
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

July 2021

Knowledge Extraction and Inference Based on Visual Knowledge Extraction and Inference Based on Visual

Understanding of Cooking Contents Understanding of Cooking Contents

Ahmad Babaeian Babaeian Jelodar
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Computer Sciences Commons

Scholar Commons Citation Scholar Commons Citation
Babaeian Jelodar, Ahmad Babaeian, "Knowledge Extraction and Inference Based on Visual Understanding
of Cooking Contents" (2021). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9278

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usf.edu%2Fetd%2F9278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Knowledge Extraction and Inference Based on Visual Understanding of Cooking Contents

by

Ahmad Babaeian Jelodar

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Yu Sun, Ph.D.
Shaun Canavan, Ph.D.

Heather Culbertson, Ph.D.
John Licato, Ph.D.
Kyle Reed, Ph.D.

Date of Approval:
June 30, 2021

Keywords: Knowledge Representation, Video Understanding, Deep Learning, Ingredient
Recognition, Calorie Estimation, Dish Classification

Copyright © 2021, Ahmad Babaeian Jelodar

Dedication

To my dear parents that have guided me through the years and to my dear wife for being there

for me.

Acknowledgments

”Life is the warmth of the intertwined hearts,

All gates are locked if no friends inside.”

—Fereydoon Moshiri

I must first acknowledge and thank my family, my mother, my father, and my brother Mostafa,

and my sister Marzieh, for their constant support and guidance. I must thank my dear wife for her

unconditional support and being there for me without expectation.

I must thankmany friends at USF. Tomy labmates at the Robot Perception&Action Lab, I must

thank Yongqiang (a.k.a. Garfield), John, Troi, David, Mohammed, Tianze, Salekin, Juan, Hailey,

and Maxat. Thank you for all the social conversations that we held in the lab. Next, I must thank

fellow students that I’ve met along the way: Anwesh, and Pablo for their companionship through

the years.

Next, to the faculty and staff here at USF: I sincerely thank Dr. Yu Sun, my advisor, for guiding

me through my journey here. You have taught me to consider logical reasoning and thinking no

matter the obstacles and biases. I thank my committee members who have all played a role in

the development of our research work: (in alphabetical order) Dr. Shaun Canavan, Dr. Heather

Culbertson, Dr. John Licato, and Kyle Reed. I am also grateful to the staff members in our

department office: Laura Owczarek, Jessica Pruitt, and Mayra Morfin and former members of the

CSE department Gabriela Franco, and Lashanda Lightbourne (a.k.a. Shanie). I appreciate you all

and continue to rely on you all to help us stay on track.

At this moment, I want to thank everyone who I could not mention by name. By no means are

your contributions invalid to my success nor do I disregard your support, and I take with me all

of the experiences we’ve shared along the way. Thank you.

Table of Contents

List of Tables iv

List of Figures v

Abstract vii

Chapter 1: Introduction 1
1.1 Related Works 3

1.1.1 Knowledge Representation 3
1.1.2 Image Classification and Object Detection 5

1.1.2.1 Image Classification 5
1.1.2.2 Multi-label Image Classification 6
1.1.2.3 Object Detection 6

1.1.3 Video Understanding 9
1.1.3.1 Raw Video Understanding 9
1.1.3.2 Knowledge Representation for Video Understanding 10

1.1.4 Understanding Cooking States 10
1.1.5 Cooking Applications 11

1.1.5.1 Dish Classification 11
1.1.5.2 Ingredient and Recipe Recognition 12
1.1.5.3 Portion and Calorie Estimation 13

1.2 Contribution of Dissertation 14
1.3 Structure of Dissertation 15

Chapter 2: Video Understanding 17
2.1 Functional Object-Oriented Network 18

2.1.1 FOON Basics 18
2.1.2 Functional Unit 19
2.1.3 FOON Construction 20
2.1.4 FOON Sources and Statistics 20
2.1.5 FOON vs. Other Knowledge Representations 21

2.2 Video Understanding Pipeline 22
2.2.1 Functional Object Recognition 23
2.2.2 Functional Motion Recognition 24
2.2.3 Functional Unit Recognition 25
2.2.4 Task Graph Inference 25

2.3 Functional Object Recognition 25
2.3.1 Recognizing Objects-in-action 25

i

2.4 Functional Unit Recognition 27
2.4.1 Functional Unit Confidence 27
2.4.2 Probing 29

2.5 FOON for Video Understanding 30
2.5.1 Object Overlap Metric 31
2.5.2 Functional Unit Recognition Analysis 32

2.5.2.1 Functional Unit Recognition Using FOON 32
2.5.2.2 Functional Unit Recognition with Motion and FOON 33
2.5.2.3 Analysis 35

2.5.3 Video Understanding 35
2.5.4 Task Inference (Recipe Classification) 37
2.5.5 Discussion 39

2.6 Conclusion and Future Work 40

Chapter 3: Understanding Cooking States 41
3.1 The State Identification Challenge 42

3.1.1 The Challenge 42
3.1.2 The States Identification Dataset and Statistics 44
3.1.3 The Dataset Details 45

3.2 Baseline State Analysis 46
3.2.1 Experimental Baseline Analysis 47

3.2.1.1 State Identification 48
3.2.1.2 ImageNet Test 49
3.2.1.3 State Analysis 50

3.2.2 Imagenet Analysis 51
3.3 Joint Object and State Recognition 52

3.3.1 Stage 1: Double Loss Convolutional Network 52
3.3.2 Stage 2: Language Knowledge Based Features 53

3.3.2.1 Feature Extraction 54
3.3.3 Stage 3: Neural Network Predictions 55
3.3.4 Stage 4: Model Refinement 55
3.3.5 Results and Analysis 56

3.4 Generating Multiple States and Ingredients 57
3.4.1 State and Token Embeddings 58

3.4.1.1 States Exploration 58
3.4.1.2 Embeddings 60

3.4.2 Ingredients Given States 61
3.4.3 States Generation Analysis, Experiments and Results 63

3.4.3.1 Dataset 63
3.4.3.2 Implementation Details 64
3.4.3.3 Experiments on State Embeddings and Prediction 64
3.4.3.4 Experiments on Ingredient Prediction Given States 65

3.5 Conclusion and Future Work 67

ii

Chapter 4: Meal Image Understanding and Analysis 70
4.1 Transformer Decoders 71
4.2 Ingredient Generation 73

4.2.1 Dish Classification 74
4.2.2 Ingredient Generation 76

4.2.2.1 Formulation 77
4.3 Ingredient Portion and Calorie Estimation 77

4.3.1 Individual Ingredient Analysis 78
4.3.2 Simultaneous Ingredient Analysis 79

4.3.2.1 Inputs and Intermediate Outputs 80
4.3.2.2 Encoder Structure 80
4.3.2.3 The Final Network 81
4.3.2.4 Losses 83

4.4 Dataset Preparation for Analysis 83
4.4.1 Unit Identification and Sampling 85

4.5 Experiments and Analysis 86
4.5.1 Implementation Details 86
4.5.2 Results 86

4.5.2.1 Ingredient Generation 88
4.5.2.2 Portions and Units Estimation (Meal Kits) 89
4.5.2.3 Calorie Estimation 90

4.6 Discussion and Future Work 92

Chapter 5: Concluding Remarks 94
5.1 Future Work 95

References 97

Appendix A: The Ingredient, Portions, and Calorie Estimation Web Interface 107
A.1 Browsing and Selecting an Image 107
A.2 Dish Type Selection 108
A.3 Main Ingredient Generation 108
A.4 Optional Ingredient Generation 109
A.5 Seasonings Generation 109
A.6 Per Ingredient Portion and Calorie Estimation 110

Appendix B: Copyright Permissions 111

iii

List of Tables

Table 2.1 Results of probing objects 30

Table 2.2 Top 10 accuracy for functional unit recognition 34

Table 2.3 Recipe classification results. 39

Table 3.1 Baseline classification accuracy on the state dataset 48

Table 3.2 Baseline state classification accuracy per ingredient fine-tuning 49

Table 3.3 Baseline classification accuracy of the Imagenet subset 50

Table 3.4 Simultaneous states and object classification accuracy 57

Table 3.5 Ingredients and their states extracted from the Recipe1M dataset. 59

Table 3.6 States prediction results 65

Table 3.7 Ingredients generation results given states. 67

Table 4.1 Intersection over union (IoU) for ingredient generation 89

Table 4.2 Main ingredient prediction results 89

Table 4.3 MAE portion estimation for different units 90

Table 4.4 Calorie estimation results 92

iv

List of Figures

Figure 1.1 Illustration of a simple image classification model. 5

Figure 1.2 Illustration of a simple multi-label image classification model. 7

Figure 1.3 Illustration of an object detection model. 8

Figure 1.4 Illustration of dish classification and ingredients generation models. 12

Figure 1.5 Illustration of models for recipe retrieval and portion and calorie estimation. 13

Figure 2.1 Illustration of a functional unit with input and output object nodes. 19

Figure 2.2 Illustration of universal FOON. 21

Figure 2.3 The pipeline for automatic functional unit identification. 23

Figure 2.4 Illustration of active objects identification. 26

Figure 2.5 Illustration of the functional unit confidence estimation. 28

Figure 2.6 Illustration of how overlap is measured. 32

Figure 2.7 Precision and recall for functional unit recognition. 33

Figure 2.8 Example of functional unit recognition analysis. 33

Figure 2.9 Snapshots of qualitative analysis of functional units. 36

Figure 2.10 Results of overlap metrics for video understanding. 37

Figure 2.11 Calculated F-scores for video understanding. 38

Figure 2.12 Illustration of identified functional units for noodle recipe. 38

Figure 3.1 An illustration of the state taxonomy. 44

Figure 3.2 An illustration of the dataset class statistics. 45

Figure 3.3 Example images of eleven classes of the dataset. 46

Figure 3.4 Proposed baseline states network. 47

Figure 3.5 Confusion matrices of the state classification results. 51

v

Figure 3.6 Samples of mis-predicted images on the states baseline model. 52

Figure 3.7 Samples of multi-state or ambiguous images in Imagenet. 53

Figure 3.8 Pipeline for simultaneous state and object recognition. 54

Figure 3.9 Illustration of the pipeline refinement module. 56

Figure 3.10 Objects and states CNN probabilities vs Concept-Net probabilities. 58

Figure 3.11 Image to states and ingredients generation example. 59

Figure 3.12 Recipe1M states statistics. 60

Figure 3.13 Two-step model for ingredient prediction. 62

Figure 3.14 Recall, precision and F1-score of states. 66

Figure 3.15 Samples of states and ingredient prediction. 68

Figure 4.1 An illustration of meal understanding. 71

Figure 4.2 The two stage pipeline for calorie estimation. 72

Figure 4.3 Original and modified versions of the transformer architecture. 73

Figure 4.4 Details of the transformer model. 74

Figure 4.5 Ingredients generation models. 75

Figure 4.6 Illustration of individual ingredient and simultaneous ingredient labeling. 76

Figure 4.7 Individual ingredient analysis model. 78

Figure 4.8 The calorie estimation model. 82

Figure 4.9 Dish types in Recipe1M. 85

Figure 4.10 Ranges of values for most frequent units in the Recipe1M dataset. 87

Figure 4.11 All measurements originally available in the Recipe1M dataset text. 88

Figure 4.12 Examples of results of the end-to-end meal image understanding pipeline. 91

vi

Abstract

In this dissertation, we discuss our work on analyzing cooking content for the ultimate goal of

automatic robotic manipulation. For a robot to perform a cooking task, it will need to both have an

understanding of the scene and utilize prior knowledge. We will explore two main sub-problems:

knowledge extraction and inference, and visual understanding of the scene in this dissertation. Visual

understanding of a scene, requires algorithms that can visually infer information from a single

image or video. Many algorithms in the area of image classification, object detection, or activity

recognition can be used in this area. Although great advances has been achieved by the emergence

of deep learning, state-of-the art algorithms in this area have limitations. To attempt to overcome

this lack of performance, we propose to use structured knowledge representations combined with

state of the art deep learning techniques for visual understanding of cooking videos. Besides

objects, and motions, we recognize that states of objects are also very important in interpreting the

scene and therefore extensively explore the problem of states in visual cooking content. We in-

troduce the state identification challenge in cooking applications and collect a dataset for research

in the area of ingredient state analysis. We further look into the problem of simultaneous knowl-

edge extraction from a single image and extracting information about ingredients, their states,

the inter-connection between different objects in the scene and the motion-object interconnections.

This problem requires an algorithm that can model the correlation of various concepts in a single

image simultaneously. Using deep algorithms that can take as input multiple inputs and generate

multiple outputs are fit for this problem. Therefore we propose to incorporate auto-regressive

self-attention based mechanisms to extract knowledge from a single image. We show that the

knowledge acquired from a single image can be used for calorie estimation. We suggest that total

knowledge extraction from a single image can be used in future work for task graph inference.

vii

Chapter 1: Introduction

1 Robotic manipulation and its applications has significantly increased in the past years. It has

been applied or researched in various applications such asmedical, agricultural, industrial, sports,

collaborative based robots, and domestic applications. One of the applications that has recently

gained attention in robotics is the cooking domain for both industrial and domestic settings. In this

dissertation, our aim is to analyze problems associated with a cooking robot and what it requires

to understand the environment and manipulate.

For a robot to act automatically in an environment, it has to initially look at the environment

using sensors (e.g. visual or depth cameras), interpret what it has seen using advanced algorithms

(e.g. state of the art image and video understanding algorithms), and manipulate accordingly. In

this dissertation we focus on understanding what a robot observes and what steps we require to

extract structured knowledge from the scene and also from any given cooking content to use for

robotic training and automatic scene understanding. The raw data from robotic sensors is usually

in the format of image streams (i.e. videos) hence we need to use algorithms that can parse images

and videos to perform interpretations of the scene. Because our focus is on an automatic cooking

robot we focus our attention towards understanding scenes and videos with a cooking setting.

To analyze a scene, a robot first has to understand what objects (i.e. ingredients) it identifies

in the video. For example, if the robot identifies the ingredient tomato in the video, it would know

that the video is demonstrating a cooking activity that requires tomato. Therefore, one of the

problems we look into in this dissertation is object (i.e. ingredient) recognition. Multi-label image

classification and object detection algorithms can be helpful in reaching to a solution for this step

of the problem. Not only the robot needs to identify the ingredients, it also needs to determine

the state of the ingredient. Recognizing states helps to both extract knowledge from videos and

1This chapter was partially published in [1, 2, 3]. Permission is included in Appendix B.

1

also to understand the scene. For example if the robot finds a whole tomato but requires a sliced

tomato to make omelette, it would need to take action and perform slicing to prepare the tomatoes

for its usage. But, if the robot already identifies the tomato as sliced it would not require any

further steps to prepare the tomato. In this dissertation, we extensively look into the problem

of visual state identification for objects in a cooking setting. Besides ingredients and their states,

portions of ingredients (e.g. 1 cup tomato) are also crucial in making a recipe. You can not make

an omelette without knowing how many eggs or how much spinach you will be using. Portions can

be determined using visual estimations and identifying correlations between ingredient features

and visual features.

To extract knowledge fromvideowealso need tounderstand each event (i.e. motion) happening

in the video. Many motions (e.g. slicing) are directly related with state change in an object (e.g.

tomato) and determining either would help identify the other. But some motions (e.g. pouring)

would not necessarily reflect any physical state change in any ingredient and therefore may need

a separate encoder to identify. In this dissertation we also create a model for motion recognition

in a video and show that it is important for cooking event recognition.

Ingredients and their states in a meal are not separate entities. Conversely, they are correlated

entities although some ingredients might not be visually recognized. For example, assuming an

image of baked cake, if we know that the meal uses flour in its recipe, with high probability we

can say it uses sugar although it is not visually recognizable. Therefore, to better model each

of the ingredients, states and portions we need to take into account their mutual relationships

and build associations between them either through knowledge representation or model training.

We propose to learn the relationship between objects, actions, and activities and represent those

relationships in a graph. Weuse the graph as structured prior information for video understanding

when possible. For example, a video that demonstrates a chef who is cooking an omelet comprises

multiple consecutive actions, and each action, such as mixing eggs in a bowl, employs multiple

objects suchas abowl, awhisk, andeggs. To identify the actions, the structural informationbetween

the objects (bowl, whisk, eggs) and motions (mixing) is useful. For instance, if we understand that

eggs can be mixed using a whisk, we can associate the object whisk with the objects egg and bowl.

2

The structural information between consecutive actions can also be applied to interpret an

activity in a video. For example, cracking eggs into a bowl occurs before mixing the eggs in the

bowl. Consequently, this knowledge can help with predicting that the current ongoing action

is mixing, knowing that the previous action was cracking eggs. Embedding these informative

structures into a prior graphical structure and using the embedding for inference at test time can

improve video understanding.

Our aim in this dissertation is to extract the required knowledge from visual content (i.e.

cooking content) such as ingredients, states, portions and the motions associated with the activity

demonstrated in the video. To do that we incorporate both known knowledge representations and

also executemachine learning based algorithms to createmodels that can encode knowledge about

cooking videos and manipulation scenes. We use the extracted knowledge to create structured

and sequential data in the form of a task graph for the robot to be able to use it.

1.1 Related Works

We now discuss research works that have developed algorithms for understanding visual

content both in image and video in a broad range and in cooking applications. We first will take

a look at some of the work that use knowledge representation mainly for visual content analysis

and further review the works on computer vision and image processing especially in cooking

applications.

1.1.1 Knowledge Representation

The field of knowledge representations is an important domain in the robotics field. However,

there is a lack of a formal definition on what is categorized as a knowledge representation. The

concept of knowledge representation was first introduced in the field of Artificial Intelligence

(AI) and is "concerned with how knowledge can be represented symbolically and manipulated

in an automated way by reasoning programs" [4]. This definition emphasises representation of

knowledge through logical expressions and lacks focus for inference from knowledge. In [5]

they define an extension to knowledge representation for robotic applications as a "means of

3

representing knowledge about a robot’s actions and environment, as well as relating the semantics

of these concepts to its own internal components, for problem solving through reasoning and

inference". Therefore a knowledge representation contains information about how objects and

motions related to the robotics application are associated with each other and a robot can use that

to perform tasks and manipulations.

Knowledge representations have been successfully applied to robotics and machine learning

[6] and in natural language processing for Wordnet [7], Verbnet [8], and Framenet [9]. WordNet

is a freely available large lexical database of English Nouns, verbs, adjectives and adverbs and are

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are

associated with each other through semantic and lexial edges. Wordnet has been used in many

computational lingusitic applications and it is helpful to associate parts of speech together [10].

VerbNet is a hierarchical network of English verbs that maintains syntactic and semantic edges

between them [8].

In [11], Carlson et al. propose a knowledge-based architecture to learn a language from web

text. Some works introduce and use a knowledge base for answering queries [12], visual queries

[13], and cuisine- and ingredient-oriented queries using deep features [14]. Knowledge-based

methods have been also used in visual applications such as the ontological hierarchical knowledge

base for image content retrieval and video event detection [15], scene understanding [16], descrip-

tion logics for scene interpretation [17], visual structured knowledge base for scene recognition and

object detection [18], and a combination of various knowledge based representations using ma-

chine learning and statistical approaches [19]. In [20], the problem of object affordance reasoning

is modeled using a knowledge base representation. In [21] a visual knowledge-based represen-

tation and dataset are introduced for modeling relationships in images. In [22], a knowledge

representation-based method for food recognition from an image was proposed, which is close

to our application. The lack of a structured knowledge representation for joint object and motion

representationmotivated applying the functional object-oriented network for video understanding

in cooking videos.

4

Figure 1.1. Illustration of a simple image classification model which takes as input an image and
returns as output a vector of confidences (probabilities) per class.

1.1.2 Image Classification and Object Detection

Images are valuable sources of information. In recent years many deep learning algorithms

have been proposed to extract useful knowledge from images and perform tasks such as image

classification and object detection for various tasks (e.g. human detection, car detection). In this

sub-section we review some of the work proposed in this area that can be used as base algorithms

for knowledge extraction from cooking content.

1.1.2.1 Image Classification

In image classification applications, the model takes as input as single image and produces as

output a single class label [23, 24, 25] as shown in Figure 1.1. The assumption in these types of

models is that there is one dominant object (i.e. ingredient) in the image. Most common image

classificationmodels use deep learning approaches. Deep convolutional networks have dominated

the image classification field from 2012 after the Alexnet paper [26] was presented. Deeper models

such as VGG [23] were proposed thereafter were they can capture deeper and richer features from

the image and provide good performance of image based classification tasks. Othermodels such as

Inception [24], and Resnet [25] have also proposed optimizations to deep convolutional networks to

accommodate for different filter sizes in a layer and better gradient propagation in deeper models.

We in our work use variants of Resnet for training, fine-tuning or extracting features from images

whenever needed.

5

1.1.2.2 Multi-label Image Classification

In image multi-label classification applications, the assumption is that the model takes as input

as single image and produces as output multiple labels [27] as shown in Figure 1.2. In other words,

multi-label classification models are models that can jointly model various concepts in a single

image simultaneously.

Some models propose to combine CNN with an RNN for multi-label classification [27]. The

CNN derives semantic features from an image and the RNN models associations between the

image and the labels and the labels themselves. The labels in this type of a model have an ordered

relationship. In [28] amodel has beenproposed tomaximize subset accuracyusing recurrent neural

networks. In [29] the authors propose a Canonical CorrelatedAutoEncoder (C2AE), formulti-label

classification by performing joint feature and label embedding and introducing a label-correlation

sensitive loss function to recover the predicted label outputs.

