Arrhenius transformation of temperature, i.e.,

x1k = −11605/(Tk + 273.15) where Tk = Temp◦C , and x2k denotes the log transformed

relative humidity (RH), i.e., x2k = log(RH). The linear accelerated degradation mixed

effects model is expressed as:

Yijk = γ1x1kτij + γ2x2kτij + b0i + b1iτij + ε ijk (5.2)

where τij is the square root transformed time. To capture the variability of the initial

degradation level and degradation rate among the individual test units, we use random

effects for the linear regression parameters, b, which is assumed a bivariate normal dis-

tribution, b = (b0, b1)′ ∼ BVN(β,V), where β = (β0, β1)′ is the mean vector representing

the average intercept and slope for all the units, and

V =

 σ2
b0

ρσb0σb1

ρσb0σb1 σ2
b1


is the covariance matrix. Note, the inclusion of ρ allow us to capture the within-unit

correlation observed between the initial condition and the degradation rate. We assume

that the random effects b = (b0, b1)′ are independent of the random error ε ∼ N(0, σ2).

This means that the units are independent. Let θ = (γ1,γ2, β, σb0 , σb1 , ρ, σ) denote the

vector of the parameters of the model.
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5.2.1 Failure-Time Distribution for the Degradation Model

Given a degradation model and the known soft failure threshold, a failure-time dis-

tribution can be derived from the degradation model in Equation 5.2 [74]. In general,

the failure time distribution can be written as a function of the degradation model pa-

rameters. That is, a unit “fails” when the degradation level reaches a prespecified soft

failure threshold level Df . Thus, for increasing degradation, D ≥ Df and for decreasing

degradation, D ≤ Df . Then the failure time of a unit is the time that it reaches the failure

threshold Df . Let T denote a unit’s time to failure. Since b0 + b1τ ∼ N(β0 + β1τ, σ2
b0
+

τ2σ2
b1
+ 2τρσb0σb1), for increasing D, we have

FT (x1, x2 : t) = Pr(T ≤ t) = Pr(D ≥ Df ) = Pr(b0 + b1τ ≥ Df − x1τγ1 − x2τγ2)

= 1− Pr(b0 + b1τ ≤ Df − x1τγ1 − x2τγ2) = 1−Φnor (κ)
(5.3)

where

κ =
Df − x1τγ1 − x2τγ2 − β0 − β1τ

σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

and Φnor denotes the cumulative distribution function of the standard normal distribu-

tion. Similarly for decreasing D,

FT (x1, x2 : t) = Pr(D ≤ Df )) = Φnor (κ). (5.4)

Although the failure time is dependent on the true unobserved degradation path, the

estimation of the parameters is based on the observed and possibly transformed degra-

dation data. FT (x1, x2 : t) can be estimated by evaluating Equation 5.3 or Equation 5.4

at the maximum likelihood (ML) estimates of θ. For complex models where closed form

solution does not exist, numerical integration and simulation-based methods can be em-

ployed [74]. From Equation 5.3 and Equation 5.4, the failure-time quantile (τp) at a par-
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ticular accelerating condition is tp = h−1
t (τp), where

τp = −−[kρσb0σb1 + (Df − β0)(x1γ1 + x2γ2 + β1)]±
√
Ψ

[kσ2
b1
− (x1γ1 + x2γ2 + β1)2]

. (5.5)

Here, k = [Φ−1
nor (1− p)]2 or k = [Φ−1

nor (p)]
2 depending on whether a failure is declared

based on D ≥ Df or D ≤ Df , respectively. Also, kσ2
b1

̸= (x1γ1 + x2γ2 + β1)2 and

Ψ = [kρσb0σb1 +(Df − β0)(x1γ1+ x2γ2+ β1)]
2− [kσ2

b1
− (x1γ1+ x2γ2+ β1)

2][kσ2
b0
− (Df − β0)

2].

More detailed derivation of Equation 5.5 is provided in Appendix B.2. If 0 < p < 0.5,

then the square root in Equation 5.5 is added. If 0.5 < p < 1, then the square root in

Equation 5.5 is subtracted. However, if p = 0.50, then Ψ = 0 (because k = 0), meaning

Equation 5.5 has just one root.

