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Abstract

With the rapid evolvement of information science, data-oriented research has solicited a

new philosophy for the future mobile network and security design, since it can not only

encourage new designs achieving more efficient and reliable networks, but also pose new

challenges towards security designs. In this dissertation, we propose four novel data-oriented

designs or frameworks to prompt or calibrate the performance with respect to efficiency,

reliability, and security.

In the wireless domain, packet corruption and packet collision are two major threats

that jeopardize the performance of a mobile network. To cope with the packet corruption,

we propose the STAteful inter-Packet signaL procEssing (STAPLE) framework, which is

an inter-packet oriented signal process design for wireless networking. STAPLE transforms

the signal processing procedure into a lightweight stateful process that caches in a small-

sized memory table physical and link layer header fields as packet state information. The

similarity of such information among packets serves as prior knowledge to further enhance

the reliability of signal processing and thus improve the wireless network performance. For

the packet collision, we present a new design called comb decoding (CombDec) to efficiently

resolve RTS collisions without changing the 802.11 standards. We observe that an RTS

payload, when treated as a vector in a vector space, exhibits a comb-like distribution; i.e.,

a limited number of vectors are much more likely to be used than the others due to RTS

payload construction and firmware design. This enables us to use sparse recovery such as

compressive sensing to resolve RTS collisions.

For the network security design, we revisit network tomography and inference from a

data-driven perspective and discover that there are two vulnerabilities. The first one is of

xi



the measurement integrity. By taking advantage of this vulnerability, we develop an attack

strategy, called measurement integrity attack, which not only destroys the measuring system,

but can even mislead the system to scapegoat other innocent users. The second vulnerability

is of the measurement confidentiality since network inference is able to leak network flow

information without directly measuring it. To prevent disclosing the flow information, we

find that random routing strategies are capable of hiding the flow information. Then, by

leveraging the measurement data, we propose a new framework that can systematically

study the behavior of different randomized routing protocols, and explore the fundamental

reason why randomized routing strategies can prevent information leakage against network

inference.
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Chapter 1: Introduction

With advances in mobile technologies, computing capabilities, improved access to net-

works, interconnected devices in different networks, e.g., wireless local area network (WLAN),

cellular network, personal area network (PAN), Internet of things (IoT), etc., have become

more advanced and integrated into people’s life, inevitably generating a large amount of

data. The emerging data broadens our horizons when seeking new approaches in the next-

generation wireless network and security designs since leveraging data provides many pow-

erful capabilities, such as the predictive sight or continuous improvement. Therefore, data-

oriented approaches have become a new dimension in a wide range of areas, including net-

work and security design, in the future. In this dissertation, we propose four data-oriented

approaches that renovate or calibrate current network and security designs.

1.1 Wireless Data Based Mobile System Design

Mobile technologies have become one of the dominant ways for people to access the

Internet. However, due to the broadcast nature of the wireless channels, the intensive traffic

environment can desperately jeopardize the performance within a mobile network. To cope

with this issue, we revisit the fundamental part within wireless mobile networks, and deal

with two main aspects to improve mobile network system performance: packet corruption

and packet collision. The first one is due to the unpredictable wireless fading, and the

second one is resulted from concurrent transmissions. We discover that there are indeed

opportunities from a data-driven perspective to further improve mobile network efficiency

and reliability.
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1.1.1 Inter-Packet Based Approach for Packet Corruption

In a wireless network, signal processing is an essential procedure at a receiver during

packet reception to resist the packet corruption. It includes three major steps: timing/fre-

quency synchronization, channel estimation, and equalization [1, 2, 3, 4]. These together

are generally treated as an independent process, serving as the foundation towards data

decoding and higher layer protocol management [5, 6, 7, 8, 9, 10].

Our research finds out that leveraging common protocol information across network pack-

ets can substantially improve the signal processing performance in a wireless network. Our

motivation is that in a realistic network scenario, packets are not transmitted with uniformly

random in-packet settings, such as date rate, packet size, source and destination addresses in

the physical (PHY) or medium access control (MAC) fields. There exist common PHY and

MAC header fields across different packets. For example in a WiFi network: a station only

receives data from the access point (AP), indicating that the packets it cares about always

have the same source address; and packets for data-intensive applications usually have the

same packet size (i.e., the maximum allowable size). Such commonness of in-packet settings

can serve as prior knowledge to improve the signal processing performance.

Hence, if we take signal processing out of its traditional domain and place it in a prac-

tical wireless network, there is indeed a lot of prior knowledge that can be used to boost

its performance. The underlying challenge is how we are able to harness all possible com-

mon information and piece everything together to re-design signal processing with limited

overhead for practical use in the wireless network domain.

To deal with these challenges, we propose the STAteful inter-Packet signaL procEssing

(STAPLE) framework, which is a generic design to improve the performance of signal pro-

cessing for wireless networking. Rather than designing signal processing in its traditional

domain, we make signal processing stateful within the network domain. In particular, the
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key design in STAPLE is that a receiver maintains a small-sized state table, whose entry

includes bit values of selected PHY/MAC fields from successfully decoded packets, such as

MAC addresses, packet length and data rate, depending on a standard. These bit values

constitute the state of a packet.

When a new packet arrives and decoding error happens, STAPLE performs state asso-

ciation (i.e., matching the bit values of its header fields with a known entry to restore the

packet to a previous state). If the association succeeds, STAPLE considers the state of the

packet is known (i.e., a part, if not all, of PHY/MAC information is known). Then, such

known knowledge serves for the same purpose of “training sequence” (also known as “pream-

ble” in many standards [11, 12]). Therefore, the restored state is combined with the original

preamble in the packet to form a longer preamble. STAPLE re-performs signal processing

on this longer preamble. Because more “prior” information is fetched for signal processing,

STAPLE can obtain better frequency and channel estimates, which helps packet decoding

and accordingly improves the network link performance.

To the best of our knowledge, there is no comprehensive system study in the literature

to utilize the “prior knowledge” extracted from packet headers to improve the signal pro-

cessing performance in wireless networks. We propose STAPLE as a general software radio

system framework, then explore the feasibility and evaluate effectiveness of such a frame-

work. In particular, we design and implement STAPLE with adapted configurations for

802.11a/b/g/n/ac and 802.15.4 on USRP X300 devices. The features of STAPLE are as

follows: (i) lightweight processing and low overhead with a very small state table size (as

experimental results suggest that it is sufficient to store 2-5 states at a station and 12-20 at

the AP); (ii) a universal framework that benefits a wide range of wireless networks; (iii) no

modification to any wireless standard; (iv) orthogonality to existing packet data decoding

mechanisms (e.g., partial packet recovery [13, 14, 15]).
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We conduct comprehensive experiments to show the benefits of STAPLE for different

wireless standards. Our main contributions are summarized as follows: (i) We propose to

improve signal processing within the network domain. We introduce the concept of the state

of a packet as the bit values of selected PHY and MAC fields, and demonstrate that state-

associating a packet to a previous state and re-performing signal processing in STAPLE

improve the wireless network performance. (ii) We design, implement and configure the

STAPLE prototypes for 802.11b/g/n/ac and 802.15.4. STAPLE is lightweight, effective and

brings universal performance benefit to the packet reception process for wireless networks.

Comprehensive experimental results show that STAPLE improves the packet delivery ratio

by up to 20.8% under various conditions.

1.1.2 RTS Data Based Approach for Packet Collision

CSMA/CA is fundamental for WiFi to coordinate multiple nodes to access the wireless

channel. RTS/CTS is a widely-used mechanism in WiFi, which uses short RTS packets for

fast collision inference, transmission path check as well as combating the hidden terminal

problem [11]. In many early WiFi products, RTS/CTS was disabled due to the concern

of overhead [16]. With the substantial increase of data demand in recent years, WiFi data

packets become longer and longer, and today’s WiFi devices send an RTS packet when the

size of a data packet exceeds a given threshold. The threshold is usually set to around 2,300

bytes [17, 18, 19, 20, 21] to balance the performance and the overhead. RTS/CTS is also used

in advanced WiFi functionalities, such as beamforming and MU-MIMO [11]. In addition,

global RTS/CTS [22, 23, 24] has also been proposed for cross-technology communications.

The essence in the RTS/CTS mechanism is to trade a small cost of the RTS collision

for a potentially large cost of data collision. In this research, we revisit the RTS collision

problem and present the comb decoding (CombDec) system to resolve RTS collisions without
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changing the 802.11 standard and thus improve the wireless channel utilization as well as

the network throughput.

The observation behind designing CombDec is that the data payload of an RTS packet,

when treated as a vector in a vector space, exhibits a comb-like distribution. Specifically, the

RTS content consists of 160 bits, which leads to 2160 possibilities. We find that the standard-

structured data fields in RTS actually result in at most around 221 possible contents in

today’s WiFi networks. Therefore, the probability distribution of such contents will exhibit

a comb-like shape: only up to 221 out of 2160 contents having non-zero probabilities.

As a result, we reformulate the RTS collision problem as a weighted sum problem: we

consider the received signal due to an RTS collision is the sum of all 221 RTS contents

transmitted at the same time, but with different channel weights. An RTS content has

a non-zero channel weight if it is actually transmitted, and zero weight otherwise. Then,

resolving the collision is equivalent to solving for the channel weight for each RTS content.

The key observation to solve the problem is that a vast majority of the 221 channel weights

should be zeros because a collision involves only a few RTS packets in a real-world network.

In other words, the vector that includes all channel weights is sparse, which opens a path to

use sparse recovery [25, 26, 27] to resolve RTS collisions.

One significantly challenging issue around collision resolution based on sparse recovery

is the computational complexity because we start from around 221 possibilities of RTS sig-

nals to resolve a collision. To cope with this issue, we analyze how a key RTS data field,

Duration (that specifies the time duration an RTS packet reserves), is constructed in state-

of-the-art 802.11 firmware. A comprehensive set of 802.11ac packet traces are also collected

to understand the distribution of Duration in various scenarios. It is found that today’s

firmware imposes extra restrictions on Duration and is biased towards a limited number of

value selections, and the distribution of Duration in real-world packets is highly uneven and

patterned. Based on this observation, CombDec is designed with two key components: (α,
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β)-construction and γ-decimation, which adaptively narrow down the search range in sparse

recovery to a set of only hundreds of potential RTS signals, making system design of collision

resolution practical for WiFi networks.

We implement CombDec in a 20-node network testbed, and evaluate it in different scenar-

ios. Experimental results demonstrate that our design has both direct and indirect impacts

on today’s WiFi systems and setups.

• For the direct impact, today’s WiFi devices usually adopt a conservative RTS threshold

(i.e., around 2300 bytes), which results in 30% - 45% data transmissions initiated

by RTS (according to our packet trace collection and analysis). By directly using

CombDec with current RTS settings, we find via experiments that CombDec is able

to decode 98% of two-RTS collisions and improve the network throughput by up to

23.3%

• For the indirect impact, CombDec offers a new capability of decoding RTS collisions

and in fact encourages changing today’s WiFi setups for more RTS transmissions.

Therefore, by reducing the RTS threshold to zero and letting every device always

send RTS before data (indicating that most collisions in the network become RTS

collisions), CombDec significantly improves the network throughput by up to 46.6% in

experimental evaluations.

The design of CombDec is the first systematic work towards resolving RTS collisions in

WiFi networks. It is non-invasive and redefines the role of the RTS functionality and pushes

WiFi towards a collision-free environment.

1.2 Measurement Data Based Network Security Design

Accurate and timely monitoring of network performance is vital to ensure a reliable and

efficient network environment. However, under some situation, direct observation is not fea-
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sible, then network tomography or network inference has emerged as an algorithmic process

to transfer end-to-end path measurements into link metric estimates [28, 29, 30, 31, 32, 33,

34, 35, 32, 36, 37, 38]. However, when revisiting network tomography from a data-driven

perspective, there are two vulnerabilities. The first one is of the measurement integrity.

Specifically, in network tomography, existing studies make a seeing-is-believing assumption

that measurements over end-to-end paths between monitors indeed reflect the real perfor-

mance aggregates over individual links. However, such an assumption does not always hold

in the presence of malicious autonomous systems. Therefore, by taking advantage of this

vulnerability, we develop an attack strategy, called measurement integrity attack, which not

only destroys the measuring system, but can even mislead the system to scapegoat other

innocent users. The second vulnerability is of the measurement confidentiality. In par-

ticular, network tomography (inference) [39, 40, 41, 42, 43] offers a way to obtain the path

information without directly measuring it, which poses severe challenges in many anonymous

networks. Therefore, to prevent disclosing the path information, we find that random routing

strategies are capable of hiding the path information. Then, by leveraging the measurement

data, we systematically study the behavior of different randomized routing protocols, and

explore the fundamental reason why randomized routing strategies can prevent information

leakage against network inference.

1.2.1 Vulnerability of Measurement Integrity

By nature, network tomography does not directly observe network link metrics, but

“tele-measure” them via measurements over end-to-end paths. Each path consists of a few

or more links. Existing work mainly focused on algorithm design and applications (e.g.,

[33, 34, 35, 32, 36, 37, 38]); and some recent papers also considered the problems of place-

ment of monitors and identifiability of link metrics (e.g., [44, 45, 46, 47]). In essence, network

tomography can be considered as an algorithmic process to transfer end-to-end measurements
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into link metric estimates. Interestingly, most existing studies on network tomography em-

phasize extracting as much information about link metrics as possible from available measure-

ments, and always make a seeing-is-believing assumption that measurements over end-to-end

paths between monitors indeed reflect the real performance aggregates over individual links.

However, such an assumption does not always hold in the presence of malicious autonomous

systems [48, 49], backdoor-infected routers [50], and node-capture attacks [51, 52] as these

adversaries actively affect packet forwarding and have become increasingly possible in to-

day’s complicated environments. Rather, the assumption renders a serious security problem

of measurement integrity during the network tomography process.

By taking advantage of this seeing-is-believing vulnerability in network tomography, we

develop a new class of attack strategies, called measurement integrity attacks. Unlike con-

ventional data integrity problems that are usually protected by standard methods (e.g., en-

cryption and authentication), a key challenge associated with measurement integrity attacks

is that the facts (e.g., packet transmission/delivery timings) during network measurement

cannot be protected by such standard methods, but can be easily manipulated by malicious

attackers. The basic idea of measurement integrity attacks is to intentionally delay or drop

packets at malicious nodes to manipulate end-to-end measurements between monitors in

a way such that a legitimate node is incorrectly identified by network tomography as the

root cause of the problem, thereby becoming a scapegoat. We propose three basic attack

strategies with different objectives.

1. Chosen-victim scapegoating, in which attackers target one or more given victims such

that these victims are misleadingly identified by network tomography as the root cause

of a problem.

2. Maximum-damage scapegoating, in which attackers find the optimal set of victims

among all nodes to inflict the maximum damage to the network.
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3. Obfuscation, by which network tomography is tricked to produce a substantial number

of link estimates beyond the normal status to confuse a network operator.

We analyze the feasibility of these strategies, and present the conditions for detecting and

locating such attacks. We also use network datasets to perform simulation experiments to

show the success possibility, damage, and the detectability and locatability of such attacks.

Our main contributions can be summarized as follows.

• We are the first to investigate the vulnerability in network tomography mechanisms

from a security perspective, and reveal that measurement integrity attacks are able

to damage the network while substantially misleading network tomography without

knowing the global routing knowledge of the network.

• We systematically construct three basic attack strategies, and investigate the feasibility

of such attacks, then propose methods to detect and locate measurement integrity

attacks.

• We use real-world datasets to evaluate the threats of measurement integrity attacks

in network systems with various settings. Experimental results demonstrate that the

current practice of network tomography is even vulnerable to a single attacker.

Our work demonstrates that when a measurement integrity attack is successfully launched,

network tomography generates misleading and erroneous outputs, based on which failure re-

covery or mitigation procedures may further exacerbate the damage caused by the attack.

As security plays a critically important role in network design and measurement, network

tomography should be developed not only for conventional goals such as efficiency and iden-

tifiability, but also for security. Hence, existing network tomography methods in various

applications need to be revisited to increase attack resilience and adopt necessary detection

mechanisms.
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1.2.2 Vulnerability of Measurement Confidentiality

In a wireless network, network flow information (i.e., the flow data rates of source-

destination pairs on end-to-end paths) is the essential knowledge about the network. Equipped

with such knowledge, malicious adversaries will know who is communicating with whom in

the network or how much data rate a pair of communicating parties has, and then launch

powerful, effective attacks targeting the network [53, 54].

In many large-scale wireless networks, such as wireless sensor network (WSN) [55] or mo-

bile ad-hoc network (MANET) [56], directly observing the end-to-end flow information is not

always possible or even infeasible because of the prohibition in anonymous networks or the

measurement traffic overhead. To acquire network flow information, adversaries can leverage

the method of network inference to infer the end-to-end flow rates through eavesdropping on

wireless link activities, which is widely feasible in wireless networks because of the broadcast

nature of the wireless medium. Network inference was originally designed for the effective

network management and diagnosis, therefore most existing studies focus on optimizing the

inference performance [57, 42, 41, 58, 59, 60, 43]. However, from the adversary’s perspective,

such a line of work indeed exposes the vulnerability of leakage of network flow information, in

which the adversary can simply obtain such information through wireless link measurements.

How accurately the adversary can obtain the flow information depends on the inference

method the adversary uses, network traffic patterns, and routing protocols. Although it

has been noted recently [61] that the inference error for an adversary can be maximized

if a network can make sure the adversary has no knowledge of how packets are routed in

the network, little progress has been made to reveal how a network can indeed meet this

goal. Obviously, a larger inference error helps a network to hide its flow information against

leakage more. To achieve this, the network can make the routing of packets unpredictable to

adversaries. For example, if a deterministic routing protocol like the shortest path routing
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[62] is used, it can be very likely that the adversary can accurately infer the flow information

from link measurements based on standard network inference methods [63]. On the contrary,

if a routing protocol is randomized, such as using Tor [64], the intermediate relay nodes are

randomly selected to form an end-to-end path, yielding unpredictable behavior of packet

forwarding observed by an outside adversary.

In this work, we study the security benefits of randomized routing protocols against

malicious network inference as well as their associated costs. In particular, we focus on ana-

lyzing three major templates for randomized protocols based on common routing behaviors

in wireless networks.

1. k-random-relay: k forwarding nodes (called relays) are selected randomly in a network.

The routing path for each packet must contain such relays.

2. k-random-neighbor: in which the next hop is selected randomly. Specifically, for each

packet, at each hop, one neighbor is selected randomly from k neighbors with the

shortest distances (the distance is measured by the number of hops) to the destination.

3. k-random-path: each packet is sent by one randomly selected path from the k shortest

end-to-end paths.

These templates capture the majority of randomized behaviors during packet forwarding

that can make the entire routing unpredictable. In this chapter, we use an asymptotic

approach to theoretically model these routing templates and measure their induced inference

errors. We also analyze the incurred delay cost of three templates. Our major results can be

summarized in Fig. 1.1, which depicts the lower bound of inference errors for three templates

scaled by the delay cost in asymptotic notations for a network with N nodes and
√
N active

end-to-end flows under the condition that N is sufficiently large.

From Fig. 1.1(a), we see that the inference errors induced by all templates are on the same

order of
√
N with constant difference. Both k-random-relay and k-random-path templates
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Figure 1.1. Asymptotic inference error and delay performance for a network with N nodes
and

√
N flow, where (a) shows the relationship of them, and (b) provide more exact results.

have delay costs on the same order of
√
N . The k-random-neighbor template incurs a

delay cost of N log k lnN . Our results indicate that k-random-path achieves the inference

error with the same order of the other two templates while maintaining the lowest delay

cost. But it requires knowing the global path information of the network, and in practice,

such information is generally unavailable or prohibited to know. For a large k, the delay

of k-random-neighbor is significantly larger than others, but the inference error is still on

the same order of the others. As a result, k-random-neighbor with a large k should be

avoided. From Fig. 1.1(b), for k-random-relay, both the inference error and the delay are

larger than k-random-path by a constant order of magnitude. In addition, k-random-relay
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does not require to know the global information, thus a number of real-world applications

(e.g., Onion routing or Tor [64]) leverage this template to achieve the anonymity.

Our main contributions are summarized as follows.

• We are the first to study the vulnerability of the leakage of network flow information

from the routing protocol perspective, and reveal that randomized routing protocols

help to prevent revealing flow information by inflicting large inference errors. Whereas,

a large inference error is always associated with a large delay cost.

• We propose three templates based on routing behavior, i.e., k-random-relay, k-random-

neighbor and k-random-path. Then we systematically characterize and model these

templates, and investigate the inference error as well as the incurred delay cost of each

template. Our theoretical results verify that each randomized template is able to hide

the flow information with different capabilities.

• We conduct comprehensive simulations to evaluate the inference error and delay of

each template under a practical network inference setup. Experimental results confirm

the relationship between the inference error and the delay cost.

1.3 Dissertation Overview

In Chapter 2, we present STAPLE, which is a lightweight, efficient mechanism to improve

the signal processing performance for wireless networking. In Chapter 3, we present a new

decoding system CombDec that uses (α, β)-construction, γ-decimation and sparse recovery

to resolve RTS collisions. In Chapter 4, we present new attack strategies called measurement

integrity attacks against network tomography, and use theoretical and experimental results

to analyze the feasibility. We also present the conditions to detect and locate these attacks.

In Chapter 5, we systematically categorize randomized routing protocols into three tem-
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plates, k-random-relay, k-random-neighbor and k-random-path, and theoretically analyze

the inference errors and incurred delay costs of them.
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Chapter 2: Stateful Inter-Packet Signal Processing for Wireless Networking

2.1 Abstract

Traditional signal processing design (e.g., frequency offset and channel estimation) at

a receiver treats each packet arrival as an independent process to facilitate decoding and

interpreting packet data. In this chapter, we enhance the performance of this process in

the wireless network domain. We propose STAteful inter-Packet signaL procEssing (STA-

PLE), a framework of stateful signal processing residing between the physical and link layers.

STAPLE transforms the signal processing procedure into a lightweight stateful process that

caches in a small-sized memory table physical and link layer header fields as packet state

information. The similarity of such information among packets serves as prior knowledge to

further enhance the reliability of signal processing and thus improve the wireless network

performance. We implement STAPLE on USRP X300-series devices with adapted config-

urations for 802.11a/b/g/n/ac and 802.15.4. The STAPLE prototype is of low processing

complexity and does not change any wireless standard specification. Comprehensive experi-

mental results show that the benefit from STAPLE is universal in various wireless networks.

Preamble PHY Header MAC Header MAC  Payload (usually encrypted)

PHY Payload

Figure 2.1. Generic packet structure viewed at the PHY and MAC layers.
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2.2 Preliminaries

In this section, we describe preliminaries about signal processing and packet decoding in

wireless networks.

2.2.1 Packet Specifications in Wireless Networks

In today’s wireless networks, elements for data exchange are packets that contain both

standard-specified information and user data. Figure 2.1 illustrates a generic packet format

viewed at the PHY and MAC layers. As shown in Figure 2.1, a packet consists of the

preamble, the PHY header, and the PHY payload that includes the MAC header and payload.

The preamble is specified in a wireless standard and known to the public. It is also called

as pilot or training sequence [65] for energy detection, timing/frequency synchronization and

channel estimation [66]. The PHY header usually provides specific PHY layer information

for decoding the PHY payload. Depending on a wireless standard, such information may

include packet length, modulation type, and data rate. The PHY header may also contain

a checksum field, such as cyclic redundancy check (CRC) in 802.11b, to verify the successful

decoding of the PHY header. The MAC header facilitates the functionality of coordinating

multi-access of network nodes to share the wireless channel. It generally includes the source

and destination MAC addresses, and packet type information, such as acknowledgement

(ACK), beacon, and data packets in 802.11a/b/g/n/ac [11]. MAC payload is the actual

data at the MAC layer, including high-layer protocol information and the user’s data at the

application layer. In today’s wireless networks, this payload is usually encrypted [11, 12].