Image captioning models also fall into the category of multi-label classification. Image cap-

tioning models first create a vocabulary of words of size N and assign ids between 0 to N − 1

to each of the words [30]. The word ids are converted to one-hot embeddings and used as out-

put for model prediction [31]. In image captioning models the labels are generated one step at

a time which is different from multi-label classification models which are created jointly. Also,

image captioning models require an ordered dependency between the generated outputs which

not present in multi-label classification outputs. Both of these types of models produce multiple

labels for a single image. Image captioning models can usually utilize auto-regressive models.

Many of the models use recurrent neural networks (e.g. LSTM) [32, 33], and some of them use

transformer based and attention based mechanisms as proposed in [34]. In [35], they propose an

ingredient predictionmodel based on the transfomermodelwhich outperforms the state-of-the-art

multi-label classification model with target distribution loss in [36].

1.1.2.3 Object Detection

In object detection applications, the assumption is that the model takes as input as single

image and produces as output multiple bounding boxes with their class labels [37, 38, 39] as

6

Figure 1.2. Illustration of a simple multi-label image image classification model which takes as
input an image and returns as output a binary classification confidence per class name.

shown in Figure 1.3. State of the art object detection methods have also followed the path of image

classification algorithms and usemainly deep convolutional networks as base for feature extraction

and simultaneous object localization and labeling.

Faster R-CNN first takes an input image to ConvNet and returns feature maps of the image.

From there it applies a Region Proposal Network (RPN) on the feature maps to extract object

proposal for the given image. All the proposals are further resized to the same size and passed

to a fully connected convolution layer. Bounding boxes are classified to object labels. Therefore

results provided for each image are a list of bounding boxes and their labels.

Single Shot MultiBox Detector (SSD), as its name suggests, runs a convolution network for an

input image and computes the feature map for that image [37]. Then it runs a small 3x3 sized

convolution network on the feature map to predict the bounding boxes of its relative category. SSD

also uses anchor boxes at a variety of aspect ratios comparable to Faster R-CNN and learns the

off-set to a certain extent than learning the box. In order to hold the scale, SSD predicts bounding

boxes after multiple convolutional layers. Since every convolutional layer functions at a diverse

scale, it is able to detect objects of a mixture of scales [37].

We present YOLO, a new approach to object detection. Prior work on object detection repur-

poses classifiers to perform detection. Instead, we frame object detection as a regression problem

to spatially separated bounding boxes and associated class probabilities. A single neural network

predicts bounding boxes and class probabilities directly from full images in one evaluation. Since

the whole detection pipeline is a single network, it can be optimized end-to-end directly on de-

tection performance. Our unified architecture is extremely fast. Our base YOLO model processes

7

Figure 1.3. Illustration of an object detection model which takes as input an image and returns
bounding boxes and their class names.

images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, pro-

cesses an astounding 155 frames per secondwhile still achieving double themAP of other real-time

detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors

but is less likely to predict false positives on background. Finally, YOLO learns very general repre-

sentations of objects. It outperforms other detection methods, including DPM and R-CNN, when

generalizing from natural images to other domains like artwork

In YOLO [40], object detection is formulated as a regression problem through unified detection

as a one stage object detection network. In unified detection, the image is first split into a grid and

each box in the grid is associated with multiple potential bounding boxes and confidences. YOLO

works as a single neural network model and performs on full images in one evaluation and can be

trained end-to-end. The unified detection mechanism makes YOLO very fast but the version one

model does not have a good performance in comparison to other object detection methods.

Retina-net is a one-stage object detection network that at the time it was proposed performed

better than all two-stage networks (e.g. Faster R-CNN) and could match around the same speed

of one-stage networks [38]. In Retinanet, the authors proposed a novel loss named Focal loss that

addresses the issue of class imbalance in the object detection problem. Focal loss focuses attention

on harder samples and prevents the easy samples from overwhelming the optimization procedure.

Although YOLO, SSD and Retinanet are faster algorithms, but Faster RCNN performs better than

those algorithms with more advanced CNN bases.

8

1.1.3 Video Understanding

1.1.3.1 Raw Video Understanding

There is a broad area of work in video understanding. Some works deploy costly setups such

as physical sensors or additional modalities (e.g., text) [41, 42, 43], and some research performs

analysis on spatio-temporal features of a sequence in a holisticmanner to label actions [44, 45, 46, 47]

or uses spatio-temporal features of a person (e.g., models of joints or pose) to classify actions

[48, 49]. These methods are incapable of handling variations in view, zoom, and occlusion easily.

Simultaneous video segmentation andunderstanding [50], [51], [52] is also a very common research

area. These methods usually do not consider objects or variations in pose. Some approaches

extract and analyze a selection of frames for video event summarization [53], and fast anomaly

concentration and detection [54]. Jain et al. propose a method that embeds structure into a

deep model [55] to incorporate knowledge with deep models for activity recognition. Other deep

approaches proposed for activity recognition are [56, 57]. The motivation to incorporate FOON

for video understanding is based on the group of research that use objects and their affordances

and states in a video for action recognition [58, 59, 60, 61, 62, 63].

Currently, there are various multi-view applications, especially in surveillance systems. Infor-

mation from multiple cameras can enhance event summarization or task understanding. Several

researchers have proposedmethods for handlingmulti-camera scenarios. Event summarization in

multi-view videos using a deep learning approach [57], detection and summarization of an event

in multi-view surveillance videos by applying boosting [64], and a machine learning ensemble

method [65] are instances of research in the area of multi-view video understanding. This aspect

of video understanding has not been addressed in this work; however, the proposed framework

can be deployed in multi-view systems. A discussion on the multi-view aspects of our video

understanding pipeline is included in Section 2.5.5.

9

1.1.3.2 Knowledge Representation for Video Understanding

Various approaches have been proposed to use knowledge representation for video under-

standing, such as semantic-visual knowledge bases like FrameNet and Imagenet for modeling

rich event-centric concepts and their relationships for video event detection [66], a knowledge-

and probabilistic-driven framework for activity recognition [67], and semantic representations for

event detection [68, 69]. Souza et al. deploy objects, actions and their bonds into graphs and use

simulated annealing for event inference using temporal connections [70], [71]. Ren et al. [72] previ-

ously proposed a Bayesian framework that uses object motions and their relationships to improve

object recognition reliability. This model enables robots to learn the interactive functionalities of

objects from human demonstrations [73] [74].

Object information and analysis is an essential aspect for activity recognition. The method in

[75] deploys spatial and functional constraints on the relationships between objects and motions

to semantically interpret videos. Modeling the mutual context of human pose and objects using

a random field model [76], modeling relationships between object parts and people in the scene

using contextual scene descriptors and Bayesian learning [77], and encoding objects for action clas-

sification and localization are examples of work on video understanding using object information.

These works all assume that a person is performing the act in the video, and, therefore, the human

pose would be essential for their approaches. We follow the path of incorporating objects and

extend it to the goal of action recognition and activity inference by deploying our previously pro-

posed knowledge representation network [78]. Our work is different from the noted object-based

activity recognition methods, in that our videos do not contain a person and its pose. We use only

the human hand and its location, if available in the scene, as features to interpret the video.

1.1.4 Understanding Cooking States

To the best of our knowledge, no specific work has been done in the area of image state iden-

tification. In this section, we discuss work in the area of image classification, image captioning,

and understanding that are relevant to or motivated us for this research. Currently, image classi-

fication has shifted towards convolutional neural networks. Krizhevsky et al, introduced the first

10

evolutionary deep model for image classification [26]. Thereafter, other deep models such as VGG

[23], Googlenet [79], and Resnet [25] were introduced gradually as deeper and more advanced

networks for image classification. Improvements with the combination of these networks have

also has been introduced in [80]. These works all focus on image object classification and do not

consider states of objects in an image.

In [81], the authors show the importance of using object parts in recognizing an action from

an image, thereby modeling human actions with a parts and attributes base. This work is an

obvious proof of how object parts and states can help recognize an object or understand an

image. Work such as [30] and [31] provide captions for images or videos. In [30] Yao et al. use

attributes and their interactions with deep networks to provide captions. Other work such as [33],

and [82] perform multi-label classification on a single image using RNN- and CNN-based deep

architectures. Although these papers provide various labels for an image, they do not consider

states of objects as another label for the image. These papers have one thing in common – they

analyze an image to understand it. The state identification problem, also motivated by this aspect,

contributes to the understanding of images.

Some work has been conducted in the area of cooking images and videos. Food recognition

systems for dietary analysis [83, 84], fruit recognition [85], and ingredient recognition for recipe

retrieval [86] are instances of work, which focus on recognizing or detecting the ingredients in an

image. Some papers, such as [87, 88], perform food recognition on video to understand the whole

video and associate it with a recipe or action. Other papers, such as [89, 90], focus on activity

recognition from cooking videos. These works contribute to understanding cooking images and

videos, but none explicitly focus on states. To our knowledge, we are the first to address this

problem in cooking images or videos.

1.1.5 Cooking Applications

1.1.5.1 Dish Classification

Dish (or food) classification can be considered as an application of image classification. Some

work such as [91, 92] provide experimental studies on small scale datasets to recognize food

11

(a) Dish classification (b) Ingredients generation

Figure 1.4. Illustrationofdish classification (returns one label per image) and ingredients generation
models (returns multiple labels per image).

(or dish) types from a single given image. Many applications of dish classification incorporate

non-visual context such as geo-location to increase dish classification accuracy [93, 94]. In [95],

to address the dynamic and changing nature of food and dish classification, Horiguchi et al.

proposed a personalization based model for dish classification. The commonality between the

proposed work in this area is a small scale dataset and a deep learning model to address that. We

in this paper create our own set of dish types and use a state of the art deep learning network to

perform dish classification.

1.1.5.2 Ingredient and Recipe Recognition

Research in the area of ingredient recognition can be classified into two main categories:

retrieval based, prediction. In retrieval based applications, a list of ingredients or the whole recipe

is retrieved based on creating an embedding and retrieving the appropriate image match from the

dataset [96, 97, 98, 99] (as shown in Figure 1.5.a).

This body of work requires the predicted combination of ingredients to be a fixed set as seen in

one of the datasets. To handle this issue, ingredient prediction approaches inspired by multi-class

modeling [27, 28, 29], recurrent image captioning [30, 31, 33], and auto-regressive list prediction

methods emerged [100, 35]. Ingredient state recognition is also another field of study that has been

under-studied. Introducing new ingredients states datasets [101, 102], or addressing the states

12

(a) Recipe retrieval

(b) Portion and calorie estimation

Figure 1.5. Instances of models for applications in the cooking domain - models for recipe retrieval
and portion and calorie estimation.

problem as image classification or multi-class labeling (i.e. ingredient-state tuple) problem [101, 1]

are instances of research in this area.

One recent work that we use as our baseline for ingredient prediction is the inverse cooking

research [35]. In this work, both ingredients and recipe are generated in auto-regressive manner

using the transformer model [35].

1.1.5.3 Portion and Calorie Estimation

Research on ingredient portions hasmainly been conducted in the context of calorie estimation.

In most of the work [103, 104, 105, 106] portions of ingredients (e.g. apple) are identified after

image segmentation [103] (as shown in Figure 1.5.b) and size computation [107] using various

approaches (e.g. geometry, 3d modeling) for calorie estimation of very simple cooking images in

small scale datasets [105]. Also, approaching portions from a visual recognition and segmentation

view may not be feasible in meals where the ingredients is not visually discerned (e.g. chicken in

13

soup). Therefore we approach the portions problem in a self-attention query based manner using

a large scale dataset (i.e. Recipe1M).

Calorie estimation from image has gained attention in food and image processing research.

Some methods propose multi-stage pipelines to predict food categories/ingredients, identify por-

tions/sizes and estimate the calorie intake of the food [103, 104, 105, 106]. Some of these methods

take two input images to define depth and segmentation of food in the image [103, 105]. These

algorithms use model based or deep learning based methods for the recognition stage and stan-

dard nutritional fact tables for calorie estimation [106]. Some literature directly provide estimates

of calorie from a food image [108, 109] by predicting the food category itself and directly mapping

it to a calorie intake for that meal with [109] or without a reference object. The drawback to these

methods is that they do not take into account the variety of ingredients different versions of a

meal can have. Some work propose a CNN-based direct image method that take into account

multiple food in one image but still do not consider the containing ingredients of meals for calorie

estimation [110, 111, 112]. Also, in [113] authors propose a food-estimation Bayesian framework

for food-balance estimation which considers a limited number of food categories with a limited

number of classes each with limited discrete values.

Most of the work done in the area of calorie estimation assumes that images are of food with

clear segmented boundaries [103, 105, 114] and do not consider addressing more complex food

such as mixed or cooked meals where the containing ingredients are not clear. Another issue with

these work is that the dataset used is very small and low diversity and the images are captured

in a well-controlled setting. On the other hand, there are a few literature that exploit ingredients

for image-based calorie estimation [115]. In [115] a deep learning based method is proposed for

simultaneous learning of calories, categories, ingredients and cooking directions. Datasets such

as Japanese calorie-annotated food photo dataset and the American calorie-annotated food photo

dataset [115] are datasets with calorie annotations.

1.2 Contribution of Dissertation

This research work contributes the following to the robotics community:

14

1. We propose a model to encode object-object affordances, and motion-object associations for

improving video understanding in cooking videos.

2. We use the structural information of knowledge representations for task inference using

object-object and object-motion associations.

3. We defined the state identification problem in cooking for fine-grained activity understand-

ing and created a taxonomy of cooking states. Using the taxonomy we proposed a datatset

of cooking states for robot manipulation.

4. Wepropose amodel that provides improved ingredient recognition by integrating ingredient

states into deep convolutional networks. We also propose a model for joint object and state

recognition using deep convolutional networks and knowledge representations.

5. We propose the simultaneous portions estimation model for recognizing ingredients, por-

tions and calories simultaneously for visually and non-visually apparent ingredients using

deep query based self-attention mechanisms.

6. We propose a deep self-attentive model for calorie estimation in large scale.

7. We propose a multi-level framework for ingredient generation.

1.3 Structure of Dissertation

This dissertation is structured as follows:

• In Chapter 2, we introduce a four stage pipeline for video understanding from cooking

content using the FOON knowledge representation [78, 2].

• In Chapter 3, we analyze states and their changes in cooking images and introduce the state

identification challenge. Alongside the challenge, we introduce a dataset of 10,000 images

with their ingredient and state labels. We also propose models for single state recognition,

joint state and object recognition, and set based state recognition using deep models on our

own dataset and large scale datasets such as Recipe1M [99].

15

• InChapter 4, we delve into knowledge extraction given a single image. We focus on extracting

information such as list of ingredients, their states, portions, and per ingredient calorie based

on a single image shot. We suggest that this type of information extraction can be used for

task graph generation and side applications such as total calorie estimation.

• In Chapter 5, we end our discussion with concluding remarks on the state of research in

cooking content analysis for the purpose of robotic manipulation and what future work

holds for this path of research.

16

Chapter 2: Video Understanding

2 The initial challenge to automatic robotic manipulation, is understanding the scene. To

understand the scene, robots need to visually analyze the scene and interpret entities for further

decision making. Video understanding is the main general solution to this challenge. Video

understanding is a challenging topic that requires completion of several difficult steps successfully,

where each step is a challenging and active research topic by itself. It would usually require the

video to be automatically split into atomic actions, the activities and objects in the atomic video

clip to be successfully recognized, and ameaningful understanding inferred based on the activities

and objects. For each step, extensive learning would be carried out for object recognition, activity

recognition, and video splitting, but these are usually done individually.

We propose to learn the relationship between objects, actions, and activities and represent those

relationships in a graph. Weuse the graph as structured prior information for video understanding

when possible. For example, a video that demonstrates a chef who is cooking an omelet comprises

multiple consecutive actions, and each action, such as mixing eggs in a bowl, employs multiple

objects such as a bowl, a whisk, and eggs. To identify the actions, the structural information

between the objects (bowl, whisk, eggs) and motions (mixing) can be useful. For instance, if we

understand that eggs can be mixed using a whisk, we can associate the object whisk with the

objects egg and bowl.

The structural information between consecutive actions can be applied to interpret an activity

in a video. For example, cracking eggs into a bowl occurs before mixing the eggs in the bowl.

Consequently, this knowledge can help with predicting that the current ongoing action is mixing,

knowing that the previous action was cracking eggs. Embedding these informative structures into

2This chapter was partially published in [3]. Permission is included in Appendix B.

17

a prior graphical structure and using the embedding for inference at test time can improve video

understanding.

We use the coordination encoded in the object nodes (e.g., bowl or eggs) andmotion nodes (e.g.,

stirring) of the knowledge-based graph presented in [78, 2] to recognize actions (such as stirring

eggs) in videos. The knowledge-based network used for task inference, called the functional object-

oriented network or FOON [78], encodes knowledge about the flow of actions coming one after

another. Using this network, we present a powerful object-oriented inference algorithm for action

and activity recognition.

We propose a pipeline that deploys object localities and their motion features to identify active

objects within an action. We train a deep model for holistic motion recognition, which helps with

cases in which the object (e.g., salt in a chef’s hand) is not easily detectable. The identified objects

and motion are fed to the inference stage with FOON to provide a list of candidate functional

units that can be associated with the current ongoing action (e.g., cracking egg in a bowl). The

consecutive predicted functional units are evaluated to understand the activity performed in the

video (e.g., making an omelet).

2.1 Functional Object-Oriented Network

Functional Object-Oriented Network (FOON) is a knowledge representation for encoding

knowledge about manipulation tasks and, in extension, object affordances. A FOON can also

be used by a robot for solving manipulation problems given a target goal. Currently, FOON fo-

cuses on learning activities in the cooking and kitchen domain, but it can also be extended to other

domains and environments.

2.1.1 FOON Basics

A FOON is a directed acyclic graph that contains two types of nodes (object and motion),

making it a bipartite network [116]. Figure 2.1 depicts a sample functional unit, the basic building

block of a FOON.

18

Figure 2.1. Illustration of a functional unit with input and output object nodes, their states, and a
motion node.

Object nodes are defined as items that are being manipulated or acted upon by a demonstrator,

and motion nodes describe the action being applied on objects such as cutting or mixing. An

object node (NO) is identified by its object type, an object state, and a motion identifier, which denotes

whether the object is in motion during activity. Objects can also serve as containers of other objects,

and each node can be described by a list of ingredients. Motion nodes are identified only by their

motion type. Within this graph, as in regular bipartite networks, edges connect a pair of nodes;

specifically, an edge in FOON connects an object-motion pair. The edge direction indicates the

order in which an object may change in its state through a motion action similar to Petri Nets [117],

which require transitions to activate or fire place nodes.

2.1.2 Functional Unit

A FOON consists of subcomponents or learning units called functional units. Each functional

unit describes a single, atomic action as seen in an activity (an activity or subgraph can be consid-

ered as a series of actions). For instance, in the activity of cooking scrambled eggs, one functional

unit may describe the action of cracking an egg, and another may describe the action of mixing

the eggs in a bowl. A functional unit describes the transition of objects’ states before and after a

manipulation motion occurs; this is described by input object nodes (objects before manipulation)

and output object nodes (objects after manipulation). In this paper, our focus is generating these

functional units directly from instructional videos for learning future instances of how tasks are

executed. A collection of subgraphs (or activities) that are merged together to combine knowledge

and remove duplicate units is called a universal FOON. Each functional unit has three components:

input object nodes, output object nodes, and a motion node that describes the action that possibly

19

causes a change in the input objects’ states, possibly causing a state change, because an action may

not always incur a change of state. Each functional unit is also described by the time frames at

which they are observed in an activity.

2.1.3 FOON Construction

The graph shown in Figure 2.2 consists of nodes from 65 videos that were annotated in the

form of subgraphs, which consist of functional units that reflect each individual step in a cooking

procedure. Edges would be drawn between an object node andmotion node pair, where the object

nodes are those seen in an action within the cooking activity and the motion node describes the

action occurring. Aswe created these subgraphs and parsed them,we compiled a list of objects and

motions to create labels for the different node instances seen and to enforce consistency in labels

(subgraphswere created bymultiple volunteers). When adding new information (subgraphs) from

other datasets, we only need to annotate them to conform to the format of our graphs and parse

them to get the labels correct. Themerging procedurewill add these newly parsed functional units

to the network to ensure that there are no duplicates. This merging procedure is detailed more

in our previous work in [78]. This is where this proposed work fits in; the task of automatically

generating subgraphs from videos (especially those from other datasets) is difficult to do, and

manual annotation can be time-intensive.

2.1.4 FOON Sources and Statistics

A FOON ideally is learned directly from human demonstrations, whether by video or from

observation, and it is automatically generated from such demonstrations, although in the earlier

phases of constructing FOON we opted to manually label YouTube videos as subgraphs. In the

future, we will try to extend FOON using the method discussed in this paper. After recording all

functional units for a video, we parsed the subgraph to ensure that all object and motion labels

were consistent with all other subgraphs.

Each subgraph was then merged into a single network, referred to as a universal FOON. The

merging procedure is as follows: using a list of all functional units in GFOON , compare each

20

Figure 2.2. Illustration of universal FOON with 4955 nodes (object and motion nodes). FOON
comprises many functional units, such as those highlighted in image.

functional unit in all subgraphs to this list and append those units of a subgraph which are not

present in GFOON .

In total, the network contains 1853 object nodes, 3102 motion nodes, and 15656 edges. Figure

2.2 illustrates the network described by these statistics.

2.1.5 FOON vs. Other Knowledge Representations

FOON is not the first knowledge representation to address video understanding. In this

subsection, we discuss the main differences between FOON and previous work. Previous works

in knowledge representation do not consider the joint representation of both objects and motions.