5.3 Bayesian Design of Experiment for Accelerated Degradation Tests

Typically, experimenters have in mind the aim of the experiment and the utility func-

tion or criterion function for quantifying the aim, before performing the ADT. For exam-

ple, the interest may be to estimate a quantile, τp, of the failure-time distribution as pre-

cisely as possible. Following the general approach proposed by Zhang and Meeker [118]

to define the objective function, given that the utility function is the posterior variance of

the quantile of interest, denoted by varθ|Y,η(τp), where η is a given design (i.e, given lev-

els of the accelerating factors and the units allocation), τp is the p-quantile of the failure-

time distribution, and Y is a vector of observed failure time data collected according to

η. Therefore, an optimum plan is the one that minimizes this utility function, which is

equivalent to maximizing −varθ|Y,η(τp). It should be noted that, improving the precision

of the estimator of τp implies minimizing its posterior variance. The posterior variance

is dependent on the unobserved data, therefore an expectation is taken over all possible
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data.

C (η) = −
∫
Y
varθ|Y,η(τp)p(Y|η)dY (5.6)

The posterior variance of the failure-time quantile can be approximated by a function

of the unknown model parameters θ and the Fisher information matrix using the delta

method [12].

Let g(θ) = tp, cl (θ) =
∂g(θ)

∂θl
for l = 1, ..., 8, and c(θ) = (c1(θ), ..., c8(θ))T (derivatives

of τp w.r.t to each of the eight parameters in the vector θ). Then using the delta method to

approximate the posterior variance, Equation 5.6 becomes:

C (η) ≃ −
∫
Y
c(θ)′[Î(θ, η)]−1c(θ)d(p(θ)) (5.7)

where Î(θ, η) is the Fisher information matrix based on the design η evaluated at the max-

imum likelihood estimate θ̂. The Fisher information matrix is defined as I(θ) = −E ( ∂2L
∂θ2

),

the full derivation is given in Appendix B.1. It can be observed that Equation 5.7 is de-

pendent on the data only through the maximum likelihood estimator θ̂, so the integration

in Equation 5.6 can be performed with respect to the predictive distribution of θ̂, denoted

as p(θ̂) where

p(θ̂) =
∫

p(θ̂|θ)p(θ|ϑ)d(θ).

Therefore, Equation 5.6 can be approximated as

C (η) = −
∫

c(θ̂)′[Î(θ, η)]−1c(θ̂)d(p(θ̂)). (5.8)

The distribution p(θ̂|θ) is not tractable. Suppose p(θ̂|θ) is the appropriate joint prior dis-

tribution for θ with known hyperparameters ϑ, as the sample size increases, θ̂ converges

in distribution to θ. That is p(θ̂|θ)) converges to p(θ|ϑ) and Equation 5.6 can further be

approximated as

C (η) = −
∫

c(θ̂)′[Î(θ, η)]−1c(θ̂)d(p(θ|ϑ)). (5.9)
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5.3.1 Prior Distributions

In Bayesian analysis, the specification of prior distributions for the model parame-

ters is important. If there is little or no prior information, a common practice is to use

non-informative or diffuse prior distribution for the analysis. The implication is that, the

assumed prior will not have significant effect on the posterior distribution and resulting

inferences. Moreover, since test planning criteria can be very sensitive to prior infor-

mation, if a diffuse prior is combined with a data with little information (e.g. with few

failures observed), the analysis could result in inefficiencies [11, 12]. Generally, the prior

distribution used to design the experiment is expected to be an informative or weakly

informative prior distribution.

In this work, the prior distributions used are based on a Bayesian analysis of the raw

ISO degradation data. The RStan package [103] is used to fit the assumed model, Equation

5.2, to obtain the MCMC posteriors draws of the model parameters. Stan is probabilistic

programming language used for Bayesian inference and optimization [36]. It uses the

No-U-Turn sampler (NUTS) [43] to obtain posterior simulations given a user-specified

model and data. RStan is the R interface to Stan that allows one to conveniently fit Stan

models from R [103]. For this initial analysis, we used half-normal prior distributions

with mean at 0 and standard deviation at 100 for the variance components. This is a

normal distribution with mean 0 and standard deviation of 100 truncated so its support

is (0,∞). For γ1,γ2 and β, we use a normal prior distribution with mean 0 and standard

deviation of 100. The summary from the Stan analysis is given in Table 5.2. The Rhat

statistic is evaluated for each parameter, this statistic defines the ratio of between-chain

variance to within-chain variance [37]. An Rhat value of 1 indicate the convergence of the

MCMC for the parameters.