When a packet is transmitted by a sender to a receiver in a wireless network, the increase

of the energy level at the receiver triggers the packet reception process.
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Figure 2.2. Packet reception at a receiver.

2.2.2 Packet Reception in Wireless Networks

The packet reception process consists of two relatively independent procedures: signal

processing and signal decoding, as shown in Figure 2.2. The signal processing procedure

is used to prepare all necessary pre-decoding steps before decoding the packet data at the

receiver. These steps generally happen in sequence as synchronization, channel estimation

and equalization. The signal decoding procedure is to first decode the PHY header to obtain

essential PHY information, which is then used to decode the PHY payload, including the

MAC header and the MAC payload.

2.2.2.1 Signal Processing

Because the radio wave propagating through the wireless channel is a complicated phe-

nomenon characterized by various environmental factors, such as the multi-path fading and

the doppler effect [66], the signal processing procedure estimates and compensates those fac-

tors before the signal is decoded into data bits. Generally, signal processing contains three

major steps: synchronization, channel estimation, and equalization, as shown in Figure 2.2.

All these steps are based on the known preamble with length n in the packet, denoted by

x = [x1, x2, · · · , xn], where xi is the i-th baseband symbol in the preamble.

Synchronization includes timing synchronization and frequency synchronization. Timing

synchronization is triggered by energy detection, and is to find the start position of the first

PHY layer symbol in a packet [67] such that the later processing on the symbols in the packet
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is aligned. After timing synchronization, the received signal of the preamble in the packet

is represented as a vector s = [s1, s2, · · · , sn]. Frequency synchronization is to estimate and

compensate the frequency offset ∆f between the transmitter and the receiver [66] from the

received preamble signal s based on the knowledge of the preamble x.

After frequency offset compensation, the received signal vector of the preamble s =

[s1, s2, · · · , sn] has been compensated to a new vector s′ = [s′1, s
′
2, · · · , s′n] [4], based on

which channel estimation is performed to estimate the channel state information (CSI). The

maximum-likelihood (ML) algorithm that minimizes the estimation error on the flat-fading

channel [66] is

ĥ = (xHx)−1xHs′, (2.1)

where (·)H and (·)−1 denote the matrix conjugate transpose and inverse, respectively. ML

channel estimation for frequency-selective channels [3], orthogonal frequency-division multi-

plexing (OFDM) [1] or multiple-input and multiple-output (MIMO) channels [68] are per-

formed in a similar linear process to (2.1). Note that although the matrix inverse operation

in (2.1) is nonlinear, the preamble x is known to the public and accordingly (xHx)−1xH in

(2.1) can be pre-computed.

Once the receiver obtains the estimated CSI ĥ, it performs channel equalization [69]

to compensate the channel effect to support coherent demodulation. Note that OFDM has

been widely adopted in today’s wireless standards, such as in 802.11a/g/n/ac [11], because it

significantly simplifies the channel equalization process by transforming a frequency-selective

wireless channel into multiple parallel flat-fading ones.

2.2.2.2 Signal Decoding

Signal decoding follows immediately once signal processing is finished. As a packet may

have different modulation and coding schemes in the PHY header and payload (e.g., in
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802.11a/g/n/ac), the receiver first demodulates and decodes the PHY header and obtains

the data rate information (i.e., the modulation and error-correction coding information)

about the PHY payload, along with other necessary information. As shown in Figure 2.2,

if a checksum (e.g., CRC or parity) exists in the PHY header and the decoded header does

not pass the error check, the receiver has to drop the packet (when there is no other error

recovery option); otherwise, the receiver uses the data rate information in the PHY header to

demodulate and decode the PHY payload, obtaining the MAC header and the MAC payload.

If the receiver verifies the checksum of the MAC payload, it passes the payload data to the

upper layer for protocol management and data delivery.

Demodulation and error-correction decoding during the signal decoding process have

been well studied in the wireless communication domain [70, 16].

2.3 Design Motivation behind STAPLE

In this section, we introduce the intuition behind stateful signal processing, then use

real-world measurements to validate our intuition. Finally present our basic design of the

STAPLE mechanism.

2.3.1 Basic Intuition and Observations

Traditionally, the entire packet reception is treated as an independent process at a re-

ceiver. Recent studies have focused on enhancing the signal decoding procedure to improve

wireless link performance, such as partial packet recovery [71, 15, 72, 14, 7, 9]. Little at-

tention has been focused on re-designing the signal processing procedure for wireless packet

reception, even in the signal processing community, because synchronization, channel esti-

mation and equalization are all well explored in the literature [2, 1, 4, 66, 73, 65].

In this chapter, we take a closer look at the signal processing procedure. Intuitively, such

a procedure must be treated as an independent process for each packet arrival. For example,
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Figure 2.3. Distributions of (a) packet length and (b) data rate in SIGCOMM04/08 datasets.

upon arrival of a packet, the receiver estimates the frequency offset and the CSI from the

preamble, compensates their effects on the received signal for decoding. As the frequency

offset and the CSI are time-varying and hard to predict [4], the receiver has to estimate and

compensate their effects again when a new packet arrives.

It is difficult to further improve a well-established signal processing algorithm in practice.

Our design intuition is that if we place signal processing in the network domain, we should

be able to boost its performance if we can leverage the common information across different

packets. In a wireless network, packets indeed have some common information, which can

serve as prior knowledge during packet arrival. We analyze the realistic packet trace datasets

SIGCOMM04 [74] and SIGCOMM08 [75] to see whether common information exists between

packets in typical WiFi network usages. Figure 2.3(a) shows the packet length distributions

in the datasets. We observe that the distribution in each dataset is extremely uneven and

consists of two regions: the first region includes small packet lengths (1-250 byes), indicating

control or short data packets; and the second is around the maximum allowable packet size

(1400-1600 bytes), indicating packets for data-intensive applications. Similarly, uneven dis-

tributions of data rates in packets are shown in Figure 2.3(b). Given an AP in SIGCOMM08,

we also find that on average 4.2 nodes sent 51.7 packets to the AP within one-second period.
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Those packets have the same PHY/MAC field values with high probability. The quantitative

evaluation on each of these fields will be detailed in Section 2.5.

2.3.2 Basic Design of STAPLE

The preliminary observations show that there exists common (but maybe scattered) in-

formation among packets, which can serve as prior knowledge for signal processing during

packet reception. If we look at such prior information solely within the signal processing

domain, a traditional way is to perform profiling/training among all PHY/MAC fields in

collected packets to build the prior distributions of such fields, and then integrate these dis-

tributions into a maximum a posteriori (MAP) framework [66] to improve signal processing.

Nonetheless, such a method faces two practical issues: (i) Profiling empirical distribu-

tions is always practically cumbersome due to its heavy dependencies on variable factors,

such as physical environments, the number of users, and how they use the network, all of

which cannot be easily predicted from time to time. (ii) Different data fields in packets are

very likely to exhibit distinct distributions and also have correlations. Integrating these dis-

tributions into a unified framework is challenging. Moreover, the design must be lightweight

and efficient to ensure low overhead and timely signal processing.

Thus, we avoid designing this method solely in the signal processing domain. Rather, we

look at it from the network perspective. A core idea in network management is to maintain

a network state, such as the backoff state at the MAC layer or the congestion control state

in TCP. When a sender transmits a packet, we can use its header field values to form its

state. Formally, we define the state of a packet as follows.

Definition 1 The state of a packet is a bit sequence concatenated by one or more bit strings

in the PHY and MAC header fields in the packet.

All PHY/MAC header fields in a packet can be combined to represent a state. In this

way, the state space of a packet might be very large in theory. In practice, we can carefully
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select a few fields that are very likely to have the same value across packets to form the

state (as indicated in our packet trace analysis). Hence, our motivation is to introduce state

management into signal processing in a network context. Figure 2.4 draws the sketch of

STAPLE, which consists of three major steps.

101010...

signal 
processing

signal 
decoding

State Table
101010…

…...

state association

101010...

reconstruct 
longer preamble

Receiver

associated state

Step 1

Step 2Step 3

upper 
layer

if the state has errors 
(e.g., 100010...), they 
can be corrected here.

Figure 2.4. Sketch of STAPLE.

1. When a receiver receives a packet, it first goes through signal processing and decoding.

If no error happens, the receiver can directly send the data to the MAC and higher

layers, finishing the packet reception.

2. When errors happen, STAPLE tries to associate the corrupted packet with a previous

state. Specifically, it compares the PHY/MAC fields in the corrupted packet with

a state table that stores those fields from successfully decoded packets, which finds

the closest state to the packet and recover it into that state. As shown in Step 2 of

Figure 2.4, when the state of the packet has errors, they can be then corrected after

state association; when the state contains no error and exactly matches a previous one,

other parts of the packet, such as the packet payload, should have errors leading to

decoding failure. In both cases, the state of the packet is associated.

3. At this point, the PHY/MAC header fields in the packet state can be considered as

prior knowledge. This indicates that the information can be combined with the original
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preamble in the packet to form a longer preamble to re-perform the signal processing,

which can yield better estimates for frequency offset and CSI (as estimation errors

in signal processing generally decrease with the preamble length increasing [2, 76, 1,

77]). Then, the receiver re-performs the signal decoding using these better estimates.

They can improve the performance of decoding the payload because it usually has a

higher modulation/coding rate than the packet header, and accordingly requires more

accurate frequency offset and CSI estimates.

STAPLE transforms prior information in a wireless network into the concept of packet

state. In this way, prior information is recovered by state association, and is then used to

construct a longer preamble. This new preamble is in turn used to re-do the signal processing

to obtain better frequency offset and CSI estimates, which is called signal re-processing in

this chapter.

2.4 Architecture and Components

In this section, we turn the basic concept of STAPLE into detailed design. We first

present the STAPLE architecture, and then elaborate its key components.

2.4.1 STAPLE Architecture

packet PHY / MAC Header

Decoding

State 

Association

Signal Re-

processing
State Table

decoding fails

to upper 
layer

find a 
state

Traditional

STAPLE 

(a)

(b)

Signal 

Processing

previous 
states

succeeds

update

Figure 2.5. Architecture of STAPLE.
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STAPLE can be regarded as a module (as shown in Figure 2.5(b)) flexibly attached to

the traditional architecture of a wireless receiver (as shown in Figure 2.5(a)).

There are three key components in STAPLE: state association, signal re-processing, and

state table management. To provide a generic framework, we decouple the design of STAPLE

into two independent parts: (i) designing STAPLE components (i.e., state association and

signal re-processing) and (ii) constructing the state of a packet from PHY/MAC fields. In

the following, we describe the first part, which is standard-independent. The second part

answers what PHY/MAC fields are used to construct the state of a packet and will be

discussed based on wireless standards in Section 2.5.

2.4.2 State Association

State association is triggered when the decoding of a packet P fails. From Definition 1,

we know that the state of a packet is the bit combination of several selected PHY/MAC

fields. Thus, STAPLE can read the state of the packet S(P ) by combining the decoded bit

values in certain PHY/MAC fields in P , as shown in Figure 2.6. Note that even upon failure

of decoding an entire packet, the bit values in its PHY/MAC fields can still be decoded (with

potential errors), and then fetched into state association for state look-up and comparison.

After obtaining S(P ), STAPLE associates it with a previous state in the state table,

which stores a set of previous states, denoted by S = {S1, S2, · · · , S|S|}, where |S| denotes

the cardinality of S.

As P is a corrupted packet, any bit in P can be erroneous. However, if we can find a state

in S that resembles S(P ), it is very likely that S(P ) should be equal to that state, but may

exhibit another value because of noise or interference during the reception of P . This is from

our observations in packet trace analysis: a node is found to send packets to another node

with limited variations of bit values in PHY/MAC headers, therefore exhibiting a limited
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Figure 2.6. State association in STAPLE.

set of most frequent states. If these states are all stored in the table, the state of a corrupted

packet is very likely stored in the state table.

As a result, the state association component in STAPLE finds the stored state closest

to S(P ) in the state table. The measure of “being closest” is by the Hamming distance,

which is defined as the number of bit differences between two bit sequences. Accordingly,

the association algorithm can be written as

Objective : Ŝ(P ) = argmin
s∈S

H(s, S(P )) (2.2)

Subject to : H(S(P ), Ŝ(P )) < dth, (2.3)

where H(· , ·) denotes the Hamming distance between two bit sequences, and the objective

(2.2) is to re-associate the packet P with a new state Ŝ(P ) ∈ S that is the closest to the

original state S(P ). A constraint (2.3) also exists to make sure that the Hamming distance

between Ŝ(P ) and S(P ) must be smaller than a threshold dth. This is because the real state

of P does not always exist in the state table. A large value of H(S(P ), Ŝ(P )) indicates that

(i) packet P was transmitted with a completely different state that was never stored in the
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state table; (ii) too many bit errors happened because of low signal quality. In both cases,

STAPLE stops state association and simply drops the packet P .

It is also possible that the corrupted packet P is associated to a wrong state Ŝ(P ), which

can happen when the Hamming distances among some pairs of states stored in the table are

very small. STAPLE makes best efforts to associate P with a previous state. When P is

indeed associated to a wrong state, STAPLE is not likely to recover P by signal re-processing.

But this only reduces the gain from STAPLE and does not degrade the performance as P

is already corrupted. Wrong association can be mitigated by carefully choosing PHY/MAC

fields to construct the state of a packet, which is detailed in Section 2.5. A smaller threshold

dth can also mitigate wrong association from happening. We will evaluate the impacts of dth

in experiments in Section 2.6.

Figure 2.6 shows two simple examples of how state association works: (i) when a cor-

rupted packet P has a state with one error bit S(P ) = 10010110, state association is per-

formed based on (2.2) with threshold dth = 2 to obtain Ŝ(P ) = S2 = 11010110 because

their Hamming distance H(S(P ), S2) = 1. This indicates that the second bit in S(P ) is

likely an error, and is corrected from 0 to 1. Then, the state of P is associated to a new

one Ŝ(P ) = 11010110. (ii) When P has a state without any error bit S(P ) = 11010110,

obviously Ŝ(P ) = S(P ) = S2 = 11010110 after state association.

When the header is coded in some standards (e.g., convolutional coding is used for

802.11g/n/ac headers), state association can be performed on the coded data and thus the

Hamming distance comparison will not be affected by the coding scheme.

Note that the performance benefits of STAPLE do not come solely from error-correcting

a part of the PHY/MAC header in a packet during state association. More importantly,

STAPLE helps improve the performance when the payload, not the header, is decoded with

errors. This is because the payload usually has a higher modulation/coding rate than the

header, therefore requires more accurate frequency offset and CSI estimates that STAPLE
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can provide based on a longer preamble formed by the conventional preamble and the state of

a packet. Overall, state association serves as the first essential step for this generic framework

to improve the signal processing performance.

2.4.3 Signal Re-processing

Given the corrupted packet P as the input, the output of state association is the associ-

ated state Ŝ(P ). Then, STAPLE performs signal re-processing, which consists of two steps

as shown in Figure 2.7.

1 0 0 1 0 1 1 0

1 1 0 1 0 1 1 0

PHY/MAC Headers PayloadPreamble

)(PS

)(ˆ PS

state association

convert to symbols

. . .. . .
Step 1: longer 
preamble xL is 

formed

 Step 2: re-estimate 
channel, then 
decode again

m(         )x

Corrupted
 Packet P

)(ˆ PS

Figure 2.7. Signal re-processing in STAPLE.

First, STAPLE converts Ŝ(P ) that represents the recovered bits from PHY/MAC fields

in packet P to physical layer symbols, which is done by re-modulating Ŝ(P ). If a header

is interleaved or/and coded (e.g., 1/2 convolutional coding in WiFi signal), STAPLE re-

interleaves or/and re-encodes, then re-modulates Ŝ(P ). Denote by m(Ŝ(P )) the symbol

vector of re-modulated symbols from Ŝ(P ). The longer preamble is constructed as xL =
[

x m(Ŝ(P ))
]

, where x is the original preamble described in Section 2.2.2.

Second, given the newly constructed preamble xL, we can improve both frequency syn-

chronization and channel estimation during signal processing, as shown in Figure 2.2: (i)
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Frequency synchronization for low complexity processing must leverage a special repetitive

structure (e.g., two same consecutive symbols in 802.11 a/g/n/ac) in the preamble. The

longer preamble xL does not generally result in such a repetitive structure, leading to a

non-convex optimization problem in [1, 2]. (ii) In contrast, channel estimation is usually a

linear process (as discussed in Section 2.2.2). A longer preamble in general results in a more

accurate CSI estimate.

As performing signal re-processing requires a tradeoff between performance and com-

plexity, and we wish to ensure low complexity in the STAPLE implementation, we choose

to perform signal re-processing only based on channel estimation, and avoid solving the

non-convex optimization to re-estimate the frequency offset at the receiver. Thus, given xL,

STAPLE re-estimates the CSI as

ĥL = (xH
L xL)

−1xH
L s

′
L, (2.4)

where s′L is the vector combined by the received symbols from the original preamble part

and from the PHY/MAC fields in the received signal of packet P at the receiver.

After obtaining a better CSI estimate ĥL, STAPLE re-demodulates and re-decodes the

corrupted packet P in order to recover it. The implementation for this step can be opti-

mized to minimize the processing complexity for a wireless standard. We will analyze the

implementation complexity for 802.11ac in Section 2.6.2.1.

If there are pilot signals in the payload of the packet P (e.g., pilot subcarriers in 802.11

a/g/n/ac), because more information is obtained by STAPLE, it can yield a better initial

channel estimate ĥL, which can be based on to track the channel change using these pilots

[65] in a fast fading wireless channel environment.

Although (xH
L xL)

−1 is not a linear operation in (2.4), in OFDM equalization for many

wireless standards, xH
L xL is a complex number and (xH

L xL)
−1 only incurs a division operation
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in the complex domain. In addition, the value of (xH
L xL)

−1 can always be pre-computed

during state update and stored along with its associated state in the state table.

2.4.4 Table Management Policies

The state table (shown in Figure 2.5(b)) is used to store the states of successfully decoded

packets. We design two table update policies.

1. Timestamp-based policy, which uses packet arrival time as an indicator to update the

table. Each state is stored with a timestamp. Once the most recent packet is decoded

successfully, STAPLE updates the state’s timestamp if the state is already in the table,

or otherwise replaces the oldest state with this new one.

2. Frequency-based policy, which stores a timestamp and a usage count with each state

in the table. Similar to the previous policy, the timestamp is used to indicate the last

update time of a state. Once a packet is decoded, STAPLE updates the state’s times-

tamp and increments the usage count if the state is already in the table. Otherwise,

STAPLE replaces the state that has the smallest count with the new state. If several

states have the same count number, STAPLE chooses the oldest state for replacement.

This policy also zeros out the count of a state if the state’s timestamp is too old (i.e.,

larger than a given threshold).

When the table size is sufficiently large, the two policies should have no evident perfor-

mance difference. However, if the table size is small, the downlink performance may not be

affected significantly because a station, as the receiver, always receives data solely from the

AP. The uplink performance of the station that transmits more data (than others) to the

AP may be boosted because the state of its packets can always be stored in the AP’s table.

Therefore, the AP should choose a larger table size than a station in practice. The impacts
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of state table parameter configurations and policy setups will be evaluated in experiments

in Section 2.6.

2.5 Configuring the STAPLE System

We have designed the major components in STAPLE. Another key question left is which

PHY/MAC fields constitute the state of a packet, which is standard-dependent. In this

section, we configure STAPLE for 802.11a/b/g/n/ac and 802.15.4 by specifying how to

construct the state of a packet in such networks.

2.5.1 Methodology for Configurations

The motivation to develop STAPLE is from the observation that there exist most fre-

quently appeared values of PHY/MAC header fields in packets. Thus, we aim to select those

fields exhibiting little randomness to form the state of a packet. In particular, we use Shan-

non entropy [78] per bit to quantitatively measure the randomness of each PHY/MAC field in

packet trace data and choose those fields with low entropies. We choose the SIGCOMM04/08

datasets for 802.11b/g and our own datasets STAPLEn/STAPLEac for 802.11n/ac, respec-

tively. These datasets can represent typical WiFi scenarios in a conference, a campus or a

residential place.

STAPLEn is a dataset collected from a campus WiFi network and STAPLEac from

a residential WiFi network. Unlike 802.11b/g packet capturing, it is not always possible

for a third-party to correctly capture and decode all 802.11n/ac data packets because of

beamforming between individual stations and the AP [79]. Hence, we place four laptops at

different locations and capture packets individually in the networks. We then aggregate all

packets to measure the entropy of each header field. We find that the 802.11ac network did

not run in the multi-user MIMO (MU-MIMO) mode because the GroupID field in all collected
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packets was set to 0. Thus, our collection and measurement can reflect how PHY/MAC fields

in packets are set up for routine WiFi use in a non-MU-MIMO 802.11ac network.

Note that wireless standards adopt different coding schemes for the PHY/MAC headers,

which can affect the complexity of the signal re-processing component in STAPLE. We

categorize a coding scheme into one of three types: plaintext (P), interleaving and coding

(I/C) data, and encryption (E). Type-P indicates no coding is used for a header field (e.g.,

PHY/MAC headers of 802.11b); Type-I/C means that data fields in a header are interleaved

and error-correction coded (e.g., MAC headers of 802.11a/g/n/ac); Type-E indicates that

data fields in a header are all encrypted (e.g., MAC headers of 802.15.4). Generally, we avoid

choosing Type-E fields and select Type-P or Type-I/C fields based on their entropy values

for our implementation.

Constructing the state of a packet is not unique. In our STAPLE configurations for

802.11a/b/g/n/ac and 802.15.4, we target a lightweight design that balances between per-

formance benefits and costs of storage and computation in typical wireless networks with

normal usages. It is certainly feasible to add additional fields to (or remove existing fields

from) our configurations to optimize STAPLE along certain direction.

Because a newer 802.11 standard usually extends and relies on previous ones, we configure

STAPLE starting from 802.11b (legacy) to 802.11ac (state-of-the-art) for the sake of clear

presentation. Our implementation and evaluation are focused on 802.11ac in Section 2.6.

We also minimize the description of a wireless standard, which is well documented.

2.5.2 Configurations for Wireless Standards

2.5.2.1 Configurations for 802.11b

We start from 802.11b, which is a legacy WiFi standard but still backward supported

in many WiFi networks. Figure 2.8 shows a typical structure of physical protocol data unit
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(PPDU) for 802.11b, including the PHY Layer Convergence Procedure (PLCP) preamble,

PLCP header, and PLCP Service Data Unit (PSDU) that contains the MAC header and the

MAC payload.

PLCP Preamble PLCP Header

SYNC SFD SIGNAL SERVICE LENGTH CRC

PSDU

Frame 

Control

Duration 

/ID

Address

1

Address

2

Address

3

Sequence

Control

Address

4

QoS 

control

HT 

control

PHY Header

MAC Header

PPDU:

    0.14      0.09       0.06       0.07        0.07      0.73        N/A       N/A      N/A

0.17           0            0.2       N/A        

Figure 2.8. Typical format of an 802.11b data packet and measured entropies values.

As shown in Figure 2.8, the PLCP header represents the PHY header including four fields

of Type-P: SIGNAL, SERVICE, LENGTH, and CRC, where SIGNAL denotes the modulation

scheme, LENGTH is the payload length, SERVICE contains three bits to represent the PHY

configuration and the rest of bits are reserved and default to 0. The 802.11b MAC header

at the beginning of PSDU consists of a set of fields.