Our work is inspired by the theory of affordance originally proposed in [118]. Many follow-up

21

studies show that there is a link between manipulations and objects. Our objective is to create a

graphical representation ofmanipulationswhere objects andmotions describe affordance. In terms

of graphical representations, previous works capture knowledge using probabilistic graphical

methods or semantic graphs/trees. However, they do not create a knowledge base of activity from

demonstrations that could then be used for performing (possible) newmanipulations. In addition,

for affordance studies, theywould instead try tomodel the relationship between objects and simple

actions to predict the effect or impact it has on them. A more general form of representation akin

to FOON is Petri Nets, where place nodes are like object nodes and transition nodes are likemotion

nodes. Certain input places are needed to âĂĲfireâĂİ or execute a transition node, much like input

object nodes must be available to execute a given manipulation motion.

2.2 Video Understanding Pipeline

We propose a four-stage pipeline for video understanding. The pipeline identifies the objects

and motions in a video sequence (associated with an action) and uses them together with the

knowledge representation to assign a functional unit label to the event in action. An action refers

to a single, atomic event, and a sequence of actions represents an entire activity. Consecutive

identified actions will be analyzed as a whole to understand the activity (recipe) being executed

in the video. The steps to the pipeline are as follows: 1) functional object recognition, 2) functional

motion recognition, 3) functional unit recognition, and 4) task graph inference.

In the first stage of the pipeline, the functional object recognition stage, all objects are identified

and scores are assigned to objects based on their usefulness in the scene. In the second stage,

functional motion recognition, each action (a split of the video) is classified into its corresponding

motion class. Using the results from the first two stages and their FOON accordances, each action

is analyzed and associated with a functional unit in the functional unit recognition stage. Each

recognized action (in the video) from a single video is assigned a functional unit and looked up in

the FOON graph for them to eventually be classified as a whole activity (recipe). This last stage is

referred to as task graph inference. An illustration of the video understanding pipeline is depicted

in Figure 2.3.

22

Figure 2.3. The four stage pipeline for automatic video understanding including 1) functional
object recognition, 2) functional motion recognition, 3) functional unit recognition, and 4) task
graph inference.

2.2.1 Functional Object Recognition

We apply the well-known Faster R-CNN algorithm for localizing and labeling objects in the

scene [39]. Faster R-CNN is a two-part convolutional network that detects object proposals and

performs object classification simultaneously. The output of the Faster R-CNN network is a set of

bounding boxes and their corresponding object class labels. We further identify the used objects

in the video sequence, which we call objects-in-action, using three metricsâĂŤthe closeness of

the human hand to the object, the magnitude of optical flow, and the frequency in which the

23

objects have been observed in the video. We explain the functional object recognition stage more

thoroughly in Section 2.3.1.

2.2.2 Functional Motion Recognition

In some cases, FOON is not able to correctly identify the action in video using only object

features. For example, knowing that the objects bowl and egg are objects-in-action could lead to

multiple FOON inferences, because various functional units contain the object nodes bowl and egg

but have different motion nodes (e.g., pouring or cracking). In another example, when sprinkling

salt with the hand, it is difficult to visually discern that the object salt is being used, but the hand

motion will suggest the action of sprinkling.

To address these issues, we fine-tune the deep (CNN+LSTM) network by Donahue et al. [45]

with 10 classes in the last layer. This network comprises a CNN portion and an LSTM portion.

The frames of a sequence are, one by one, given as input to the CNN and the output of the CNN

is given as input to the LSTM layer. The outputs of the LSTM layer are averaged to provide a final

prediction for the class of the motion in action. The architecture of the CNN network contains

five convolutional layers and two fully-connected layers. The initial five convolutional layers and a

single fully-connected layer on top is fed to one layer of a recurrent LSTM layer. The output of the

LSTM layer is followed by the classification layer. We modified the last layer so that the number

of neurons in the last layer of the network contains ten neurons to reflect the 10 motion types we

have selected for training. We train the CNN architecture and the CNN + LSTM architectures

separately. We use the trained weights from [45] and perform training only for the last layer of

classification. We report only the better results from the CNN+LSTM architecture.

Each motion class in this deep architecture is associated with a set of motion nodes in FOON.

The network assigns confidence scores to each of the motion classes. A confidence score reflects

the probability of a class being assigned as a label to the action happening in the video. For

more details on the approach, readers are referred to the algorithm described in [45]. The output

from this deep network is used to calculate confidences for each candidate functional unit in the

functional unit recognition stage.

24

2.2.3 Functional Unit Recognition

We determine the meaning of a video by associating actions with functional units. Objects-

in-action are looked up in the universal FOON to identify candidate functional units. Candidate

functional units are evaluated based on a confidence score computed in this stage and thoroughly

discussed later in Section 2.4.1. This consolidated confidence score incorporates both object con-

fidences produced from the functional object recognition stage and motion confidences resulting

from the functional motion recognition stage. The confidence score estimates how related each

candidate functional unit is to the ongoing action in the present sequence. The list of candidate

functional units is further sorted based on their confidences. Functional units with the highest

confidences are associated with the current action.

2.2.4 Task Graph Inference

To identify the activity (sequence of actions) in a video, the identified actions throughout the

video are used together with FOON look-up to predict the most likely activity label for that video.

2.3 Functional Object Recognition

We recognize and localize all objects in a video sequence (associated with an action) using the

well-known Faster R-CNN algorithm [39]. We then quantify the involvement of each object in

the current action by extracting optical flow features and calculating hand-object distances in each

frame of the video sequence. A list of the most used objects is created and named objects-in-action.

2.3.1 Recognizing Objects-in-action

In this stage of the pipeline, we use the bounding box associated with each object for our

computations. After localizing objects, the less frequent objects in the video are excluded. The

center point of the bounding boxes resulting from the Faster R-CNNalgorithm are used to calculate

the object’s average distance from the hand. The distances are further normalized using a Gaussian

distribution. The optical flow of objects within the video sequence are computed. The proposed

25

Figure 2.4. Example showing procedure of identifying objects-in-action. Items such as egg and
whiskwould be possible candidates for participating in an egg-whisking motion.

method in [119] is used to estimate the optical flow between two frames. The estimated optical

flow and the objects’ positions are incorporated to estimate the flow of each object. Objects with

highermagnitude of optical flow are assigned a higher confidence valueâĂŤa higher value conveys

a higher chance that the object is moving and, hence, a higher probability that the object is being

used in the video sequence. Equation 2.1 shows how these metrics are integrated to estimate a

confidence for each object.

con fob ject � α.c f low + β.cdist + γ.c f req (2.1)

where c f low , cdist , and c f req are the optical flow confidence, distance to hand confidence, and

frequency confidence of each object, respectively; con fOb ject is the final calculated confidence of the

object. Coefficients α, β and γ are tunedmanually and represent howmuch each factor contributes

to the final confidence of each object. Figure 2.4 depicts the procedure of identifying objects-in-

action for a simple action of whisking eggs, using the three metrics mentioned in Equation 2.1.

In the example of Figure 2.4, we observe an egg-whisking motion occurring in which objects egg,

26

whisk, and bowl are at the top of the list of objects-in-action and objects pan and stove have lower

confidences.

2.4 Functional Unit Recognition

Each action in the video is associated with the closest functional unit from FOON. To associate

the correct functional unit with an action, unrelated functional units are filtered out. Filtering is

performed using functional unit confidence estimation and probing, as discussed in this section.

2.4.1 Functional Unit Confidence

The pipeline recommends a list of in-use objects from the current action, named objects-in-

action (Section 2.3.1). Objects from the list are looked up in FOON, and functional units containing

them are identified. The identified functional units are suggested as candidate functional units

that can be associated with the current action in the video. Every functional unit contains several

object nodes that may or may not be included in the list of objects-in-action. The overlap between

the object nodes (of a functional unit) and the objects-in-action are named as the used set, and the

remainder of the object nodes is tagged as the unused set. These two sets of objects are used to

determinewhether we should support or penalize a candidate functional unit. Equation 2.2 shows

how the confidence of a candidate functional unit is estimated.

con fFOON �

∑Nused
n�1 con fn

Nused
− penalt y + κ.bonus (2.2)

In this equation, con fFOON is the estimated confidence, Nused , is the number of object nodes

in the used set of a candidate functional unit, and con fn is the confidence of each of those objects

(Section 2.3.1). The bonus term is estimated based on the pixel-wise overlap of all objects used

in a candidate functional unit. This term represents the extent of interaction between the objects.

The penalt y term calculated by Equation 2.3, represents the penalty applied to the estimated

confidence.

27

Figure 2.5. Illustration of functional unit confidence estimation. In this example, identified objects-
in-action are pot, spoon, and stove, with confidences 0.9, 0.8, and 0.7 respectively (λ=η=0.2).

penalt y �

Nnotused∑
m�1

λ.con fm +

Nextra∑
k�1

η.con fk (2.3)

The confidence of the objects listed in the list of objects-in-action but not used in the candidate

functional unit, con fm , togetherwith the confidence of the objects not listed as objects-in-action but

used in the candidate functional unit, con fk , contribute to the penalty. In this equation, Nnotused

is the number of unused objects, and Nextra is the number of objects not listed but used in the

candidate functional unit. In Equation 2.2, the constant κ tunes the effect of bonus and penalty.

The constant λ in Equation 2.3 tunes the effect of unused objects on the penalty term, and the

constant η tunes the effect of objects used but not listed. Figure 2.4.1 illustrates the procedure of

confidence estimation for a candidate functional unit. The algorithm for confidence calculation is

shown in Algorithm.

The confidence calculated in Equation 2.2 focuses solely on object interaction and their func-

tional affordances. We believemotion can introduce additional information for confidence calcula-

tion. To include functional motion for estimating the confidence, we incorporate the outputs from

the trained deep architecture (CNN+LSTM) for motion classification. We fuse the output of the

CNN+LSTM network with the confidence estimated solely based on object interaction, con fFOON .

The output of the CNN+LSTM network for motion recognition has 10 confidence scores represent-

ing the probability of each of the motion classes happening. We rank the motion classes based

on their resulted confidence scores. Finally, the confidences of functional units in Equation 2.2

are combined with the results from the CNN+LSTM network to extract a final confidence for the

functional units as shown in Equation 2.4.

28

Algorithm 1: Confidence Calculation
1: list � ∅ // holds objects and their confidences
2: for ob ject ∈ sequence do
3: cdist � abs(ob ject − hand)
4: c f req � frequency(ob ject)
5: c f low � opticalFlow(ob ject)
6: con fob ject � α.c f low + β.cdist + γ.c f req
7: list .append((ob ject , con fob ject))
8: end for

9: list .sort()
10: topK � list .selectTopK() // objects in action
11: // Find all candidate functional units associated with the top K objects
12: candidates � FOONLookUp(topK)

13: for c ∈ candidates do
14: nodes � c.getOb jects()
15: overlap � objectOverlap(nodes .ob jects , topK.ob jects)
16: Nused � size(overlap)
17: bonus � pixelOverlap(nodes .ob jects)
18: unused � (topK − overlap) + (nodes − overlap)
19: penalt y � average(unused.con f idences)

20: con fFOON(c) �
∑Nused

n�1 con fob ject (n)
Nused

− penalt y + κ.bonus
21: end for

con fmotion � con fFOON + α.con fLSTM (2.4)

In Equation 2.4, con fFOON is the confidence calculated in Equation 2.2, and con fLSTM is the

confidence calculated based on results from the CNN+LSTM network. Coefficient α balances the

effect of each of those parameters.

2.4.2 Probing

Each object is individually looked up in FOON, and all functional units containing that object

are identified. A list of candidate functional units containing the object is acquired. The list

contains candidate functional units that may associate with the current action. We exclude the

objects with lower confidences, con fob ject , from the list, to reduce the number of potential objects-

29

Table 2.1. Results of probing objects in FOON based on the example in Section 2.4.2. The objects-
in-action are shown in bold.

Input Nodes Motion Output Nodes Overlap
1 mixer, bowl mix mixer, bowl 0.5
2 fork, egg, cup stir fork, egg, cup 0.67
: : : : :

674 bowl, pan, pasta pour pan 0.25

in-action and, as a consequence, the number of probed objects and candidate functional units. To

illustrate, assume that the filtered list of objects seen in the sequence or probed objects are egg,

bowl, and fork and the ground truth functional unit associated with the sequence that includes the

motion node mix with the objects bowl, egg, and fork as input nodes and egg, and fork as output

nodes. Individually probing functional units in FOON using the list of objects produces a list of

candidate functional units that contain those objects. Table 2.1 shows some of the 674 candidate

functional units that contain the objects-in-action for this specific example. Any other functional

unit that is not identified does not contain the objects.

Each probed functional unit from FOON contains object nodes that may or may not have been

observed in the current video sequence (associated with an action). The last column of Table 2.1

depicts the overlap between the objects included in a probed functional unit with the identified

objects in the video sequence. The probed functional unitswith an overlap value less than a specific

threshold are excluded. Confidence values for the remaining functional units are computed, and

those with the highest confidence values are selected. The selected functional units are the most

likely to be associated with the ongoing action.

2.5 FOON for Video Understanding

For analyzing the power of the Functional Object Oriented Network for video understanding

we perform some experiments and analyze the results. In our experiments, we used the annotated

videos used for the creation of the universal FOON in [78] and the videos from the MPII Cooking

Activities Dataset, summing to a total of 338 videos [120] 3.

3The videos and graphs of FOON are available at: http://www.foonets.com/

30

At the time of writing this dissertation, the universal FOON consisted of data from 338 instruc-

tional videos and a total of 3102 functional units. This includes a subset of instructional videos from

YouTube and videos from the MPII Cooking Activities Dataset [120]. For the current experiments,

we also manually labeled some of the video sequences in FOON with object bounding boxes and

their categories.

We used 11 of the 338 cooking videos as our test dataset, which included an overall amount

of 55 functional units. We performed our tests in 11 iterations in a leave-one-out manner: in each

iteration, one video was entirely left out, and the remainder of the videos were used to create a

FOON. The lack of training data for object recognition, lack of labeled ground truth data for the

videos, and a shortage of instances of each kind of functional unit in the dataset forced us to only

use 11 videos for the experiments.

For testing the pipeline, we conducted three different experiments based on bothmanually- and

automatically-labeled objects. 1) comparing functional unit recognition using only FOON look-

up with functional unit recognition using the fusion of FOON and motion recognition, 2) video

understanding for functional unit recognition with and without FOON, and 3) task inference or

recipe classification.

2.5.1 Object Overlap Metric

The overlap between a candidate functional unit and its corresponding ground truth functional

unit was used to evaluate the results. This overlap metric was calculated for each action in the

video separately. Themetric used was fairly simple: if the motion node of the candidate functional

unit was equivalent to the motion node of the ground truth functional unit, the overlap between

their object nodes was counted. Consequently, precision and recall were computed using the

object overlap. Precision was measured as overlap divided by the number of object nodes in the

candidate functional unit, and recall was measured as overlap divided by the number of object

nodes in the ground truth functional unit. If the motion nodes were different, precision and recall

were assumed to be 0. Figure 2.6 illustrates how precision and recall were calculated.

31

Figure 2.6. Illustration of how overlap is measured. In this example, overlap is equal to 4 nodes,
precision is 100 percent and recall is 80 percent. If the ground truth motion node was anything
but slice, precision and recall would be 0 percent.

2.5.2 Functional Unit Recognition Analysis

We used the time stamp labels in the universal FOON to split the videos in the dataset into its

comprising actions. For example, a video demonstrating a cook making scrambled eggs was split

into several atomic actions such as cracking eggs, pouring eggs into a bowl, and mixing eggs with

a whisk.

2.5.2.1 Functional Unit Recognition Using FOON

Each action sequence in a video was fed into the algorithm that identified the functional

unit best fit for that action based on the metrics discussed in Section 2.4. In each iteration, we

used a single video for evaluation and the other 337 videos to create an iteration-specific FOON.

Functional units corresponding to an action sequence in a video were identified by processing the

iteration-specific FOON. After identifying functional units, precision and recall were computed as

defined in Section 2.5.1 for all candidate functional units for the top 10 results, as shown in Figure

2.7.

In Figure 2.7, the horizontal axis represents the number of best functional units analyzed

for precision and recall calculation. The solid curves show precision, and the dashed curves

show recall calculated on 55 functional units for both manually- and automatically-labeled objects.

32

Figure 2.7. Precision and recall, as observed in manual and automatic object recognition for top 10.

Figure 2.8. Example of functional unit recognition using labeled and manually-split sequences for
scrambled egg recipe.

Figure 2.7 shows that the algorithm can potentially improve with additional procedures. We can

also see that precision in Figure 2.7 is always higher than 80 percent, showing that our algorithm

sometimes missed the objects in the video; however, when it assumed an object was being used in

a functional unit, it usually identified the functional unit correctly. In Figure 2.8 snapshots of three

sequences of a cooking video are depicted with their predicted functional units. In this example,

the correct functional unit is always included in the top three identified functional units.

2.5.2.2 Functional Unit Recognition with Motion and FOON

We fused motion recognition with FOON look-up to improve the recognition procedure. We

created motion classes by selecting the nine most frequent motion types from the FOON motion

33

Table 2.2. Top 1 to 10 accuracy of prediction for functional unit recognition using FOONandMotion
Recognition.

Using FOON Using FOON +Motion Recognition
Top 1 56% 64%
Top 3 75% 84%
Top 5 80% 89%
Top 10 89% 98%

nodes (e.g., pour, pick+place, and cook) [78]. To accommodate the other types ofmotions not included

in the nine most frequent motions, we designed a class labeled as the other class. We extracted

optical flow features from each sequence in the video, applied the CNN+LSTM network on RGB

and optical flow sequences of each event, and performed an averaging of the outputs from the two

networks. The architecture returned 10 values representing confidences for the 10 classes. The

motion confidence valueswere used in the computation of confidences for the candidate functional

units. Table 2.2 shows the top 1, top 3, top 5, and top 10 accuracy of prediction for functional unit

recognition using both FOON and motion recognition.

The accuracy of prediction for an action was computed by comparing the identified functional

units with the ground truth functional units. If the motion node of the identified functional unit

was equivalent to the motion node of the ground truth and the overlap of object nodes was higher

than 80 percent, we determined the prediction to be correct. We counted the number of correct

predictions over all functional units in the test set and calculated the accuracy. In some cases, the

motion node of the ground truth varied in text with the motion node of the identified functional

unit, while having the same interpretation (e.g., whip vs. stir or slice vs. cut). These cases of motion

nodes were considered equivalent.

As shown in Table 2.2, the accuracy of functional unit recognition when motion recognition

was combined with FOON look-up was higher than functional unit recognition without motion

recognition. This shows adding automatic motion recognition to the pipeline improves the motion

node recognition and leads to better identification of functional units. The deep network guesses

themotion node in only 47 percent of the cases. The complexities of the videos, such as background

variations, different camera views, and moving cameras, prevented it from producing the desired

34

accuracy. In experiments, we set α in Equation 2.4 to less than 0.2, so the results from the neural

network would not adversely influence the final results.

2.5.2.3 Analysis

To see the effect of each part of the pipeline on the results, we looked deeper into each part.

The automatic motion recognition by itself achieves 67 percent accuracy, whereas the functional

unit recognition without motion recognition achieves 61 percent accuracy (top 2). There are two

differences in these two evaluations that make them incomparable. First, for automatic motion

recognition, the number of classes of motion was generalized and reduced to 10 classes, whereas

for functional unit recognition, there were more than 50 types of motion nodes. Second, functional

unit recognition identifies the action with a focus on both the objects and the motion occurring,

whereas the aim of motion recognition is to recognize the motion class in an action. Although not

comparable, motion recognition is a good feature to combine with FOON for optimal functional

unit recognition.

We calculated the overlap between objects-in-action and the identified functional units as 84

percent. This shows that although the majority of objects were identified correctly, the accuracy

of functional unit recognition was lower than expected due to mistakes in identifying the motion

nodes.

In another experiment, we applied the pipeline combined with motion recognition for auto-

matically recognized objects and report its top 10 results in Figure 2.7. Although object recognition

is an important stage of the pipeline that can be improved, we do not address it further, as that is

not our specific goal in this dissertation. Snapshots of various sequences with their ground truth

representation and identified functional units are depicted in Figure 2.9.

2.5.3 Video Understanding

The pipelinewas evaluated based on the extent it understands a video using the overlapmetric.

Precision and recall were calculated for both object and motion nodes for all actions of each video

35

Figure 2.9. Snapshots of events, their ground truth functional unit representation and predicted
functional unit.

individually, and the average precision and recall was calculated for all videos over the top 10

results. Figure 2.10 shows the calculated results.

The results show that the pipeline is capable of perceiving an understanding of the video,

especially when the top 5 results are used. The lower values for recall may be due to errors made

in identifying objects-in-action. We calculated the F-Score metric using recall and precision, as

discussed in [121].

The video understanding F-Score was calculated for the pipeline in two instances: 1) when

FOON was used, and 2) when FOON was not used; the results are depicted in Figure 2.11. When

using FOON,we calculated the F-Score by using the overlapmetric for ground truth and identified

functional units. When not using FOON, we calculated the overlap metric between the highest-

ranked objects and the objects in the ground truth functional unit, and we calculated the overlap

between the highest-ranked motion classes with the motion nodes in the ground truth. The sum

36

Figure 2.10. Graph showing results of precision and recall using the overlap metric for video
understanding of top 10 functional unit results.

of these two overlaps was used to calculate the precision and recall and F-Score. Using FOON

achieved higher F-Scores than not using FOON, as object andmotion nodes in a video are perceived

much better when using FOON as reference.