Figure 5.2 is the density plots from the MCMC result. The bell shape indicate the

convergence of the MCMC chains.
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Table 5.2: Parameter estimation

Parameters Estimation Standard Error Rhat
γ1 0.42 0.02 1
γ2 0.21 0.01 1
β0 2.69 0.2 1
β1 0.03 0.03 1
σβ0

0.28 0.12 1
σβ1

0.03 0.02 1
σ 0.37 0.01 1
ρ -0.197 0.46 1

gamma[2] sigma_m

beta[1] beta[2] gamma[1]

0.175 0.200 0.225 0.250 0.2750.32 0.34 0.36 0.38 0.40

1 2 3 4 −0.1 0.0 0.1 0.2 0.40 0.45

Figure 5.2: Density plots for convergence parameters

5.3.2 Finding the Optimum Design Plan

To find the Bayesian optimal test plan, a search algorithm is needed to explore the

design space for seeking best performing designs. Typically in optimal design of experi-

ments, the idea is to optimize an objective function selected for capturing a certain char-
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acteristic of the design. In our case, it is to minimize the posterior variance of the quantile

lifetime. Maximizing the objective function (criterion function) given in Equation 5.9 is

equivalent to minimizing the posterior variance. We propose using a customized genetic

search algorithm to search through the design space for designs that maximize the ob-

jective function given in Equation 5.9. Genetic algorithm is a kind of heuristic search

algorithm that has been broadly used in design optimization. But to the best of our

knowledge, it has not been used for finding optimal test plan in ADTs. As a matter of

fact, there has been scarce work on seeking optimal test plans for ADTs with two or more

accelerating factors.

5.3.2.1 Genetic Algorithm for Seeking Optimal Test Plans

A genetic algorithm (GA) is an optimization procedure inspired by the evolutionary

process, which is used in optimizing an objective function of interest. The objective func-

tion is often referred to as fitness measure [39, 51] in GA language. At each generation

of the GA, “offsprings” solutions are generated usually by the operations of crossover

and mutation on the “parent” solutions. At the end of each generation, all the candidate

solutions compete for the ability to create new solutions in the next generation based on

their fitness value. More details about the GA can be found in Section 4.4 of Chapter 4.

Note that our focus is on choosing the best collection of test conditions for the ac-

celerating factors while there is a fixed budget on the total testing units affordable and

the inspection times are predetermined as well. We need to specify the set of possi-

ble levels of each accelerating factors. We choose our input region based on the ISO

data, i.e. the maximum and minimum values of each accelerating factor variables de-

termine the range of the input factors. For each accelerating factor, we choose five levels

at Temp= (65◦C , 70◦C , 75◦C , 80◦C , 85◦C ) and RH= (65%, 70%, 75%, 80%, 85%), respec-

tively. Then the candidate set of design locations include 25 unique testing conditions.

For practical reasons, it is necessary to control the number of unique testing locations for
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the selected test plans (i.e. testing at too many different locations is practically more dif-

ficult to implement). Hence, we adapt the GA search by imposing a range on allowable

number of unique testing locations. This restriction is used for initializing the starting

population and producing offsprings via the crossover and mutation operations. Thus,

it make sense to state the minimum and maximum allowable number of unique testing

locations rather than just fixing a particular number. In this work, we set the minimum

and maximum allowable number of testing locations to be 4 and 10, respectively. Note

that these values can be easily adjusted for different applications with different budget

and logistic constraints.

The steps of the GA are given below, followed by the details of how each steps are

implemented in this current study.

1. Specify p(θ|ϑ), the joint prior distribution for the parameters.

2. Create and evaluate an initial population of N randomly generated solutions.

(a) To generate each solution of the initial population subject to the constraint on

the number of unique test locations, first randomly choose a number of unique

testing locations from the specified range and generate these locations from

the candidate set. Then randomly allocate number of units for each unique

testing location. The allocation of units is done by the process of sampling

(with replacement) n units from the unique locations generated, where n is the

total number of test units required (design size).