According to the measured entropy in each PHY/MAC field in Figure 2.8, we choose

SIGNAL, SERVICE, LENGTH at the PHY header and Frame Control, Duration/ID, Addr.1,

Addr.2, and Addr.3 in the MAC header to form the state of a packet because of their low

entropies. We also include CRC in the PHY header because CRC directly depends on other

fields. Once these fields are known, we can simply calculate the CRC. Including CRC increases

the length of the state of a packet, and accordingly can further improve the signal processing

reliability because more data is used for signal processing. Thus, for a packet P , its state

S(P ) is written as S(P ) = SIGNAL|SERVICE|LENGTH|CRC|Frame Control|Duration/ID|

Addr.1|Addr.2|Addr.3 in our STAPLE configuration for 802.11b.
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2.5.2.2 Configurations for 802.11a/g

802.11a/g uses OFDM to combat multipath fading. Figure 2.9 shows a typical format of

the PPDU including the PLCP preamble, PLCP header, PSDU and others. Different from

802.11b, all the data except for the PLCP preamble is of Type-I/C in an 802.11a/g packet.

PLCP Header

PLCP Preamble SIGNAL Data

Rate Reserved Length Parity Tail Service PSDU Tail Pad Bits

PPDU:

 0.5           0        0.42    N/A       0 

Figure 2.9. Typical structure of an 802.11a/g packet and measured entropies in SIGNAL.

The PLCP header includes the SIGNAL field that occupies one single OFDM symbol and

the Service field that exists in the next symbol. SIGNAL contains a number of fields of Type-

I/C to represent packet information like the data rate and packet length. We measure the

entropy of each field in SIGNAL, also shown in Figure 2.9. All entropies are small therefore

we include the entire SIGNAL field in the state of a packet. Note that the Parity field can be

directly computed given other fields, therefore we do not need to measure its entropy.

The Service field is used to synchronize the descrambler shown in Figure 2.9. All bits in

Service are constantly set to 0. The MAC header at the beginning of PSDU follows Service.

The 802.11a/g MAC header structure is exactly the same as that of 802.11b. However,

Service and the MAC header together do not exactly occupy one OFDM symbol. This

means that they are interleaved and coded with other data then OFDM-modulated, which

can be difficult (if not impossible) for STAPLE’s signal re-processing to accurately extract

Service and parts of the MAC header from interleaved and coded OFDM symbols. Therefore,

Service and all MAC fields can be used for state association, but not for signal re-processing in

STAPLE. As we aim at a lightweight design, we avoid using any of these fields to reduce the
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size of the state table. Therefore, the state S(P ) for packet P in our STAPLE configuration

for 802.11a/g is S(P ) = SIGNAL.

2.5.2.3 Configurations for 802.11n/ac

802.11n and 802.11ac are the state-of-the-art WiFi standards leveraging MIMO technolo-

gies with more complicated packet formats.
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Figure 2.10. Typical packet format in 802.11n and measured entropies of field values.

Figure 2.10 depicts a typical packet structure of 802.11n which contains two portions:

legacy (L) and high throughput (HT). The L portion is for backward compatibility, and the

HT portion is specified to support MIMO communication. The L-SFT and L-LFT fields at

the beginning of the L portion are legacy preambles. The HT-SFT and HT-LFT fields in the

HT portion are preambles for MIMO training. The L-SIG of Type-I/C is exactly the same

as the SIGNAL field in 802.11a/g. Hence, we use the entire L-SIG field for STAPLE. HT-SIG

of Type-I/C is at the beginning of the HT portion and consists of 2 OFDM symbols with a

number of fields. We measure the entropy of each field from packet trace data, as shown in

Figure 2.10. Most fields have small entropies, therefore we include the entire HT-SIG field.

Note that the single-bit Aggregation field indicates whether multiple payloads are combined

together into a single packet with a unique PHY header, and it is almost random with

entropy close to 1. However, we cannot exclude this bit because it is interleaved and coded
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with other fields in exactly one OFDM symbol. We find that the high entropy of this single

bit always happens in the downlink. It does not have substantial impact on the performance

but the size of the state table needs to be slightly increased at the downlink. Therefore, we

still include it to represent the state of a packet. As a result, the state S(P ) for packet P in

our configuration for 802.11n is S(P ) = L-SIG|HT-SIG.
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Figure 2.11. Typical packet format in 802.11ac and measured entropies of field values

Figure 2.11 plots the typical packet format in 802.11ac, which has a very similar structure

to 802.11n: the HT portion becomes the very HT (VHT) portion. Similarly, based on the

measured entropies from packet trace data shown in Figure 2.11, we include L-SIG and VHT-

SIG to represent the state of a packet. In addition, we find the entropies of fields in the

VHT-SIG-B are also small. Thus, we set the state as S(P ) = L-SIG|VHT-SIG|VHT-SIG-B in

our configuration for 802.11ac.

2.5.2.4 Configurations for 802.15.4

IEEE 802.15.4 is the basis for ZigBee towards low-cost, low-speed ubiquitous commu-

nication. We configure STAPLE for offset-QPSK (O-QPSK) based ZigBee, whose typical

packet format is shown in Figure 2.12.
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Figure 2.12. Typical 802.15.4 packet format.

As shown in Figure 2.12, the PHY header (PHR) of 802.15.4 contains only two Type-P

fields: Length and Reserved, which indicate the length of the packet and reserved bits (set to

all 0s), respectively. The MAC header is contained in PSDU, which is however of Type-E.

To reduce the complexity, our STAPLE configuration avoids any Type-E data during signal

re-processing, therefore choosing to include only Length and Reserved for the state of a packet

P , i.e., S(P ) = Length|Reserved.

2.6 Experimental Evaluation

In this section, we implement STAPLE with adapted configurations for 802.11b/g/n/ac

and 802.15.4. We first describe our implementation and experiment setups, then focus on

presenting experimental evaluation of STAPLE in 802.11ac, and finally describe experimental

results on other standards.

2.6.1 Implementation and Setups

2.6.1.1 Platform and Implementation

STAPLE requires modifications of a conventional wireless receiver. We choose the X300

USRP with CBX daughterboards [80] as the implementation platform. We synchronize

multiple USRPs using OctoClock-G [80] when performing MIMO experiments with 2 - 8

antennas.

We implement a generic software radio platform that covers the basic designs of 802.15.4

and 802.11b/g/n/ac transceivers. We adopt BPSK, QPSK, and 16QAM for 802.11b/g/n/ac,
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and O-QPSK for 802.15.4. For 802.11n/ac, we implement the Alamouti code [81] based

MIMO transmission schemes. In 802.11g/n/ac implementations, the header and data pay-

load of a packet use 1/2 and 3/4 convolutional coding schemes, respectively. We also im-

plement a CSMA/CA scheme with uniform random backoff (i.e., the contention window for

random backoff is always fixed [82, 83]) at the MAC layer for all standards. Note that it

is challenging and time-consuming to implement a comprehensive USRP-based system fully

compatible with all 802.11 PHY/MAC standards. To balance the efficiency of fast proto-

typing and the cost of high-fidelity evaluation, our implementation is a proof of concept

one with a subset of fundamental STAPLE-related PHY functionalities, serving the purpose

of evaluating the benefits of STAPLE brought to practical wireless scenarios with different

system setups and conditions. As mentioned in Section 2.4.3, our STAPLE implementation

does not improve frequency offset estimation but improves the channel estimation in signal

re-processing.

Also note that we implement a subset of modulation and coding schemes. However, our

experiments generate packets according to packet trace data. This means the PHY field

that denotes the data rate in some generated packets may indicate a higher rate scheme

that we do not implement. In this case, we choose 16QAM as the scheme to modulate and

demodulate. This does not give an advantage to STAPLE during performance evaluation,

since we still allow all possible values in the data rate field of a packet, which affect state

association and state table update of STAPLE in practice.

2.6.1.2 Experimental Setups

We conduct experiments in a realistic indoor environment shown in Figure 2.13 as the

scenario reflects how STAPLE can help improve the wireless link performance in an office

environment with typical WiFi usages. Network nodes are placed at different locations for

performance evaluation with limited transmit power. In our network experiments, packets

37



are generated with PHY/MAC field values according to the SIGCOMM04/08 and STA-

PLEn/ac datasets.
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Figure 2.13. Environment for experiments.

In STAPLE, the default threshold for state association (2.2) is set to 12. The default

size of the state table for a station in the downlink is set to 5; and that for the AP in the

uplink is 15. The default table update policy is frequency-based. In experiments, we change

table setups to evaluate the impact of STAPLE parameters on the performance. We use the

construction of the packet state for each standard given in Section 2.5.

2.6.1.3 Performance Metrics

Packet dropping due to decoding errors only happens at the PHY layer and STAPLE is

a method to improve the PHY layer performance. Thus, it is natural to use the performance

metric at the PHY layer to directly see the benefits of STAPLE without involving other

potential affecting factors at higher layers. In experiments, we measure the packet delivery

ratio (PDR) with and without STAPLE, where PDR is defined as the ratio of the number of

successfully decoded PHY packets at a node to the total number of PHY packets transmitted

to the node. We measure the benefit of STAPLE by using the performance gain ratio, which
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is defined as

Performance gain ratio =
PDR with STAPLE

PDR with traditional design
− 1.

2.6.2 STAPLE for 802.11ac Networks

We focus on performance evaluation on 802.11ac because it is a state-of-the-art WiFi

standard. We consider two types of scenarios in experiments: single-link evaluation, in

which a two-antenna transmitter sends packets to a receiver with 2 – 8 antennas; (ii) network

evaluation, in which we set up two clock-synchronized USRPs as a single 802.11ac AP, and

six USRPs as stations communicating with the AP.

2.6.2.1 Implementation Complexity for 802.11ac
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Figure 2.14. Implementation of 802.11ac.

Figure 2.14 shows the flowchart of our STAPLE implementation for 802.11ac. the extra

storage due to STAPLE is mainly the memory used for the state table, whose size is 5 states

for stations and 15 states for the AP as default values. In terms of extra processing com-

plexity, if errors are detected in the PHY layer, extra procedures including state association,

preamble reconstruction, and CSI re-estimation are introduced by STAPLE. All these pro-

cedures are linear, which will not incur much overhead. If errors occur in the data payload,
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re-decoding the payload is needed. The re-decoding complexity is not linear and depends

on the decoding algorithm that is usually polynomial. However, thanks to the PHY payload

check, this case does not quite often happen in today’s WiFi networks.

Table 2.1. Complexity of STAPLE for 802.11ac.

Situation Extra processing

1) No error in a packet none
2) Error first detected state association, preamble

in PHY header reconstruction and CSI re-estimation
3) Error not detected in extra processing in 2), and re-

header but payload decoding of PHY payload
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Figure 2.15. Performance gain ratios under different locations.

2.6.2.2 Single-Link Performance Evaluation

In our single-link performance evaluation, we fix the modulation scheme for packets and

measure the link performance between two nodes to evaluate how STAPLE helps improve

the single-link performance.

For varying locations, we first compare the single-link performance between a traditional

receiver and STAPLE at different locations. We fix the transmitter at location 1 as shown in

Figure 2.13, and place the receiver at location 0, 3, 4, or 5, which represents the short-distance
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Figure 2.16. Performance gain ratios of uplink and downlink.
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Figure 2.17. Performance gain ratios of STAPLE for 802.11ac.

line of sight (S-LoS), short-distance Non-LoS (S-NLoS), long-distance NLoS (L-NLoS), or

long-distance LoS (L-LoS) channel condition, respectively. The transmitter and receiver are

both equipped with 2 antennas.

Figure 2.15 depicts the performance gain ratios at different locations under BPSK, QPSK,

and 16QAM. We can observe that the performance of STAPLE is uniformly better than the

performance of traditional signal reception for most cases. There is no performance improve-

ment at locations 0 and 5 (both LoS cases) for the BPSK modulation because the packet

delivery ratio is 100%. We also find that at location 4 (L-NLoS), STAPLE substantially
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Figure 2.18. No. of state associations for every 2000 packets.

Table 2.2. Packet delivery ratios with different packet lengths (in bytes).

10 100 500 1000 1500

Traditional 99.9% 99.9% 98.3% 93.5% 91.5%
STAPLE 100% 100% 99.9% 99.7% 98.3%

improves the packet delivery ratio for 16QAM from 80% to 95% (a performance gain ratio

of 17.6% shown in Figure 2.15). This is because communication with higher data rate is less

error-tolerant, thus demanding more accurate CSI estimation, which STAPLE provides. We

can conclude from Figure 2.15 that STAPLE improves the performance in NLoS cases more

than that in LoS cases.

For varying packet lengths, we then evaluate the effect of packet length on the perfor-

mance gain of STAPLE. During this experiment, the transmitter always sends packets with a

fixed length. Table 2.2 shows the packet delivery ratios on a 2×4 MIMO link from location 1

to location 5 with QPSK modulation for varying packet lengths. It is noted from Table 2.2

that transmitting shorter packets results in better packet delivery ratios. For example, tra-

ditional signal reception and STAPLE achieve almost 100% packet delivery ratio when the

packet length is no larger than 100 bytes. As the packet length increases, STAPLE gradually
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Table 2.3. Performance gain ratios from STAPLE under noisy MIMO channels at location 7.

BPSK QPSK 16QAM

2 × 4 20.2% N/A N/A
2 × 6 16.6% 20.4% N/A
2 × 8 11.4% 18.9% 20.8%

outperforms traditional signal reception, and improves the packet delivery ratio from 91.5%

to 98.3% (a performance gain ratio of 7.4%) when the length is 1500 bytes.

For varying numbers of antennas, we also measure the performance benefits from STA-

PLE for 2×2–8 MIMO links. Figure 2.16 plots the performance gain ratios of STAPLE on

2×2, 2×4, 2×6, and 2×8 MIMO links under different modulation schemes. The transmitter

and the receiver are placed at locations 1 and 4, respectively, as shown in Figure 2.13. We

can observe from Figure 2.16 that STAPLE generally improves the performance more as

the number of antennas decreases. For example, under 16QAM, STAPLE achieves a 17.6%

performance gain ratio in the 2×2 scenario and a 6.0% ratio for the 2×8 scenario. Similarly,

the performance gain ratio for QPSK reduces from 9.4% to only 0.6% when the number

of receive antennas increases from 2 to 8. This is due to more link reliability from more

antennas.

We then move the receiver to location 7 in Figure 2.13 to test the performance in an L-

NLoS MIMO channel. Table 2.3 shows the performance gain ratios of STAPLE on 2×4, 2×6,

and 2×8 MIMO links. We find that location 7 is beyond the limit of the 2×4 MIMO link

under QPSK and 16QAM, and beyond the limit of the 2×6 MIMO link under 16QAM. In

these cases, the receiver cannot reliably decode any packet with or without STAPLE. In other

cases, we always observe that STAPLE substantially improves the link reliability, with the

maximum gain ratio achieved at 20.8% for the 2×8 MIMO link under 16QAM. Consequently,

we conclude that STAPLE brings more benefits in noisy channel environments.
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2.6.2.3 Network Performance Evaluation

Next, we evaluate the performance gain of STAPLE in an 802.11ac network environment.

In our testing network, the AP and stations are equipped with 4 and 2 antennas, respectively.

In the single-link evaluation, we always fix the modulation scheme for a packet to test

the performance of a single link. In our network performance evaluation, all the values in

the PHY/MAC fields of a packet (e.g. packet size and modulation scheme) are generated

according to 802.11ac packet trace data. This creates a much more dynamic environment

especially in uplink scenarios. We place the AP at location 0, and also place other stations,

named nodes 1–6, at locations 1–6, respectively, as illustrated in Figure 2.13.

For the overall performance, Figure 2.17 shows the overall performance gain ratios under

uplink and downlink scenarios. Similar to the single-link case, STAPLE always improves the

packet delivery ratio. We find in Figure 2.17 that there are very slight performance gains

for nodes 1 and 2. This is because these two nodes have very good LoS channels to the AP

and corrupted packet at these nodes are mostly due to collisions in the network. STAPLE

is not a mechanism to resolve packet collisions. If there is no collision, the single-link packet

delivery ratios for nodes 1 and 2 are close to 100%. Thus, there is little room for STAPLE

to improve the performance.

As Figure 2.17 illustrates, the maximum performance gain ratios for the uplink and

downlink are 14.3% and 14.8%, respectively, both observed at node 4, which is the furthest

away from the AP in the network. This shows the capability of STAPLE to boost the link

performance under noisy conditions.

We also demonstrate the dynamics of state associations inside STAPLE at the AP. We

compute the number of successful state associations for every 2000 packets received. Fig-

ure 2.18 plots this number as a function of the total number of received packets at the AP.

It is seen that most of the time, STAPLE needs to perform signal re-processing on 30-60
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Figure 2.19. The impacts of (a) threshold in state association and (b) state table size.

packets for every 2000 packets, and packet corruption events are uniformly distributed over

time in our testing environment.

For the impacts of threshold in state association, in state association (2.2), a pre-set

threshold dth is needed to associate a corrupted packet with a previous state. We test

the impact of different thresholds on the performance gain ratio of STAPLE at node 4.

Figure 2.19(a) illustrates the uplink and downlink performance gain ratios with different

thresholds. We can observe that the performance gain ratio of STAPLE first increases then

remains approximately the same as the threshold dth keeps increasing. This means that a

larger dth is desirable to maximize the performance gain from STAPLE in practice. But a

larger dth may indicate that STAPLE tries to recover heavily corrupted packets that may be

not recoverable with signal re-processing, incurring more wrong associations and processing

overhead. Therefore, the optimal value of dth for STAPLE to balance the performance gain

and complexity is 12-20 bits, as observed in Figure 2.19(a).

For the impacts of state table setups, we also evaluate the impacts of the state table size

and update policy on the performance gain of STAPLE at node 4 in the network.

45



Figure 2.19(b) shows the comparison of performance gain ratios of timestamp-based

and frequency-based table update policies for different table sizes. From Figure 2.19(b),

the frequency-based policy exhibits slightly better performance than the timestamp-based

policy. The difference is negligible for both uplink and downlink when the table size is large.

We also see from Figure 2.19(b) that the state table size has more impacts on the per-

formance benefits of STAPLE. For the downlink, as a station only cares about the packets

from the AP, a small table maintaining 2-5 states is sufficient to increase the performance

gain ratio to approximately 15%. For the uplink, the AP requires a larger table size because

it has to communicate with a number of nodes. Figure 2.19(b) shows that a table with the

size of 12-15 states at the AP is sufficient for the testing network to achieve a nearly 15%

performance gain ratio.

2.6.3 STAPLE for Other Standards

During our experiments with 802.11ac, we find that STAPLE always improves the packet

delivery by up to 20.8% and 15% in single-link and network evaluations, respectively. In the

following, we show the benefits of STAPLE brought to 802.11b/g/n and 802.15.4.

• For 802.11b/g/n network setups, we use the previous network scenario and default

STAPLE parameters to set up the 802.11b/g/n testing network with the AP placed at

location 0, and nodes 1-6 placed at locations 1-6, respectively, as shown in Figure 2.13.

• For 802.15.4 network setups, the network topology is the same as the one in 802.11

scenarios: the network coordinator is placed at location 0, and nodes 1-6 placed at

locations 1-6, respectively. Nodes 1-6 are communicating with the coordinator in the

network. We obtain two ZigBee datasets [84] and [85]. The packets in [84] have 7

different lengths and packets in [85] always have the same length. We generate data

packets according to [84]. The state table size is set to 5 for all nodes.
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For experimental results, Figure 2.20 shows the performance gain ratios of STAPLE in

the uplink and downlink scenarios, respectively. Similar to Figure 2.17, nodes 1 and 2 gain

slight benefits from STAPLE because of their good LoS channels to the AP; and node 4 has

the highest performance gain ratios among all nodes.

It is observed at node 4 that the highest performance gain ratio (15.9% in uplink or

16.6% in downlink) is achieved under 802.11b and the lowest (4.9% in uplink or 5.8% in

downlink) is under 802.15.4. This is because the packet state sizes in 802.11b and 802.15.4

are the largest and smallest in our STAPLE configurations (in Section 2.5.2), respectively.

A large packet state size means that STAPLE can construct a longer preamble for signal

re-processing, therefore generally indicating better performance gain. The experimental

results from Figure 2.20 also demonstrate that STAPLE can benefit a wide range of wireless

networks.

2.6.4 Discussions and Limitations

2.6.4.1 Discussions

In our performance evaluation, the downlink performance is found always slightly better

than the uplink performance. This is because all nodes in the network transmit packets

with limited power, leading to a minor hidden terminal problem. For example, as shown

in Figure 2.13, with the AP being placed at location 0, node 1 (at location 1) has a small

probability of not accurately sensing the transmission from node 4 (at location 4), and vice

versa. This only results in minor asymmetric uplink and downlink performance, and does

not affect the evaluation of the performance gains from STAPLE.

During our experiments, the size of the state table in STAPLE is chosen and evaluated

empirically according to the distributions of PHY/MAC header fields in real-world 802.11

datasets. Therefore, the choice of 2-5 states for stations and 12-20 for the AP should be
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Figure 2.20. Network-level performance gain ratios: (a) uplink and (b) downlink.

practically suitable for a normal WiFi network environment. The table size may have to be

increased in a network with a large number of users using data-intensive applications. An

under-designed table size may only reduce the performance gain of STAPLE, but does not

degrade the network performance. In addition, the advantage of STAPLE is that the down-

link requires much smaller table size than the uplink, which significantly benefits network

users.

For 802.11ac, our packet collection and evaluation are based on the non-MU-MIMO

mode. The MU-MIMO mode does not affect the uplink and is for the downlink only [11].

In addition, MU-MIMO related PHY fields (e.g., GroupID) usually remain constant if a user

does not change his/her location dramatically. Thus, a low-overhead STAPLE design is

expected to be still effective when used for the MU-MIMO mode in 802.11ac.

2.6.4.2 Limitations

In this chapter, configurations for STAPLE are based on packet trace analysis for typical

wireless network scenarios (e.g., a typical residential WiFi network). When a network has a

large number of users, the size of the state table should be increased at least for the uplink
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in order to accommodate more users’ packet information. As a result, configurations for

STAPLE may need to be adapted accordingly for the scenarios with a large number of users

and intensive network usages.

STAPLE can be considered as a way to push the performance limit of signal processing

for wireless networking. Experimental results show that overall, STAPLE achieves mod-

erate performance improvements in different evaluation scenarios. Thus, it is important

to minimize the complexity of the STAPLE implementation and configuration for a prac-

tical scenario to avoid excessive energy overhead, which is proportional to the processing

complexity.

STAPLE is designed as a general software radio architecture to improve the signal pro-

cessing performance on a wireless link. STAPLE is shown effective to improve the link

performance under long-distance or severe channel fading scenarios. However, STAPLE can-

not resolve any packet corruption due to collisions in wireless networks. This may limit its

use in the scenarios with congested network traffic under good channel conditions, where the

wireless packet collisions are the dominate performance bottleneck.

2.7 Related Work

In this section, we discuss existing works related to the research efforts in this chapter.

2.7.1 Wireless Signal Processing

Timing/frequency synchronization and channel estimation have been well explored in the

signal processing and wireless communication communities under a wide range of algorithmic

settings and channel conditions [2, 1, 4, 73, 86, 77, 87], thereby establishing a relatively

mature research area. Essential signal processing procedures for traditional packet reception

remain generally unchanged. STAPLE takes signal processing out of the traditional domain

and places it in the network domain, then demonstrates a new perspective of re-designing
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the signal processing procedure to improve the performance during packet reception at a

wireless receiver.