2.5.4 Task Inference (Recipe Classification)

We deployed our algorithm for recipe classification of unseen cooking videos. We used eight

videos, including one salad recipe, two omelette recipes, two bread recipes, one cake recipe, one

noodle recipe, and one sandwich recipe for the test. We classified all the recipes in FOON into

13 classes of recipes-Cake, Pizza, Bread, Omelette, Soup, Barbecue, Sandwich, Smoothies, Pasta,

Coffee/Tea, Salad, Mashed potatoes, and Other.

Task inference was performed after all functional units in a video were identified. All the

identified objects-in-actionused in the video and the identified functional units equally contributed

to the task inference stage. To classify a video to a recipe, clusters of recipes were created using all

videos in the train set. The similarity distance between the current video and every (recipe) cluster

was calculated, and the closest cluster was selected as the recipe associated with the video. To

calculate the similarity distance between the current video and a cluster, the similarity of the video

37

Figure 2.11. Graph showing calculated F-scores for video understanding with and without FOON.

Figure 2.12. Illustration of identified functional units for noodle-cooking video (identified as noodle
by proposed pipeline)

with each of the videos in the cluster was calculated and was averaged. The similarity distance

between a video and a recipe was computed as the similarity of functional units in the video with

the similarity of functional units in the recipe aggregated with the similarity of the used objects in

the video with the similarity of the object nodes in the recipe. In the similarity comparison, we did

not check the order of functional units. The recipe class with the highest similarity was assigned

to the video. Figure 2.12 shows the identified functional units of a video demonstrating a cook

making noodles.

The top 2 results of recipe classification are shown in Table 2.3. The recipe classification

algorithm returned the predicted class names based on their confidence scores. If the class name

with the highest confidence is equivalent to the ground truth class name, the classification is

assumed as correct.

38

Table 2.3. Recipe classification results for manually and automatically labeled objects based on top
1 and top 2 results.

Used Procedure Top 1 Top 2
Manually labeled Objects 37.5% 100%

Automatically labeled Objects 25% 75%

As shown in Table 2.3, the algorithm using FOON can approximately guess what recipe is

being cooked in the video, assuming that all objects in the video sequence are identified correctly.

The motion of the objects can also insinuate the type of recipe activity that is occurring.

2.5.5 Discussion

Several studies have worked on activity recognition using either knowledge bases or other

methods, but they represent a video with a sentence or a label for the activity. Our work out-

puts sub-graphs representing short activities for each part of the video. As such, our work is

incomparable to other work. We analyzed our work through the overlap metric and compared

two approaches for video understanding-pipeline using FOON and pipeline not using FOON. It

is clear that some methods in the literature can be substituted with the method we use to integrate

with FOON, but our current focus is to prove that FOON is a powerful knowledge representation

that can understand video and would be able to semi-automatically build itself in the future.

Although theproposed frameworkuses information frommultiple views throughout thevideo,

it applies information from only one camera at each specific time. However, due to the importance

of simultaneous multi-view applications, we discuss briefly a few ways that the framework can

be integrated into a multi-view system. The proposed framework can be applied individually to

multiple videos in a multi-view system. Individual predictions can be gathered from multiple

deployments of the framework. The predictions can be further combined to reach to a final

prediction of the actions and activity in the video. We can also combine the proposed framework

from a multiple view aspect at the confidence level. Confidences of objects can be extracted at

each view and fused to reach a final confidence for the objects. The framework can further run as

proposed.

39

The goal of the proposed framework is to identify the actions and tasks in a video. The

framework can be used as the vision system of a robot chef or in any robotic system that deploys

and manipulates utensils, such as a robot carpenter, robot waiter, etc.

2.6 Conclusion and Future Work

The main objective of this chapter was video understanding with the help of a knowledge

representation. We use the FOON [78] as the knowledge representation for video understanding.

We proposed a pipeline for video understanding using the functional object-oriented network

(FOON) and deep neural networks and make use of low-level image features together with deep

networks to identify objects of interest. Using objects of interest (objects-in-action) and deep

motion understanding, we associate the actions in a video with the correct functional units in the

knowledge representation (FOON). We demonstrated that using FOON significantly improves the

performance of video understanding in comparison to not using FOON.

Our current pipeline is a big step towards automatically extending the knowledge represen-

tation graph, which presents a significant improvement to network applications, such as robots

solving manipulation problems given a target goal. In future work, we would like to explore other

methods of identifying objects-in-action, incorporate object recognition confidences to handle

misidentified objects, utilize states of objects [122], and incorporate history of events for inference

using FOON. We are also working on generalizing the knowledge contained within a FOON to

achieve more generic video inferences from an expanded version of FOON [2].

40

Chapter 3: Understanding Cooking States

4 Robotic task planning and manipulation requires understanding both the objects and their

state changes in the scene being manipulated. In the past chapter we analyzed object, motion

and scenes for understanding videos in cooking settings. Many motions such as slicing implicitly

contain information about the state change of an object. But, to explicitly utilize state modeling in

understanding manipulation tasks we need to explicitly encode the state of a cooking object (e.g.

sliced onion). Image understanding for object recognition and scene understanding have been

very active topics in the last few years [25, 81, 30]. On the other hand, identifying object states has

not captured much attention in computer vision and robotics research.

Objects’ states can be defined as characteristics into which the object could be transformed as a

consequence of a human or robot activity. A state can be observed and described as a form, texture,

or color. For example, a tomato can have many states, such as sliced, diced, and whole. A whole

tomato can be sliced and then diced in a sequence of cooking activity such as slicing and dicing.

Assuming a robot chef wants to make a salad using a tomato, if it is providedwith a whole tomato,

it would need towash it, slice it, and then dice it. If it is providedwith a sliced tomato to beginwith,

it would need only to dice it. The intelligent robot chef would need to plan its motion differently

based on the state of the provided tomato. Therefore, it would be necessary to not only recognize

the object as a tomato, but also to identify the state the tomato is in. This is important for both

fine-grained human activity understanding and robot task planning and manipulation control.

Robots also need to perform different manipulations or grasps to achieve different states of a

planned task [123, 124, 125, 126]. Different states of an object or transiting an object fromone state to

another requires different types of grasping; for example, a whole carrot is grasped differently than

a sliced or grated carrot [127, 128], or holding a whole carrot for slicing, holding a half carrot for

4This chapter was partially published in [1]. Permission is included in Appendix B.

41

grating, or holding a julienne-cut carrot for dicing each need unique types of grasping. Receiving

on-line feedback from the environment would give the robot the sufficient knowledge required to

decide on the type of grasp.

In this chapter, we provide a definition for object states, and provide a taxonomy of states for

further analysis of cooking state changes. Using the taxonomy we introduce a dataset of cooking

states for the public and propose novel models for joint object and state recognition. We also go

one step further and parse the Recipe1M dataset for cooking states and create models to encode

sets of states in a given image. We finally experimentally show that using state encoding can help

improve ingredient set recognition from an image.

3.1 The State Identification Challenge

In this section, the state identification challenge and the dataset collected for the challenge

are introduced, and the data collection procedure, dataset statistics, and details of the dataset are

discussed.

3.1.1 The Challenge

In our daily lives, we perform tasks by paying attention to objects and their states and how they

interact with each other. Like humans, one of the main tasks of an intelligent robot is to properly

manipulate the environment. For a smart robotic system to perfectly manipulate the environment,

it needs to acquire accurate knowledge of the environment, objects, and their affordances and

status. An object can contain various shapes and states, therefore introducing various ways of

manipulation. For example, when making an omelette, we need to dice peppers and onions. To

dice a pepper, we need to grab the whole pepper, place it on a cutting board, use a knife to cut it

in half, and, finally, cut it into julienne cuts and dice the cuts into small pieces. We can observe

that the simple action of dicing a pepper requires knowledge of four different states for us or an

intelligent robot. As humans, we get constant feedback from the objects (pepper). A robot needs

to also gain feedback from the state of the pepper to decide how to continue the cutting. Knowing

the current status of an object helps the robot with how it approaches the manipulation of the

42

object. In this example, for simplicity, we classified the states of an object into 4 different states,

but in a real-world environment, the actual states of an object are continuously changing.

This example demonstrates the need for classification of an object (pepper) into a diverse set of

states (whole, half, julienne, diced). Thus,we introduce the state identification challenge for thefirst

time in this chapter. We define a state of an object (such as a tomato) as the various physical shapes

(diced, paste, juice, or whole) into which the object can be transformed as a consequence of human

or robot activity. We propose and anticipate that by solving the state identification challenge,

we can step towards accurately understanding and executing robot manipulation tasks such as

grasping. One of the main problems and applications of robotic systems is the cooking scope. In

this study, we designed the state identification challenge for cooking objects. We analyzed cooking

objects and their states by looking into the statistics extracted from the knowledge representation

introduced in [78]. We discerned the most frequent objects in this knowledge representation and

explored their states. State analysis shows that there are twomajor states for cooking objects-shape

change and surface change. Hierarchical exploration shows that there are three main states under

shape change, namely separated, morphed, and merged, each of which can further be represented

byfiner states. Also, surface change can be divided into two states, color and texture change, which,

in turn, have finer representations themselves. Figure 1 depicts the hierarchical representation of

explored states. In some cases, an object can have a combination of multiple states simultaneously.

In this study, for simplicity, we assumed that an object can have only a single state at a time (in one

snapshot).

A total of 22 fine states is shown in Figure 3.1. These states represent the whole state space that

all important objects from [78] can span. We selected only 10 states (shown in gray in the figure)

that are representative of the whole state space for our problem. The main reason to this state

reduction is the lack of training image samples for the eliminated states. We can represent the

state space in any other scope with a similar graph and further analyze the problem in that scope.

In this study, we focused only on the cooking state space.

43

Figure 3.1. An illustration of the state taxonomy created by analyzing the FOON knowledge
representation for the state identification problem.

3.1.2 The States Identification Dataset and Statistics

Dataset imageswere crawled through theGoogle search engineusing akeyword combinationof

each object and state (such as "tomato" and "sliced"). The links to the crawled imageswere exported

to a file, downloaded, and reviewed to remove unrelated images (such as cartoon images). Using

the Vatic annotation tool, [29], images were published through a local server and dispersed to

multiple workers for manual labeling. The labels were further reviewed and were gathered into

a dataset of states. A small fraction of the dataset was labeled through the labelbox tool [1].

The collected dataset consisted of 17 main cooking objects, including tomato, onion, garlic, green

pepper, potato, carrot, strawberry, egg, mushroom, bread, beef/pork, chicken/turkey, cheese,

butter, dough and milk and 11 classes of states (whole, peeled, floured, sliced, diced, grated,

julienne, juice, creamy, mixed, other). The total number of images in the dataset is 9309 - 6498(70%)

training, 1413(15%) testing, and 1398(15%) validation images. The statistics of each class in the

dataset is depicted in Figure 3.2. The classes "whole" and "sliced" contain more than 1000 images,

and the other classes contain approximately 700 to 1000 images.

44

Figure 3.2. An illustration of the eleven state class statistics in the cooking dataset of over 10,000
images.

3.1.3 The Dataset Details

In this section, we give a concise definition of each of the 11 states to clearly state what each

state represents. The whole state contains objects in their original format and shape, such as a

whole pepper or a whole chicken, as shown in the first column of Figure 3.3. The peeled state

contains objects that are peeled but not cut, sliced, or morphed, such as a whole peeled egg, onion,

garlic, or tomato, (shown as in column 2 of Figure 3.3). The floured state as depicted in column

3 of Figure 3.3 contains objects that are floured. The grated state comprises of objects that are

densely separated, such as bread crumbs, minced garlic, or grated egg (column 4 of Figure 3.3).

The julienne state includes objects such as carrot sticks, French fries, julienne pepper, or shredded

meat (column 5 of Figure 3.3).

The diced state contains diced or chopped objects, such as diced onion, tomato, and strawberry,

choppedmeat, and butter, and cheese cubes (Figure 3.3, column 6). The sliced class contains objects

45

Figure 3.3. Example images of eleven classes of the dataset. Each column of images in the figure
represents a state from whole, peeled, floured, grated, julienne, diced, sliced, juiced, paste, mixed,
other.

that are thinly-sliced such as sliced carrot, pepper, onion, tomato, meat or chicken slices, toast, and

butter and cheese slices (Figure 3.3, column 7). Objects that are cut in otherways (such as cut in half

or diced) are not considered sliced. The juiced class contains objects such as milk, melted butter,

and tomato juice, (column 8 of Figure 3.3). The creamy state contains objects that are creamy, such

as cream, creamy butter or cheese, garlic or tomato paste, and mashed potato (Figure 3.3, column

9). The mixed class contains a scramble of multiple objects such as salads (Figure 3.3, column 10).

A final class called the other class is created that includes any state not listed in the previous states.

A potato cut in half, squeezed lemon, images with multiple states, and an unmixed salad are in

this class (Figure 3.3, column 11). Note that each object contains only a subset of the 11 states.

3.2 Baseline State Analysis

We analyze the proposed state dataset with a Resnet baseline model and provide results in this

section Like other recent image classification problems in the last few years, we propose to solve

the problem with a deep convolutional Resnet baseline. Our model uses the Resnet base model

up to the 46th activation layer [25] as its basis. We added a layer of 1x1 convolution, two layers

of convolution, and a layer of global averaging before the 11 class soft-max layer. We used batch

normalization in each layer for normalization and regularization purposes and added randomness

46

Figure 3.4. Proposed baseline network structure which includes a Resnet base [25] followed by
three layers of convolution, batch-norm and relu.

to the network. The structure of the network is depicted in Figure 3.4. The 1x1 convolution was

added to make the feature map set shallower. The convolutions were added to capture new spatial

features for the specific state identification problem.

The network included more than 19 million parameters; therefore, the Resnet base, pre-trained

on Imagenet, was used for training the state identification model. The pre-trained weights of

the model initially were frozen in the first step and, further in the training procedure, the whole

network (with 11 classes) was fine-tuned. More details about the transfer learning procedure are

given in Section 3.2.1.1.

State identification has a strong correlation with the type of object. For instance, butter cannot

be found as grated, julienne, or peeled and rarely can be seen as diced. On the other hand, cheese

can be grated and lemon can be zested. We took this knowledge into consideration by fine-tuning

17 individual models for each object in the dataset. Each object has a different number of states; for

example, garlic has 5 states including whole, paste, minced, peeled, and sliced, but carrot can have

7 states including julienne, diced, and juice. Therefore, the last layer of Figure 3.4 was removed

and a new soft-max layer was added to the model. The number of images for each object in the

dataset was limited; therefore, we initially trained the network on the whole dataset and fine-tune

the modified network on a small number of object-specific images.

3.2.1 Experimental Baseline Analysis

We designed three experiments. In the the first, we trained and tested the deep architecture

on the whole dataset. In the second, we showed that fine-tuning the model individually for each

47

Table 3.1. Baseline classification accuracy for the top 2 results on the state dataset and Imagenet
subset

Model State Dataset Imagenet Subset
Top 1 Top 2 Top 1 Top 2

1 Resnet-based Model 80.4% 91.5% 78.5% 89.6%
2 Voting 82% 92% -

object improves the accuracy for state identification. In the third, we tested our model on a sample

of Imagenet images and provided state labels for a subset of their dataset [129].

3.2.1.1 State Identification

The model was trained and then evaluated on an unseen test set. We used the Adam optimizer

with a learning rate of 0.001, beta1 of 0.9, and beta2 of 0.999, froze the Resnet base of the model,

and trained only the layers we added to the network for 100 epochs. We then fine-tuned all layers

of the model (including the Resnet base) for 250 epochs with a learning rate of 0.000005. On-line

data augmentation, l2 regularization, and batch normalization was performed to reduce over-

fitting. The average class accuracy calculated for the trained and tested sets are 81.4% and 80.4%,

respectively (Table 3.1). We trained 2 other models using a Resnet base and similar architectures.

Using the validation set, a weighted voting was performed between these 3 models, and the best

combination of weights was used for the final model. As shown in Table 3.1, after voting the state

recognition accuracy rose to 82%.

For fine-tuning the model for each individual object, we perform a 4 stage training. In stage 1

and 2 all layers but the last are frozen. In stage 3 our additional layers are unfrozen and in stage 4

the whole model is unfrozen. Learning rates for stages 1 to 4 are 0.01, 0.001, 0.00001, and 0.000005

respectively. Epochs for stages 1 to 4 are 40, 80, 120, and 160 respectively. The First 5 columns of

Table 3.2 shows the classification accuracies of the fine-tuned model for each object. The object

dough was removed from this set of experiments.

48

Table 3.2. Baseline state classification accuracy based on individual ingredient fine-tuning and the
number of states per ingredient

Object Top 1 Voting States Test Set
mushroom 95.6% 97.8% 3 45

onion 80.2% 85% 7 86
strawberry 92.6% 92% 4 68

bread 78.9% 78.9% 6 123
butter 69.7% 72.7% 5 66
carrot 78.5% 84.9% 8 135
egg 90.6% 89.2% 5 85
garlic 86.7% 85.3% 5 75
lemon 90.7% 94.9% 6 108
milk 100% 100% 2 40

pepper 96.1% 97.5% 5 76
potato 84% 88.3% 8 106
tomato 88.5% 91.1% 7 113
cheese 82.7% 78.7% 4 75

beef/pork 86.7% 86.7% 5 60
chicken 88.8% 89.7% 6 116
average 86.9% 88.3% 5.4 86.1

3.2.1.2 ImageNet Test

In this experiment, we contributed to the Imagenet dataset by providing state labels for them.

For each object category in our dataset, excluding beef and chicken, 50 images were randomly

selected from the Imagenet dataset. Beef and chicken were excluded because Imagenet does not

contain cooking-related images for these two categories. The Salad synset was included for the

experiments because it is considered a frequent image in cooking videos, thus leading to a total of

16 object categories and 800 images. The images were labeled with the 11 classes in our dataset.

Moreover, the trainedmodelwas run on the Imagenet subset and the average state identification

accuracy on the Imagenet subset was reported as 78.5%. Individual accuracies for the top 1, 2 and 3

are shown in the last three columns of Table 3.3. In addition to the evaluation, we ran ourmodel on

all images associated to the 16 object categories and gave their labels. Then we manually checked

the labels through an interface and keep the correct labels and discard the others. The state labels

of the images and the dataset will be released on our website for download after the double-blind

peer review process.

49

Table 3.3. Baseline state classification accuracy for individual ingredient in the Imagenet subset
based on top 1 to top 3 results

Object Top 1 Top 2 Top 3
mushroom 74% 84% 96%

onion 86% 94% 96%
strawberry 74% 86% 90%

bread 80% 96% 98%
butter 70% 88% 94%
carrot 96% 100% 100%
egg 62% 78% 86%
garlic 84% 90% 92%
orange 90% 96% 98%
milk 72% 80% 88%

pepper 78% 88% 94%
potato 72% 94% 96%
tomato 74% 82% 92%
cheese 84% 90% 98%
salad 90% 98% 98%
dough 70% 90% 96%
average 78.5% 89.6% 94.5%

3.2.1.3 State Analysis

Classification accuracy of all classes apart from the other class is at least 70% for the experiment

on our test set (confusion matrix depicted in Figure 3.5.a). The other class includes various kinds

of images, such as images of meals, sandwiches, images including a combination of various states

(classes), and etc. The variety in the other class is the reason of such a low accuracy. We anticipate

performing a joint detection and recognition procedure of states would improve the accuracy of

classification in all classes.

A majority of the mistakes made by the model were on account of ambiguous and multi-state

images as depicted in Figure 3.6. This also suggests that detection of all states inside an image

rather than looking at the entire image as a whole may improve the state identification accuracy.

Moreover, tracking the state of an object and assigning values for representing the quality of an

object being in a specific state may improve state identification results.

50

(a) On the State Identification Dataset (b) On the Imagenet Subset

Figure 3.5. Confusion Matrices: a) Confusion Matrix of the Baseline on the State Identification
Dataset. b) Confusion Matrix of the states baseline model on the Imagenet Subset

3.2.2 Imagenet Analysis

Unexpectedly, the average state identification accuracy on the Imagenet subset, despite having

more ambiguous images, was only slightly lower than the classification accuracy on our dataset.

Figure 3.7 shows examples of ambiguous images from the Imagenet subset. These images either

contain multiple states such as Figure 3.7.c. or are out of our dataset scope such as Figure 3.7.a.

Interestingly, the half peeled pepper, in Figure 3.7.d., was predicted as peeled although no image

of a peeled pepper is included in our dataset. Figure 3.7.b. was counted as a wrong prediction,

although the model’s first three predictions is whole, julienne and other. This example shows that

themodel is able to capture sufficient features, but does not have the tool to identify multiple states

in an image simultaneously. The confusion matrix on the Imagenet subset is depicted in Figure

3.5.b without classes diced, grated and julienne due to the shortage in image samples.

51

(a) Crumbs as floured (b) Sliced as creamy (c) Melted as juice (d) Grated as Julienne

(e) mis-labeled (f) mis-labeled (g) Multi-state (h) Multi-state Carrot

Figure 3.6. Samples of mis-predicted (a, b), ambiguous (c, d), mis-labeled (e, f) and multi-state (g,
h) images. (e) is floured and (f) is peeled but they are mis-labeled as whole in the dataset.

3.3 Joint Object and State Recognition

States and objects are intertwined together, meaning that object information can help recognize

the state of an image and vice versa. In this sections, we address the state identification problem in

cooking related images and use state and object predictions together to improve the classification

accuracy of objects and their states from a single image. We propose a pipeline for joint state and

object identification. The pipeline includes a convolutional neural network, a language model and

two MLP networks as shown in Figure 3.8. We apply a selector gate on the pipeline outputs to

improve results as depicted in Figure 3.9.