(b) The objective function in Equation 5.9 is evaluated for each solution in the ini-

tial population.

The solutions are then be ranked from best to worst fitness.

3. Create N/2 solutions via crossover operation (to be described in more detail)

4. Create N/2 solutions via mutation operation (to be described in more detail)
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5. Evaluate the objective function for the N new solutions.

6. The N new solutions are combined with the N parent solutions. The combined so-

lutions are ranked from best to worst fitness. The top N of these solutions are then

allowed to evolve into the next generation [21].

7. Steps 3–6 are repeated for a specified number of generations. The design with the

maximum value of Equation 5.9, that is, minimum posterior variance is the best

design.

In order to avoid elimination of superior solutions, we allowed the population size to

grow at each generation. The top N solutions of the current generation evolves to the next

generation to create N offsprings solutions. Half of the offsprings solutions are created by

the crossover operation and the remaining half by the mutation operation.

Crossover in step 3 is used to keep the attributes of two existing solutions [27]. Rank-

proportional selection [39, 69] is used to selects parents for the crossover and mutation

operations. The probability of selecting the rth ranked candidate of the Npop solutions is
(Npop−r+1)

(Npop(Npop+1)/2) . After two parent solutions have been selected based on the above prob-

abilities, a crossover operation is used to generate offspring solutions as follows; The

runs in the two parent solutions are combined. The unique testing locations in the com-

bined runs is then ranked based on their frequencies. A random number, x is generated

(satisfying the earlier defined range) to decide the number of unique testing locations

for the child solution. And then the top x most represented unique testing locations in

the combined unique testing locations are selected as the unique testing locations for the

child solution. Lastly, a multinomial distribution with probabilities proportional to the

frequencies of the x selected testing locations is used to generate a single offspring test

plan.

The mutation operation in step 4 is used to create a new solution, which is a slight

modification to an existing solution [27]. One parent design is randomly sampled from
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the “parents set”, then values of randomly selected runs are replaced by values of another

randomly selected runs. We allowed the rate of replacement during mutation to reduce

as the iterations increases (i.e as the generation number increases).

Usually in the GA implementation, the search for optimal solutions continues until the

termination condition is met. For this work, the termination condition for the algorithm is

when the specified number of generations is reached. Being an heuristic search algorithm,

it does not necessarily guarantee finding the exact global optimal. However, we did check

the optimal criteria value over the generations to ensure it converge (as the best criterion

value is no longer changing much over different generations). In general, the longer the

running of the algorithm, the better the chance that the algorithm will find the global

optimum. In practice, a trade-off is often sort between the approximation accuracy and

the computing time.

5.4 ISO Example

This section presents an example to illustrate the methodology proposed in this work.

Consider an ADT for an optical media device where 90 test units are available to be ex-

posed under different testing conditions of two accelerating factors (temperature and rel-

ative humidity). The goal of the ADT is to obtain most precise estimate of the 0.1 quantile

lifetime distribution at the normal use condition. The time points at which measurements

should be made are fixed at; 0,250,500,750,1000 hours, we want to find the optimum test

plan to most efficiently distribute the testing resource. The rest of the planning informa-

tion for this example are already mentioned above, and are summarized below:

• The failure threshold is determined at Df = 280.

• The levels for temperature and relative humidity for the ADT include (65◦C , 70◦C , 75◦C ,

80◦C , 85◦C ) and (65%, 70%, 75%, 80%, 85%) respectively.

89



• The normal use condition corresponds to temperature at 25◦C and relative humidity

at 50%.

The methodology proposed in this work is used to find the optimal design(s) that mini-

mize the posterior variance of the 0.1 quantile of the lifetime distribution of the optical me-

dia. That is, the design(s) with the minimum C-criterion value. Specifically, the method-

ology is used to suggest the testing locations (combination of levels of temperature and

relative humidity) and the number of units to be tested at each testing location.