2.7.2 Partial Packet Recovery

STAPLE is related to partial packet recovery (PPR) that attempts to recover a corrupted

packet using a number of approaches, such as automatic repeat request (ARQ), forward

error correction (FEC) [88, 14, 8, 10, 89, 72, 7, 9, 6, 90]. In particular, hybrid-ARQ (HARQ)

[72, 7, 9] has become a widely-used technique to combine the information from multiple

packets to improve the wireless link performance. STAPLE differs from H-ARQ in the

following aspects: (i) H-ARQ focuses on repairing corrupted packets with the cooperation

from the transmitter. STAPLE is designed as a new architecture of signal processing only

residing at the receiver without any cooperation at the receiver; (ii) H-ARQ combines the

retransmitted packet (including the redundant code) with the originally corrupted packet for

error correction to help decoding. On the contrary, STAPLE does not directly touch upon

signal decoding, but leverages low-entropy packet header information to construct a longer

preamble to improve the signal processing accuracy, which in turn enhances the decoding

performance.

To the best of our knowledge, STAPLE is designed as a new way to provide better signal

processing performance, which is orthogonal to H-ARQ and other existing partial packet

recovery mechanisms. Therefore, STAPLE can be integrated with these mechanisms to

further improve the wireless network performance.

2.7.3 Link quality improvement

Research efforts [16, 91, 70, 90, 92, 93] have been devoted to improving the wireless link

quality. For example, [16, 91] focus on resolving the problem of packets collisions. Channel

prediction is proposed in [94] to facilitate rate selection in 802.11 networks. An architecture
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is designed in [95] to flexibly support multiple radio frequency link chains. In addition,

a few recent efforts focus on improving the MU-MIMO performance from various aspects

[96, 68, 97, 98]. STAPLE is also related to [70] that leverages protocol signatures to improve

the packet decoding performance based on modifications to the 802.11 PHY layer.

In contrast, STAPLE focuses on a different domain to improve the signal processing

performance during packet reception and does not modify any standard. Hence, STAPLE is

also complementary to these efforts and is broadly applicable to wireless networks.

2.8 Summary

This chapter presents STAPLE, which is a lightweight, efficient mechanism to improve the

signal processing performance for wireless networking. The core idea of STAPLE is to collect

common header information to form the state of a packet, and use state association to recover

a corrupted packet back to a previous state for constructing a longer preamble to further

enhance the reliability of signal processing. We implement STAPLE on USRP X300 devices

with adapted configurations for 802.11a/b/g/n/ac and 802.15.4. Experimental results show

that STAPLE improves the wireless network performance under various conditions.
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Chapter 3: Comb Decoding towards Collision-Free WiFi

3.1 Abstract

Packet collisions happen every day in WiFi networks. RTS/CTS is a widely-used ap-

proach to reduce the cost of collisions of long data packets as well as combat the hidden

terminal problem. In this chapter, we present a new design called comb decoding (Comb-

Dec) to efficiently resolve RTS collisions without changing the 802.11 standard. We observe

that an RTS payload, when treated as a vector in a vector space, exhibits a comb-like distri-

bution; i.e., a limited number of vectors are much more likely to be used than the others due

to RTS payload construction and firmware design. This enables us to reformulate RTS colli-

sion resolution as a sparse recovery problem. We create algorithms that carefully construct

the search range for sparse recovery, making the complexity feasible for system design and

implementation. Experimental results show that CombDec boosts the WiFi throughput by

33.6% – 46.2% in various evaluation scenarios.

3.2 Motivation and Design Intuition

In this section, we introduce the motivation and key idea of reformulating the problem

of packet collisions.

3.2.1 Packet Collision and Resolution

We use a noise-free, flat-fading uplink scenario as a simple motivating example: Alice

and Bob send their packets to the AP at the same time. Alice’s and Bob’s packets consist of
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L time-domain baseband symbols, represented by vectors xA ∈ X and xB ∈ X , respectively,

where X ⊂ CL×1 denotes the set of all possible baseband symbol vector for xA and xB, and

CL×1 is the L-dimensional complex vector space. Note that throughout this chapter, a vector

is by default a column vector instead of a row vector, unless otherwise specified.

Then, the received signal at the AP can be written as

y = hAxA + hBxB, (3.1)

where hA, hB ∈ C (C denotes the complex plane) are the channel gains from Alice and Bob

to the AP, respectively.

If we look at the collision (3.1) and assume that Alice’s and Bob’s signals go through

similar channel conditions to the AP, Alice’s or Bob’s signal will have an SNR around 0dB

due to mutual interference. Simply given (3.1), the AP is less likely to recover Alice’s or

Bob’s signal due to two major reasons.

• If the AP adopts a traditional decoding design, it cannot decode a signal with SNR

around 0dB, because an acceptable SNR is usually 10dB or above [99] for WiFi.

• Although multi-user detection [100] has been developed as a vital solution to decode

multiple user’s signals, this technique in general requires that users employ distinct

spread spectrum codes [101] to differentiate themselves at the signal level. Nonetheless,

there is no such code design in WiFi.

Apparently, additional information is needed to resolve the collision (3.1). Our key

observation is that the RTS packet format itself provides valuable information for collision

resolution in a WiFi network.
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3.2.2 Anatomy of RTS in WiFi

The RTS/CTS mechanism lets a sender reserve the channel by sending an RTS packet

first. Once the receiver replies with a CTS packet, the sender transmits the data packet. The

RTS packet specifies a network allocation vector (NAV), which is the total time duration it

wants to reserve, including the time durations of the CTS, the data and the ACK.

The data payload in an RTS packet consists of 20 bytes or 160 bits, and we denote it as

an RTS data vector b ∈ [0, 1]160, where [0, 1]160 is the space for all vectors with length 160,

whose element is either 0 or 1. At the PHY layer, the data vector b is interleaved, coded

and modulated into a signal vector x ∈ X , where X is the set of all values of x. These

processes together can be denoted as a one-to-one function mapping f : [0, 1]160 → X , which

converts the RTS data vector b to the RTS signal vector x = f(b). As f is one-to-one

correspondence, |X | = 2160 (| · | denotes the cardinality, or the number of elements, of a set).

We observe that all RTS data vectors in [0, 1]160 are not equally probable in the real

world because all data fields in RTS are well structured and specified.

• FrameControl contains 2 bytes specified in 802.11.

• Duration is the 2-byte NAV in microseconds. The last bit is set to 0 and thus it holds

up to 215 values.

• RA and TA (6 bytes each) are the destination and source addresses, respectively. As

today’s WiFi is widely used for Internet access, stations communicate mostly with the

AP. The AP knows that RA in an RTS packet sent to it is its own address and TA

should be the address of one of its stations. Suppose that a dense network can support

26 stations (e.g., Linksys EA8500 firmware supports up to 51 stations [102]) and the

number of possible values of TA in RTS is 26.
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• FCS (4 bytes) is for error detection and relies on other data fields. It provides no

additional information.

Thus, from the AP’s perspective, the number of RTS data vectors of interest is 215 (from

Duration) × 26 (from RA/TA) = 221 in the full RTS vector space [0, 1]160. As a result,

the number of RTS signal vectors of interest is also 221 in the signal vector space X with

|X | = 2160. If we index all vectors in X from 1 to 2160 and measure via the probability

distribution how each vector is likely to be seen in the real world, we will obtain a comb-

shaped distribution similar to the example shown in Figure 3.1. We call an RTS signal

vector a tooth vector if the probability that it can be seen at the AP is positive. Although

the index goes from 1 to 2160 in Figure 3.1, the number of tooth vectors should be no less

than 221 according to our analysis. The comb-shaped distribution is in evident contrast to

the traditional decoding assumption (also illustrated in Figure 3.1) that all potential values

of a signal vector are equally probable [66]. This opens a door for us to go beyond traditional

decoding to resolve RTS collisions.

3.2.3 Idea of Collision Resolution

Based on the observation from Figure 3.1, we present the basic idea regarding how to

resolve an RTS collision.
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3.2.3.1 Problem Reformulation

Denote by M = {mi}i∈[1,M ] (M = |M|) the set of tooth vectors. Define the comb matrix

M = [m1,m2, · · · ,mM ] (i.e., each column inM is a tooth vector). The AP can pre-construct

the comb matrix M by inserting all possible RTS to M to form the columns. The AP’s goal

is to find exactly which ones in M are actually involved in the collision.

Mathematically, we reformulate the collision problem to an equivalent one: assume that

all tooth vectors in M are transmitted to the AP, but they go through different wireless

channels. In particular, the tooth vectors involved in the actual collision go through the

wireless channels with realistic channel gains, but those not involved in the collision go

through the channels with zero channel gains. For example, in Figure 3.2, Alice, Bob and

other users have different tooth vectors. The received signal y is considered as the sum of all

these tooth vectors weighted by different channel gains. The channel gain weight of a tooth

vector is the realistic channel gain if it is indeed transmitted, and zero otherwise. If Alice’s

transmitted signal is m1, the channel gain weight g1 for m1 is the real channel gain between

Alice and the AP, and the weights for the rest of Alice’s tooth vectors are all zeros (e.g.,

g2 = 0 as Alice transmits m1 not m2). As such, the received signal y can be reformulated as

y=

M∑

i=1

migi = [m1,m2, · · · ,mM ]
︸ ︷︷ ︸

comb matrix M

[g1, g2, · · · , gM ]
︸ ︷︷ ︸

channel gain weight vector g

T , (3.2)

where g is called the channel gain weight vector and ·T denotes the matrix transpose. Based

on (3.2), collision resolution is equivalent to solving for unknown g given y and M. Then,

the tooth vectors actually involved in the collision correspond to non-zero elements in the

solved g.

3.2.3.2 Solution Based on Reformulation

There are two key observations on the reformulation in (3.2).
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Figure 3.2. Reformulation of network collision.

• The unknown channel gain weight vector g is sparse in a real-world network because of

two reasons: (i) There is no self-collision. As shown in Figure 3.2, if Alice sends a tooth

vector m1, we have g1 6= 0; and any other tooth vector belonging to Alice will have

a zero channel gain weight (e.g., g2 = 0) since there is no way Alice transmits both

m1 and m2. (ii) Because of the random backoff in WiFi, a collision is likely caused by

only several users transmitting at the same time. Thus, g should include only several

non-zero elements.

• The comb matrix M should exhibit a nearly random matrix property. Each tooth

vector mi in M is mapped from an RTS data vector through interleaving and error-

correction coding. Their main purpose is to scramble and re-map all bits into a larger

bit space in a (nearly) random way such that the error-correction performance ap-

proaches the random coding performance in Shannon’s capacity [78].

Given the sparse property and nearly random matrix property, the channel gain weight

vector g should be recovered with high probability by L1-norm minimization according to

the theory of compressive sensing [103, 104, 105]. Thus, resolving an RTS collision leads to
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the following optimization.

Given: comb matrix M and received signal y,

Objective: gsolution = argmin‖g‖1, subject to y = Mg,

(3.3)

where ‖g‖1 is the L1-norm of g (i.e., ‖g‖1 =
∑

gi∈g
|gi|).

The theoretical framework lays out a promising path towards resolving RTS collisions.

Although the L1-norm minimization in (3.3) can be solved by many efficient algorithms

[106, 107, 108, 27, 26], directly applying (3.3) to collision resolution incurs an unbearable

cost because the comb matrix M consists of up to 221 = 2, 097, 152 tooth vectors according

to our initial analysis in Section 3.2.2. Thus, significant challenges exist to make collision

resolution meaningful and practical.

3.3 Construction of Comb Matrix

The initial step towards our CombDec design is to find a way to reduce the size of

the comb matrix M (that can include 221 tooth vectors) for a low-cost solution. In this

section, we analyze the 802.11 standard, firmware and packet traces to show that there is a

feasible way to significantly reduce the size of 221. Then, we design two algorithms, (α, β)-

construction and γ-decimation, to reduce 221 to only a few hundreds, while maintaining the

high performance for collision resolution. The use of (α, β)-construction and γ-decimation

clears the major hurdle towards system implementation.

3.3.1 Standard and Firmware Based Analysis

As aforementioned in Section 3.2.2, M consists of 221 tooth vectors because of Duration

and RA/TA fields in RTS. The Duration field specifies the 15-bit NAV in microseconds with

215 = 32, 768 potential values, which largely contribute to the size ofM. 802.11 specifies that
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the NAV is computed as one data packet duration, plus one CTS, one ACK, and three SIFS

durations. Given a network setup, SIFS, CTS and ACK durations are usually fixed (e.g.,

SIFS is fixed to be 16 µs in 802.11ac at 5GHz). Thus, the value space of the NAV depends

dominantly on the value space of the time duration of a data packet. In 802.11, the time

duration of a data packet is bounded by aPPDUMaxTime, the maximum time duration of

a data packet (in µs), and indirectly bounded by aPSDUMaxLength, the maximum payload

length of a data packet (in bytes). As aPPDUMaxTime for 802.11ac is 5, 484µs, the space

size of the NAV is reduced from 32,768 to at most 5,484 in the 802.11ac network.

Today’s WiFi chipsets may still avoid transmitting a long packet (close to 5, 484µs)

due to the cost consideration or hardware limitations. Hence, drivers implement their own

packet length constraints on a data packet, which is usually less than the standard-defined

aPSDUMaxLength or aPPDUMaxTime. We perform comprehensive code analysis on WiFi

drivers and find that different vendors indeed pose different constraints on their own chipset,

further limiting the value selection of the NAV. The detailed firmware analysis can be found

in Appendix A.

As a result, we can leverage these constraints to further reduce the value space of the

NAV in RTS. However, many WiFi drivers (in particular 802.11ac ones) are still proprietary

and distributed in the binary form. It is not practical to study every WiFi chipset/firmware

and optimally minimize the value space of the NAV in RTS packets. In what follows, we

analyze real-world packet traces to develop a generic way to narrow down the value space.

3.3.2 Packet Trace Based Analysis

The key to reducing the size of the comb matrix is through shrinking the value space

of NAV in RTS. We have shown that a WiFi driver can restrain the value space of NAV.

Moreover, implementation-dependent rate control and data aggregation in proprietary WiFi

drivers are not likely to produce uniformly distributed NAV values, but may be more biased
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Figure 3.3. Percentages of data packets protected by RTS.

towards certain selections and yield a NAV distribution similar to Figure 3.1. Our objective

is to collect massive packet traces to understand the NAV distribution. Then, we create

generic algorithms to select those NAVs that are the most likely to be seen for constructing

the comb matrix M.

The first step towards understanding the NAV distribution in real-world RTS packets is

to collect a substantially large number of packet traces for analysis. As no set of 802.11ac

packet data is publicly available, we conducted our own measurements and collected in total

1.3 TB packet trace data with 2.33 billion packets in realistic environments, including (i) a

public library (65.21 GB), (ii) three academic conferences (31.14 GB), (iii) five residential

communities (65.69 GB), (iv) three major-brand hotels (109.48 GB), (v) four major US

airports (88.5 GB), (vi) a university research lab (938.81 GB). The library, conference, and

airport data traces were measured only within the business hours (i.e., 9am–5pm). Note

that the payloads of all data packet were removed after the collection to avoid the privacy

concern.

Figure 3.3 shows the the percentages of data packets that are protected by RTS among

all data packets collected in different scenarios. Although a typical RTS threshold is set

to around 2300 bytes [17, 18, 19, 20, 21], we see from Figure 3.3 that data packets of less
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Figure 3.4. Distribution of NAVs from (a) the airport and (b) Belkin devices in all datasets.

than 2300 bytes are still likely to be protected by RTS. For example, in the hotel scenario,

78.55% data packets are initiated by RTS even when their lengths are less than 2300 bytes.

Moreover, around 70% - 90% data packets of over 2300 bytes are protected by RTS in

different scenarios. Overall, we observe from Figure 3.3 that RTS is still intensively used in

today’s Wi-Fi networks.

Looking into the NAV values in RTS packets, we observe that these values are unevenly

distributed. For example, Figure 3.4(a) shows the NAV distribution of RTS packets in the

airport dataset, which reveals that many NAV values (particularly around 230 µs) are much

more likely to be observed than the others. The NAV distribution also depends on a WiFi

driver. For example, Figure 3.4(b) plots the distribution of the Belkin WiFi driver measured

from RTS packets sent by Belkin devices (recognized by MAC addresses) in all datasets.

The figure shows that the distribution is quite patterned, indicating that the driver has

several NAV levels to construct payloads. We observe uneven or patterned distributions in

all datasets and offer a more detailed analysis in Appendix A.

Thus, if we only choose the most likely NAV values (instead of all possible values) to

construct the comb matrix M , the size of M should be substantially reduced. In addition,
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our design should not be device/firmware specific. For example, it may be possible to select

NAV values based on the pattern of Belkin devices in Figure 3.4(b). But this method is

too cumbersome because we have to examine the behaviors of all different WiFi devices.

Our strategy is to use an online algorithm that actively computes the NAV distribution of

a device, and then selects the most likely NAV values from the computed distribution to

construct the comb matrix M.

3.3.3 The (α, β)-Construction Algorithm

To select the most likely NAV values to construct M, a node (either the AP or a station)

should store the distribution of the NAV values in RTS packets from every other node in

a network. In addition, the node should keep updating the storage to account for nodes

joining or leaving the network. To this end, we propose the (α, β)-construction algorithm

running at individual nodes to construct M.

3.3.3.1 Algorithm Design

For a node that runs the algorithm, it records the frequency (i.e. the number of ap-

pearances) of a NAV value in RTS packets transmitted by every other node in the network.

When a new RTS packet with a NAV value is decoded, the node will increase the frequency

of that NAV value by one in its local storage. There are two key factors α and β in the

algorithm.

• For the coverage factor α, for every other node in the network, the algorithm selects

the α NAV values with the highest frequencies to form the tooth vectors and the comb

matrix.

• For the forgetting factor β, the algorithm decreases the frequencies of all NAV values by

β every minute. The minimum frequency is always set to be zero. And if the frequencies
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Figure 3.5. (α, β) construction running at the AP.

of all NAV values associated with a node become zero, the node’s information will be

all removed from the storage as it is considered no longer active or out of the network.

The (α, β)-construction algorithm works differently for the AP and stations. Figure 3.5

shows how it works at the AP: the AP stores the frequency of each possible NAV value from

each station. When a collision happens at the AP, it knows the collision must be due to

at least two stations (which could be Alice, Bob, or others) transmitting to it. Thus, the

AP selects the α most likely NAV values from Alice, constructs an RTS data vector using

each of these values, together with Alice’s MAC address as TA and its own MAC address as

RA, then maps each RTS data vector by function f (including interleaving, error-correction

coding, modulation, IFFT) in Section 3.2.2 to a signal vector (which is a tooth vector in the

comb matrix M). Then, the AP repeats the same process for Bob and all other stations to

finally obtain the full M.

A station’s construction of the comb matrix differs from the AP. For example, as shown

in Figure 3.6, Alice observes a collision (a) when two other stations Bob and Carol are

transmitting to the AP, (b) when one other station Bob is transmitting to the AP and

at the same time the AP is transmitting to a third station Carol, or (c) when the AP is
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Figure 3.6. Different collision scenarios in Alice’s view.

transmitting to Alice while Bob and Carol are transmitting to the AP. In all three cases,

collision resolution is only meaningful for Alice in case (c) because the collision in case (c)

includes the AP’s signal intended for Alice. Even when Alice successfully resolves cases (a)

and (b), Alice only knows that there is no signal of interest and then stops. Therefore, the

construction is sufficient for Alice as long as case (c) can be resolved by Alice. According to

case (c), a station should construct the comb matrix by using RTS signal vectors from the

AP to itself and other RTS signal vectors from other stations to the AP. The construction

process is similar to Figure 3.5.

3.3.3.2 Selections of (α, β) and Cost Evaluations

The size of the resultant comb matrix M depends on both α and β. In particular, α is

the number of tooth vectors from one node, and β in fact determines how many nodes will

be used in constructing M because (i) all frequencies are decreased by β every minute and

(ii) a node will be removed from the construction when all its frequencies become zero. The

algorithm with a larger β forgets nodes faster, thereby reducing the number of nodes used

for constructing M.

The performance of (α, β)-construction can be evaluated by the miss rate, defined as the

probability that when an RTS packet arrives at a node, M constructed by the algorithm at

the node does not include the NAV value in the RTS packet. A large α and a small β are

able to reduce the miss rate, but at the same time increase the size of M, incurring more

cost.
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Table 3.1. Miss rate and average size of the comb matrix.

α=600 Miss rate Ave. # of # of tooth
β=10 nodes vectors in M

Library 6.9 % 12.8 7680
Conferences 3.6 % 11.6 6960
Apartments 1.5 % 6.5 3900
Hotels 0.7 % 10.3 6180
Airports 8.8 % 18.8 11280
Lab 5.7 % 6.3 3780

Our objective is to find the pair of (α, β) to balance the miss rate and the complexity

for general WiFi scenarios. To this end, we simulate a WiFi network in each of the packet

datasets, replay all collected packets to simulate RTS arrivals at each node, and measure the

miss rate of the algorithm with different values of α and β. Table 3.1 shows one selection of

(α, β)=(600, 10) for all scenarios that achieves a good balance between the miss rate and the

size of M (measured by α multiplying the average number of nodes used for constructing

M). We can see that all miss rates are below 9% with around 4,000–12,000 tooth vectors in

M.

3.3.4 The γ-Decimation Algorithm

Through 802.11 standard analysis, firmware analysis, packet trace analysis and (α, β)-

construction, we have dramatically shrink the size of M from the initial 2,097,152 tooth

vectors to 12,000 or fewer vectors. All these push the optimization in (3.3) to the practice.

However, finding the L1-norm minimization with 12, 000 vectors in (3.3) still incurs a sub-

stantial cost. We propose γ-decimation to further reduce such a cost while maintaining the

high performance.

Denote by M the number of tooth vectors in M constructed by (α, β)-construction. The

basic idea of the γ-decimation algorithm (γ > 1 is called decimation rate) is to select, based
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on the received signal vector y, M/γ vectors out of all M tooth vectors in M to form a

decimated comb matrix M′.

The design intuition is that the received signal y contains only several tooth vectors in M

that we aim to find out. If we compute the correlation between y and each tooth vector mi

in M, defined as C(y,mi) = ‖mH
i y‖2 (·H denotes conjugate transpose and ‖ · ‖2 denotes the

L2-norm), we then obtainM correlation values. Due to the property of correlation, we should

observe a high correlation value if a tooth vector is indeed included in y, and a low correlation

value otherwise. However, due to channel noise and limited length of tooth vectors, some

tooth vectors not in y may also exhibit high correlation values. But it is not necessary to

exactly identify which tooth vectors with high correlation values are indeed in y at this stage,

γ-decimation just chooses M/γ tooth vectors that have the highest correlation values to form

the decimated comb matrix M′. It is very likely that tooth vectors involved in the collision

are included in M′ as long as M/γ is sufficiently large. We provide theoretical analysis for

the performance of γ-decimation and show that all RTS signals involving a collision will

survive the decimation and be included in M′ with high probability in Appendix A.

As a result, the final comb matrix for (3.3) is constructed as follows: (i) (α, β)-construction

constructs the comb matrix M with M tooth vectors (this steps ensures a low miss rate), (ii)

γ-decimation decimates M into the decimated comb matrix M′ with only M/γ tooth vectors

(this steps ensures that tooth vectors involving the actual collision are preserved with high

probability), and (iii) the decimated comb matrix M′ is used in (3.3) for collision resolution

to finally identify which tooth vectors are included in the collided signal y.

To make (3.3) feasible for today’s systems, M′ should have only hundreds of tooth vectors.

As (α, β)-construction maintains up to around 12, 000 vectors (shown in Table 3.1), the

decimation rate γ should be around 12 or more.
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3.3.5 Complexity Analysis

In the following, we estimate the computational complexity and storage complexity of

CombDec.

3.3.5.1 Computational Complexity

We evaluate CombDec’s complexity by comparing it with a benchmark, which is the

complexity to decode a typical 802.11 data packet with 40MHz bandwidth, 3/4 convolu-

tional coding, and 64QAM. We describe the major computational operations involved in the

benchmark and CombDec.