3.3.1 Stage 1: Double Loss Convolutional Network

In the first stage of the pipeline, we use the Resnet architecture with two outputs- one for

state and one for object classification. The two applications use the same weights apart from the

last layer. The loss applied for object and state classification are defined separately and trained

simultaneously. The network outputs two different sets of confidences via the soft-max layer, one

for the state classes, [P(statei)i�1:Nstates
], and another for the object classes, [P(ob jecti)i�1:Nob jects

],

as shown in Figure 3.8. The notations Nstates and Nob jects are the number of states and objects

52

(a) Pepper as crop (b) Strawberry as crop (c) Peeled pepper (d) Yolk and grated

(e) Butter and jelly (f) Yolk and cracked (g) Whole and yolk (h) Potato as dish

Figure 3.7. Samples of multi-state or ambiguous images in the Imagenet dataset where the model
may confuse the classes

respectively. The soft-max confidences are the first set of probabilities we obtain for object and

state classification. We name them as prior probabilities of each object (or state) occurring in the

image.

3.3.2 Stage 2: Language Knowledge Based Features

In natural language processing, documents, sentences, and words are processed to extract

meanings, relationships and word embeddings. For our analysis in this work, we use the Concept-

Net knowledge representation, which is more powerful than the widely used Word2vec [130], and

the Google N-gram Viewer to quantify word relations.

Concept-Net is a language knowledge graph that includes words and phrases as nodes and

natural language relationships between the nodes as edges [131]. Concept-Net defines and imple-

ments a class of language- and source-independent relations betweenwords and phrases including

IsA, UsedFor, and CapableOf and also associates weights with every relationship. Weights of rela-

tions are calculated based on an aggregation of weights from various sources. We use the weights

from the RelatedTo relation (or assertion) of the Conceptnet API to quantify the relationship of a

specific state (e.g. sliced) with a specific object (e.g. bread).

53

Figure 3.8. Pipeline for simultaneous state and object classification using language knowledge and
post marginal probabilities for states and objects.

In natural language processing, an N-gram is a sequence of N items (e.g. words) in a bed

of various documents called a corpus [132]. The frequency of two or multiple words happening

together (N-grams), can be representative of how related they are. The Google N-gram Viewer is

a Google based search engine that shows the frequency of any Nwords occurring consecutively in

Google’s text sources [133]. We use the frequencies extracted from the Google N-gram Viewer to

represent the relationship between states and objects.

3.3.2.1 Feature Extraction

The correct identification of objects is associated with the correct identification of states and

vice versa. We use the Concept-Net and the Google N-gram Viewer to quantify the relationship

between the states and objects in the dataset. We first define a set of words associated with each

object and a set ofwords associatedwith each state. For instance, for the object potato wedefine the

set {potato , potatoes} and we define {cream y , paste ,mashed ,mash , so f tened ,whipped} as the

set representing the state cream y. To calculate the joint probability of an object (e.g. potato) and

a state (e.g. creamy), every pair of object and state from the two sets is looked up in Concept-Net

or the N-gram Google Viewer to derive a relatedness value. The maximum and the mean values

for each pair are recorded (e.g. potato-creamy). The confidences are normalized so that the sum

54

of all probabilities of a state over various objects and the sum of all probabilities of an object with

different states each sum up to 1.

We calculate the marginal probabilities for each object assuming the state prior probabilities

and joint (conditional) probabilities ([P(ob ject/statei)i�1:Nstates
]) derived from the language knowl-

edge source (e.g. Concept-net or Google N-gram Viewer). We conversely compute the marginal

probabilities for the states using joint (conditional) probabilities ([P(state/ob jecti)i�1:Nob jects
]). The

relations for marginal probabilities for each object P(ob ject), and state, P(state), is given in (3.1),

and (3.2) respectively.

Po(ob ject j) �
Nstates∑

i�1
Pr(statei).Pc(ob ject j/statei)) (3.1)

Po(state j) �
Nob jects∑

i�1
Pr(ob jecti).Pc(state j/ob jecti) (3.2)

In (3.1), and (3.2), Pc is the conditional probability of an object in respect to a state or vice versa

which is derived from the language knowledge, Pr is the output confidence from the Resnet, and

Po is the marginal probability.

3.3.3 Stage 3: Neural Network Predictions

The marginal and prior probabilities are concatenated together to create a feature vector of size

2 × Nob jects and 2 × Nstates for objects and states respectively. The concatenated object and state

features aremerged together to create a final feature vector with size V f inal � 2×(Nstates +Nob jects).

The feature vector V f inal is given as input to two separate MLP networks for object and state

classification respectively as shown in Figure 3.8. A three layerMLP is selected using the validation

set as the finalized architecture of the networks.

3.3.4 Stage 4: Model Refinement

The pipeline converts correct predictions into incorrect predictions in some cases. To reduce

these conversions, a refinement procedure is proposed that starts training after the double loss

CNN has finished training. The refinement model is trained to predict the probability of an image

55

Figure 3.9. Illustration of the pipeline refinement module that corrects (refines) the results if the
initial model contains incorrect results.

being classified correctly by the pipeline. The refinement model contains a Resnet-based CNN

which returns two outputs (classes) for a given input image; one output represents an image

being classified correctly and the other represents the image being classified incorrectly. The two

outputs are associated with two confidences. The two confidences are concatenated with the

ouput probabilities from the double loss CNN from the pipeline. Two separate neural networks

are trained for correct/incorrect object (and state) probability predictions using the concatenated

feature vectors. The outputs from the MLP are used as a selector for a gate selector block. A value

of one for the selector output, means that the initial prediction is correct and the object (or state)

confidences from the double loss CNN are used for predictions. A value of zero for the selector

output, means that the the probabilities after language knowledge incorporation should be used

for predictions. The refinement model is depicted in Figure 3.9.

3.3.5 Results and Analysis

We implemented the Resnet model in Tensorflow and initializedwith pre-trainedweights from

Imagenet. The single classifier layer was removed and a double classifier layer was added for states

and objects. We trained the model for 15 iterations and with an initial learning rate of 0.01. Only

weights from the last block of Resnet were trained and the rest were kept frozen. The relatedness

values of objects and states were downloaded from the Concept-Net (or Google N-gram Viewer)

Web APIs using the Python Request library and the normalized versions of the relatedness values

were recorded as joint probabilities. The final features were then computed and then given to

MLPs as mentioned in Section 3.3.3.

56

Table 3.4. States and object classification accuracy on the test set with and without using Concept-
Net (Concept-Net as CN, Google N-gram as GN).

Model States Objects
Resnet 79.4% 74.1%

(Resnet,CN) + SVM 79.7% 74.2%
(Resnet,GN) + MLP 80.1% 74.2%
(Resnet,CN) + MLP 80.4% 74.3%

(Resnet,CN) + MLP + Refinement 80.9% 75%

We compared the pipelinewith othermethods and report the results in Table 3.7. We compared

the pipelinewith the raw initial confidences, the linear combination of the initial confidence and the

marginal probabilities from Concept-Net, and an SVM-based version of the pipeline. The results

show that all methods containing a language knowledge outperform the Resnet network as shown

in Table 3.7. The neural network based method that uses features from the Resnet output and the

Concept-Net features outperforms all other methods. Results in Table 3.7 show that self-correction

using the refinement model improves the results even further.

Figure 3.10 shows an instance of an incorrect result (diced strawberry) converting to a correct

result (tomato paste) when using Concept-Net. Concept-Net can make mistakes. For example

grated butter has a high relatedness confidence in the Concept-Net graph although in the real

world it is unlikely to see grated butter often. Therefore, it is easy to flip a correct creamy butter to

an incorrect grated butter. The refinement model has the ability to prevent some of these cases.

3.4 Generating Multiple States and Ingredients

Assuming that an image contains only one ingredient and state is a distant assumption. In this

section, we assume that we have an image of a meal that may contain multiple ingredients and

states. Therefore, we explore identifying multiple states and ingredients from an image (Figure

3.11). Predicting ingredients given a single image of a meal is challenging. In this problem setting,

correctly ingredient prediction would only depend on the global (visual) features of the image. As

previously discussed and experimented in [1], ingredients and their states are deeply associated

and complementary concepts to one another. We argue that adding a prior step to visually discern

57

Figure 3.10. Objects and states CNN probabilities vs Concept-Net (CN) probabilities. Probability
of diced strawberry is lower than tomato paste when CN is used.

the states (of ingredients and themeal)would enhance theperformance of the ingredient prediction

model. We therefore exploit the associations between ingredients and their states and how they

are connected with categories of recipes. We use the Recipe1M dataset [99] in our experiments.

But, this dataset does no include explicit states labels. In this section, we first explain how we

define states in general and for the ingredients in the Recipe1M dataset. Afterwards, the model

proposed for ingredient prediction given a single image and a set of states is described.

3.4.1 State and Token Embeddings

3.4.1.1 States Exploration

Recipe and ingredient detection from a given image has been the study of many research in

the past few years [99, 83]. On the other hand, states, has not been recognized as a popular

research area [1, 101]. We explore ingredient states (e.g. sliced tomato) and analyze its effect on

ingredients detection. In [101], states of ingredients are categorized into different state (e.g. mixed,

grated, peeled) categories (classes). We use these categories as the core set of state classes and

semi-automatically derive and extend state classes from the Recipe1M dataset in 3 stages:

• Core set: A set of state classes is defined as the core set inspired by the states defined in [101].

58

Figure 3.11. A picture of carrot ginger soup and its associated ingredients (e.g. onion) and their
states (e.g. chopped).

Table 3.5. Ingredient phrases from Recipe1M and the ingredients and their states extracted from
the Recipe1M dataset.

Ingredient Description Ingredient State
1/2 cup green onions, chopped onion chopped
1 teaspoon ground cinnamon cinnamon ground
1 cup white mushrooms, sliced mushroom sliced

• Alias extraction: Aliases of the states in the core set are manually defined. The Recipe1M

dataset is also semi-automatically parsed for other aliases.

• Manual addition: The past tense form of verbs and highly frequent adjectives are extracted

from only the ingredient descriptions of the Recipe1M dataset. If similar to any of the core

states, they are added as an alias. Otherwise, if the frequency of the derived state is higher

than a threshold, a new state class is added.

Table 3.5 shows a few instances of ingredient descriptions and their associated states. Figure

3.12 depicts the states derived from the Recipe1M dataset and their frequency.

To perform experiments without the bias introduced by the state list suggested in [101], we

disregard that list and analyze all adjectives and verbs with one dominant meaning from the

Recipe1M dataset. Similar to the process of extracting states, these adjectives and verbs are

clustered into a set of token (e.g. using aliases) classes. Also, less frequent words were put into

59

(a) States extracted from the Recipe1M dataset (b) Number of states associated with a single image

Figure 3.12. Histogram of states extracted from the Recipe1M dataset and number of states associ-
ated with a single image.

a separate unknown class. In both of the above processes, words without a visual effect on the

image (e.g. salted, estimated, learned, considered) are removed from the classes.

3.4.1.2 Embeddings

Embeddings for states and words are derived from every given image. Inspired by the trans-

former decoder presented in [35, 134], we design amodel to extract state (or word) embeddings. In

this sub-section the process of extracting the embeddings is explained. Given an image I, feature

maps G ∈ RC×S×S are computed from a Resnet encoder. G is then flattened to F ∈ RK×D and fed

into the transformer decoder from [134, 35]. At each step (t) of the transformer decoder, going

through a softmax layer, a state logits vector st ∈ RN×1 is predicted, in which N is the number of

state (word) classes. To model dependencies between states, predicted states are fed back into the

Transformer decoder, to predict future states. The predicted states are concatenated into a matrix

S ∈ RN×L where L is the maximum number of possible states included in a single image. Max-

pooling is applied to remove order of predicted states [35]. Applying max-pooling to the matrix

S, produces a vector of probabilities Ps ∈ RN×1. The positional encoding is also removed from

transformer decoder to eliminate any order encoding. The vector Ps further is encoded through a

fully connected layer into a state embedding vector Es ∈ RK×1. Equation 3.3 shows the operations

applied to extract the state embedding.

60

Es � fP([fD(F)i]i∈{0,...,k}) (3.3)

In which k is the number of image features, fD is a decoder (transformer), fD(F)i is the i-th

output of the transformer and fP is a max-pooling operation over all the transformer outputs, and

[] is the concatenation operator, concatenating all the transformer outputs. The state embedding

vector contains values between 0 and 1 that associate the input image to each of the possible states.

The same steps are applied to the input image to compute a word probability vector Pw ∈ RM×1

and eventually aword embedding vector Ew ∈ RK×1 of the same size of the state embedding vector.

The state embedding and the word embedding together with the given image are used as encoded

features to predict ingredients. In training the embedding models we use three loss terms: binary

cross entropy loss, end token loss, and cardinality loss [35].

3.4.2 Ingredients Given States

The goal of this section is to exploit the associations of states with the process of predicting

ingredients. Therefore we propose a model where given a single input image (cooked meal) I,

and the state and word embeddings (Es , Ew), a list of ingredients associated with the given image

(recipe) are predicted. In the first stage, state and token embeddings from the previous stage are

concatenated with the image embedding as shown in Equation 3.4.

Z � [F, Es , Ew] (3.4)

where Es ∈ RK×1 and Ew ∈ RK×1 are the two state and token embeddings, and EI is set of flattened

feature maps from the Resnet encoder, F ∈ RK×D . Z ∈ RK×(D+Ne) is the concatenated features. The

encoded feature matrix Z is fed as input to the transformer decoder. Ne is the number of state

or word embedding vectors (i.e. 2). The transformer decoder is deployed from the well known

transformer model proposed in [134]. Therefore, multiple streams of dot-product attention are be

applied to the embedding as in Equation 3.5.

61

Figure 3.13. Two-step model that predicts ingredients from a single image. In the first step, given
a cooking image two sets of state and word embedding are created. In the second step, using the
state embedding and the image embedding, ingredients are predicted one step at a time using a
transformer decoder.

Zatt � so f tmax(ZQT√
dq
)Z (3.5)

where Q is the query matrix comprising of the previously predicted ingredient embeddings and

dq is the dimension of each ingredient embedding. All transformer operations, including multiple

stacked attention layers with layer normalization and residual connections are applied, followed

by a point-wise feed forward layer. The ingredient predictions are further passed through a max

pooling layer [35] over time. A binary cross entropy loss is trained over this output to model the

ingredients in an order-less manner. The proposed transformer decoder is trained step by step as

in [35]. Figure 3.13 shows an abstract illustration of the model.

Similar to the state (and word) embedding models proposed in Section 3.4.1.2, ingredients are

predicted one step at a time through a transformer decoder while feeding the previously predicted

ingredients into the model. The training of the transformer decoder is also executed one step at a

time by feeding previous ingredient predictions as word embeddings to the model. Similar to the

states (tokens) embedding training, we use three loss terms: binary cross entropy loss, end token

loss, and cardinality loss [35] for training the ingredient prediction model.

The state embeddings fed to themodel are the output of the pooling layer from the transformer

decoder. We do not use one-hot encoding of the states (or tokens) for two reasons. The one-hot

encoding has to be fed one by one to the model and learn its own embedding which makes the

62

model more complicated and harder to learn. Secondly, the output of the pooling layer has richer

context, including information from all states at all steps, even after the end token, thus letting the

model choose where and what to attend at.

3.4.3 States Generation Analysis, Experiments and Results

3.4.3.1 Dataset

We used the well known Recipe1m dataset for our experiments [99, 135]. This dataset contains

over 1 million recipes. The majority of the recipes in this dataset are associated with an image.

We cluster the ingredients into the same ingredient clusters proposed in [35]. They cluster similar

ingredients into ingredient categories such as oil (contains olive oil, vegetable oil, etc), cheese

(including 400 types of cheese), and pepper (300 types of pepper). The actual number of unique

ingredients in the dataset is 16823 which after clustering reduces down to 1488. We use these 1488

processed ingredients in our experiments.

Although thedataset containsdescriptions for ingredients (e.g. 1/2 cupgreenonions, chopped),

it originally does not contain any explicit states (e.g. chopped) for ingredients (e.g. onion). As

suggested in Section 3.4.1.1, the ingredients descriptions are parsed and explicit states are assigned

to ingredients of a recipe in a semi-automatic manner. After this process, which includes alias

definitions and state clustering we define a total of 59 global states for all of the ingredients in the

dataset. If no states are available in the ingredient description we associate a default state to it (e.g.

oil is associated with liquid). Also, as suggested in Section 3.4.1.1, a set of more frequent words

(verbs and adjectives) derived from ingredient descriptions are also assigned to each ingredient,

leading to a total of 119 global tokens for all of the ingredients in the dataset. We also generate a

third set of tokens in which the clustering is performedmore loosely and very high frequent words

with non-visual effects () are included. The third set of tokens, includes 152 tokens. The number of

tokens in the states set (59), and second (119) and third (152) token set is shown in the last column

of Table 3.6.

63

3.4.3.2 Implementation Details

We used the implementation from [35] in PyTorch4 and built on top of it. Our implementation

of the transformer decoder for states extraction, state embeddings, and ingredient prediction were

all done in PyTorch4 and incorporate the same settings as suggested in [35], which include 4

blocks and 2 multi-head attentions, each one with dimensionality of 256. As in [35] and many

computer vision literature, we resize images to 256 pixels on their shortest dimension. We then

take random crops of 224 × 224 for training. As the image encoder, the last convolutional layer of

ResNet-50 model is used. The dimensions of the feature maps is of size 512×7×7, which flattened

is converted to size 512× 49. A maximum of 20 ingredients and 20 states (or tokens) are associated

with each recipe. For recipes with more number of tokens, the remaining tokens are randomly

excluded. The models are trained with the Adam optimizer until early-stopping criteria is met.

We use IoU (Intersection over Union), and F1 for evaluation of the results. We assign weights 1000,

1, 1 and 100, 1, 1 to the 3 loss terms for the ingredient prediction, and token embedding models

respectively. For the states embedding model 20, 1, and 1 are assigned as loss weights.

We have experimented two sets of results: states embeddings and prediction, and ingredient

prediction given a single input image. We explore each of these experiments.

3.4.3.3 Experiments on State Embeddings and Prediction

As for the states (tokens) prediction, we report IoU and F1 scores in comparison with the

ground-truth list of states (or tokens) for each given image. As shown in Table 3.6, the IoU for the

prediction of the 59 states and 119 tokens is 38.69 and 38.02 respectively. The IoU for the 152 tokens

is lower, 32.25%, which may in one part be associated with the non-visual tokens added to the

token classes. Table 3.6 shows F1 scores besides the IoU results for all threemodels: states encoder,

tokens encoder, and the tokens+HF encoder. This kind of experiment has never been conducted

on states of a single image, therefore we have not compared these results with other work. In [1],

given a single image and a set of 9 states and 15 ingredients approximately 81% and 75% state and

ingredient classification was reported. In comparison to that work, this model has two significant

advantages. One, is that it does not assume a single state associated with the image, which is the

64

Table 3.6. States prediction for the (59) states encoder, the (119) tokens encoder, and the (152)
tokens+HF encoder.

States Model IoU F1 count
States encoder 38.69% 55.8% 59
Tokens encoder 38.02% 55.1% 119

Tokens+HF encoder 32.35% 48.88% 152

case in most cooking images online. Second, it considers a much broader set of ingredients and

their states. Therefore, this model is a much more realistic and robust model in comparison to a

simple joint ingredient and state classification model [1].

We have also analyzed the recall, precision, and F1 scores for different recipes based on the

number of states included in a recipe (Figure 3.14.a). As depicted in Figure 3.14.a, recall decreases

when the number of states increases, while precision increaseswhen the number of states increases.

This indicates that when the number of states increases, the predicted states are more accurate

although the model is not able to predict many of the ground-truth states. The highest F1 score is

achieved when the number of states is 4. The model performs better for some states and worse for

others. Figure 3.14.b shows the F1 score for different state predictions excluding the states with

lower occurrences. States are ordered in the order of their frequency (as in Figure 3.12). Precision

for different states is more stable then recall, showing their accuracy of guesses by the model. The

recall on the other hand degrades when the frequency of states reduces, which may suggest that

having a more inclusive dataset would be beneficial. The model performs the best on the four

states ground, juice, creamy, and chopped which are also very high frequent and originate from the

core set of states [101]. The state baked although is high frequent performs unsatisfactory due to

the various concepts it includes (i.e cooked, grilled, baked, simmered, fried, etc. The three states mixed,

crushed, and seeded perform the worst in terms of recall and F1 score.

3.4.3.4 Experiments on Ingredient Prediction Given States

Many research has been conducted on ingredient retrieval and prediction in the past recent

years. One state of the art model for ingredient prediction which is the baseline for our work is the

inverse-cooking model for ingredient prediction proposed by [35]. We compare various versions

65

(a) Recall, precision, and F1 score for recipes with k number of states

(b) Individual recall, precision, and F1 score for each state

Figure 3.14. Recall, precision, and F1-score for recipes with k number of states and individual
recall, precision, and F1 score for each state.

of our models with the this model and report the results in Table 3.7. As shown in Table 3.7, our

models outperform the state-of-the-art ingredient-only approach proposed in [35].

We also have analyzed visual results from the Recipe1M dataset and compared ingredients

predicted by our model, the baseline model, and the ground-truth as shown in Figure 3.15.

We also show results for state prediction by the embedding model in Figure 3.15. Although

the states prediction is not perfect, the embedding used for the second step of the model is richer

in context than the simple one-hot embedding. In other words, using the probability embedding

rather than using the state one-hot tokens is helping the ingredient prediction model. Empirical

experiments on feeding one-hot embedding one step at a time also agree with this inference.