For this example, the GA takes an average of 10 seconds for 1 generation for a start-

ing population of 100 candidates. After running up to 6000 generations of the GA, the

design with the minimum posterior variance of the 0.1 quantile lifetime was found at cri-

terion value 0.4646. The number of generations for the algorithm was further increased

up to 20000. No other better solution is found with smaller criterion value. The selected

optimal design has four unique testing locations. Figure 5.3 shows the allocation of the

testing locations of the optimal test plan in the input space of the accelerating factors. We

can see that a majority of the test units (over 90%) are located at the bottom left corner of

the input space corresponding to the lowest level of temperature and relative humidity

(65◦C and 65% RH), and the remaining points (less than 1%) are distributed around the

corners of the input space. This is intuitive because the lower stress conditions are close

to the normal use condition and hence provide more useful information towards the esti-

mation of the quantile lifetime of interest. Hence the design that minimizes the posterior

variance of the failure-time quantile at the normal use condition should have more test

units allocated to the lowest levels of the accelerating factors if those test conditions are

practically attainable.
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Figure 5.3: Optimal design

To compare the selected optimal design with the ISO design (refer to Table 5.1 and

Figure 5.1), we estimated the C-criterion for the ISO design. The estimated C-criterion for

the ISO design is 0.7307, a value much higher than that of the optimal design obtained via

the proposed methodology in this work. That is, the posterior variance of the 0.1 quantile

lifetime distribution at the normal use condition for the optimal design is smaller than

that of the ISO design, implying that the selected optimal design allows more precise

estimation of reliability at the normal use condition than the ISO design.

It should be noted that this design is optimal with respect to, the specified model, the

design size and the aim of the experiment, which is to get the most precise estimate of

the reliability at the normal use condition (quantified by the C-criterion). The C-criterion
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selects points that are closer to the normal use condition to ensure that the estimation of

reliability at the normal use condition is more precise. The choice of the optimal design

will change if the goal of the experiment changes. For instance, if the aim is to obtain pre-

cise estimation of the model parameters, then the D-criterion is more appropriate metric

for quantifying the test plan performance on that aspect. However, the proposed method-

ology in general is to be applied for other applications with different objectives, resource

constraints or model forms. It can also be adapted for considering multiple criteria (e.g.

simultaneously considering both D- and C- criteria) by utilizing the Pareto front approach

described in earlier Chapters.

5.5 Conclusion

Using design of experiment technique to identify the optimal testing conditions and

the allocations of the test units given a fixed budget in ADT would avail experimenters a

statistical and objective approach to selecting the best test plan. We presented a Bayesian

design of experiments method for ADT with two accelerating factors and repeated mea-

surements. A linear mixed-effects model is assumed for the degradation paths based

on the observed real test data. We seek optimal test plans that minimizes the posterior

variance of the distribution of the failure-time quantile at the normal use condition. A

large-sample approximation approach is used to estimate the posterior distribution in the

Bayesian analysis.

To illustrate the methodology in this work, we consider an ADT example for an optical

media with a total test units of 90 from ISO [101]. A customized genetic algorithm was

implemented to search through the design space of the accelerating factors for the de-

sign with the minimum posterior variance of the failure-time quantile. The methodology

presented in this work can be extended to a broader class of models such as generalized

linear regression model or nonlinear regression models. One limitation of the current

work is to assume the inspection time for the repeated measurements as fixed. This has
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potential to reduce the test plan efficiency as different test conditions could result in dif-

ferent information gain (more failures would be observed under higher stress levels while

few failures would result in lower stress conditions). One of the main area of the future

work is to include inspection time as the test plan parameters to seek optimal strategy for

test units allocations as well as the test scheduling. In addition, the following areas will

also be considered in the future work:

• Sensitivity analysis on the impact of the choices of prior distributions on selected

test plans.

• Adapt the methodology for broader types of models.

• Consider multiple criteria for ADT test plans.
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Chapter 6: General Conclusion

Many present and emerging experimental situations, especially in engineering and

environmental research now involve estimating multiple responses or achieving multi-

ple design objectives. To add to the growing research in optimal design of experiments,

this dissertation proposed new design selection strategies for generating optimal designs

that are able to achieve balance in the estimation of multiple responses and optimiza-

tion of multiple objectives respectively. It also contributes to the use of modern design of

experiment techniques in the field of reliability analysis.