• The benchmark complexity is proportional to the data payload length, denoted by N

bytes. Decoding a data packet requires the FFT and Viterbi algorithms. The packet

contains 0.0247N OFDM symbols plus 4 PHY headers symbols. The FFT on each

symbol requires 64 log(128) complex multiplications and 128 log(128) complex addi-

tions [109]. In addition, the Viterbi algorithm incurs 4K(10.67N + 252) real additions

and 2K(10.67N+252) real comparisons, where K is the constraint length of convolu-

tional code [110].

• In CombDec, suppose (α, β)-construction maintains M tooth vectors of length L, the

correlation of the received signal with each of the tooth vector in γ-decimation needs

a total of ML complex additions and multiplications. Among all correlation values,

selecting the M/γ largest values incurs M + M log(M)/γ comparisons by using the

max heap tree approach [111]. The complexity of L1 minimization depends on an

iterative algorithm and is bounded by the cubic polynomial complexity [107]. In order

to estimate an exact computational cost, we use simulations to run the primal-dual

interior-point algorithm [25] to solve the L1-norm minimization in M/γ tooth vectors

and compute the average numbers of additions, multiplications and comparisons.
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Figure 3.7. Number of cycles: CombDec vs benchmark.

As the complexity involves different types of operations, including additions, multiplica-

tions and comparisons. We need to have a unified cost utility metric to measure the overall

costs of CombDec and the benchmark. We use the number of general CPU cycles as the

utility metric [112]. In particular, one real addition or comparison is counted as one cycle

and one multiplication is 4 cycles [112]; and a complex operation is 4 times the number of

cycles incurred by its real counterpart [109]. Note that an algorithm or a computational

operation can be specifically optimized on a particular signal processing software or hard-

ware platform. Our estimation using CPU cycles is not intended to be exactly accurate

for an implementation platform, but serves as an approximate way to demonstrate what

computational complexity level CombDec is at when compared with the benchmark.

Figure 3.7 shows the total numbers of cycles incurred by CombDec and the benchmark.

In Figure 3.7, we let (α, β)-construction form M = 12, 000 tooth vectors to accommodate

the airport scenario in Table 3.1 and set a typical constraint length K = 7 in the Viterbi

Algorithm. It is observed from Figure 3.7 that choosing γ to be in [20, 50] leads to the

complexity of CombDec roughly equivalent to decoding a packet with 1000–3000 bytes,

which makes CombDec ready for system implementation.
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3.3.5.2 Storage Complexity

CombDec also incurs a storage cost. First, CombDec for a device must store the frequency

of each NAV value for any other active device in the network. The cost of storing all NAV

frequencies is equal to the NAV space size multiplying the average number of active devices.

There are 5,484 possible NAV values in 802.11ac and around 18.8 active nodes under (α, β)

construction for the airport scenario (shown in Table 3.1). Hence, the storage cost is 5484

× 18.8 × 1 = 101 KB when the frequency value is a one-byte integer. Second, after γ-

decimation, all tooth vectors should be stored for L1-minimization. The storage cost is the

number of tooth vectors multiplying the length of a tooth vector. When γ ∈ [20, 50], the

number of decimated tooth vectors in the airport scenario is 240 to 600. If a typical RTS

packet is transmitted at 12 Mbps (4 64-subcarrier OFDM symbols) and the element in tooth

vector is a 4-byte complex number, the length of a tooth vector is 64× 4× 4 = 1 KB. Thus,

the cost of storing all these tooth vectors is in the range of [240, 600] KB.

Overall, the major storage cost is around [341, 701] KB. This cost is also reasonable for

today’s WiFi systems. For example, Qualcomm’s 802.11ac chipset IPQ4018 has an on-chip

memory of 256 MB [113] and related APs cost as low as tens of dollars [114, 115].

3.4 CombDec System Design

The (α, β)-construction and γ-decimation algorithms pave the way for a feasible system

solution to (3.3). In this section, we present CombDec system design. We first introduce the

system architecture, then describe each key component.

We design CombDec as an independent decoder in addition to the traditional 802.11

decoder. Figure 3.8 shows four major components in CombDec: the prologue module, (α,β)-

construction, γ-decimation, collision resolution, and the epilogue module. As shown in Figure
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Figure 3.8. Architecture of CombDec decoder.

3.8, CombDec is triggered only when decoding of either the PHY header or the PHY payload

fails. In the following, we present the designs of individual CombDec Components.

3.4.1 The Prologue Module

The prologue module does all pre-processing before collision resolution.

3.4.1.1 Combining Multi-path Signal Components

The received signal may include a number of multi-path components with different time

offsets. To improve the performance of CombDec under multi-path fading, we use the maxi-

mum ratio combining (MRC) [66] to combine the multi-path signal components. Specifically,

denote by s(n) the n-th time-domain symbol in the received signal. Based on the 802.11

packet preamble, we use a matched filer [16, 116] to detect the time offset and estimate the

channel gain of each signal component. Given K components found, we use the MRC [66] to

coherently sum all K time-shifted copies of s(n) and obtain s′(n) =
∑K

k=1 h
∗
ks(n+ δk), where

k-th component having time offset δk and channel gain hk, and h∗
k is the complex conjugate

of hk. Note that signal components may be from different senders in a collision, CombDec

does not differentiate them in the prologue module.
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3.4.1.2 Collision Recognition and Early Stop

Next, CombDec decides if s′(n) can be potentially resolved. There are three types of

collisions: RTS-only, RTS-data (involving at least one RTS packet and one data packet),

and data-only collisions. CombDec will stop if the collision belongs to data-only collision.

Note that the recognition does not need to be 100% accurate, it simply provides a way to

exclude obvious data-only collisions that cannot be resolved by CombDec.

In WiFi networks, the beginnings of collided packet transmissions are roughly aligned

because of CSMA/CA (if we do not consider the hidden terminal problem). Thus, we

measure the time durations of different power levels of the received signal to identify the

type of a collision. According to 802.11, the data rate for RTS is selected by a station from a

limited set of basic rates defined by the AP (e.g., 12 Mbps and 24 Mbps are widely observed

in our packet traces). Thus, a RTS time duration can be measured by a very limited number

of OFDM symbol durations, e.g., 3 (or 4) OFDM symbol durations for 24 (or 12) Mbps. We

record the time duration li, from the beginning of the signal s′(n), to the position in s′(n)

where the i-th signal power change happens and is larger than a threshold ∆. When the

power level reaches the noise floor, we stop and obtain a set of time durations L = {li}i∈[1,|L|].

We consider a collision as (i) RTS-only if each value in L is close to one of the RTS durations

corresponding to the basic rate set defined by the AP, (ii) RTS-data if one value is close to

an RTS duration and any other value is not close to any of the RTS durations, and (iii) data-

only otherwise. Figure 3.9(a) shows an example of RTS-only collision, where two measured

time durations occupy 3 and 4 OFDM symbol durations, respectively, which is recognized

as the collision of two RTS packets with different rates.
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Figure 3.9. Power level changes in the received signal and padding in matrix construction.

3.4.2 The Collision Resolution Module

The prologue module outputs either RTS-only or RTS-data signals for collision resolution,

(α, β) construction will construct every tooth vectors for the comb matrix. As devices in a

network may use different basic rates to transmit RTS packets (leading to different lengths

of tooth vectors), CombDec zero-pads the shorter tooth vectors with higher data rates to

form the complete comb matrix M used for collision resolution. Figure 3.9(b) shows an

example of constructing the comb matrix M by zero-padding shorter tooth vectors. Then,

M is γ-decimated to M′, which is used in the primal-dual algorithm [25] that solves the L1-

minimization in (3.3). Note that if a collision is RTS-data, the module resolves the collided

RTS signal vectors by treating any data signal as the noise, and then leaves the potential

decoding of data for the epilogue module.

3.4.3 The Epilogue Module

The collision resolution module yields a small set of potential RTS signal vectors involved

in the collision, denoted by R. There are still important questions left: (i) Which RTS in R

a receiver should choose to reply with CTS? (ii) Can we decode the data in the presence of

an RTS-data collision? (iii) Moreover, we also need an error detection mechanism to ensure

the collision is correctly resolved because errors may happen in CombDec. We first describe
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how CombDec chooses data or RTS. The AP and stations have different decision making

processes.

3.4.3.1 Decision Making at AP

The AP observes a collision when multiple stations transmit to the AP at the same time.

• Choosing the RTS with the largest NAV: if the collision is RTS-only, the AP chooses

the RTS of the largest NAV to reply with CTS. Note that we intend to maximize

the channel utilization in this way. A more advanced policy (e.g., considering the

utilization and fairness) can be designed and adopted going beyond the main scope of

this chapter.

• Choosing data over RTS: If the collision is RTS-data, the AP first decodes all RTS

packets in the collision resolution module, then proceeds to decode the data. If the

data is successfully decoded, the AP chooses data over RTS and sends back the ACK

to the sender of the data. This is because data packets are usually longer than RTS

packets. Giving priority to data should improve the channel utilization.

3.4.3.2 Decision Making at Stations

A station observes a collision when multiple other nodes (either other stations or the AP)

transmit at the same time. As shown in Figure 3.6(c), a station only cares about the AP’s

signal transmitted to it.

• If R includes an RTS vector from the AP to the station, the collision is due to the AP

transmitting to the station and at the same time at least one other station transmitting

to the AP, the station always sends CTS to the AP.
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• Otherwise, there is no RTS in R intended for the station. If the collision is RTS-

data, the station proceeds to decode the data because the data may be intended for it;

otherwise, the station stops.

3.4.3.3 Error Checking and Data Decoding

Once a decision is made (choosing RTS or data), we must ensure there is no error with the

chosen RTS or we must proceed to decode the data. How to proceed with error checking and

data decoding? We find that a traditional 802.11 receiver, as shown in Figure 3.8, already

has a PHY payload decoder with the cyclic redundancy check (CRC) mechanism. Thus,

we should leverage the existing architecture to perform the decoding and error checking to

minimize the complexity of CombDec.

As a result, if CombDec decides to act on a particular RTS signal or to decode a data

signal, it uses interference cancelation to remove all other signals from the collided signal.

Specifically, if a decision is to decode the data, CombDec removes all RTS signal vectors in R

from the received signal s′(n) and write the resultant signal as s′c(n) = s′c(n)−
∑|R|

i=1 ri(n)gi,

where ri(n) and gi are the n-th element and the channel gain weight of the i-th RTS tooth

vector in R, respectively. Similarly, if the decision is to act on the j-th RTS vector (i.e.,

choose the j-th RTS in R to reply with CTS), CombDec removes all other RTS tooth vectors

from the s′(n) and the resultant signal becomes s′c(n) = s′c(n)−
∑|R|

i=1,i 6=j ri(n)gi.

Finally, the signal s′c(n) goes from CombDec into the traditional PHY payload decoder,

which performs decoding and error checking, then passes the correct RTS or data to the

MAC layer for protocol processing (e.g., replying with CTS). In addition, the MAC address

and data rate information of a correct RTS packet is stored and its NAV value is also updated

in (α, β)-construction as shown in Figure 3.8.
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Figure 3.10. Environment for experiments.

3.5 Evaluation

In this section, we evaluate the performance of CombDec. We first introduce the experi-

mental setups, then measure the performance benefits CombDec brings to WiFi networks.

3.5.1 Setups

3.5.1.1 Testbed Implementation

We have implemented the prototype of CombDec on 20 USRP X310/300 devices. Each

device is equipped with two UBX-160 daughterboards and two VERT 2450 antennas. We

implement a basic 802.11ac PHY-MAC architecture with 20-MHz settings: 64 OFDM sub-

carriers (including 48 data subcarriers), BPSK, QPSK, 16QAM, and 64QAM modulations,

Alamouti code based MIMO, and convolutional coding at the PHY layer, and CSMA/CA

scheme with an initial contention window size of 8 [11] at the MAC layer. Control packets

including RTS, CTS, and ACK are also implemented.

3.5.1.2 Experimental Settings

We aim to measure the performance of CombDec in a realistic indoor environment inside

a campus building shown in Figure 3.10. Network nodes are placed at various locations and
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transmit packets whose contents are generated according to our collected 802.11ac packet

traces.

Note that we do not implement the 256QAM modulation as we found no single packet

using a data rate associated with 256QAM in all collected packet traces. This does not

severely affect the performance evaluation since 256QAM is intended only for very high SNR

conditions.

We use the following default settings for experiments (unless otherwise specified): (i) all

nodes are saturated; i.e., they always have packets to transmit; (ii) α=600, β=10, and γ=20

for CombDec; (iii) the airport dataset is used to generate packets as it represents the most

crowded condition in all datasets; (iv) all nodes have the same transmit power.

3.5.1.3 Evaluation Metrics

We use the following metrics to evaluate the real-time performance of CombDec.

• Success probability of collision resolution is defined as the probability that CombDec

recovers exactly all collided RTS signals. The recovery will be considered as a failure if

CombDec recovers only a subset of collided RTS signals or mis-identifies an RTS signal

not involved in the collision.
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Figure 3.15. Resolving collisions with different rates.

• Normalized throughput (or utilization efficiency), is defined as the percentage of the

time duration on the wireless channel that is used to deliver data packets. An ideal

network should have a normalized throughput of 1. However, control signals (e.g.,

RTS/CTS) and collisions deteriorate the throughput. We aim to show how much

channel utilization efficiency CombDec can improve via resolving RTS collisions.

• Throughput gain ratio, defined as the ratio between the increased normalized through-

put from traditional 802.11 decoding to CombDec and the normalized throughput

under traditional decoding. Throughput gain ratio can directly reflect how CombDec

improves the network performance.

3.5.2 Success Probability

We first evaluate the success probability of CombDec for collision resolution. In this

evaluation, multiple nodes only transmit RTS packets to the AP placed at location 0 in

Figure 3.10, where the success probability is measured.
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Figure 3.17. Throughputs under different scenarios.
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Figure 3.18. Throughputs with different α and γ.
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3.5.2.1 Impact of Number of Transmissions

We evaluate CombDec’s ability to resolve collisions due to two and more transmissions.

To this end, we place multiple transmitters at location 1, which send RTS packets at the

same time to the AP at location 0. Figure 3.11 shows the success probabilities that the AP

resolves the collision under 2–6 transmitters. The success probability is computed for every

1,000 packets received. It is noted from Figure 3.11 that as the total number of received

packets at the AP increases, CombDec gradually gains the NAV information in RTS packets,

and thus the success probability also increases and finally remains stable. It is also observed

that CombDec is able to resolve 98% of two-node collisions and 86% of three-node collisions.

The performance degrades when the number of transmitters increases. However, a collision

caused by 5 or more WiFi nodes is much less frequent because of the random backoff in

CSMA/CA.

3.5.2.2 Values of α and β

We evaluate the impacts of α and β on the success probability. We place two nodes at

location 1 that transmit RTS packets at the same time to the AP at location 0. Figure 3.12

shows that as α goes from 200 to 600, the success probability increases from 0.28 to 0.98;

and further increase of α will not substantially improve the success probability. Figure 3.13

shows the impact of β on the success probability. We observe that when β increases from 10

to 60 (i.e., CombDec forgets the history faster), the success probability reduces from 0.98 to

0.77. From both figures, we can see that the uniform selection of α = 600 and β = 10 yield

very high performance for the airport scenario, and accordingly are also suitable for other

less crowded scenarios.
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3.5.2.3 Value of γ

We adopt the same setup in Figure 3.13 to evaluate the impact of γ. Figure 3.14 illustrates

that gradually increasing γ does not severely decrease the success probabilities. For example,

when γ becomes 30, the success probability reduces to 0.831. This indicates that adjusting

γ can smoothly balance the performance and the implementation cost.

3.5.2.4 Impact of Zero-Padding

In each of our packet datasets, we find that a majority of RTS packets are transmitted

at the same data rate; however, RTS packets with different rates do exist. These packets

have different lengths of 2, 3, or 4 OFDM symbols. Therefore, a minority of collisions

involving RTS packets with different rates. CombDec uses zero-padding to solve this issue

as discussed in Section 3.4. We measure the ability of CombDec to resolve such a type

of collisions. Hence, we place two nodes at location 1 sending RTS packets with different

lengths to the AP. Figure 3.15 shows that the success probabilities remain approximately the

same when RTS packets have different lengths in a collision. From Figure 3.15, we conclude

that CombDec has no difficulty in resolving this type of collisions.
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3.5.2.5 RTS-Data Collisions

CombDec also attempts to resolve an RTS-data collision via canceling the RTS signal

from the received signal and then performing decoding. To evaluate such an ability, we place

one node (node 1) at location 1 to send RTS to the AP, and place another node (node 2) at

one of locations 1–8 to send data to the AP for the first round of experiments, and then let

node 1 send data and node 2 send RTS for the second round. The first and second rounds

represent the scenarios in which the receiving power of RTS is greater than and less than that

of data, respectively. We consider the collision is resolved when both RTS and data packets

are decoded successfully. Figure 3.16 depicts the success probability of collision resolution as

node 2’s location changes. The figure shows that generally, the success probability is higher

when the receiving power of RTS is higher than that of data. This is because CombDec first

treats any data packet as the noise to recover any RTS packet from the receiving signal.

The results demonstrate that CombDec, primarily designed to handle RTS-only collisions,

is capable of resolving RTS-data collisions in some scenarios.

3.5.3 Network Performance Evaluation

We then evaluate the benefits of CombDec for the network performance. Note that it is

impossible to measure the network performance with CombDec under different setups at the

same time because the resolution of a collision directly affects follow-on network dynamics.

We have to measure the performance under different setups over non-overlapping measure-

ment periods. Therefore, we conduct experiments during off-business hours to minimize the

impact of environmental factors on different measurement periods.
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3.5.3.1 Single Network Scenario

We first consider a single-network scenario where 12 nodes are placed at locations 0–11,

in which the AP is at location 8, as shown in Figure 3.10. The network does not run in the

MU-MIMO mode (i.e., the AP does not transmit data via MU-MIMO to multiple stations

in the downlink). The RTS threshold is set to be 2,300 bytes for all nodes (i.e., RTS is

triggered only when a data packet to be transmitted has a length over 2,300 bytes). The

value of 2,300 is typical for today’s WiFi products (e.g., the default value in Cisco APs is

2347 [17]).

For the throughput improvement, Figure 3.17 demonstrates the comparisons of normal-

ized throughputs under traditional 802.11 decoding and CombDec. Note that the throughput

performance is always measured at the AP. We can see that CombDec is able to uniformly

boost the performance of traditional 802.11 decoding. For example, the normalized through-

put for the airport scenario increases from 0.43 to 0.53, leading to a throughput gain ratio of

(0.53 - 0.43)/0.43 = 23.3%. In all different scenarios, we observe that the throughput gain

ratio under CombDec is 11.6%–23.3%.

For the improvement by tuning α and γ, we aim to find if we can improve the performance

by tuning α and γ, which are important factors to balance the performance and complexity.

Figure 3.18 shows the normalized throughputs for various α and γ values in the airport

scenario. The figure shows that keeping increasing α and decreasing γ do not always lead to

evident improvement. For example, when α goes from 600 to 800 and γ decreases from 20

to 10, the throughput under CombDec only increases from 0.491 to 0.494.

For the improvement by reducing RTS threshold, it is still possible to further improve

the network performance. Our observation is that traditionally, an RTS collision is consid-

ered not resolvable; therefore, many WiFi devices are conservative to set the RTS threshold.

The transmission of a data packet triggers an RTS transmission only when its data size is
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greater than the threshold. In all previous experiments, the threshold is set as a typical

value of 2,300 for today’s networks. Now CombDec has the capability of decoding RTS

collisions; therefore, it can be beneficial to encourage more RTS transmissions by reducing

the threshold. Figure 3.19 compares the normalized throughputs under traditional 802.11

decoding and CombDec for different RTS thresholds. The figure shows that reducing the

threshold generally decreases the throughput performance under traditional decoding; how-

ever and interestingly, it substantially boosts the performance under CombDec. The best

case for traditional decoding is to set the threshold as 2000–2500, resulting in a normalized

throughput of 0.456. By contrast, the best case for CombDec is to remove the threshold

and let everyone always send RTS before data, yielding a higher throughput of 0.657. The

throughput gain ratio is computed as (0.657-0.456)/0.456 = 44.08%. This encouraging re-

sult shows that CombDec has an immediate impact on today’s practice of setting the RTS

threshold, and significantly reducing this threshold can push WiFi towards a collision-free

environment.

3.5.3.2 Collocated Networks

Next, we place a new network close to the single network used in previous experiments.

In the new network, 8 nodes are placed at locations 12–19 and the AP is at location 15, as

shown in Figure 3.10. The two networks use the same frequency and thus interfere with each

other. We call the APs in the original and new networks AP 1 and AP 2, respectively.

Figure 3.20 shows the throughput performance under different settings in the airport

scenario. In Figure 3.20, the one-network performance is the performance measured at

AP 1 in the previous single-network scenario (without the new network); and the two-

network performance is measured as the average of the throughputs measured at AP 1

and AP 2. We can observe from Figure 3.20 that when the new network is placed, the

throughput performance degrades due to mutual interference. CombDec still performs better
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than traditional 802.11 decoding. In the two-network scenario, the best case for CombDec

is setting the RTS threshold to 0 (which is also beneficial to solving the hidden terminal

problem), yielding a throughput of 0.579; and the best case for traditional decoding has a

throughput of 0.396. The throughput gain ratio is thus (0.579 - 0.395)/0.395 = 46.6%, which

is also a substantial throughput improvement. Figure 3.21 compares the best case throughput

performance between CombDec (removing the RTS threshold) and traditional coding (setting

the threshold to 2,300) in different scenarios. It can be seen that the throughput gain ratio

of CombDec is 33.6% – 46.2%.

As discussed in Section 3.3, CombDec is designed to only store information of its own

network. In the two-network scenario, it is possible to enhance the performance of CombDec

by letting (α, β)-construction store the information (including MAC addresses, NAVs, and

RTS rates) of the other network. Figure 3.22 shows that storing other network information

can further yet slightly improve the throughput performance of CombDec with a fairly large

α.

3.6 Related Work

3.6.1 Interference Cancelation and Mitigation

In the literature, successive interference cancelation (SIC) has been proposed to decode

collisions by using either pre-coded signatures or different receiving powers [117, 118, 119,

120, 121, 122, 123, 124]. The time offsets in different packet collisions (e.g., in the presence

of hidden terminals) has also been leveraged to resolve collisions [16, 125, 91]. In addition,

interference cancelation was widely studied in the full-duplex mode [121, 126, 127, 128, 129].

In cross-technology communication, corrupted packets may also be decoded by detecting the

interference type [130, 131]. A number of studies have also proposed interference alignment

and nulling with or without channel state information [132, 133]. These approaches cannot

84



be readily adapted to regular WiFi scenarios considered in this chapter, where RTS packets

collide at the beginning of each transmission.

3.6.2 Multi-user Detection

CombDec is related to multi-user detection that attempts to decode multiple users’ signals

from the overlapped signal [134, 135, 136]. In cellular networks, CDMA has been widely

used to assign distinct spread spectrum codes to different users [101]. However, there is no

such code design in RTS packets. Constructive interference [135] is able to receive multiple

synchronized transmissions. Nevertheless, it requires all packets have the same content,

which is impossible for RTS signals. The work in [137] applied the time division technique to

the byte level such that multiple users can share the same packet. This method needs a strict

coordination among all users. A multi-user system is built in [134] through sharing multiple

channels to users who are allowed to duplicate the signal into these channels. Applying these

designs to WiFi requires modification of the standard; in contrast, CombDec is a non-invasive

design.