66

Table 3.7. Results of the model for ingredients generation using state embeddings or word embed-
dings or both simultaneously.

Model IOU F1
Baseline [35] 31.57% 47.99%

States → Ingredients 32.27% 48.79%
Tokens → Ingredients 31.82% 48.28%

States+Tokens → Ingredients 31.93% 48.4%
States → Ingredients + Query 31.85% 48.31%

Ingredients + Query 32.19% 48.7%

3.5 Conclusion and Future Work

In this chapter, the state identification challenge is introduced for the first time, and a solution

to it is provided using a deep convolutional approach. A state of an object is defined as the form an

object could be transformed into, and the state identification challenge is defined as the problem

of classifying an image of an object into its relative state. A useful dataset of cooking ingredients

was gathered for the challenge. Using a proposed deep model based on Resnet [25], a promising

level of accuracy was reached for state identification. We further tested our model on Imagenet

images and semi-automatically provided state labels for images in Imagenet that are related to

cooking ingredients. We showed that fine-tuning the model for each known object improves the

average accuracy significantly. In future work, we will explore detection of all states inside an

image, tracking the states in a video and providing continuous state labels for objects in a video.

The states of a cooking object are valuable information for a robot chef when performing cook-

ing events and are closely related with the object itself. In Section 3.3 we presented a deep neural

network with two heads and two joint losses for object and state classification. A language knowl-

edge graph was deployed on top of confidences from a double loss CNN for extracting language

based confidences. AMLP-based classifier was trained using the combination of confidences from

both stages. Experiments on a state classification dataset consisting of cooking objects showed that

using a language knowledge together with the confidences from the deep network improved both

object and state classification performance. The results for this model show that objects and states

are associated with each other and knowledge about either is important for identifying knowledge

about the other.

67

Figure 3.15. Samples of states and ingredient prediction comparing our proposed model with
the ground-truth labels. Depicted are cases that our model has performed much better than the
baseline method. Underlined, green words are correct predictions from the model and the ground
truth labels.

States of objects (ingredients) are valuable additional context in recognizing objects. Also

correlation between various states of objects (e.g. juicy and chopped) for ingredients (e.g. water

and onion) in a dish (e.g. soup) can be important in generating ingredients from a given image.

In Section 3.4 we proposed a two-step model that incorporates a state-embedding to identify

ingredients from a given image. State-embeddings were first created using the input cooking

image through a deep transformer decoder which models the dependencies between the states.

The second step, integrates the state embedding with the image embedding and uses ingredient

and state embedding simultaneously to query the integrated features. Experiments prove that

using a state embedding space is helpful in improving the ingredient prediction task.

68

States on ingredients are under-researched area of work. In our experiments we demonstrated

how states of ingredients are correlated with each other, with other ingredients and motions and

dish types. One path for future work is to identify states of ingredients in a video and track

ingredient state changes through the video which is a very challenging and important task for

robotic manipulation.

69

Chapter 4: Meal Image Understanding and Analysis

In previous chapters we explored how we can extract knowledge from cooking videos such

as objects (e.g. tomato), motions (e.g. pouring), states (e.g. sliced) and functional units (events)

and the entire task (making omelette). We used the Functional Object Oriented Network (FOON)

knowledge representation jointly with deep convolutional and auto-regressive models to derive

the knowledge and provide an understanding of a cooking video. Each image can be a rich source

of information that can help augment the FOON knowledge representation and create task graphs

for robotic manipulation purposes. In this chapter, we investigate knowledge extraction from a

image representing a fully cookedmeal. The ultimate goal of such a research would be to augment

knowledge representation graphs such as FOON, task graph generation, or other side applications

such as calorie estimation. Figure 4.1 depicts some of the knowledge that can be extracted from a

meal image.

Previous research on cooking contents (i.e. meal images) has never addressed large scale

analysis of all aspects of a cooking image (e.g. states, portions and calories) and there has been no

large scale analysis of images to reproduce a task graph based on all elements of a given image.

Also, in most research [91, 95], ingredients had to be visually recognizable in an image. In this

chapter we want to explore large scale knowledge extraction of meal images on both visually and

non-visually recognizable entities.

Cooking related applications have become a popular research area in recent years spanning

from tasks such as ingredient recognition [35], dish classification [91, 95], recipe generation from

a single image [99] to calorie estimation [136], and recipe retrieval [96]. Food nutrition, and health

are two important aspects of our lives that require close monitoring and care and are strictly

associated with cooking. Specifically, the amount of calorie intake in a meal is an important matter

70

Figure 4.1. An example of meal kits generation from a single given prepared image of a meal. Meal
kits generation includes generating ingredients, their portions and calorie.

of health. Many research have addressed calorie estimations from a single image, but they only

use simple small sized datasets with a few ingredients or dish types [136, 137, 114]. They also lack

simultaneous portion estimation of ingredients which can help improve calorie estimation, and

reproduce the meal in different serving sizes.

In this chapter we propose a two stage pipeline. In the first stage, using a transformer based

decoder [100], the main and optional ingredients of a meal (illustrated in the given image) are

generated sequentially. In the second stage, all ingredients generated from the first stage are used

for the task of total calorie estimation using a deep model with multiple encoder modules. Three

encoders are deployed in the model to model per ingredient calories, units, and portions and the

total calorie intake of the image. We finally introduce an application of this pipeline for meal kit

generation (Figure 4.2).

4.1 Transformer Decoders

Transformers [100] are a type of deep models that were first proposed in 2017 by a team in

Google for the task of machine translation. Theywere introduced as a replacement to the recurrent

models used in machine translation to mainly improve parallelization at training time which also

empirically resulted in better performance in machine translation.

71

Figure 4.2. The two stage pipeline for calorie estimation. Stage 1: Ingredient set generation. Stage 2:
Estimation of meal calorie using intermediate estimates of ingredient portions, units, and calories.

A transformer model at general level is similar to the recurrent based encoder-decoder archi-

tectures utilized in machine translation. It contains encoder stacks and decoder stacks that are

connected in each layer. The connection flow is from an encoder layer to a decoder layer exactly

similar to recurrent based encoder-decoder models for machine translation. Each encoder in the

transformer contains n encoder layers and each decoder in the transformer contains n decoder

layers (as shown in Figure 4.3.a). In our model we use the meal image as input and extract image

embeddings. We use image embeddings and ingredient (output) shifted embeddings as input to

our model as shown in Figure 4.3.b. As illustrated in 4.3.a, for the task of machine translation the

input to the transformer decoder includes a positional encoding layer. The positional encoding

captures order of input as it is required to be considered in such an application. In our application

(i.e. ingredient set generation), the order of ingredient generation and in consequence the ingre-

dient inputs is not important, therefore we remove the positional encoding from our proposed

architecture. A more detailed description of our model is discussed in Section 4.3.2.

Each decoder layer in the transformer contains two stacked multi-head attention layers (as

shown in Figure 4.4.b) and a layer normalization on top. The layers are connected through

residual connections. A feed forward layer is applied as the last layer in a decoder layer to each

position (ingredient embedding) in the network. Each multi-head attention also contains multiple

scaled dot-product attention modules as shown in Figure 4.4.a. In Figure 4.4 The K stands for

keys, Q stands for queries, and V stands for values. In our problem setting, ingredients are given

72

(a) Original Transformer Architecture. (b) Modified Transformer-based Architecture.

Figure 4.3. Illustration of the original transformer proposed for machine translation and the mod-
ified transformer based model for ingredient generation given a single image. We remove the
positional encoding for ingredient set generation because we want to model order for ingredient
generation.

as queries to the model and image embeddings are given as keys and values. The self-attention

can derive information associated with ingredients from images using this architecture.

4.2 Ingredient Generation

Wepropose a two-stage pipeline for calorie estimation of a given input image as shown in Figure

4.2. In the first stage (i.e. ingredient generation), given an image, the dish type, main ingredients

and optional ingredients are predicted sequentially. In the second stage, using the image and the

73

(a) Scaled Dot Product Attention.

(b) Multi Head Attention.

Figure 4.4. Illustration of the details in the original Transformer such as scaled dot product attention
and multi head attention.

generated ingredients, an estimate of portions and calories of each of the ingredients is provided.

Hierarchically the entire calorie intake of the given image is also estimated. In this section, we will

discuss the first stage and in the next section the second stage (i.e. portion and calorie estimation)

is elaborated.

4.2.1 Dish Classification

The first stage of the pipeline starts with an estimation of the dish type d, given the input image.

A convolutional neural network (with a Resnet base) is trained to classify the image into one of

Nd classes of dishes. We name the predicted dish as D. In the next steps, the predicted dish type

is given along side the image as input to the ingredient generation model. The dish vocabulary

is also combined with the ingredient vocabulary to provide token embeddings for dish names

alongside ingredient embeddings.

74

(a) Predicting main ingredients iteratively (Main Ingredient Module).

(b) Predicting optional ingredients given main ingredients (optional Ingredient Module).

Figure 4.5. Prediction of ingredients given image features. A list of main ingredients are predicted
in the first stage and afterwards a list of optional ingredients are predicted given the list of main
ingredients. The list of main ingredients is predicted iteratively through iterations of correction.

75

(a) Individual ingredient analysis. (b) Simultaneous ingredient analysis.

Figure 4.6. Difference between individual and simultaneous ingredient labeling given an image of
a meal.

4.2.2 Ingredient Generation

The ingredient generation module utilizes a transformer decoder as in [100, 35] and performs

ingredient generation in two steps. In the first step, the transformer generates a set of main

ingredients, Imain , one step at a time as shown in the equation below and Figure 4.5.a. The model

provides confidences for each ingredient at each step that can be useful for correcting wrongful

selections.

Imain
� p(Imain

j+1 /I
main
j , F,D) (4.1)

Imain
j and Imain

j+1 are the j-th and (j+1)-th generated ingredients, D is the predicted dish type

from previous stage and F is the image features extracted from the last convolutional layer of a

pre-trained Resnet mapped to (n×n)× esize where e is the embedding size. All ingredient and dish

tokens are projected to embeddings of size esize . The p is a transformer decoder that takes as input

previous ingredients and image features and generates ingredients one step at a time as shown in

Figure 4.5.a. In the second step, the transformer module generates a set of optional ingredients

one step at a time given the main ingredients.

Iopt
� p(Iopt

k+1/I
opt
k , Imain , F,D) (4.2)

76

All generated ingredients are merged and used in next stages of the pipeline I � Iopt + Imain .

4.2.2.1 Formulation

The ingredient generation module takes image features and the predicted dish class, D, as

input. Image features are extracted from the final convolutional layer, V ∈ RM×n×n . A 1 × 1

convolution layer and a reshape layer are applied to make the image features F ∈ Rs1×esize .

F � reshape(conv1×1(V)) (4.3)

The module also takes as input a one-hot token matrix comprising of a dish token and ingre-

dients. Therefore, the vocabulary includes all ingredients in the dataset, Ni , combined with all

dish vocabulary, Nd . Therefore, the dish classes would be considered in the input vocabulary but

not in the output vocabulary making the total vocabulary size N � Nd + Ni . The input matrix of

tokens is of size I ∈ Rs2×N where N is the size of vocabulary and s2 is the number of maximum

ingredients the model accepts as input. The first token in I is always the predicted dish class D

from the dish classification stage and the next tokens are generated ingredients from the previous

step of the transformer. The token matrix is projected to an embedding matrix, E ∈ Rs2×esize ,

through an embedding layer. The output of the transformer are generated ingredients at each step,

Oin gr ∈ Rs2×N .

4.3 Ingredient Portion and Calorie Estimation

To extract richer knowledge we need to extract information about each of the ingredients

identified from an image. Figure 4.6 shows two main ways we can extract information from an

ingredient. Information can include portions (e.g. 4 ounce) of ingredients and the calorie ratio of

an ingredient (e.g. 210). To estimate the portion we need to estimate a number (e.g. 4) and a label

(e..g ounce) which are modeled as separate outputs but are connected through a connection at the

end of the model. To extract information about an ingredient of a meal from an image there are

two options:

77

Figure 4.7. Model for individual ingredient analysis given a single image of a prepared meal. This
model produces the calorie (or portion) of an ingredient associated with the given image.

• Individual ingredient analysis: Extract information of an ingredient independent of other

ingredients as shown in Figure 4.6.a. A more detailed structure of this kind of a model is

shown in Figure 4.7.

• Simultaneous ingredient analysis: Extract information of an ingredient in association with

ingredients (Figure 4.6.b). A more detailed structure of this kind of a model is shown in

Figure 4.8.

4.3.1 Individual Ingredient Analysis

To have a model that can take a single ingredient and image as input and create multiple

outputs related to the ingredient we can re-formulate the problem where the ingredient would be

a query and image would be the content base we are looking at. So, the model can be designed

and implemented as an attention model as shown in Figure 4.7. The ingredients are first put into

a dictionary of tokens and are assigned ids as in [138]. If the dictionary contains N vocabularies

we would have ids between 0 to N − 1 assigned as shown below. The tokens ids are fed to an

embedding layer to have a more compact feature representation of the ingredients.

78

vocabular y � {potato : 0, onion : 1, tomato : 2, ..., salt : N − 1} (4.4)

For the image input, we use the features from the last convolutional layer of a pre-trainedResnet

architecture as shown in Figure 4.7. The image features go through a global average pooling layer

and another fully connected layer to have a image feature vector of the same size as the ingredient

feature vector. The cross modal feature vectors are concatenated and go through three different

fully connected layers each for a separate goal:

• Unit Model: To extract the portion of an ingredient we need to know what the measurement

metric is (e.g. is it ounce or pound). This fully-connected layer models units.

• Portion Model: This fully-connected layer models the portion for each ingredient.

• Coefficient Model: This fully-connected layer integrates portions with units to align themwith

each other and with calorie values for each ingredient in that meal.

The coefficient output tweaks the output from the portion layer and further the tweaked output

is integratedwith the unit output to create the calorie output for that ingredient as shown in Figure

4.7.

4.3.2 Simultaneous Ingredient Analysis

A two stream network is proposed to estimate the total calorie intake of a recipe (depicted in

Figure 4.8) given the generated ingredients and image features. The first stream of the model is

the calorie module that provides per ingredient calorie estimations. The second stream includes

a unit module, a portion module and an alignment module. The unit module generates per

ingredient unit predictions (e.g. teaspoon), the portion module uses the estimated units and the

input ingredients to generate per ingredient portion estimations and the alignmentmodule creates

alignment between the generated units and portions using per ingredient calorie estimations. The

model is trained end-to-end.

79

4.3.2.1 Inputs and Intermediate Outputs

The proposed model takes as input all generated ingredients I and image features V and

contains two streams with four modules and three intermediate outputs. All encoders have two

inputs; image features and ingredient embeddings. Image features are extracted from the last

convolutional layer, V ∈ RM×n×n , and are projected and reshaped with a (1 × 1) conv layer to

Fc ∈ Rs1×esize , Fu ∈ Rs1×
esize

2 , Fp ∈ Rs1×esize , and Fa ∈ Rs1×esize for the calorie encoder, unit encoder,

portion encoder, and alignment encoder respectively.

All encoders create intermediate embeddings. The calorie encoder, unit encoder, portion

encoder, and alignment encoder create intermediate embeddings Ec ∈ Rs2×esize , Eu ∈ Rs2×
esize

2 ,

Ep ∈ Rs2×esize , and Ea ∈ Rs2×esize respectively. The details of how these intermediate embeddings

are generated are explained in Section 4.3.2.2.

Besides image features, each encoder has another set of inputs which is either ingredient

embeddings or a combination of ingredient embeddings and intermediate embeddings from other

encoders. The generated ingredients from stage one are converted to ingredient embeddings

through an embedding layer and are fed to the calorie encoder, I ∈ Rs2×esize . The original ingredient

embeddings, I, are projected to smaller sized embeddings Iu ∈ Rs2×
esize

2 for the unit encoder. The

input for the portion encoder, Ip ∈ Rs2×esize , and alignment encoder, Ia ∈ Rs2×size , are created by

concatenating the smaller sized ingredient embeddings, Iu , and the intermediate unit embeddings,

Eu .

4.3.2.2 Encoder Structure

Eachof the fourmodules includean encoderwhich follows the exact architecture of a transformer

decoder [100] as explained in Section 4.1 and illustrated in Figure 4.3.b. The transformer decoder

has multiple identical transformer decoder layers and takes as input three sets of matrices; queries,

keys and values. Each of the transformer decoder layers in the encoder include two layers of

multi-head attention layers with residual connections. The general formulation of each of the

multi-head attention layers is shown in Equation 4.8.

80

MultiHead(Q , K,V) � Concat(head1 , ..., headh)W o

where : headi � Attention(QWQ
i , KWK

i ,VWV
i)

(4.5)

where the projections are parameter matrices W o ∈ Resize×s2 , WQ
i ∈ R

esize
h ×s2 , WK

i ∈ R
esize

h ×s2 ,

WV
i ∈ R

esize
h ×s1 where h is the number of heads, and Attention is the scaled dot product attention

mechanism from [100] and shown in Equation 4.6.

Attention(Q , K,V) � so f tmax(QKT
√

dk
)V (4.6)

where Q and K ∈ R
esize

h ×s2 , and V ∈ R
esize

h ×s1 are projected matrices of queries, keys and values. In

ourmodel both queries and keys are a set of ingredient embeddings and values are image features.

The last component of a transformer decoder layer is a position-wise feed forward network that

is applied after the two multi-head attention layers [100]. A stack of transformer decoder layers

makes a transformer decoder. The output of the transformer decoder is a matrix of embeddings

E ∈ Rs2×esize . Each of the intermediate embeddings (Ec , Eu , Ep , Ea) discussed in 4.3.2.1 are the

output of a transformer decoder. For more details on transformer decoders readers are referred to

[100].

4.3.2.3 The Final Network

The first stream of the network contains the calorie module and the second stream contains

three modules (unit, portion and alignment encoders). The modules contain encoders that create

intermediate embeddings. Calorie, portion, and alignment intermediate embeddings, Ec , Ep , Ea ,

Eu are projected to intermediate outputs through (per ingredient) identical fully connected layers,

fc , fu , fp , fa .

oc � fc(Ec)

Ou � fu(Eu)

op � fp(Ep)

oa � fa(Ea)

(4.7)

81

Figure 4.8. The calorie estimation model with individual ingredient units, portions, and calories
incorporation.

where oc ∈ Rs2×1, Ou ∈ Rs2×Nunits , op ∈ Rs2×1, and oa ∈ Rs2×1 are intermediate calorie, unit, portion,

and alignment outputs for s2 ingredient inputs.

The combination of intermediate unit and portion outputs provides a representation of the

amount of each ingredient. The purpose of adding an alignment module with the ingredient

calories loss incorporated is to align unit and portions with the calorie values.

Attention reduction layers are applied to the calorie embeddings, Ec , from the first stream and

alignment embeddings Ea from the second stream to create a reduced calorie vector rc ∈ R1×esize

and a reduced alignment vector ra ∈ R1×esize respectively. Projections Pcal and Pali gn are applied to

rc and ra respectively and their outputs are concatenated to produce the output of the model (total

calorie estimate). This two stream (four modules) model is named Tupc henceforth.

82

4.3.2.4 Losses

Two types of loss are used in the entire model in five different locations. One MSE loss is

used for ingredient calorie estimation in the first stream (L1). The weighted cross-entropy loss

is used for ingredient unit classification (L2). Units with less frequency in the training data are

assigned a larger weight for loss computation. Three MSE losses are used for portion estimation

(L3), calorie estimations in the alignment module (L4) and total calorie estimation (L5). The final

loss is computed as below with λ1, λ2, λ3, λ4, λ5 being hyperparameters.

L � λ1L1 + λ2L2 + λ3L3 + λ4L4 + λ5L5 (4.8)

4.4 Dataset Preparation for Analysis

In our experiments here we use the Recipe1M dataset created in [99]. Each instance in the

dataset contains a dish name, a list of ingredient descriptions, and a list of recipes. An example

instance in the Recipe1M dataset would appear as below with one or few meal images associated

with it. The images and recipes were originally scraped from popular cooking websites and

processed and parsed to extract relevant information from raw HTML [99].

• Dish name: Chocolate cake.

• Ingredients: 23 cup butter softened, 1 3/4 cups sugar, 2 large eggs, 1 teaspoon vanilla extract,

1 3/4 cups all-purpose flour, 3/4 cup cocoa powder, 1 1/2 teaspoons baking soda, 1 teaspoon

salt, 1 1/2 cups yogurt, plain.

• Recipe:

1. heat oven to 350f (180c).

2. Grease and flour two 9-inch heart-shaped pans.

3. In bowl, beat butter and sugar at medium speed of electric mixer until light and fluffy.

4. Add eggs and vanilla ; beat well.

5. Stir together flour , cocoa , baking soda and salt; add to butter.

83

6. Beat 3 minutes on medium speed.

7. Mix in yogurt.

8. Pour into prepared pans.

9. Bake 35 to 40 minutes or until wooden pick inserted in center comes out clean.

10. Cool 10 minutes ; remove from pans to wire racks.

11. Cool completely.

12. Frost and decorate as desired.

As shown in the example above the dataset originally does not have any explicit portion or

state annotation. To prepare for our experiments, we derive states and portions from ingredient

text through rule-based operations.

We train and evaluate our models in this chapter on the Recipe1M dataset [99], composed of

1,029,720 recipes scraped from cooking websites. The dataset contains 720,639 training, 155,036

validation and 154,045 test recipes, with a title, a list of ingredients, a list of cooking instructions

and/or an image. In our experiments, we use only the recipes containing images, and remove

recipes with less than 2 ingredients resulting in 252,547 training, 54,255 validation and 54,506 test

samples [35].