In Chapter 3, we started by discussing how to simultaneously obtain precision in the

estimation of the responses in a multi-response experiment. By leveraging on informa-

tion from screening experiment about subset of the design factors that actively influenced

each response, we proposed a design methodology that uses the Pareto front approach

to seek optimal designs based on D-efficiencies of the responses. A Pareto aggregate

coordinate exchange algorithm was developed to efficiently search through the design

space for optimal designs. Two screening experiments were used to demonstrate the pro-

posed methodology. The D-optimal designs produced via the proposed methodology

were found to perform better in terms of precise estimation of the responses when com-

pared to existing classical designs.

Chapter 4 focus is on generating optimal designs for experiments with multiple ob-

jectives. Specifically, we demonstrate how to use the Pareto front approach to simulta-

neously optimize multiple space-filling characteristics in the construction of Latin hyper-

cube designs for design of computer experiments. A column-wise exchange simulated

annealing algorithm and a nondominated sorting genetic algorithm were used in search-
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ing through the design space for optimal solutions. The nondominated sorting genetic

algorithm was found to be better at populating the Pareto front. The Chapter also discuss

how the Utopia point method is used in comparing the trade-offs between the criteria for

competing designs found on the Pareto front and how it is strategically used for making

selection from a Pareto front with large solutions. The analysis in this work revealed that,

LHDs with optimal and balanced performance in multiple criteria have better statistical

properties than LHDs that are optimal in single criterion.

Chapter 5 contains the final piece of work of this dissertation. This chapter presents

a novel application of Bayesian design of experiments method to finding the optimal test

plan for accelerated degradation test with multiple accelerating factors, where the goal

is minimizing the posterior variance of the quantile of the failure-time distribution at the

use condition. A customized genetic algorithm is developed for optimizing the Bayesian

criterion function and searching through the design space for the optimal design. An

examples based on the ISO optical media degradation data was used to demonstrate the

proposed methodology. The result in this chapter shows that the selected optimal design

via the proposed methodology allows more precise estimation of reliability at the normal

use condition than the ISO design [101].
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Appendix A: Structure of Some of the Designs from Chapter 3

A.1 Design Matrix for Res IV UF-CCD

Figure A.1: Res IV UF-CCD design, axial points takes value at ±2
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A.2 Visual Display of the D-optimal Design and Res IV UF-CCD

Figure A.2: Geometric representation of the D-optimal design generated for the
screening experiment with five factors
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Figure A.3: Geometric representation of the Res IV UF-CCD. The blue, red and purple
circles signifies the factorial points, axial points and center points respectively
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A.3 Design Matrix for Res V UF-CCD

Figure A.4: Res V UF-CCD design, axial points takes value at ±2
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Appendix B: Derivations in Chapter 5 and the ISO Optical Media Data

B.1 Derivation of the Fisher Information Matrix

The model in Equation 5.2 for response variable for unit i under time point j and test-

ing location k will be used for the derivation of the Fisher information matrix. Given that

there are n items to be tested and each item will be measured at time points τ1, ..., τm for

testing location k of the levels of the accelerating factors. Collecting into Yi = (Yi1k , ...,Yimk),

the observations from unit i , the linear degradation model in Equation 5.2 can also be ex-

pressed as

Yi = Xiγ + Zibi + ϵi i = 1, ..., n, j = 1, ...,m, k = 1, ...,K

where γ = (γ1,γ2),(b0, b1)T ∼ BVN(β,V), Xi and Zi are matrices of explanatory vari-

ables.

Xi =


τ1x1k τ1x2k

...
...

τmx1k τmx2k

 , Zi =


1 τ1
...

...

1 τm

 ,

and ϵi = (ϵi1, ..., ϵim)
T .