3.6.3 Improving WiFi Performance

Substantial efforts have been devoted to improving the WiFi link performance [138, 139,

140, 141, 142, 143, 144, 145, 146]. For example, [138, 139, 141] focused on optimizing the user

selection algorithm in MU-MIMO and [147, 146, 142] aimed to improve the beamforming

related techniques. Different algorithms were also investigated to improve the rate adaptation

in WiFi [143, 144]. Recently, a rapid picocell switching has also been proposed for wireless

transit networks [145]. CombDec is orthogonal to these studies that aim to improve WiFi

performance in different aspects. We show that CombDec makes it possible to resolve RTS

collisions and pushes WiFi towards a collision-free environment.
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3.7 Summary

This chapter provides a systematic study to resolve RTS collisions in WiFi networks.

Our core contribution is a new decoding system CombDec that uses (α, β)-construction,

γ-decimation and sparse recovery to resolve RTS collisions. CombDec does not require

changing the 802.11 standard and redefines the role of the RTS functionality in WiFi. We

show via system implementation and extensive evaluation that CombDec has a beneficial

impact on WiFi networks and substantially improves the throughput performance by 33.6%

– 46.2% in various scenarios.
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Chapter 4: Measurement Integrity Attacks against Network Tomography

4.1 Abstract

Network tomography is an important tool to estimate link metrics from end-to-end net-

work measurements. An implicit assumption in network tomography is that observed mea-

surements indeed reflect the aggregate of link performance (i.e., seeing is believing). However,

it is not guaranteed today that there exists no anomaly (e.g., malicious autonomous systems

and insider threats) in large-scale networks. Malicious nodes can intentionally manipulate

link metrics via delaying or dropping packets to affect measurements. Will such an assump-

tion render a vulnerability when facing attackers? The problem is of essential importance

in that network tomography is developed towards effective network diagnostics and failure

recovery.

In this chapter, we demonstrate that the vulnerability is real and propose a new attack

strategy, called measurement integrity attack, in which malicious nodes can substantially

damage a network (e.g., delaying packets) and at the same time maliciously manipulate

end-to-end measurement results such that a legitimate node is misleadingly identified as the

root cause of the damage (thereby becoming a scapegoat) under network tomography. We

formulate three basic attack approaches and show under what conditions attacks can be

successful. We also reveal conditions to detect and locate such attacks in a network. Our

theoretical and experimental results show that simply trusting measurements leads to mea-

surement integrity vulnerabilities. Thus, existing methods should be revisited accordingly

for security in various applications.
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4.2 Models and Problem Statement

In this section, we first review network tomography and introduce the basic idea behind

measurement integrity attacks. Then, we state our research problems. All notations are

defined in Table 4.1.

Table 4.1. Notations used throughout the chapter.

AT The transpose of matrix A.
A−1 The inverse of matrix A.

‖a‖1 The L-1 norm of vector a = [a1, a2, · · · , an]T , i.e., ‖a‖1 =
∑n

i=1 |ai|.
x � y

Componentwise larger than or equal to, i.e., xi ≥ yi for every index
i and pair of xi ∈ x and yi ∈ y.

0 All-zero vector.

|A| The cardinality of set A.

4.2.1 Network Models and Assumptions

We consider a connected network with a known topology denoted by graph G = (V,L),

where V = {vi}i∈[1,|V|] and L = {li}i∈[1,|L|] represent the sets of nodes and links, respectively.

There is at most one link between nodes vi and vj for i 6= j and no link for i = j (i.e.,

no self-loop). Link li is associated with a link metric xi. We assume that link metrics are

additive, i.e., the overall measurement metric of an end-to-end path is the sum of individual

link metrics over the path. For example, delay metrics are additive; and packet delivery or

loss ratios are also additive in the logarithmic form [31, 148, 47].

Throughout this chapter, we adopt similar assumptions in the literature for network

tomography (e.g., [45, 46, 47]): (i) a network operator chooses a number of nodes in the

network as monitors, which send probe packets between each other to monitor the additive

metric of each individual link; (ii) the network operator will collect all measurement results

from monitors, and then perform network tomography for monitoring and diagnosis purposes.
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In addition, we adopt the assumption that the monitors can control the routing of probe

packets over a path as long as the path starts and ends at different monitors. Although end

nodes usually have no control of the routing path of a common IP packet, network tomog-

raphy relies on such a controllable routing assumption (e.g., [45, 46, 47]). It is known from

existing studies (e.g., [149, 150]) that controllable routing served for network measurement

can be generally supported in (i) networks under common administration, (ii) networks with

strict (or loose) source routing, such as wireless networks with ad-hoc on demand distance

vector (AODV) routing, or (iii) certain software-defined network (SDN) scenarios where

monitors, with the help of the SDN controller, can decide paths of measurement packets.

How exactly controllable routing is designed for network tomography is complementary to

the work in this chapter that focuses on exploiting the network tomography process and

launching measurement integrity attacks.

4.2.2 Network Tomography and Formulation

Network tomography [36] is an algorithm to estimate link metrics from end-to-end mea-

surements. Theoretically, we form the link metrics as a column vector x = [x1, x2, · · · , x|L|]
T .

To efficiently estimate x, monitors first select a set of measurement paths between each other,

denoted by P = {Pi}i∈[1,|P|]. Then, they send probe packets over the paths in P to obtain

the path measurement metrics, which are denoted as a column vector y = [y1, y2, · · · , y|P|]
T .

As a path measurement metric in y is usually the sum of multiple link metrics in x (e.g., a

path delay is the sum of multiple link delays), it has been shown [44] that the linear relation

between x and y can be represented as

y = Rx, (4.1)
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where R = (Ri,j) is called the routing or measurement matrix whose entry Ri,j has value

1 if link lj ∈ L is present on path Pi ∈ P, and value 0 otherwise. Network tomography in

essence inverts the linear system in (5.1) to solve for x given R and y. Existing studies on

selecting or placing monitors (e.g., [46, 45]) ensure that R is revertible (or full column rank)

and the solution to (5.1) can be obtained as

x̂ = (RTR)−1RTy. (4.2)

The estimate x̂ is expected to have values close to the real link metric vector x, and will

be used as decisive information for link status monitoring, network diagnostics or further

failure recovery.

4.2.3 Motivation and Basic Idea

Network tomography does not directly measure network link performance, but deduces

such performance from the aggregate measurements observed by monitors. Therefore, the

reliability of network tomography relies on an implicit assumption that measurements over

end-to-end paths indeed reflect the real performance aggregates over individual links. How-

ever, such probe packets may go through malicious autonomous systems [48, 49], intentional

bandwidth throttling systems [151], backdoor-infected routers [50] or attack-captured nodes

[51, 52] that can intentionally or maliciously cause negative impacts on end-to-end mea-

surements. Thus, such an assumption may not always hold in today’s complicated network

environments.

Suppose that some nodes in the network are malicious and intend to cause damage. A

straightforward attack is that they delay or drop all packets routed to them. However, it is

easy for the network operator to detect that the links connecting to these nodes suffer long

delay or high loss under network tomography. Therefore, a much more important question
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Figure 4.1. A simple network example, where M1 −M4 are monitors, and M1 is malicious.

is whether it is possible for these malicious nodes to launch attacks and at the same time

mislead network tomography.

To demonstrate the idea of such an attack, we consider a naive scenario shown in Fig. 4.1,

where nodes M1, M2, M3 andM4 are monitors that perform network tomography to estimate

link metrics, and the number on each edge denotes the link index. These monitors choose

4 paths listed in Fig. 4.1 for end-to-end measurement. Assume that node M1 is malicious,

which means that it can adversely affect the performance of link 1 to damage the network,

such as delaying packets passing through link 1. Note that monitors do not need to enumerate

all possible paths between them. They only need to choose a sufficient number of paths to

ensure identifiability in network tomography (e.g., [46, 47]). Fig. 4.1 shows such an example

with 4 paths chosen.

From Fig. 4.1, the attackerM1 associated with link 1 presents on paths 1-3. If the attacker

M1 simply delays or drops all packets going through link 1, it is very easy to be identified

by network tomography as the root cause. Instead, our proposed attack strategy is that the

attacker can try to delay or drop packets along certain directions to mislead tomography.

Specifically, in Fig. 4.1, the attacker M1 is on all measurement paths containing link 3 (i.e.,

path 2). If the attacker M1 only does the damage on path 2, and do nothing on other paths

(e.g., paths 1, 3), the induced measurements under the network tomography algorithm (4.2)

will show that path measurements containing link 3 always suffer long delay or high loss,

while the others appear to be normal.
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For example in Fig. 4.1, we have the system (5.1) as

Path 1 : y1 = x1 + x2

Path 2 : y2 = x1 + x3

Path 3 : y3 = x1 + x4

Path 4 : y4 = x2 + x4.

(4.3)

Clearly, the routing matrix R in (4.3) satisfies the full column rank requirement. Now

suppose an ideal case that the network is congestion free (i.e., almost 0ms delay on every

link), and the attacker only damages path 2 by inflicting extra 1000ms delay on link 1. Then,

we have the observed path measurement vector y = [0, 1000, 0, 0]T . According to (5.1), the

estimated link metrics become x̂ = [0, 0, 1000, 0]T . Such result indicates that

1. The estimated link vector x̂ shows that no anomaly happens on link 1; therefore, the

anomaly of link 1 due to attacker M1 can be successfully concealed by such an attack

strategy against the network tomography.

2. This unavoidably misleads the network operator to believe that link 3 or its end-node

M3 must have some issues.

Therefore, we call such an attack strategy measurement integrity attack and call link 3 or

nodes M3 a scapegoat in the case.

4.2.4 Problem Statement

From the example in Fig. 4.1, we can consider the measurement integrity attack as a

potential attack to hide the real identities of attackers and make some legitimate nodes or

links the scapegoats. Many questions can be raised concerning the feasibility of such an

attack strategy in the above example: How can M1 damage the network to launch a feasible
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attack? Can M1 make other links, such as link 2, the scapegoat? Is it possible to detect or

locate such an attack?

Before theoretically addressing these issues, we first introduce several necessary defini-

tions. Considering a network G = (V,L), we define Vm ⊆ V as the malicious nodes set

(called attackers), which control a set of links Lm ⊆ L. Then the attackers can launch the

attack by inconsistently inflicting damage on particular paths Pm ⊆ P, where every entry

Pi ∈ Pm travels at least one link lj ∈ Lm.

According to previous definitions, we unfold our major problems into two aspects as

follows.

1. For the attack strategy, network tomography infers the link metrics based on (4.2).

Therefore, in order to mislead network tomography, the routing matrix R is neces-

sary to be known by attackers. However, for most networks, the path information is

generally encrypted in network or higher layers, so that the attacker cannot obtain it.

Therefore the first challenge is how to launch measurement integrity attacks to delay or

drop packets on paths from Pm in a way such that another set of links Ls is identified

as the root cause and Ls ∩ Lm = ∅ (where ∅ denotes the empty set).

2. For the detection strategy, from the defenders’ perspective, they know the global rout-

ing matrix R and the manipulated path measurement vector, but they do not know the

true malicious links Lm. Therefore, another challenge is how to detect if measurement

integrity attacks exist and how to localize which links have real problems.

We assume all nodes, including norm nodes and monitors, can be malicious in Vm, because

they are not dedicated nodes with special protection, but normal nodes representing sources

and destinations on measurement paths in the network. A large number of nodes are usually

required to be chosen as monitors to ensure identifiability in network tomography [47, 46].
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4.3 Attack Strategies

In this section, we formally address the measurement integrity problem. In particular,

we categorize measurement integrity attacks into three basic strategies, and then formulate

them and discuss their impacts.

4.3.1 Network Link States

The network operator uses network tomography to identify an abnormal link by checking

its link metric exhibiting long delay or high loss. Under measurement integrity attacks,

a normal link may be misleadingly identified as abnormal. To facilitate formulating such

attacks, we first define the normal and abnormal states of a network link.

Definition 2 Define the state space of a link as S = {normal, abnormal, uncertain}. Let the

state of link li ∈ L be a function S : L → S such that S(li) = abnormal if li’s link metric

xi is larger than an upper bound bu (i.e., xi > bu), and S(li) = normal if xi is less than a

lower bound bl (i.e., xi < bl), and S(li) = uncertain otherwise (i.e., when xi ∈ [bl, bu]). In

particular, the state S(li) satisfies

S(li) =







normal xi < bl,

uncertain bl ≤ xi ≤ bu,

abnormal xi > bu.

Remark 1 The state of uncertain indicates that some links may be in an intermediate state

that cannot be clearly classified to abnormal or normal. There is no standardized definition

to clarify all problematic conditions in practical network diagnostics. For example, in an

enterprise network, a link can be considered abnormal if the link delay is larger than a few

seconds, and considered normal if the delay is tens of milliseconds (ms). However, when the

link delay is hundreds of milliseconds (e.g., 150ms), it really depends on the network operation
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rules in the organization to decide the state of the link. As a result, we introduce the state of

uncertain to accommodate this intermediate state. We also note that our three-state scenario

can be easily transitioned into the two-state scenario by setting a single threshold b = bu = bl

in Definition 2.

With Definition 2, we can say that one of the goals for measurement integrity attacks is

to make sure that the links associated with attackers are identified as normal; at the same

time, some innocent links are, however, identified as abnormal.

4.3.2 Attack Manipulation Vector and Inflicted Damage

Apparently, except for generating misleading results, a major goal of attackers is to cause

damage to the network. Therefore, we also need to measure the damage due to the attacks.

The first thing towards measuring the attack damage is to determine what attackers can

manipulate. By nature, attackers can affect any end-to-end path that goes through them,

accordingly manipulating the end-to-end measurement vector observed at monitors. For

example, in Fig. 4.1, node M1 can obviously affect any data flow going through links 1(e.g.,

delaying or dropping packets).

Denote by y′ and y the end-to-end measurement vectors with and without the attack,

respectively. Without loss of generality, we can always write

y′ = y +m, (4.4)

where y reflects the real end-to-end performance, and m is called the attack manipulation

vector that denotes the damage (e.g., intentional delay or packet dropping ratio) inflicted

by attacks over all paths. For example, when an end-to-end path has a delay of 10ms, an

attacker on the path can incur an extra delay of 1000ms for every packet, making the observed

end-to-end measurement 1010ms; and the extra delay of 1000ms can be controlled by the
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attacker and will be an entry in m to represent the damage to the network. Accordingly,

each entry in m reflects the performance degradation induced by the attacker on each path

in the network.

All entries in m should be non-negative in that attackers should not boost, but degrade

the network performance, i.e., m � 0, where � means “componentwise greater than or

equal to” defined in Table 4.1. For example, attackers can intentionally postpone forwarding

packets on paths going through them, thus incurring more delay on those paths. But they

are never expected to reduce the delay, because it is in contrast to the attacker’s goal to

damage the network and it may be technically infeasible for them to further reduce the delay

at will. In addition, for the measurement paths that contain no attacker, the corresponding

entries in m must be zero, indicating that attackers cannot manipulate the measurements

on these paths. For example, in Fig. 4.1, attacker M1 is not on path 4, and thus cannot

manipulate the measurement of path 4. We formally define these constraints of m as follows.

Constraint 1 The attack manipulation vector m = {mi}i∈[1,|P|] satisfies (i) m � 0; and

(ii) mi = 0 when there exists no such node v ∈ Vm that is on path Pi ∈ P, where Vm and P

denote the sets of malicious nodes and measurement paths, respectively.

Under the Constraint 1, attackers will attempt to maximize the damage to the network.

In the following, we define the damage as total performance degradation over all paths.

Definition 3 The damage of the measurement integrity attack is measured by ‖m‖1, i.e.,

the L1 norm of attack manipulation vector m.

Remark 2 Definition 3 defines the damage metric of the attack as the total sum of all

entries, representing the total performance degradation over all paths. The larger the value

of ‖m‖1, the more damage the attack brings. We can also change the damage metric to the

average performance degradation or to any other form. For the sake of simplicity, we always
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use the damage metric in Definition 3 for formulation and analysis, and note that the change

of the damage metric (e.g., to accommodate the metrics of packet loss or delivery ratios) is

a straightforward extension in mathematical manipulations.

4.3.3 Partial Information

According to (4.2), in order to manipulate the inferred link metrics x̂, the global routing

information lying in the routing matrix R and the original overall path measurement vector

y should be known by attackers. For example, in Fig. 4.1, if M1 knows the linear system

(4.3) and y = [0, 0, 0, 0]T , then M1 can scapegoat link 3 by introducing m = [0, 1000, 0, 0].

However, in practice, from the security perspective, both R and y are less likely open to

every node in most networks. Therefore, before introducing the attack strategy, we need to

clarify what information that attackers know while launching attacks.

Definition 4 Attackers know the routing information and path measurement vector on paths

that go through them (i.e., paths in Pm). Specifically, for each path Pi ∈ Pm, the routing

information ri (i.e., ith row of the routing matrix R), and the true path measurement metric

yi ∈ y are known by attackers. The partiality factor β is defined as the ratio between the

number of paths in Pm and the total number of paths, i.e., β = |Pm|/|P|.

Remark 3 The partiality factor β is a ratio indicating how much information that attackers

know. β = 1 denotes attackers completely know R and y, and 0 < β < 1 means attackers

only know several rows of R and associated several entries of y . In fact, β is also positively

related to the number of attackers in a network. For example, β = 1 denotes attackers are

present on all paths in a network, and β = 0 means there is no attacker in the network.

Remark 4 In many networks, attackers may acquire the path measurement vector and the

routing information of paths that go through them. For example, in AODV, the routing
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information is available during the routing discover process, and the path measurement vector

can be obtained if the attacker is the source or destination node of a path.

According to Definition 4, to clearly model the partiality, we split R and y into two parts,

i.e., R = [RT
d ,R

T
r ]

T and y = [yT
d ,y

T
r ]

T , where Rd and yd denote the parts that attackers

know, and Rr and yr are unknown to attackers. Similarly, according to Constraint 1, we also

divide the attack manipulation vector as m = [mT
d , 0

T ]T , where mT
d denotes the inflicted

damage on paths in Pm. Then, the linear system (4.4) can be written as

y′ =






yd

yr




+m =






Rd

Rr




x+






md

0




 . (4.5)

Attackers have no knowledge on entries in Rr and yr, therefore we consider Rr and yr as

a random matrix and a random vector, respectively. If the partiality factor β = 1, then yr

and Rr will vanish and md = m, indicating attackers know and can control all paths. If

β = 0, md will vanish, meaning that this network cannot be damaged by attackers, therefore

in order to investigate the malicious behaviors, in this chapter, we only consider the scenario

0 < β ≤ 1.

4.3.4 Attack Strategy

Given the partial knowledge Rd and yd, one major goal of attackers is to find an attack

manipulation vector m, such that inferred link metrics x̂ can scapegoat victim links as

the root cause. However, the unknown information in Rr and yr renders uncertainties for

attackers to find m. Therefore, we need a deterministic rule to guide attackers to address

such uncertainties.

According to Definition 2, the scapegoating purpose represents that the estimated metric

x̂i for link li ∈ L must meet certain conditions to be in normal, abnormal, or uncertain state.
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This means that we can write the goal as

sl � x̂ � su, (4.6)

where su and sl are called the upper and lower bound vectors. By controlling su and sl, we

can accommodate various scapegoating purposes. Inserting (4.2) and (4.4) into (4.18), we

have

sl � (RTR)−1RT (y +m) � su. (4.7)

The normal link delay in a network is usually small (e.g., several or tens of milliseconds).

By contrast, an attacker should significantly delay packets (e.g., by more than thousands of

milliseconds) to cause damage to the network. Therefore, the true path measurement vector

y should be of lesser magnitude than the attack manipulation vector m (i.e., y +m ≈ m).

Then (4.7) can be approximated by

(Rd
TRd +Rr

TRr)sl �
[
RT

d RT
r

]






md

0




 � (Rd

TRd +Rr
TRr)su. (4.8)

Obviously, if attackers know the routing matrix R completely, md can be solved from (4.8)

through standard linear programming [152]. However, with the random matrix Rr, it is

infeasible to solve md directly. Therefore, we need a constraint to convert such random

matrix Rr to a deterministic one. By considering the worst case, we have the following

constraint.

Constraint 2 Given the upper bound su and lower bound sl of x̂, the partial routing matrix

Rd and vector md in the attack manipulation vector m satisfies

(Rd
TRd +R+

r
T
R+

r )sl � RT
dmd � (Rd

TRd +R−
r
T
R−

r )su, (4.9)
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where

1. R+
r = arg

Rr

sup(Rr
TRrsl), and R+

r does not contain two identical rows and all 0 row.

2. R−
r = arg

Rr

inf(Rr
TRrsu), and R−

r does not contain two identical rows and all 0 row.

Remark 5 Constraint 2 converts the random matrix Rr into deterministic matrices R+
r and

R−
r , which maximize and minimize Rr

TRrsl, respectively. Constraint 2 can be considered as

the worst case of (4.8) because it shrinks the solution space of md, i.e., it is easy to know

that for any solution m∗
d satisfying (4.9), it must also satisfy (4.8).

4.3.5 Formulation of Measurement Integrity Attacks

Measurement integrity attacks aim to bring damage to a network, and at the same

time hide the attacker-controlled link set Lm but expose another set of victim links Ls as

scapegoats to network tomography. The basic idea to implement measurement integrity

attacks is that attackers cooperatively inflict damage on paths which contain victims, and

do nothing on other paths. Based on this idea, attackers can choose different strategies

to launch the attacks. Specifically, we consider three basic strategies: (i) chosen-victim

attacks, where the victim link set Ls is already chosen and targeted, (ii) maximum-damage

attacks, where attackers aim at finding the best victim link set Ls to maximize their damage,

(iii) obfuscation, where attackers attempt to make network tomography show no evident

performance outliers but uniform degradation over a substantial number of links.

Fig. 4.2 shows an illustrative example of how different attack strategies affect the link

delay metrics obtained by network tomography. In Fig. 4.2, solid lines represent the values

of end-to-end delay metrics and each dotted line denotes the envelope of the solid line under

the same scapegoating strategy. We see from Fig. 4.2 that there are 10 links, and links 1 and

2 are controlled by attackers. Under chosen-victim scapegoating, the attackers choose links

5 and 6 to be scapegoats that exhibit much higher delays than other links. Under maximum-
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Link Index1          2          3          4          5          6          7          8          9          10

Delay

Attacker-Controlled

Maximum-

Damage

Obfuscation

Chosen-

Victim

Figure 4.2. Examples of link metrics under tomography for three strategies.

damage scapegoating, the attackers found that links 8 and 10 can be the scapegoats with

highest delays. Under obfuscation, the attackers can make most links exhibit similarly delays,

which can confuse the network operator to find which links are truly problematic.

In the following, we mathematically formulate these attack strategies.

4.3.5.1 Chosen-Victim Scapegoating

When the victim set Ls is already given, this strategy can be formulated as choosing the

best attack manipulation vector m to maximize the attack damage, at the same time satis-

fying the constraints for m, Lm, and Ls. According to Constraint 1 and 2 and Definitions 2

and 3, we can formulate this basic scapegoating strategy as

maximize
m

‖m‖1 , (4.10)

subject to m satisfies Constraint 1 and 2,

S(l) = normal, ∀ l ∈ Lm, (4.11)

S(l) = abnormal, ∀ l ∈ Ls, (4.12)

Lm ∩ Ls = ∅, (4.13)
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where constraints (4.11) and (4.12) mean that all links associated with the attackers should

appear normal, and all links in the victim set should be abnormal, respectively. These two

together, combined with constraint (4.13), achieve the goal of scapegoating under network

tomography.

4.3.5.2 Maximum-Damage Scapegoating

If the attackers aim to bring maximum damage to the network, they may do so by search-

ing the best victim set in the set of all links. Therefore, maximum-damage scapegoating can

be written as

maximize
m,Ls⊂L

‖m‖1 , (4.14)

subject to m satisfies Constraint 1 and 2,

Constraints in (4.11), (4.12), and (4.13).