Because the datawas extracted by scraping cookingwebsites they are unstructured and include

redundant ingredients. We follow all the operations in [35] (e.g. cluster 400 different cheese

categories into one) and therefore reduce the number of ingredients from 16,823 to 1488. Some

of the ingredients in [35] were clustered or split inaccurately. We performed a semi-automatic

correction of some of the inaccurate clusters in [35]. For example we separated tomato from tomato

saucewhichwere originallymerged, orwemerged sausages that were classified as separate classes

with their brand names into one category. We only maintain high frequency ingredients (top 95%)

which results in 202 ingredients. After this stage we maintain 132,442 train and validation recipes

and 23,602 test recipes. We further automatically cluster recipes into 32 classes (i.e. dish names)

using their ingredients list and recipe titles and remove outliers to keep 67,359 train and validation

recipes and 11,743 test recipes. We extract ingredients (e.g. tomato paste) and their portions (e.g.

1 spoon) from the provided text for each ingredient in the dataset [99] and remove the recipes that

84

Figure 4.9. Frequencies of dish types in the Recipe1M dataset and their calorie spreads based on
four different levels: high, mid, low, and very low.

contain extreme portion outliers or include ingredients with missing portions. The final dataset

contains 42,455 train and validation recipes and 7,575 test recipes, with a title, a list of (ingredients,

portions, units) tuples, and images. After all the operations we derive the frequency of each of

the dish names and categorize all recipes into four different classes of calorie intake ranging from

0-500, 500-1000, 1000-1500, and 1500-2000 as shown in Figure 4.9 to observe the distribution of dish

types and their calorie spreads.

4.4.1 Unit Identification and Sampling

We explored and parsed the Recipe1M dataset and identified any word that can be related to

measuring ingredients. We identified 27 different measuring units as shown in Figure 4.11. We

can see that many units (e.g. cup, tablespoon) are very frequent and many others (e.g. jar or bowl)

are very rare. We keep the top 6 most frequent units in the dataset and convert all other frequent

units to those units. For examplemilliliter or liter can easily be converted to ounce. Some other units

such as pinch was also converted through its exact definition to ounce. We remove the very low

85

frequent units (e.g. box, bottle) without much loss in data. Looking at the top 6 frequent units we

can observe how they can cover various sizes of ingredients. For large amounts of an ingredient

(e.g. beef) we can use the unit pound, for mid-size ingredients (e.g. beans) we can use ounce and

for smaller sizes of ingredients (e.g. salt) we can use teaspoon or tablespoon. Figure 4.10 shows the

frequency of values for each of the top 6 units in the Recipe1M dataset.

4.5 Experiments and Analysis

Toanalyze themodel formeal imageunderstandingweperformexperiments onvariousmodels

and evaluate the ingredients they generate as output and the auxiliary information (e.g. portions,

units and calories) they predict for each ingredient.

4.5.1 Implementation Details

Imageswere resized to 256 pixels in their shortest side and random crops of 224×224were taken

for training. For evaluation the central 224 × 224 pixels were select. For the transformer encoders,

we use a transformer with 2 blocks and 8 multi-head attentions, each one with dimensionality 64.

For the last layer of the transformer, reduced embeddings of sizes 512, and 1024 were used. To

obtain image embeddings we use the last convolutional layer of ResNet-50 model which would

be of size 2048 × 7 × 7 (i.e. M � 2048, n � 7 in Section 4.2). All the word embeddings and all

transformer decoder input vectors were set to 1024. A maximum of 10 ingredients is used for each

recipe. Themodels are trainedwith theAdamoptimizer [139] for 60 epochs. Loss hyperparameters

are all set to 1 with the exception of λ4 being set to 0.1. All parts of the model are implemented

with PyTorch. A GUI is implemented for user correction using Python and the Flask API.

4.5.2 Results

We perform ingredient generation in the first step of the pipeline. State of the art ingredient

generation models [35] require much more improvements to be applicable to real world problems.

Therefore, we proposed a multi-level model for ingredient generation. We also include semi-

automatic user correction at each level to provide accurate ingredients for the second stage. For

86

(a) Ranges of values for the ounce measurement (b) Ranges of values for the pound measurement

(c) Ranges of values for the counting measurement (d) Ranges of values for the tablespoon measurement

(e) Ranges of values for the teaspoon measurement (f) Ranges of values for the cup measurement

Figure 4.10. Ranges of values for most six frequent units in the Recipe1M dataset - ounce, pound,
counting, tablespoon, teaspoon, and cup.

87

Figure 4.11. All measurements originally available in the Recipe1M dataset text (We used the top
6 frequent units and converted the other units to these six if possible).

this, we created an interface using Flask and obtain user feedback on our results at each level of

the ingredient generation stage (http://www.rpal-eve.cee.usf.edu/).

4.5.2.1 Ingredient Generation

In the first step of the experiments we implemented a Resnet based CNN for dish classification

andachievednear to 50%accuracy in classificationof 32dish types (e.g. omelette, cake, pizza, salad,

etc). Ingredient generation is performed as suggested in Section 4.2. The ingredient vocabulary

set comprises of 202 ingredients (e.g. butter, chicken, strawberry, flour, etc). The models for the

ingredient generation include the dish types in their input vocabulary (i.e. 234 input tokens). Table

4.1 shows intersection over union (IoU) results for three different experiments with or without dish

types given as input. Results for a) main ingredients generation: estimation of up to five main

ingredients, b) optional ingredients generation: estimation of up to 10 optional ingredients given

88

Table 4.1. Intersection over union (IoU) for a) main ingredients, b) optional ingredients, and c) all
ingredients generation.

Given dish No dish given
Main Ingredients 32.2% 27.3%

Optional Ingredients 49.2% 47.7%
All Ingredients 34.1% 31.5%

Table 4.2.Main ingredient generation results one step at a time (givenNmain ingredients. Accuracy
is computed at each step (i.e. for each main ingredient)

Predicting Dish name InstancesGiven Not given
Predicted Main Ingredient No. 1 67.0% 56.8% 17393
Predicted Main Ingredient No. 2 55.3% 49.1% 15194
Predicted Main Ingredient No. 3 52.4% 44.4% 11460
Predicted Main Ingredient No. 4 45.3% 37.1% 7390
Predicted Main Ingredient No. 5 9.2% 21.9% 3803

Total 53.9% 47.1% 55240

an image and main ingredients and c) all ingredients generation is shown in the table. The results

clearly show that when the model contains verbal knowledge about the dish type it estimates a

more accurate ingredient list.

The ingredient estimates from the model for main ingredient generation is revised using user

feedback. Table 4.2 shows results for estimating one ingredient at a time given the previous

ingredients are revised by the user. As it can be observed in this table, the accuracy of generating

main ingredients ismuch higherwhen revision happens. To evaluate revision accuracy, the revised

ingredient is fed back to the model (and not the actual ground-truth ingredient at that time step).

Therefore, the number of ingredients available at each time step in the test set is different for when

the dish name is given in comparison to when it is not given as input. Furthermore, having the

dish name as input for the model improves performance.

4.5.2.2 Portions and Units Estimation (Meal Kits)

The portion encoder creates estimates of portions of the listed ingredients by providing a value

and a unit. The portions and units of an ingredient can be used to generate automatic meal kits

procedures for a given image. This stage of the model is evaluated based on the mean absolute

89

Table 4.3. Mean absolute error of the portion estimation for different units compared with prior
errors for each unit

Metric Calorie MAE
Prior Estimated

pound 323.7 162.8
ounce 238.7 155.1
cup 201.6 92.9
count 144.6 52.5
tblsp 99.4 68.9
tsp 7.6 5.3
total 144.2 78.5

error distance between the target and predicted portion and the accuracy of classification of units.

In our experiments six different units as shown in Table 4.3 is used. In Table 4.3,MAEs for predicted

portions for each individual unit and the prior MAE for each unit is shown. It can be observed

that the calorie estimations are much better than the prior but the portions are not as good. The

reasoning is that to have an accurate measurement of the amount of the ingredient an accurate

combination of portion and unit is needed. The unit estimation accuracy of the model is 72.3%. In

Figure 4.12, a few visual results of generated ingredients and their portions and calorie intakes for

meal kits generation purposes is depicted.

4.5.2.3 Calorie Estimation

For calorie estimation, we evaluated the proposed model using mean absolute error (MAE)

and percentage mean absolute error (MAE%) on unseen test set. We compare the final model

(Tupc) with a few variations of transformer based models. In one of the models we remove the

ingredient based calorie training and only train the model for total recipe calories (Tcalorie). In

another version, we maintain the same base but we only individually generate calorie values for

each ingredient and a final calorie of the entire recipe (Tcalories).

We also compare the final model with a simple neural network for generating a calorie for

each ingredient individually and adding them up to generate the final calorie (NNcalories) and a

single ingredient based neural network based on portions, units and calories of each ingredient

and adding them up to generate the final calorie (NNupc).

90

Figure 4.12. Examples of results from different parts of the end-to-end pipeline which includes
predicted dish name, generated ingredients, portions and calorie estimates. The total predicted
calorie intake and its ground-truth value is shown in the last column (gt: ground-truth).

We compare themodel with a trained CNN on recipe calories (CNN), recipe calories estimated

using prior calorie of each ingredient (Pimean), and recipe calories estimated estimated using prior

dish names (Pdish).

We can observe from Table 4.4 that the transformer model which uses intermediate ingredient

portion and calorie estimates performs the best in both predicting ingredient calorie estimation and

recipe calorie estimation. Using ingredient based neural nets performs good but because the self

attention between different ingredients is not modeled it performs worse than transformer based

models. The CNN based model reaches to 49.8% MAE% for recipe calorie estimation showing the

need for ingredient incorporation in this application. Just using the dish name (Pdish) and only

knowing the ingredients (Pimean) perform relatively worse than the proposed model in estimating

meal and ingredient calorie.

91

Table 4.4. Results of calorie estimation based on mean absolute error and the percentage of error
for the final transformer model and various other models

Model Total Calorie MAE
MAE MAE%

Tupc 279.4 37.5%
Tcalorie 394.5 49.9%
Tcalories 283.5 38.1%
NNupc 306.7 39.7%

NNcalories 310 40.9%
CNN 380 49.8%
Pimean 323.3 44.7%
Pdish 407 52.3%

4.6 Discussion and Future Work

Most state-of-the art models for analyzing cooking images and their relationships with ingre-

dients focus on ingredient retrieval given an image [96, 97]. The models that generate ingredients

(non-retrieval) from a given image have very low performance [35]. We incorporate a state-of-

the-art method as base with a slightly modified (i.e. corrected) dataset and add semi-automatic

correction into the model to enhance the ingredient generation model for meal kits generation.

The semi-automatic model uses a web-interface which is discussed in Appendix 1. Ourmodel also

includes a stage (in the overall end-to-end pipeline) where portions and units (e.g. 1 spoon of oil)

are generated for each ingredient using both attention between ingredients themselves and their

underlying image features using transformer properties. An element in the portions generation

stage that is unique to our model and beneficial is the containment of six unit types in the output

which can automatically be mapped to meal kit content generation.

Another potential property of themodel is the use of per ingredient unit and portion estimation

to backtrack and provide re-computed ingredient amounts given a new serving amount of the

meal. To our knowledge, this work is the first work on large scale calorie estimation on images

with intermediate ingredient and portions estimation where the ingredients may or may not be

(e.g. salt) visually seen in the image. Also, to prepare data for portions and calorie estimation we

removed instances that lacked enough data from the Recipe1M dataset and therefore the dataset

92

used in the experiments is uniquely tailored for this application making it impossible to compare

the results with any baseline methods.

The main objective of this chapter was extracting knowledge (e.g. ingredients, and portions)

from a single image. Calorie estimation was also a side objective of the model. We proposed a

pipelineusingdeep encoders to extract image features andgenerate ingredients (and their portions)

froma given image. The ingredients are extracted using an auto-regressive encoderwhich captures

both relative association between ingredients through self attention and ingredients and the image

features through the transformer and Resnet features. The portions and furthermore calories of

ingredients are also extracted with the assumption that knowing all ingredients contained in a

recipe image can contribute to the portion knowledge base of a recipe (i.e. self-attention between

portions of ingredients). The total calorie is estimated using all generated mid-level knowledge

in an end-to-end manner. The current pipeline can semi-automatically generate ingredients with

portions, and calories and a final calorie estimate of the entire recipe. In futurework, wewould like

to extend experiments in a wider range of ingredients and recipes where more accurate portion

estimates is available. We also would like to use this pipeline in robotic manipulation where using

the predicted ingredients and their portions, state changes, and the task of making the recipe is

inferred as a graph of sequential events.

93

Chapter 5: Concluding Remarks

To conclude, in this dissertation, we proposed various algorithms for knowledge extraction,

inference and understanding of visual cooking contents. Visual cooking content in our research

refers to images and videos of meals, or people preparing food. To extract knowledge from video,

we need to use state of the art computer vision techniques namely deep learning algorithms.

First, we proposed a pipeline that simultaneously incorporates deep convolutional networks and

auto-regressive recurrent neural networks to achieve an understanding of a video representing a

cooking task. We showed that it is important to model all aspects of a visual scene (e.g. objects and

motions) explicitly while designing a deep model for video understanding. Therefore we used the

Faster RCNN object detection algorithm to obtain an understanding of the objects and a recurrent

neural network to model the motions of a video. We understood that although current state of

the are deep architectures have improved significantly to their previous counterparts but they

still have limitations in performance. Therefore we propose to utilize a knowledge representation

graph called the Functional Object Oriented Network (FOON) [78, 2]. The knowledge representa-

tion bears object-object associations, object-motion inter-connections, and event-event order based

relationships. We proposed a pipeline to integrate the FOON knowledge representation with state

of the art deep models to improve video understanding performance. Through the pipeline we

computed weights for objects and motions and identified the most relevant items to each step of

the video. Results illustrated the significance of using the FOON knowledge representation for

event and video understanding.

Although objects and motions are important for video understanding they are not complete

sources of information. One other aspect of objects (i.e. ingredient) that is of significance for

video understanding is the state of an object. Through a cooking process (e.g. preparing salad)

94

ingredients go through rounds of state change. A state (e.g. sliced) of an ingredient (i.e. tomato)

can change the appearance of an object visually and therefore would effect the identification of

an object. Besides, states of objects need to be known for a robot to make decisions for future

manipulation tasks. Therefore we analyzed states of objects and introduced the state identification

challenge. In conjunction with the challenge, we introduced a taxonomy of states for ingredients

using knowledge acquired fromFOONandwe collected a labeled dataset of states for research. We

discussed the importance of states analysis andproposed an initialmodel for state classification and

joint ingredient and state classification on a single image. We further extended our experiments to

identifyingmultiple ingredients and their states from a single cooking image and showed that how

ingredients and states are intertwined and can effect the correct identification of each other in an

image. Through our experiments we conclude that states are important for object (or ingredient)

recognition especially in applications where the robot is performing manipulation tasks.

Finally, we explore the problem of knowledge representation extraction and augmentation

from a single image. We discuss that to prepare a meal, we need to recognize everything about the

meal, including the ingredients, states of ingredients and what portions of those ingredients are

needed. We suggest that we can use a single cooking image from a fully prepared meal to identify

information about the meal. Therefore, we introduce a model for total knowledge extraction (e.g.

ingredients, states, and portions) from a single image. We propose a complex auto-regressive

two-stage architecture for iterative ingredient recognition and per-ingredients state and portion

estimation. We show by experiment that this model can be used for applications such as calorie

estimation of a meal. Although this is the first time a model is presented for total knowledge

extraction and calorie estimation in large scale, experiments show that more fine-grained labeled

data of states, portions, and calories is required for improved performance.

5.1 Future Work

Our research and experiments identify problems and propose initial solutions to those prob-

lems. There aremany paths of work that can be conducted for future experiments that can improve

performance and get us closer to the ultimate goal of having an automatic cooking robot. One of

95

these paths is working on the knowledge representation. Enhancing the knowledge representation

(i.e. FOON) by adding levels of entities or adding generalization measures [2] can improve video

understanding. Additionally, in our experiments we only looked into states of ingredients in a

static manner. For example, an ingredient is either sliced or un-sliced, or cooked or uncooked.

Therefore, another route of work that can be explored is to dynamically track state change of an

ingredient through the whole segment of a video. For example, in a video demonstrating a tomato

being sliced, knowing how much of the tomato has been sliced at each point of the video may

be important in tasks such as robotic manipulation. The problem of state tracking is even more

relevant in the application of robotic manipulation, as the robot performing a task needs to know

the state of the object at each time to make further decisions. We also suggest that knowledge ex-

tracted from a single image can be used for task tree generation. Therefore, a future work can be to

use the model for image understanding in conjunction with the FOON knowledge representation

to generate task trees of a meal. Finally, our work is a step towards identifying and introducing

problems of visual content analysis in roboticmanipulation that can be continued at a broader level

in the future and progress towards building real service robots for home and outdoor applications.

96

References

[1] A. B. Jelodar and Y. Sun. Joint object and state recognition using language knowledge. In
2019 IEEE International Conference on Image Processing (ICIP), pages 3352–3356, Sep. 2019.

[2] D. Paulius, A. B. Jelodar, and Y. Sun. Functional object-oriented network: Construction &
expansion. International Conference on Robotics and Automation (ICRA), pages 1–7, May 2018.

[3] A. B. Jelodar, D. Paulius, and Y. Sun. Long activity video understanding using functional
object-oriented network. IEEE Transactions on Multimedia, pages 1–12, 2018.

[4] Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[5] D. Paulius and Y. Sun. A survey of knowledge representation in service robotics. Robotics
and Autonomous Systems, 2019.

[6] David Paulius and Yu Sun. A survey of knowledge representation and retrieval for learning
in service robotics. arXiv preprint arXiv:1807.02192, 2018.

[7] Christiane Fellbaum, editor. WordNet: an electronic lexical database. MIT Press, 1998.

[8] K.K. Schuler. Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. 2005.

[9] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet project. In
Proceedings of the 17th International Conference on Computational Linguistics - Volume 1, COLING
’98, pages 86–90, Stroudsburg, PA, USA, 1998.

[10] AhmadBabaeian Jelodar,MehrdadAlizadeh, and ShahramKhadivi. Wordnet based features
for predicting brain activity associated with meanings of nouns. In Proceedings of the NAACL
HLT 2010 First Workshop on Computational Neurolinguistics, CN ’10, pages 18–26, Stroudsburg,
PA, USA, 2010.

[11] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, Jr., and
TomM. Mitchell. Toward an architecture for never-ending language learning. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pages 1306–1313, 2010.

[12] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,
62(1):107–136, Feb 2006.

[13] Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, and Anthony R. Dick. Ask me
anything: Free-form visual question answering based on knowledge from external sources.
CoRR, abs/1511.06973, 2015.

97

[14] W. Min, B. K. Bao, S. Mei, Y. Zhu, Y. Rui, and S. Jiang. You are what you eat: Exploring rich
recipe information for cross-region food analysis. IEEE Transactions onMultimedia, 20(4):950–
964, April 2018.

[15] Christopher Town. Ontological inference for image and video analysis. Machine Vision and
Applications, 17(2):94, Mar 2006.

[16] Nicolas Eric Maillot and Monique Thonnat. Ontology based complex object recognition.
Image Vision Comput., 26(1):102–113, January 2008.

[17] Bernd Neumann and Ralf Möller. On scene interpretation with description logics. Image
Vision Comput., 26(1):82–101, January 2008.

[18] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge fromweb data. In
2013 IEEE International Conference on Computer Vision, pages 1409–1416, Dec 2013.

[19] FengNiu, Ce Zhang, Christopher Ré, and Jude Shavlik. Elementary: Large-scale knowledge-
base construction via machine learning and statistical inference. Int. J. Semant. Web Inf. Syst.,
8(3):42–73, July 2012.

[20] Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about object affordances in a knowledge
base representation. In ECCV 2014, pages 408–424, Cham, 2014.

[21] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vision, 123(1):32–73, May 2017.

[22] L. Herranz, S. Jiang, and R. Xu. Modeling restaurant context for food recognition. IEEE
Transactions on Multimedia, 19(2):430–440, Feb 2017.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778. IEEE Computer Society, 2016.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012.

[27] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-rnn: A unified framework
for multi-label image classification. CVPR, 2016.

98

[28] Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim, and Johannes Fürnkranz. Maximizing
subset accuracy with recurrent neural networks in multi-label classification. In NeurIPS,
pages 5413–5423. 2017.

[29] Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. Learning deep
latent spaces for multi-label classification. In AAAI, AAAI 2017, pages 2838–2844, 2017.

[30] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. Boosting image captioning with attributes. In 2017
IEEE International Conference on Computer Vision (ICCV), volume 00, pages 4904–4912, Oct.
2018.

[31] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. CoRR, abs/1411.4389, 2014.

[32] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks
for dense captioning. CVPR, 2016.

[33] S. Venugopalan, L. A. Hendricks, M. Rohrbach, R. Mooney, T. Darrell, and K. Saenko.
Captioning images with diverse objects. In CVPR, pages 1170–1178, July 2017.

[34] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question
answering. In CVPR, 2018.

[35] Amaia Salvador, Michal Drozdzal, Xavier Giro-i Nieto, and Adriana Romero. Inverse cook-
ing: Recipe generation from food images. In CVPR, June 2019.

[36] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yix-
uan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining, 2018.

[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 21–37, Cham,
2016. Springer International Publishing.

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In ICCV, pages 2999–3007, 2017.