Assuming ϵi are independently and jointly normally distributed, that is ϵi ∼ MVN(0, σ2Ii )

(provided the intervals between taking measurements is not too small), where Ii is an

mi ×mi identity matrix. Assuming also that there is an independence between ϵi and bi ,
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then it follows that Yi ∼ MVN(Xiγ + Ziβi , Σi ) where

Σi = Var(Xiγ + Zibi ) = ZiVZ
T
i + σ2Ii . (B.1)

The log-likelihood for observational unit i is

Li = −1

2
log [det(Σi )]−

1

2
(Yi −Xiγ − Ziβ)

TΣ−1
i (Yi −Xiγ − Ziβ)

The total log-likelihood for n units is

L =
n

∑
i=1

Li = −1

2

n

∑
i=1

log [det(Σi )]−
1

2

n

∑
i=1

(Yi −Xiγ − Ziβ)
TΣ−1

i (Yi −Xiγ − Ziβ)

To simplify notification, let β∗ = (γ, β) be collection of the fixed effects model parameters

and ϑ = (σ2
b0
, σ2

b1
, ρ, σ2), the model variance components. Using equation (4) of Jenrich

and Schluchter [46], the Hessian matrix, Hi , for unit i and its expected value are given by

Hi =

 Hβ∗β∗,i Hβ∗ϑ,i

Hϑβ∗,i Hϑϑ,i

 =

 ∂2Li
∂β∗∂β∗

∂2Li
∂β∗∂ϑ

∂2Li
∂ϑ∂β∗

∂2Li
∂ϑ∂ϑ



E (Hi ) = Ii (θ) =

 RT
i Σ

−1
i Ri 0

0 Mi

 (B.2)

Where Ri = (Xi ,Zi ), Mi is a 4× 4 symmetric matrix with elements

M i
jk =

1

2
tr(Σ−1

i Σ̇ijΣ
−1
i Σ̇ik), j = 1, ..., 4; k = 1, ..., 4,

and

Σ̇ij =
∂Σi

∂ϑj
, j = 1, ..., 4.
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From Equation B.1, it follows that

Σ̇i1 =
∂Σi

∂σb0
= Zi

 2σb0 ρσb1

ρσb1 0

Z′
i

Σ̇i2 =
∂Σi

∂σb1
= Zi

 0 ρσb0

ρσb0 2σb1

Z′
i

Σ̇i3 =
∂Σi

∂ρ
= Zi

 0 σb1σb0

σb1σb0 0

Z′
i

Σ̇i4 =
∂Σi

∂σ
= 2σIi .

Therefore, the information matrix for all n units is given by

I(θ) =
n

∑
i=1

Ii (θ).
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B.2 Derivation of τp

Given that a failure occurs at the first point in time where D > Df . Let F denote the

cumulative distribution function of the random variable T and let σb0b1 = ρσb0σb1 . Then

F (tp) = 1−Φnor

Df − x1τpγ1 − x2τpγ2 − β0 − β1τp√
σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

 = p

Φnor

Df − β0 − (β1 + x1γ1 + x2γ2)τp√
σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

 = 1− p

Df − β0 − (β1 + x1γ1 + x2γ2)τp√
σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

= Φ−1
nor (1− p)

[Df − β0 − (β1 + x1γ1 + x2γ2)τp]2

σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

= [Φ−1
nor (1− p)]2

k(σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1) = (u − rτp)

2

kσ2
b1

τ2
p + 2σb0b1kτp + kσ2

b0
= u2 − 2urτp + r2τ2

p

τ2
p (kσ2

b1
− r2) + 2τp(kσb0b1 + ur) + (kσ2

b0
− u2) = 0

where k = [Φ−1
nor (1− p)]2, u = Df − β0 and r = β1 + x1γ1 + x2γ2.

let a = kσ2
b1
− r2, b = 2(kσb0b1 + ur) and c = kσ2

b0
− u2. Then this equation is of the form

aτ2
p + bτp + c = 0

with solution for τp

τp =
−b±

√
b2 − 4ac

2a

=
−2(kσb0b1 + ur)±

√
4(kσb0b1 + ur)2 − 4(kσ2

b1
− r2)(kσ2

b0
− u2)

2(kσ2
b1
− r2)

=
−(kσb0b1 + ur)±

√
(kσb0b1 + ur)2 − (kσ2

b1
− r2)(kσ2

b0
− u2)

kσ2
b1
− r2

.
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When failure is defined as the first time at which D < Df , the derivation is similar, start-

ing with

F (tp) = Φnor

Df − x1τpγ1 − x2τpγ2 − β0 − β1τp√
σ2
b0
+ τ2

pσ2
b1
+ 2τpσb0b1

 = p.