4.3.5.3 Obfuscation

Different from the chosen-victim and maximum-damage attacks, the idea behind obfus-

cation is to make every link look mostly similar without evident outliers. Obfuscation does

not necessarily lead to a unique strategy. As long as a strategy makes a substantial num-

ber of link metrics look approximately similar, and at the same time incurs damage to the

network, it should be considered as a successful obfuscation one. We leverage the state of
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uncertain in Definition 2 to define obfuscation as follows.

maximize
m,Ls⊂L

‖m‖1 , (4.15)

subject to m satisfies Constraint 1 and 2,

S(l) = uncertain, ∀ l∈Lo=Ls∪Lm, (4.16)

Ls 6= ∅, |Lo| > γ|L| (4.17)

where Ls is the set of victim links that attackers want to find such that any link l ∈ Lo

is manipulated under network tomography to be in the uncertain state defined in (4.16). γ

is a predefined threshold ratio indicating the lower bound of the number of infected links.

As we have mentioned, the uncertain state represents an intermediate state, in which a link

cannot be clearly classified into either normal or abnormal. Hence, a substantial number of

links (i.e., more than γ|L|) in the uncertain state result in obfuscation.

Given these formally defined basic strategies, attackers are able to launch scapegoating

attacks against network tomography to maximize the damage, make scapegoats, or obfuscate

the network operator. In addition, attackers may also develop more sophisticated strategies

based upon these three ones.

4.4 Feasibility and Detectability

After we formulate measurement integrity attack strategies, two questions naturally fol-

low: (i) Whether these attacks are indeed feasible (i.e., whether feasible solutions exist in the

optimization-based strategies)? (ii) Can we detect or locate such an attack if it is successfully

launched? In this section, we answer these two questions by first analyzing the feasibility of

the attack, then describing how to detect it. The method to locate attacks is discussed in

Section 4.5.
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4.4.1 Feasibility Analysis

Whether an attack is feasible depends on the network connectivity, selections of measure-

ment paths, and where attackers are. Consider a simple example in Fig. 4.3(a): Attackers

A1 and A2 aim to manipulate the end-to-end measurements to scapegoat the link between

nodes C and D. They should be able to succeed if they are on all the measurement paths

that go through the link between C and D. We say it is a perfect cut case, in which for

any measurement path P ∈ P containing a victim link, there always exists a malicious node

v ∈ Vm present on that path P . Fig. 4.3(b) illustrates an imperfect cut case, in which the

path M1→B→ C→ D→M4 contains neither A1 nor A2.

(a) Perfect Cut (b) Imperfect Cut

M1

M2

M3

A1

A2

B

C
D

E

M1

M2

M3

A1

A2

B

C
D

E

M4

Figure 4.3. Perfect and imperfect cuts by two attackers.

4.4.1.1 Perfect Cut

We show in the following that a perfect cut always leads to a successful attack in any

strategy.

Theorem 1 A measurement integrity attack is always feasible if the set of malicious nodes

Vm can perfectly cut the set of victim links Ls from all measurements paths.

Proof: We do not need to prove the feasibility of all three strategies because the maximum-

damage scapegoating (4.14) must be feasible if chosen-victim one (4.10) is feasible. Then, we

write (4.10) and (4.14) into a generic form, which is (4.18), i.e., sl � x̂ � su,. By adjusting
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su and sl, we can accommodate either chosen-victim scapegoating or obfuscation because

constraints (4.11), (4.12) and (4.16) indicate the estimated x̂ must meet certain conditions.

Then we need to show that for a given manipulated metric vector x̂∗ satisfying (4.18),

there exists a resultant vector m∗ that meets Constraints 1 and 2. Because Constraint 2 is

derived from (4.18) in Section 4.3.4. According to (4.7) and (4.8), it is clear that m∗ satisfies

Constraint 2. Thus we only need to show the proof under Constraint 1.

We have developed three strategies, but do not need to prove the feasibility individually.

It is easy to know that if the chosen-victim scapegoating (4.10) is feasible, the maximum-

damage one (4.14) is also feasible. Then, we write the chosen-victim scapegoating (4.10)

and obfuscation (4.15) into a generic form, and show that a feasible solution exists in the

generic form when the set of malicious nodes Vm can perfectly cut the set of victim links Ls

from all measurements paths.

According to Definition 2, the constraints in (4.12), (4.13) and (4.16) represent that the

estimated metric x̂i for link li ∈ L must meet certain conditions to be in normal, abnormal,

or uncertain state. This means that we can write these constraints as

su � x̂ � sl, (4.18)

where x̂ is link metric vector estimated by network tomography, su and sl are called the upper

and lower bound vectors. By controlling su and sl, we can accommodate either chosen-victim

scapegoating or obfuscation.

Therefore, we only need to show that for a given manipulated metric vector x̂∗ satisfying

(4.18), there exists a resultant vector m∗ that meets Constraint 1 for successful scapegoating.

To this end, we can first write the measurement model (5.1) as

y′ = y∗ +m∗ = Rx̂∗, (4.19)
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where y′ is the observed measurement vector under scapegoating, and y∗ is the true mea-

surement vector if there is no scapegoating and satisfies

y∗ = Rx∗, (4.20)

with x∗ being the true link metric vector.

It follows from (4.19) and (4.20) that

m∗ = R∆x̂∗, (4.21)

where ∆x̂∗ = x̂∗ − x∗. For the i-th entry m∗
i in m∗, we have

m∗
i =

∑

j

Ri,j∆x̂∗
j , (4.22)

where Ri,j is the (i, j)-th entry in routing matrix R and ∆x̂∗
j is the j-th entry of ∆x̂∗.

Because Vm is a perfect cut, if there is no attacker on path Pi ∈ P, there will be no

victim link on path Pi as well. This indicates that Ri,j = 0 if link lj ∈ Lm ∪Ls. In addition,

if link lj /∈ Lm ∪ Ls, ∆x̂∗
j = 0 as the attackers do not manipulate the metric of link lj .

Combining the two observations, we obtain m∗
i = 0 if there is no attack on path Pi, which

satisfies Constraint 1 thus completes the proof. �

4.4.1.2 Imperfect Cut

If attackers only form an imperfect cut of the victim links, the formulation of an attack

strategy may not always yield a feasible solution, which depends on specific network settings.

We are interested in understanding the attack success probability under generic random

assumptions (i.e., we do not use specific distribution models such as power-law network

connectivity, but only assume that network connectivity, placement of monitors, and selection
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of measurement paths are random in the network). We show that it increases with the

increasing of the number of measurement paths that include at least one victim link and at

least one attacker.

Theorem 2 The success probability of a measurement integrity attack is defined as the prob-

ability that an attack strategy yields a feasible solution. Under generic random assumptions,

the success probability is an increasing function of the number of measurement paths that

include at least one victim link and at least one attacker.

Proof: Let L = |P| be the total number of measurement paths in network tomography.

Assume that attackers Vm are present on k < L measurement paths. Define a vector space

ML
k = {v |v ∈ R

L×1, and L − k entries in v are always zeros}, where R
L×1 denotes the

L-dimensional vector space. It is clear that for any s ≥ k, it always holds that

ML
k ⊂ ML

s . (4.23)

It is clear that the attack manipulation vector mk ∈ ML
k . The success probability p can

be denoted as

p(mk) = P (E(mk)) , (4.24)

where E(mk) denotes a set satisfying

E(mk)=
{
m|m∈ML

k , and m is a feasible solution
}
. (4.25)

Now, consider the scenario that the total number of paths used in tomography is still fixed

to L, but increase the total number of infected end-to-end measurement paths. Specifically,

there are s > k paths that include the victim links and at least one attack link, i.e., less
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entries in the new manipulation vector ms are always zeros. The success probability becomes

p(ms) = P (E(ms)) , (4.26)

where

E(ms)=
{
m|m∈ML

s , and m is a feasible solution
}
. (4.27)

Therefore, it suffices to prove p(mk) < p(ms), or equivalently to prove

a ∈ E(ms), ∀ a ∈ E(mk), (4.28)

which immediately follows from (4.23), (4.25), and (4.27). �

4.4.2 Detecting Measurement Integrity Attacks

We have analyzed the feasibility of measurement integrity attacks. If an attack is suc-

cessfully launched, we should never trust the result obtained by network tomography. It is

necessary to know how to detect such an attack in a network. Our insight is that attackers

have to manipulate packet delivery in certain directions to make scapegoating possible in

the network. This means that if we verify the estimated link metric vector x̂, which can be

obtained by (4.2), with observed measurement vector y′ in all entries, it is likely to observe

the inconsistency under the measurement model (5.1) in the presence of a measurement in-

tegrity attack. In other words, verifying x̂ and y′ according to (5.1) results in our detection

method

scapegoating







exists, if Rx̂ 6= y′,

does not exist, if Rx̂ = y′.
(4.29)

with the following detectability.
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Theorem 3 Under the detection mechanism (4.29), a measurement integrity attack is un-

detectable if attackers Vm can perfectly cut victim links Ls from measurement paths or R is

a square matrix; and is detectable otherwise.

Proof: The proof is partly based on the proof for Theorem 1.

First, if R is a square matrix, it is easy to verify that Rx̂ = y′ always holds. Therefore,

it is not possible to detect scapegoating under the linear model (5.1).

Then, we consider thatR is not a square matrix. If attackers Vm can perfectly cut victims

Ls, the attackers can always choose an attack manipulation vector m∗ such that Rx̂ = y′ as

shown in (4.19). Therefore, no inconsistency can be found in the detection method (4.29).

If attackers Vm do not perfectly cut victims Ls, there always exists at least one path on

which there is no attacker but at least a victim link with metric manipulated. This means

that the observed measurement on this path in the sum of all true link metrics because there

is no attacker on the path. However, because the metric of the victim link is manipulated by

attackers, the observed measurement will be inconsistent with the sum of the manipulated

link metrics. Consequently, Rx̂ 6= y′, meaning the existence of scapegoating. �

Remark 6 Theorem 3 shows that if attackers Vm can perfectly cut victim links from mea-

surement paths, there is no way to detect them based on the inconsistency check. This is

intuitively true. For example, in Fig. 4.3(a), attackers A1 and A2 cut the victim link between

nodes C and D completely from the measurement paths M1 → M2 and M1 → M3. Any

information about the victim link is from these two paths whose measurements can be surely

manipulated by the attackers to evade the detection.

Remark 7 In practice, even when there is no attack, Rx̂ may not exactly equal to y′ in

(4.29) due to randomness in packet delivery and measurement error. Therefore, the attack

detection can be slightly modified to test ‖Rx̂− y′‖1 > α, where α is a given threshold that

can be empirically determined.
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4.5 Locatability Analysis

According to the detection mechanism (4.29), if an attack is successfully launched and it

is also detected, the inferred link performance x̂ obtained by network tomography becomes

untrusted. Therefore, it is necessary to know which nodes or links are the attackers. In this

section, we discuss how to locate the real attackers in the network. We first present the

design motivation, then present the method of locating attacks.

4.5.1 Motivation and Example

1

M1

2

3

4
M2

M3

M4

1: M1-M3:           1 2

2: M1-M4:           1 3

3: M1-M5:           1 4

4: M3-M4:           2 3

M5

. . .

Figure 4.4. A simple network consisting of 5 nodes and 4 links.

The key idea of the measurement integrity attack is that attackers only damage the paths

that contain victim links and do nothing to other paths. Therefore, a malicious link used by

attackers to cause damages should be present on multiple paths, i.e., some of them contain

victim links and others do not. However, if the link controlled by a attacker is the only

shared link in a network, then the only explanation for the inconsistency in (4.29) is that

this shared link is malicious, because it is the only link that can really inflict the traffic

differentiation among different paths.

For example, in a simple network consisting of 5 nodes and 4 links (shown in Fig. 4.4), we

consider three paths (i.e., path 1: M1 → M3, path 2: M1 → M4, and path 3: M1 → M5), the

only shared link among them is link 1. Assume link 1 is malicious and controlled by attacker
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M1, aiming to scapegoat links 3 and 4. Suppose if the presence of an attacker is detected

among these three paths, we can pinpoint that link 1 is malicious. However, according to

Theorem 3, only using paths 1-3 is insufficient to detect the attacker link 1 since link 1 can

perfectly cut both links 3 and 4.

In order to detect the attacker, knowledge of extra paths is needed. Our design is based

on the concept of path pairs in network neutrality inference [40]. A path pair {Pi, Pj} is

a single path which includes all links traveled by at least one of path i or path j. For

example, path pair {P2, P3} is formed by links 1, 3 and 4. In the real world, this path pair

is measurable if M2 is a monitor such that we can measure link 4 and path 2 in a same time

period and then combine them together. Note that we are able to detect the attack by using

other normal paths, such as path 4: M3 → M2 → M4, however, if so, we cannot put the

blames only on the link 1.

Now we use the path pair {P2, P3}, combined with paths 1-3 to locate link 1. Considering

the existence of the attacker, the measurement model (5.1) can be expressed as

Path 1 : y′1 = x1 + x2

Path 2 : y′2 = x1 + x3

Path 3 : y′3 = x1 + x4

Path Pair {P2, P3} : y′4 = x1 + x3 + x4.

(4.30)

Without loss of generality, and to clearly show the inconsistency, we assume the network,

shown in Fig. 4.4, is congestion free, thus delays only come from the attacker. To scapegoat

links 3 and 4, link 1 introduces extra delays (e.g., 1000ms) on paths 2 and 3. Then the

measurements of these four paths are y′ = [0, 1000, 1000, 1000]T . It is easy to observe that a

contradiction happens among these measurements: y′1 indicates that x1 = 0, whereas y′2, y
′
3

and y′4 indicate x1 = 1000 and x3 = x4 = 0. If we apply the detection mechanism (4.29) into
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the system (4.30), this contradiction will definitely lead to the inconsistency. Then link 1

can be located because it is the only reason for the inconsistency under network neutrality

inference.

From this example, we have three observations to locate measurement integrity attacks

leveraging network neutrality inference:

1. To locate the malicious link, we should be able to find a path set, in which the malicious

link is the only shared link. For example, link 1 is the only shared link among paths 1-3.

2. Path pairs formed by the paths in the path set should be measurable. For example, the

path pair {P2, P3} is measurable and it is necessary because it guarantees the unique

solution to the last three equations.

3. If the shared link is malicious, to observe the contradiction, at least two paths should

contain different victim links, and at lease one path should not contain a victim link.

For example, path 1 does not contain victim links, and paths 2 and 3 contain links 3

and 4 respectively. Then, we can use path 2, path 3 and their path pair {P2, P3} to

conclude link 1 is malicious, and use path 1 to contradict that link 1 is congestion free.

The basic idea in the previous example is to use inconsistency to locate a malicious

link. However, inconsistency may occur regardless of the presence of an attacker. There

are two types of inconsistency: (i) inconsistency resulted by measurement noise; and (ii)

inconsistency incurred by attackers. For the first type, even when there is no attacker in a

network, inconsistency is still possible to occur since random measurement noise is inevitable

while probing the network. However, this type of inconsistency is slight, so it can be solved

by setting a threshold of measurement according to [40].

For the second type, if the inconsistency is larger than the threshold, we consider that the

inconsistency is resulted by attackers. According to Theorem 3, once inconsistency occurs,

we can detect attacks happened in the network. But not all inconsistencies can be used
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to locate malicious links. Therefore, in the following, we elaborate how to locate malicious

links when attackers exist. Note that the locating process is triggered only when an attack

is detected by (4.29).

4.5.2 Locating Measurement Integrity Attacks

From the example in Fig. 4.4, we iteratively inspect the maliciousness of each link

throughout the entire network to locate attackers. For any link lα ∈ L in a network G,

to judge whether link lα is malicious, we first create a path set Pα ⊆ P based on the link lα.

Then, we use Pα to form a new system, such as the example shown in (4.30), and apply

the detection mechanism (4.29) to this new system, to check if link lα is malicious. There-

fore, our attack-locating mechanism consists of two parts: (i) path set generation, and (ii)

maliciousness discrimination. In the following, we elaborate each part in detail.

4.5.2.1 Path Set Generation

Directly applying the detection mechanism (4.29) to the overall path set P will only yield

a binary result to show whether attacks exist or not, and cannot locate which links or nodes

are really malicious. The purpose of creating a new path set is that we can attribute the

inconsistency in (4.29) to a certain link. Specifically, to locate link lα, the path set Pα can

be formed as follows:

1. Find all path pairs {Pi, Pj} where Pi, Pj ∈ P, such that the shared link between Pi

and Pj is lα.

2. Add Pi and Pj and their corresponding path pair {Pi, Pj} to the path set Pα, i.e.,

Pα = Pα ∪ {Pi, Pj, {Pi, Pj}}.
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Figure 4.5. Examples of unlocalizable scenarios.

4.5.2.2 Maliciousness Discrimination

After obtaining the path set Pα, we can only focus on inspecting the measurements of

paths in Pα. Then we write the measurement model as

y′ = Rαx, (4.31)

where Rα is the routing matrix formed with respect to the path set Pα.

Theorem 4 Given a link lα and its measurement model (4.31), the link lα is malicious if

scapegoating exists in (4.31) based on the detection mechanism (4.29).

Proof: If scapegoating is detected by the detection mechanism (4.29) in (4.31), it is clear

that Rαx̂ 6= y′. This indicates that directly solving (4.31) as a linear equation system will

yield no solution. Then, according to Lemma 2 in [40], link lα must have different link rates

for different paths. Therefore, link lα is malicious. �

4.5.3 Locatability

In the following, we present the network condition to indicate when an attack link can

be located in the network.

Theorem 5 For an attack link lα, and its path set Pα, if the following conditions hold:
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1. for any path Pi ∈ Pα, nodes between link lα and other links must be monitors;

2. the path set Pα should contain at least three individual paths and two path pairs, in

which both paths in one path pair contain victim links and the other path pair must

contain at least one path which does not travel any victim links;

then lα is localizable.

Proof: First, if condition 1) holds, it is easy to verify that all path pairs in the path

set Pα are measurable. Then in the following, we prove this theorem by showing that if

condition 2) holds, inconsistency exists in the measurement model (4.31). Considering an

arbitrary path pair {Pi, Pj} ∈ Pα, the measurable model can be written as

Path Pi : y
′
i = xα + x∗

iα

Path Pj : y
′
j = xα + x∗

jα

Path Pair {Pi, Pj} : y′ij = xα + x∗
iα + x∗

jα,

(4.32)

where x∗
nα is the adjacent link of xα on the path Pn, which is resulted from deleting the link

lα from path Pn, and n ∈ {i, j}. It is easy to know that (4.32) has the unique solution

xα = y′i + y′j − y′ij. (4.33)

Then we consider three scenarios: (i) both Pi and Pj contain victim links; (ii) only one path

(e.g., Pi) contains victim links; and (iii) neither Pi nor Pj includes victim links.

The ground truth metric x̃α of link lα can always be the solution to scenarios (ii) and

(iii). It is easy to verify for scenario (iii) since there is no extra damage on all paths. For

scenario (ii), x̃α still can be the solution because the extra damage is inflicted to the adjacent

link x∗
iα. The proof of Lemma 3 in [40] shows that the solution to scneario (i) is exactly
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distinct from the ground truth metric x̃α. Therefore, if condition 2) holds, we get different

solutions from different paths, thus the inconsistency exists and lα can be located. �

Remark 8 Theorem 5 shows two sufficient conditions to locate a malicious link. The vi-

olation of any one or both of them will lead to the failure of locating. Fig. 4.5 shows two

typical examples in which the malicious link is not locatable. In Fig. 4.5, nodes M1−M5 are

monitors, where M1 is the attacker aiming to scapegoat links between M2 and D, M2 and C

(only exists in Fig. 4.5(a)). In Fig. 4.5(a), the malicious link does not satisfy condition 1

in Theorem 5 because node A is not a monitor and we cannot add the path pair between

path M1 → M3 and path M1 → M5 to the path set. One question may raise if node A is

a monitor: Can we directly locate the malicious link by using M1 and A without following

the previous attack-locating mechanism? The answer is no because the path between M1 and

A does not contain any intended victim by the attacker. If we directly send probe packets

on this path, the obtained result will not be affected as the attacker does not manipulate the

packets traversing. In Fig. 4.5(b), there are only two paths, thus the path set formed by this

network does not satisfy condition 2), which needs at least two different path pairs.
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4.6 Experimental Evaluation

In this section, we use simulation experiments to evaluate the feasibility of measurement

integrity attacks and effectiveness of attack detection and locating methods based on real-

world and simulated network topologies.

4.6.1 Experimental Setups

4.6.1.1 Network Topology

We consider two types of network scenarios.

• Wireline networks. We use the Rocketfuel datasets [153] as the topologies for wireline

networks. Rocketfuel models the topologies of autonomous systems of Internet Service

Providers (ISPs), such as AT&T and Ebone. In the following, we only show the

results from the AS1221 system, consisting of 108 nodes and 152 links, due to similar

experimental results.

• Wireless networks. We use the random geometric graph to generate wireless network

topologies because it has been widely used to model multi-hop wireless networks (e.g,

[154, 155]). We adopt the extended network generation mode, and randomly distribute

100 nodes on region [0,
√

100/λ]2 according to node density λ = 5 such that each node

has 5 neighbors on average.

4.6.1.2 Parameter Setting

In experiments, we use delay as the performance metric. There is a routine traffic on

each link with random delay performance from 1ms to 20ms. We consider a link normal if

its delay is less than 100ms, and abnormal if the delay is greater than 800ms.
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The objective of malicious nodes is to delay packets going through them as much as

possible, and at the same time make network tomography yield a misleading result. For

practical considerations, we also impose a limit on attackers that they should not delay the

delivery of a packet on a measurement path for more than 2000ms.

We choose monitors and measurement paths according to a random selection algorithm

based on the minimum monitor placement rule in [47]. We also randomly select nodes to be

malicious in a network.

For the obfuscation attack, we set the default threshold γ = 10%, i.e., the obfuscation

attack is successful if more than 10% of total number of links are in the uncertain state.

4.6.2 Feasibility

In our experiments, in order to show the impact of measurement integrity attacks, we

define the attack success probability as the ratio between the number of successful attacks

and the total number of runs for a network topology. Then, in the following, we measure the

feasibility of chosen-victim scapegoating, maximum-damage scapegoating and obfuscation

by changing the partiality factor β and the obfuscation threshold γ in both wireline and

wireless networks.
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4.6.2.1 Varying the Partiality Factor

A straightforward way to show the feasibility is to measure the success probability as a

function of the partiality factor β in the network. This is because, as shown in Theorems 1

and 2, an essential condition for scapegoating is the number of paths in |Pm|, which is closely

related to the partiality factor β. It is obvious that the β = 100% if attackers present on all

measurement paths, which can perfect cut any victim link.

Fig. 4.6 depicts the success probabilities of three attack strategies in wireline network. It

is easy to find that the success probability increases as the partiality factor β increases. For

example, when β goes from 70% to 80%, the success probability increases accordingly from

28% to 67% for the chosen-victim scapegoating as shown in Fig. 4.6. When β = 1, the success

probability becomes 100% for all attack strategies since attackers can perfectly cut all victim

links. We also notice that obfuscation is less likely to succeed, compared with chosen-victim

and maximum-damage scapegoating as it has to manipulate a number of victim links. In

addition, maximum-damage attacks are always more likely than chosen-victim attacks. This

is because the attacker does not specifically target a given victim; as long as it can find such

a victim among all the nodes, it will be successful.

Fig. 4.7 shows the success probabilities under the wireless network topology. We can

see from Fig. 4.7 that when β is less than a threshold, scapegoating is unlikely to succeed,

because attackers know too little information about the network to launch the attacks. For

example, the obfuscation always has 0 success probability when β ≤ 60%.