[39] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NIPS, pages 91–99, 2015.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[41] Pei-Yu Chi, Jen hao Chen, Hao-Hua Chu, and Jin-Ling Lo. Enabling calorie-aware cooking
in a smart kitchen. In PERSUASIVE, volume 5033 of Lecture Notes in Computer Science, pages
116–127, 2008.

99

[42] Xiatian Zhu, Chen Change Loy, and Shaogang Gong. Learning from multiple sources for
video summarisation. International Journal of Computer Vision, 117(3):247–268, 2016.

[43] Cornelia Fermuller, Fang Wang, Yezhou Yang, Konstantinos Zampogiannis, Yi Zhang,
Francisco Barranco, and Michael Pfeiffer. Prediction of manipulation actions. CoRR,
abs/1610.00759, 2016.

[44] Patrick Perez and Ivan Laptev. Retrieving actions in movies. In International Conference on
Computer Vision (ICCV), pages 1–8. IEEE Computer Society, 2007.

[45] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. CoRR, abs/1411.4389, 2014.

[46] Michele Merler, Bert Huang, Lexing Xie, Gang Hua, and Apostol Natsev. Semantic model
vectors for complex video event recognition. IEEE Trans. Multimedia, 14(1):88–101, 2012.

[47] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In nterna-
tional Conference on Computer Vision (ICCV), pages 3551–3558. IEEE Computer Society, 2013.

[48] Guilhem Cheron, Ivan Laptev, and Cordelia Schmid. P-cnn: Pose-based cnn features for
action recognition. CoRR, abs/1506.03607, 2015.

[49] Bingbing Ni, Pierre Moulin, and Shuicheng Yan. Pose adaptive motion feature pooling for
human action analysis. International Journal of Computer Vision, 111(2):229–248, 2015.

[50] Cuiwei Liu, XinxiaoWu, andYunde Jia. A hierarchical video description for complex activity
understanding. International Journal of Computer Vision, 118(2):240–255, 2016.

[51] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-end generative framework for
video segmentation and recognition. InWACV, pages 1–8. IEEE Computer Society, 2016.

[52] Yuki Matsumura, Atsushi Hashimoto, Shinsuke Mori, Masayuki Mukunoki, and Michihiko
Minoh. Clustering scenes in cooking video guided by object access. In ICME Workshops,
pages 1–6. IEEE Computer Society, 2015.

[53] KrishanKumar, DeeptiD. Shrimankar, andNavjot Singh. Eratosthenes sieve basedkey-frame
extraction technique for event summarization in videos. Multimedia Tools and Applications,
77:7383–7404, 2017.

[54] Krishan Kumar, Anurag Kumar, and Ayush Bahuguna. D-cad: Deep and crowded anomaly
detection. In ICCCT-2017, 2017.

[55] Ashesh Jain, Amir Roshan Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn:
Deep learning on spatio-temporal graphs. CoRR, abs/1511.05298, 2015.

[56] M. Hasan and A. K. Roy-Chowdhury. A continuous learning framework for activity recog-
nition using deep hybrid feature models. IEEE Transactions on Multimedia, 17(11):1909–1922,
Nov 2015.

100

[57] K. Kumar and D. D. Shrimankar. F-des: Fast and deep event summarization. IEEE Transac-
tions on Multimedia, 20(2):323–334, Feb 2018.

[58] A.Gupta andL. S.Davis. Objects in action: An approach for combining action understanding
and object perception. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, June 2007.

[59] A. Fathi and J. M. Rehg. Modeling actions through state changes. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2579–2586, June 2013.

[60] Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Philipose, and James M.
Rehg. A scalable approach to activity recognition based on object use. In ICCV, pages 1–8.
IEEE Computer Society, 2007.

[61] Jingjing Chen and Chong-Wah Ngo. Deep-based ingredient recognition for cooking recipe
retrieval. In ACMMultimedia, pages 32–41. ACM, 2016.

[62] Yang Zhou, Bingbing Ni, Richang Hong, Meng Wang, and Qi Tian. Interaction part mining:
A mid-level approach for fine-grained action recognition. In CVPR, pages 3323–3331. IEEE
Computer Society, 2015.

[63] Xiaoyang Wang and Qiang Ji. Hierarchical context modeling for video event recognition.
IEEE Trans. Pattern Anal. Mach. Intell., 39(9):1770–1782, 2017.

[64] Krishan Kumar and Deepti D. Shrimankar. Deep event learning boost-up approach: Delta.
03 2018.

[65] K. Kumar, D. D. Shrimankar, and N. Singh. Event bagging: A novel event summarization
approach in multiview surveillance videos. In 2017 International Conference on Innovations in
Electronics, Signal Processing and Communication (IESC), pages 106–111, April 2017.

[66] Xishan Zhang, Yang Yang, Yongdong Zhang, Huanbo Luan, Jintao Li, Hanwang Zhang,
and Tat-Seng Chua. Enhancing video event recognition using automatically constructed
semantic-visual knowledge base. 17:1–1, 09 2015.

[67] C. F. Crispim-Junior, V. Buso, K. Avgerinakis, G. Meditskos, A. Briassouli, J. Benois-Pineau,
I. Y. Kompatsiaris, and F. Bremond. Semantic event fusion of different visual modality
concepts for activity recognition. IEEETransactions on PatternAnalysis andMachine Intelligence,
38(8):1598–1611, Aug 2016.

[68] X. Chang, Z. Ma, Y. Yang, Z. Zeng, and A. G. Hauptmann. Bi-level semantic representation
analysis for multimedia event detection. IEEE Transactions on Cybernetics, 47(5):1180–1197,
May 2017.

[69] M. Mazloom, X. Li, and C. G. M. Snoek. Tagbook: A semantic video representation without
supervision for event detection. IEEE Transactions on Multimedia, 18(7):1378–1388, July 2016.

[70] Fillipe D. M. de Souza, Sudeep Sarkar, Anuj Srivastava, and Jingyong Su. Temporally
coherent interpretations for long videos using pattern theory. In CVPR, pages 1229–1237.
IEEE Computer Society, 2015.

101

[71] Fillipe D. M. de Souza, Sudeep Sarkar, Anuj Srivastava, and Jingyong Su. Spatially coher-
ent interpretations of videos using pattern theory. International Journal of Computer Vision,
121(1):5–25, 2017.

[72] Yu Sun and Shaogang Ren. Human-object-object-interaction affordance. In WORV, pages
1–6. IEEE Computer Society, 2013.

[73] Yu Sun, Shaogang Ren, and Yun Lin. Object–object interaction affordance learning. Robotics
and Autonomous Systems, 62(4):487–496, 2014.

[74] Yu Sun and Yun Lin. Modeling paired objects and their interaction. In New Development in
Robot Vision, pages 73–87. Springer, 2015.

[75] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-object interactions: Using spatial
and functional compatibility for recognition. IEEETransactions onPatternAnalysis andMachine
Intelligence, 31(10):1775–1789, Oct 2009.

[76] B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object
interaction activities. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 17–24, June 2010.

[77] Dong Han, Liefeng Bo, and Cristian Sminchisescu. Selection and context for action recogni-
tion. 2009 IEEE 12th International Conference on Computer Vision, pages 1933–1940, 2009.

[78] David Paulius, Yongqiang Huang, Roger Milton, William D. Buchanan, Jeanine Sam, and
Yu Sun. Functional object-oriented network for manipulation learning. In IROS, pages
2655–2662. IEEE, 2016.

[79] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Computer Vision and Pattern Recognition (CVPR), 2015.

[80] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. 02 2016.

[81] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition
by learning bases of action attributes and parts. In 2011 International Conference on Computer
Vision, pages 1331–1338, Nov 2011.

[82] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-rnn: A unified framework
for multi-label image classification. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2285–2294, June 2016.

[83] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and P. Hou. A new
deep learning-based food recognition system for dietary assessment on an edge computing
service infrastructure. IEEE Transactions on Services Computing, 11(2):249–261, March 2018.

[84] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and Yunsheng Ma. Deep-
food: Deep learning-based food image recognition for computer-aided dietary assessment.
In Proceedings of the 14th International Conference on Inclusive Smart Cities and Digital Health -
Volume 9677, ICOST 2016, pages 37–48, New York, NY, USA, 2016.

102

[85] L. Hou, Q. Wu, Q. Sun, H. Yang, and P. Li. Fruit recognition based on convolution neural
network. In 2016 12th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), pages 18–22, Aug 2016.

[86] Jingjing Chen and Chong-Wah Ngo. Deep-based ingredient recognition for cooking recipe
retrieval. In ACMMultimedia, pages 32–41. ACM, 2016.

[87] Yoko Yamakata, Koh Kakusho, and Michihiko Minoh. Object recognition based on object’s
identity for cooking recognition task. In ISM, pages 278–283. IEEE Computer Society, 2010.

[88] Yuki Matsumura, Atsushi Hashimoto, Shinsuke Mori, Masayuki Mukunoki, and Michihiko
Minoh. Clustering scenes in cooking video guided by object access. In ICME Workshops,
pages 1–6. IEEE Computer Society, 2015.

[89] Marcus Rohrbach, Anna Rohrbach,Michaela Regneri, SikandarAmin,MykhayloAndriluka,
Manfred Pinkal, and Bernt Schiele. Recognizing fine-grained and composite activities using
hand-centric features and script data. International Journal of Computer Vision, pages 1–28,
2015.

[90] Fillipe D. M. de Souza, Sudeep Sarkar, Anuj Srivastava, and Jingyong Su. Spatially coher-
ent interpretations of videos using pattern theory. International Journal of Computer Vision,
121(1):5–25, 2017.

[91] Yi Sen Ng, Wanqi Xue, Wei Wang, and Panpan Qi. Convolutional neural networks for food
image recognition: An experimental study. In International Workshop on Multimedia Assisted
Dietary Management, pages 33–41, 2019.

[92] N. Martinel, G. L. Foresti, and C. Micheloni. Wide-slice residual networks for food recogni-
tion. InWACV, pages 567–576, March 2018.

[93] Luis Herranz, Shuqiang Jiang, and Ruihan Xu. Modeling restaurant context for food recog-
nition. IEEE Transactions on Multimedia, 19(2):430–440, February 2017.

[94] R. Xu, L. Herranz, S. Jiang, S. Wang, X. Song, and R. Jain. Geolocalized modeling for dish
recognition. IEEE Transactions on Multimedia, 17(8):1187–1199, Aug 2015.

[95] Shota Horiguchi, Sosuke Amano, Makoto Ogawa, and Kiyoharu Aizawa. Personalized
classifier for food image recognition. IEEE Transactions on Multimedia, 20:2836–2848, 2018.

[96] Jing-jing Chen, Chong-WahNgo, and Tat-Seng Chua. Cross-modal recipe retrieval with rich
food attributes. In ACM International Conference on Multimedia, MM 2017, pages 1771–1779,
2017.

[97] Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, Nicolas Thome, and Matthieu
Cord. Cross-modal retrieval in the cooking context: Learning semantic text-image embed-
dings. In The 41st International ACM SIGIR Conference on Research Development in Information
Retrieval, SIGIR 2018, pages 35–44, 2018.

[98] Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frederic Precioso. Recipe
recognition with large multimodal food dataset. In ICMEW, 2015.

103

[99] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar,
Ingmar Weber, and Antonio Torralba. Recipe1m+: A dataset for learning cross-modal
embeddings for cooking recipes and food images. PAMI, 2019.

[100] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanNGomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008. 2017.

[101] A. B. Jelodar, M. S. Salekin, and Y. Sun. Identifying object states in cooking-related images.
arXiv preprint arXiv:1805.06956, May 2018.

[102] P. Isola, J. J. Lim, and E. H. Adelson. Discovering states and transformations in image
collections. CVPR, 2015.

[103] P. Pouladzadeh, S. Shirmohammadi, and R. Al-Maghrabi. Measuring calorie and nutrition
from food image. IEEE Transactions on Instrumentation and Measurement, 63(8):1947–1956,
2014.

[104] Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban, Nathan
Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, and Kevin Murphy.
Im2calories: towards an automated mobile vision food diary. In ICCV, 2015.

[105] P. Pouladzadeh, S. Shirmohammadi, and A. Yassine. Using graph cut segmentation for food
calorie measurement. In 2014 IEEE International Symposium on Medical Measurements and
Applications (MeMeA), pages 1–6, 2014.

[106] Shaobo Fang, Fengqing Zhu, Chufan Jiang, Song Zhang, Carol J. Boushey, and Edward J.
Delp. A comparison of food portion size estimation using geometric models and depth
images. 2016 IEEE International Conference on Image Processing (ICIP), pages 26–30, 2016.

[107] Hsin-Chen Chen, Wenyan Jia, Yaofeng Yue, Zhaoxin Li, Yung-Nien Sun, John D. Fernstrom,
and Mingui Sun. Model-based measurement of food portion size for image-based dietary
assessment using 3d/2d registration. Measurement science technology, 24 10, 2013.

[108] T.Miyazaki, G. C. de Silva, andK.Aizawa. Image-based calorie content estimation for dietary
assessment. In 2011 IEEE International Symposium on Multimedia, pages 363–368, 2011.

[109] Koichi Okamoto and Keĳi Yanai. An automatic calorie estimation system of food images on
a smartphone. In Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary
Management, MADiMa 2016, pages 63–70. Association for Computing Machinery, 2016.

[110] Wataru Shimoda and Keĳi Yanai. Cnn-based food image segmentation without pixel-wise
annotation. In Vittorio Murino, Enrico Puppo, Diego Sona, Marco Cristani, and Carlo
Sansone, editors, New Trends in Image Analysis and Processing – ICIAP 2015 Workshops, pages
449–457, 2015.

[111] T. Ege, Y. Ando, R. Tanno, W. Shimoda, and K. Yanai. Image-based estimation of real food
size for accurate food calorie estimation. In 2019 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR), pages 274–279, 2019.

104

[112] Parisa Pouladzadeh and Shervin Shirmohammadi. Mobile multi-food recognition using
deep learning. ACM Trans. Multimedia Comput. Commun. Appl., 13(3s), August 2017.

[113] K.Aizawa, Y.Maruyama, H. Li, andC.Morikawa. Food balance estimation by using personal
dietary tendencies in a multimedia food log. IEEE Transactions on Multimedia, 15(8):2176–
2185, 2013.

[114] P. Pouladzadeh, G. Villalobos, R. Almaghrabi, and S. Shirmohammadi. A novel svm based
food recognition method for calorie measurement applications. In 2012 IEEE International
Conference on Multimedia and Expo Workshops, pages 495–498, 2012.

[115] Takumi Ege and Keĳi Yanai. Image-based food calorie estimation using knowledge on food
categories, ingredients and cooking directions. In Proceedings of the on Thematic Workshops of
ACMMultimedia 2017, Thematic Workshops 2017, pages 367–375, 2017.

[116] M. Newman. Networks: An Introduction. OUP Oxford, 2010.

[117] C. Adam Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477, 2008. revision 91646.

[118] Gibson J J. The theory of affordances, in Perceiving, Acting, and Knowing. Towards an Ecological
Psychology. Number eds Shaw R., Bransford J. Hoboken, NJ: John Wiley & Sons Inc., 1977.

[119] T Brox, A Bruhn, N Papenberg, and J Weickert. High accuracy optical flow estimation based
on a theory for warping. In European Conf. on Computer Vision, volume 3024, pages 25–36,
Prague, Czech Republic, 2004.

[120] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele. A database
for fine grained activity detection of cooking activities. In CVPR, pages 1194–1201. IEEE
Computer Society, 2012.

[121] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861 – 874,
2006. ROC Analysis in Pattern Recognition.

[122] A. B. Jelodar, M. S. Salekin, and Y. Sun. Identifying object states in cooking-related images.
arXiv preprint arXiv:1805.06956, May 2018.

[123] Yun Lin and Yu Sun. Task-oriented grasp planning based on disturbance distribution. In
Robotics Research, pages 577–592. Springer, 2016.

[124] Yun Lin and Yu Sun. Task-based grasp quality measures for grasp synthesis. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 485–490. IEEE,
2015.

[125] Yun Lin and Yu Sun. Grasp planning to maximize task coverage. The International Journal of
Robotics Research, 34(9):1195–1210, 2015.

[126] Yun Lin and Yu Sun. Robot grasp planning based on demonstrated grasp strategies. The
International Journal of Robotics Research, 34(1):26–42, 2015.

105

[127] Yu Sun, Yun Lin, and Yongqiang Huang. Robotic grasping for instrument manipulations. In
Ubiquitous Robots and Ambient Intelligence (URAI), 2016 13th International Conference on, pages
302–304. IEEE, 2016.

[128] Yun Lin, Shaogang Ren, Matthew Clevenger, and Yu Sun. Learning grasping force from
demonstration. In Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 1526–1531. IEEE, 2012.

[129] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255. IEEE Computer Society, 2009.

[130] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. ICLR, May 2013.

[131] R. Speer, J. Chin, and C. Havasi. Conceptnet 5.5: An open multilingual graph of general
knowledge. AAAI, 2016.

[132] C. D. Manning and H. Shutze. Foundations of statistical natural language processing. In The
MIT Press, 1999.

[133] Google. Google ngram viewer. http://books.google.com/ngrams/datasets, 2012.

[134] AshishVaswani, NoamShazeer, Niki Parmar, JakobUszkoreit, Llion Jones, AidanN.Gomez,
undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[135] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ingmar Weber, and
Antonio Torralba. Learning cross-modal embeddings for cooking recipes and food images.
In CVPR, 2017.

[136] Pei-Yu Chi, Jen hao Chen, Hao-Hua Chu, and Jin-Ling Lo. Enabling calorie-aware cooking
in a smart kitchen. In PERSUASIVE, volume 5033 of Lecture Notes in Computer Science, pages
116–127. Springer, 2008.

[137] Wen Wu and Jie Yang. Fast food recognition from videos of eating for calorie estimation. In
2009 IEEE International Conference on Multimedia and Expo, pages 1210–1213, 2009.

[138] Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei. Building a large-scale multimodal
knowledge base for visual question answering. CoRR, abs/1507.05670, 2015.

[139] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio andYann LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

106

Appendix A: The Ingredient, Portions, and Calorie Estimation Web Interface

In chapter 4, we introduced a pipeline for knowledge extraction from a single image illustrating

a cooked meal. The pipeline contains four steps that can be corrected in between by a user. We

create a web interface at http://www.rpal-eve.cee.usf.edu that contains sequential web-pages for

information generation and correction. The web-pages in this web interface are as follows:

• Selecting the image – The web-page which provides the user a button to browse and select a

cooked meal for analysis.

• Dish type selection – The web-page providing a dish type from the output of the model and

providing the chance for the user to correct it.

• Main ingredient generation – The web-page showing the main ingredients used in the given

input image.

• Optional ingredient generation – The web-page showing the list of optional ingredients used in

the image.

• Seasonings generation – The web-page showing the seasonings used in the given input image.

• Per ingredient portion & calorie estimation – The web-page that shows the estimated per ingre-

dient portions and total image calorie.

• Finalize – Final webpage showing all the results.

A.1 Browsing and Selecting an Image

On the first page of the interface, the user is provided with a browse button. The user can use

that button to upload an image to the server. This image is fed through the pipeline in the next

107

steps (web-pages). Also, on the first page, a demo video is presented for the user to understand

how to use the web interface for ingredient, portion and calorie estimation. For information

A.2 Dish Type Selection

After submitting the image, the interface applies the convolutional network for dish classifica-

tion and provides top N(=5) dish types with the highest probabilities to the user in order in the

dish type page. The dish type page provides radio buttons that allows the user to correct the dish

type by choosing one of the other four dish types or writing through text another dish type.

A.3 Main Ingredient Generation

After estimating the dish type, and corrections from the user, the interface moves towards the

main ingredient page. The first main ingredient is generated using the model proposed in Section

4.2, and shown to the user. The inputs for this model are the uploaded image and the corrected

dish type from the previous page. The user can either correct this main ingredient or discard it

and submit changes. The interface generates the second up to fifth main ingredient in the same

manner allowing the user to correct the generated ingredients. After all main ingredients for the

108

uploaded image are generated, the model would generate an end token which is reflected as end

of generation on the web interface. The user can further submit the results for the interface to

move to the next page.

A.4 Optional Ingredient Generation

After the dish name and all main ingredients are generated and the user submits results, the

model for optional ingredient generation is called. All optional ingredients are generated simulta-

neously given the image, dish type and main ingredients. The optional ingredients generated by

the model include seasonings such as salt, and pepper. But, on the page for optional ingredients,

seasonings are excluded. The user can remove or add optional ingredients of their choice in this

page.

A.5 Seasonings Generation

Togenerate the seasonings used in an imageno separatemodel is used. All the results generated

by the model for optional ingredients is looked up in the seasonings table and identified. The

109

seasonings page on the web interface, shows the seasonings to the user. Like previous pages, the

user can perform corrections and submit the seasonings.

A.6 Per Ingredient Portion and Calorie Estimation

Before this page, dish type, all main ingredients, optional ingredients and seasonings are

submitted. The model for portion and calorie estimation is now applied on the image and all

generated ingredients and per ingredient portions and calories and the total calorie intake of the

meal is estimated and shown to the user. The user is not to perform any corrections in this page but

can change the unit of food intake. With this change the per ingredient portions and total calorie

shown to the user changes on the web interface. The user will finalize the results and a final static

version of all results is presented to the user.

110

Appendix B: Copyright Permissions

Permission from [3] for use of content in Chapters 2 is shown below.

111

Permission from [2] for use of content in Chapters 2 is shown below.

112

Permission from [1] for use of content in Chapter 3 is shown below.

113

	Knowledge Extraction and Inference Based on Visual Understanding of Cooking Contents
	Scholar Commons Citation

	tmp.1649451604.pdf.cft7f