B.3 Original Data Table of Optical Medial Error Rates Provided by ISO 10995

Table B.1: Test condition 1

TEMP=85◦C , RH=85%
Hours Proj.

Disk 0 250 500 750 1000 Failure
A1 16 78 116 278 445 788
A2 25 64 134 342 532 743
A3 26 94 190 335 642 685
A4 26 111 247 343 718 647
A5 27 89 185 246 466 762
A6 21 111 207 567 896 607
A7 26 121 274 589 781 588
A8 31 108 223 315 745 654
A9 24 118 285 723 754 578

A10 12 85 178 312 988 669
A11 28 111 167 312 771 671
A12 24 136 267 444 719 614
A13 35 76 265 567 610 626
A14 19 53 112 278 534 778
A15 28 88 158 308 654 704
A16 27 68 120 263 432 807
A17 18 87 176 302 558 723
A18 26 109 238 421 641 645
A19 26 111 253 378 638 649
A20 31 91 206 367 728 656
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Table B.2: Test condition 2

TEMP=85◦C , RH=70%
Hours Proj.

Disk 0 250 500 750 1000 Failure
B1 10 20 67 112 156 1117
B2 8 20 47 84 188 1118
B3 12 26 72 185 421 880
B4 20 43 120 166 219 999
B5 32 45 76 103 267 1126
B6 21 37 104 222 368 870
B7 21 30 89 155 221 1035
B8 22 26 72 125 267 1043
B9 25 46 124 182 224 994

B10 17 38 67 179 378 911
B11 28 58 88 120 268 1065
B12 8 15 36 144 189 1059
B13 10 27 89 175 385 880
B14 23 54 111 148 221 1037
B15 28 39 125 172 278 959
B16 25 53 88 130 188 1149
B17 20 43 75 166 256 999
B18 22 26 50 172 229 1058
B19 13 38 78 124 189 1078
B20 10 19 28 121 268 1046
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Table B.3: Test condition 3

TEMP=65◦C , RH=85%
Hours Proj.

Disk 0 500 1000 1500 2000 Failure
C1 14 23 58 112 278 2057
C2 10 17 55 165 263 1948
C3 11 56 88 138 189 2078
C4 18 28 78 117 243 2106
C5 17 45 78 143 189 2167
C6 10 14 45 154 231 2031
C7 31 53 111 156 211 2151
C8 29 54 106 154 218 2128
C9 22 32 65 89 126 2799

C10 29 36 78 145 188 2297
C11 21 38 89 148 227 2075
C12 24 45 68 134 211 2236
C13 28 57 78 132 190 2352
C14 19 47 61 117 150 2486
C15 25 65 89 184 256 1972
C16 10 18 57 113 178 2189
C17 21 34 45 98 121 2845
C18 12 20 34 112 176 2308
C19 28 56 108 176 243 2001
C20 29 36 57 143 238 2207
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Table B.4: Test condition 4

TEMP=70◦C , RH=75%
Hours Proj.

Disk 0 625 1250 1875 2500 Failure
D1 25 34 64 92 167 3240
D2 25 93 134 154 211 2596
D3 7 23 97 103 178 2615
D4 10 20 56 89 155 2920
D5 5 20 78 132 187 2496
D6 5 15 52 112 167 2644
D7 22 34 67 132 188 2851
D8 12 17 56 78 108 3318
D9 22 34 67 132 189 2847
D10 23 27 54 121 152 3129
D11 11 20 41 87 115 3249
D12 15 18 43 88 118 3343
D13 19 21 38 82 135 3435
D14 18 22 86 178 245 2456
D15 22 26 73 145 252 2582
D16 18 18 29 66 127 3649
D17 22 26 93 145 178 2761
D18 18 27 56 88 134 3316
D19 11 32 44 97 143 3051
D20 12 56 66 124 249 2550
D21 14 34 54 77 112 3500
D22 20 23 25 50 181 3593
D23 11 16 27 54 160 3275
D24 17 24 25 58 108 4034
D25 11 25 22 62 130 3488
D26 17 24 25 70 123 3707
D27 21 39 63 78 163 3304
D28 20 28 45 111 243 2787
D29 15 21 38 65 134 3453
D30 10 34 54 96 176 2841
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Appendix C: Copyright Permission for Chapter 3 and Chapter 4
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