4.6.2.2 Varying the Threshold of Obfuscation

For obfuscation, the success probability is also related to the threshold γ since attackers

must make at least γ|L| victim links exhibit the uncertain status to be considered successful.

Therefore, we also evaluate how γ can affect the success probability.
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Fig. 4.8 depicts the success probabilities of obfuscation in both wireline and wireless

topologies when β = 90. We can see from both types of networks, the success probability

decreases as γ increases. This is because a larger γ means that attackers need to affect

more links at the same time, which is less likely to succeed. In addition, we notice that

obfuscation is less successful in the wireless topology. For example, when γ = 10%, the

success probabilities are 48% and 60% in wireless and wireline networks, respectively. This

is because the wireless topology is sparser and our monitor placement algorithm results in

shorter measurement paths, which are more difficult to be affected by attackers from our

observations in experiments.

4.6.3 Detection

We then use the detection method proposed in Section 4.4.2 to detect measurement

integrity attacks. According to Theorem 3, there is no way for the method to detect an

attack if attackers perfectly cut a victim. We separate experiments into the perfect cut and

imperfect cut cases. We set the threshold α = 200ms in all experiments.

Fig. 4.9 shows the detection ratios over all three attack strategies in the perfect cut and

imperfect cut cases, respectively. From Fig. 4.9, the detection ratio in the presence of all

three attacks is 100% when attackers can perfectly cut victim links, and 0% otherwise, which

verifies the theoretical predictions in Theorem 3. We also find that the detection method

yields no false alarm in all attack detection experiments.

4.6.4 Locating Attacks

We locate malicious links by leveraging the method in Section 4.5.2. According to the

condition 1 in Theorem 5, a malicious link is not locatable if both end nodes of the link

are not monitors. Therefore, locatability of a link in a network is directly related to the

monitor presence ratio. We conduct our experiments by showing the relationship between
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the monitor presence ratio and the locating ratio, which is defined as the probability that a

malicious link can be located.

Fig. 4.10 shows the locating ratio under different attack strategies, where 5% nodes are

malicious. In Fig. 4.10, we see that the locating ratio increases when we place more monitors,

since more paths can meet the condition 1 of Theorem 5. However, even when all nodes are

monitors, we still cannot guarantee to locate every malicious link since locating attack links

is also related to the network topology. For example, the case shown in Fig 4.5(b) is not

locatable even if all nodes are monitors. In addition, the locating ratio of the maximum-

damage scapegoating is larger than the chosen-victim attacks because the size of the victim

link set Ls of the maximum-damage scapegoating is usually larger than the size of Ls for the

chosen-victim attacks, thus providing more chances to satisfy the condition 2. Note that we

do not evaluate the locating ratio for the obfuscation strategy because the success probability

of the obfuscation attack is very low with 5% attackers. In other words, it is very unlikely

to launch a feasible obfuscation attack with such a limited number of attackers, thus we do

not need to locate it.

Fig. 4.11 shows the relationship between the locating ratio and the attack presence ratio

(defined as the ratio of the number of measurement paths including at least one victim and at

least one attacker over the number of total measurement paths including any victim) where

75% nodes are monitors. We can see a slight fluctuation of locating ratios when the attack

presence ratio increases from 20% to 80%. But when the attack presence ratio reaches 90%,

the locating ratio decreases sharply, since almost all links are controlled by attackers, and

the numbers of normal links and victim links decrease dramatically, which are necessary to

locate attack links.
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4.7 Discussions and Future Work

In this section, we discuss our results associated with the feasibility and defense of mea-

surement integrity attacks, as well as the potential impacts on other related work. Then we

provide our future work.

To launch measurement integrity attacks, the attackers must have the information about

the measurement paths, which the network operator can definitely attempt to hide. For

example, the operator can avoid publishing such information or avoid using some protocols

containing path information, such as AODV routing for wireless networks, to prevent attack-

ers from inferring such information from probe packets in the network. This can constitute

the first line of defense. Nevertheless, from a security point of view, it should not be assumed

that attackers can never get such information. Moreover, measurement integrity attacks do

pose a threat to affect the trustiness of the measurement results. Follow-up actions, such as

fault recovery, do rely on such results. Our results indicate that instead of simply assum-

ing seeing-is-believing, we should always be cautious of malicious manipulation in network

measurement.

Our future work includes both monitor placement and hiding routing information to

combat measurement integrity attacks against network tomography.

• For the monitor placement, existing monitor placement methods mainly focus on min-

imizing the number of monitors or enhancing the robustness. The theoretical results

in Theorem 3 and experimental results in Figs. 4.6 and 4.7 reveal that a measurement

integrity attack becomes more likely as the number of attackers increases. Hence, we

aim to design a new monitor placement algorithm to first ensure identifiability un-

der network tomography, then minimize each node’s presence ratio on measurement

paths such that when it is compromised, its impact to measurement manipulation is

minimized.
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• For hiding routing information, routing information, existing in the routing matrix,

is necessary for launching the attacks. Therefore, defenders can leverage anonymous

routing protocols to hide the routing information, to prevent attackers from inferring

the link metrics. We aim to understand how to hide routing information to minimize

the impact of measurement integrity attacks against network tomography.

4.8 Related Work

4.8.1 Network Tomography

Network tomography is a generic way to compute network component (usually network

link) metrics from measurements on end-to-end paths in a network. In essence, network

tomography can be considered as an algorithmic process to transfer end-to-end measure-

ments into link metric estimates. Existing work mainly focused on algorithm design and

applications (e.g., [33, 34, 35, 32, 36, 37, 38]); and some recent papers also considered the

problem of placement of monitors and identifiability of link metrics (e.g., [44, 45, 46, 47]).

Network tomography has been proposed for measurement, fault diagnosis and localization

in both wireline networks (e.g., [32, 36, 37, 38]) and wireless networks (e.g., [33, 34, 35]).

In general, these papers implicitly assume that individual link metrics can be inversely

derived from the path measurements that indeed reflect the real link performance aggregate.

In fact, it is not guaranteed that there exists no anomaly or malicious behavior in today’s

large-scale networks. However, potential security vulnerabilities in network tomography have

not yet been investigated in the literature.

4.8.2 Packet Dropping and Delaying Attacks

There are various malicious attacks against a network, such as passive eavesdropping,

active interfering, leakage of secret information, data tampering, impersonation, message dis-
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tortion and denial-of-service attacks (e.g., [156, 157, 158, 159, 160]). Measurement integrity

attacks drop or delay packets to damage a network, which is related to packet dropping

attacks, such as black hole attacks that attract and drop all packets routed to malicious

nodes and grey hole attacks (also called selective forwarding attacks) that only drop certain

selected packets [161].

However, such traditional attacks can be discovered by finding out the links which always

suffer long delay or high loss under network tomography [160]. In contrast, our measure-

ment integrity attack strategy can not only hide the real identities of attackers in network

tomography, but also make some legitimate nodes or links the scapegoats. Therefore, the

proposed attack strategy is a new one that is able to deteriorate the network performance,

while misleading network tomography based diagnostics.

4.8.3 Attack Detection and Defense

Existing network defense approaches are usually deployed in individual host systems

(e.g., end nodes or edge routers). These mechanisms can directly detect anomalies on some

particular victims. For example, the process of tracing back the forged IP packets to their

true sources rather than the spoofed IP addresses that was used in the attack is called

traceback. There are various IP traceback mechanisms that have been proposed to date

(e.g., [162, 163]). Packet marking and filtering mechanism aims to mark legitimate packets

at each router along their path to the destination so that victims’ edge routers can filter the

attack traffic (e.g., [164, 165]).

There are a few studies to detect network neutrality violations [40, 166, 167, 168, 169].

For example, the strategy in [166] relies on detecting whether traffic on specific ports is

blocked. Authors in [167, 168] proposed a system to detect neutrality violations by inferring

whether an ISP discriminates traffic based on performance data obtained passively.
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There are also studies related to monitoring and analyzing network traffic to protect

a system from network-based threats. For instance, route-based packet filtering system

uses routing information to distinguish if a traffic flow at a router is valid and ensure that

resources are made available only for legitimate use (e.g., [170, 171]). The work in [172]

designed a strategy to detect misbehaving routers that absorb, discard or misroute packets.

Such mechanism usually requires explicit communication among routers. The work in [173]

presented a heuristic data structure to monitor traffic characteristics of network devices like

routers to detect and eliminate attacks. In addition, traffic monitoring can also be leveraged

for detecting anomalous packet forwarding [174].

Network tomography is performed by the network operator to obtain the global picture

of the healthiness of a network. Therefore, the detection proposed in this chapter is a

network-wide approach that should follow immediately the network tomography process

to detect whether such a process is manipulated or exploited by malicious behavior. Our

network-wide attack detection approach to protect network tomography can be regarded as

complementary to defense strategies deployed in individual host systems (e.g., end nodes

and routers).

4.9 Summary

In this chapter, we have provided theoretical and experimental results to analyze the

feasibility of measurement integrity attacks against network tomography. We consider three

basic strategies: chosen-victim, maximum-damage and obfuscation attacks, and show that

malicious nodes can substantially damage a network and at the same time manipulate end-

to-end measurements to make legitimate nodes scapegoats. We also present the conditions to

detect and locate these attacks. The results in this chapter indicate that the current seeing-

is-believing assumption in network tomography renders a security vulnerability. Instead of
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simply trusting measurements, we should be always aware of measurement integrity attacks

and carefully revisit existing designs for security in various applications.
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Chapter 5: Anonymity Analysis of Randomized Routing Protocols

5.1 Abstract

Preventing the source-destination network flow information from being disclosed is pivotal

for anonymous wireless network applications. However, the advance of network inference,

which is able to obtain the flow information without directly measuring it, poses severe

challenges towards this goal. Randomized routing is capable of hiding the flow information

by injecting substantial errors to the network inference process.

In this chapter, we systematically study the behavior of randomized routing proto-

cols, and categorize them into three templates, k-random-relay, k-random-neighbor and k-

random-path based on their routing behaviors. We propose technical models to characterize

these templates in terms of their induced inference errors and their delay costs. We also use

simulations to validate the theoretical results. Our work provides the first systematic study

on understanding both the benefit and the cost of using randomized routing to hide the flow

information in wireless networks.

5.2 Preliminary and Problem Statement

In this section, we first present the network model and the preliminary of network infer-

ence. Then, we state our research problems. The notations of this chapter are summarized

as follows. (i) f(n) = O(g(n)) denotes there exists a constant c such that f(n) ≤ cg(n);

f(n) = Ω(g(n)) means g(n) = O(f(n)); f(n) = Θ(g(n)) means f(n) = O(g(n)) and

f(n) = Ω(g(n)). (ii) Given a m×n matrix A with entry xij , then ‖A‖F =
√∑m

i=1

∑n
j=1 x

2
ij ,
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and tr{A} is the trace of A. (iii) For a vector v = [v1, · · · , vn], ‖v‖2 =
√∑n

i=1 v
2
i ; | · |

denotes the cardinality operator.

5.2.1 Network Model

We model the wireless network by using a random geometric graph (RGG) [175] denoted

by G = (V,L), where V is the node set and L is the undirected link set. Let N = |V| and

L = |L|. In this network, N nodes are randomly placed in a region Ω = [0,
√

N/λ]2, where

λ denotes the node density. We assume that λ is sufficiently large such that the network is

connected asymptotically almost surely [175]. Denote by r the transmission range of each

node.

In the network, packet exchange occurs in node pairs, yielding multiple end-to-end data

flows. We denote by F the end-to-end flow set consisting of the potential flow for each node

pair. Obviously, |F| = N(N − 1)/2, which is the number of node pairs. Each flow fi ∈ F is

associated with a metric xi denoting the data rate on flow fi. Denoted by a column vector

x = [xi]i∈[1,|F|] the flow rate vector for the network. We consider xi = 0 if flow fi does not

exist (i.e., there is no communication).

The flow rate vector x contains two types of information:

1. who is communicating with whom in the network;

2. how much data rate a pair of communicating parties has.

The disclosure of such information is undesirable or even prohibited in many network security

scenarios [176, 177, 178].

5.2.2 Attack Model and Network Inference

What kind of methods an adversary can use to obtain x? Note that x is not generally

available to the adversary because flow information is indicated at network or higher layers
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Figure 5.1. Example network topology (a) and the routing matrix (b).

[11], whose data is usually encrypted at the physical or link layer. Therefore, the adversary

has to infer such information based on physical/link-layer activities, which is called network

inference [58]. In this chapter, we consider an omniscient adversary who (i) knows the

network topology and (ii) knows the routing protocol used in the network, and (iii) is capable

of monitoring each link li ∈ L in the network. This strong attack model enables us to clearly

compare the benefits of different randomized routing protocols under the worst-case standard.

By letting column vector y = [y1, y2, · · · , yL]T (where yi denotes the rate of link li and

·T is the matrix transpose operator), the goal of the adversary is written as obtaining the

estimated value of x, denoted by x̂, from the measured link rate vector y. Network inference

is an approach to achieve the adversary’s goal. In particular, the relationship between flow

rate vector x and the link rate vector y can be captured by the following linear system.

y = Ax, (5.1)

where A is the routing matrix with size L× |F|, whose entry

aij =







1, if flow fj goes through link li;

0, otherwise.

(5.2)
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The routing matrix A demonstrates how a flow is concatenated by links, which is the

function of routing protocols. Therefore, given a network, the routing matrix can be usually

determined by the routing protocol. Fig. 5.1 shows an illustrative example of a network

topology and its corresponding routing matrix A. In this network, we have the link set

L = {l1, · · · , l4} and flow set F = {f1, · · · , f6}, where each flow fi ∈ F is determined by

the shortest path routing protocol. For example, flow f1 only goes through link l1 because

this path, with length 1 (the length is measured by the number of hops), is the shortest one;

and the entry corresponding to f1 and l1 is therefore 1 in the routing matrix A as shown in

Fig. 5.1(b).

In order to estimate x, the adversary must know the routing matrix A in (5.1), which

is usually an under-determined system. If the adversary indeed knows such information, it

can use standard network inference methods (e.g., L1-norm minimization [63]) to obtain x̂,

the estimated version of x. The inference error can be denoted as

IR = ‖x̂− x‖2. (5.3)

For example, in Fig. 5.1, only flow f3 has data steam with rate 10bps, i.e., x = [0, 0, 10, 0, 0, 0].

Then the attacker can obtain the link rate vector y = [0, 10, 0, 10], indicating that links l2

and l4 have data transmission with rate 10bps. If the routing matrix A is also available,

the attacker can obtain the estimated flow rate vector x̂. Note that we do not confine the

adversary to any particular inference method. If we know what method the adversary uses,

we may provide a method-specific defense. In this chapter, we assume the worst case that

the network inference approach used by the adversary is unknown to us.
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Figure 5.2. The relationship between link and flow rates.

5.2.3 Randomized Routing Protocols: Benefit and Cost

In general, the routing matrix A is not immediately available to the adversary. However,

as the adversary is assumed to know what routing protocol is used, it can build the routing

matrix by itself given the network topology. If a deterministic routing protocol (e.g., shortest

path) is used, it can be very likely that the adversary builds the routing matrix Â in close

value to the true routing matrix A, then obtains an accurate estimate of x.

Randomized routing protocols make the behavior of routing packets unpredictable and

accordingly incurs more inference error than deterministic ones to the adversary. To illus-

trate how a randomized routing protocol may work, we consider a simple network topology

in Fig. 5.2(a). The network consists of 8 links (i.e., links l1 − l8) and one traffic flow fSD

between nodes S and D, which contains three potential routing paths (i.e., paths p1, p2 and

p3). Because there is only one flow, the routing matrix A only has one column representing

the flow fSD. We define a path set PSD = {p1, p2, p3} for flow fSD, and two routing proto-

cols R1 and R2 for the shortest path routing protocol and a randomized routing protocol,

respectively.

Under protocol R1, flow fSD deterministically uses path p2 to forward packets because it

is the shortest path, leading to no randomness to choose a path. Aware of the shortest-path
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routing, the adversary can immediately reconstruct a routing matrix Â which is exactly the

same as the ground-truth matrix A. Then, the adversary can use it to accurately recover x.

Under protocol R2, a path is selected uniformly at random from the path set PSD. Then,

the adversary’s estimation Â equals to A with probability 1/3, as shown in Fig. 5.2(b).

This extra error due to the routing matrix mismatch will be introduced to the network

inference, offering higher protection of the network flow information. Note that for this

illustrative example in Fig. 5.2, the adversary may further determine which path is chosen

by observing which links are active. However, simply observing which links are active cannot

be applied to a multi-hop wireless network, where a large number of node pairs exchange

packets simultaneously in the network.

On one hand, protocol R2 causes more inference error to the adversary. On the other

hand, however, R2 incurs more delay during the data transmission because packets are not

always be forwarded along the shortest path. Therefore, the cost of R2 is the increase of

delay. To provide formal models, we define the benefit (the inference error) and the cost (the

delay) of randomized routing as follows.

Definition 5 Within a network G with N nodes under a routing protocol R, the inference

error for the adversary is measured by IR = E‖x̂ − x‖2, where x̂ and x are the adversary’s

estimated flow rate vector and true flow rate vector, respectively. The delay between a node

pair is the average number of hops for data delivery between the pair. Given a routing protocol

R, the average delay hR, is obtained by averaging the delays over all node pairs.

The adversary cannot directly observe the end-to-end flow information, and the flow

information can be obtained only through inference. This is why we use the inference error

as the benefit of different randomized routing strategies. The benefit does not confine to

protecting the flow information. For example, it can also be applied to balance the traffic load

or mitigate the wireless link failures. However, the goal of this chapter is how to provide
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defense against network inference, and we find that randomized routing can achieve this

goal. Therefore, we explore the randomized routing strategy from the security perspective,

and characterize the benefit as the inference error, which is directly related to the defense

performance.

In addition, we use the number of hops as the cost since it is directly related to the

inference error. The number of hops is easily available and widely used information serving

as the cost for routing discovery in many wireless network protocols, such as AODV [179]

in MANET. Therefore, in our chapter, we also use the number of hops as the cost metric

to measure the performance of each template, and focus on analyzing protocols using the

number of hops as the performance cost.

5.2.4 Templates and Problem Statement

To formally characterize randomized routing protocols, we propose three templates to

analyze the benefit and cost of randomized routing in wireless networks.

1. T1: k-random-relay: for each packet, the routing path is formed by selecting k nodes

(called relays) uniformly at random from V excluding the source and destination nodes.

Then, the packet is transmitted through these relays. The shortest path routing is

used between two consecutive relays. Onion routing used in the Tor [64] or Crowds

[180] networks are popular real-world applications of this template although they are

currently used in wireline networks.

2. T2: k-random-neighbor: for each packet, at each hop, one neighbor is selected with

equal probability from k neighbors with shortest distances to the destination. The ran-

dom grid routing [181] and greedy forwarding routing [182] are two simplistic versions

of this template.
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Figure 5.3. Examples of three routing templates for k = 2.

3. T3: k-random-path: each packet is transmitted through one path selected uniformly

at random from k shortest paths. This template is available when the overall path

information is available. The template can be considered as a randomized version of

the k-shortest-path routing protocol [62].

The examples for the three templates is shown in Fig. 5.3, which has one flow fSD between

nodes S and D with k = 2. Under k-random-relay, two relays v1, v2 ∈ V are randomly

selected, then a packet can be transmitted through these two relays (i.e., the green line),

where the paths between the source and the first relay, between the two relays, and between

the second relay to the destination are all the shortest paths. Under k-shortest-neighbor,

the source S randomly picks one neighbor v4 from two neighbors v3 and v4 which have the

shortest distance towards the destination D. Then, v4 adopts the same rule for the second

hop, and so on. The path for the k-random-path template is randomly selected from 2

shortest paths p1 and p2.

In these template, k is an independent variable of N and is determined by practical

applications or the real-world scenarios. For example, in the Tor network, k is fixed to 3

no matter how many nodes in the network. In this chapter, to provide randomness, we

assume k > 1 is a constant independent of N . The proposed templates cover a wide range of

randomized routing behaviors. However, which template is more suitable for a network and

134



how to choose the routing template are based on several factors such as node density and

communication rage of each node. The template selection for a particular network scenario

is orthogonal to the research in this chapter that focuses on performance and cost analysis.

Our objective in this chapter is to model and analyze the inference error and delay of each

template to offer a fundamental basis or guideline for designing practical randomized routing

protocols.

5.3 Theoretical Modeling and Strategy

In this section, we provide a theoretical metric to measure the inference error induced by

randomized routing. Then, we discuss our strategy to model routing templates.

5.3.1 Genie Bound

It is expected that randomized routing increases the inference error IR, which is related

to a particular inference method used by the adversary to derive x̂ in (5.1). To remove such

a dependency, we use the genie bound [183] to measure IR as it is a generic metric regardless

of the inference method. Specifically, for the under-determined linear system (5.1), the genie

bound, serving as a lower error bound of all possible inference methods, can be obtained in

three steps:

1. form a new deterministic linear system with the assistance of a genie, which is expressed

as

y = Agxg, (5.4)

where xg denotes the flow rate vector for node pairs that indeed have real traffic flows,

obtained by removing zero entries (e.g., non-existing flows) from x. Ag is the routing

matrix presenting the relationship between real flows and links;
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2. derive the least square estimation of xg as

x̂g = (AT
g Ag)

−1AT
g y; (5.5)

3. obtain the genie bound by deriving the minimum mean square error between x̂g and

xg, i.e.,

G(xg) = E
(
‖x̂g − xg‖22

)
. (5.6)

Note that in step 1, with the help of the genie, the under-determined linear system

(5.1) is converted into a determined system (5.4). This removes the effect of the choice

of the inference method used by the attacker. The genie bound is a general and method-

independent bound, and is widely used in solving under-determined system to provide a

lower error bound for any inference method. Formally, we define the genie bound as a

generic metric to quantify the inference error IR as follows.

Definition 6 Given the link rate vector y, and routing matrix A determined by the routing

template T , the inference error IT can be rewritten as

IT = E
(
‖x̂g − xg‖22

∣
∣
)
, (5.7)

where x̂g and xg are derived in the three-step genie bound procedure.

5.3.2 Routing Template Modeling

The inference error is due to the randomness in selecting an end-to-end path for a flow.

In a real network, it is very likely that there are multiple paths for a flow, and how to select

a path is based on the routing protocol. For example, in Fig. 5.2, the shortest path protocol
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simply selects path p2 whereas random routing selects one randomly from paths p1, p2 and

p3.

Fundamentally, these three templates provide different behaviors to select a path from the

total path set of a flow. For example, in Fig. 5.2, under the template T3, flow fSD randomly

selects a path from PSD if it is available. However, if only the neighbor information is

available and the template T2 is used, T2 will randomly choose a link from the link set

{l1, l4, l6} for the next hop to forward packets, leading to a different manner to choose a path

from fSD. All these random factors eventually lead to a random path selection for a flow.

Therefore, our strategy is to use a general path-selection model to capture all behaviors of

different randomized routing templates.

Before modeling the difference among different routing templates, we first define Pi as the

path set consisting of all potential paths for the flow fi ∈ Fg. Denoted by PΠ = {Pi}i∈[1,F ]

the path set for all source-destination pairs in the network. To build the relationship between

a path and its corresponding vector in the routing matrix, we define a function mapping J

which maps paths to their corresponding columns in the routing matrix. For example, in

Fig. 5.2, J(p1) = [1, 1, 1, 0, 0, 0, 0, 0]T .

Based on the previous definitions, we introduce three matrices as follows.

1. The overall routing matrix M = [m1, · · · ,mF ] consisting of all potential paths. It

means that each entry mi = J(Pi) for 1 ≤ i ≤ F , and M = J(PΠ).

2. The template matrix T = diag(t1, · · · , tF ) ∈ R
|PΠ|×

∑

gi is a rectangular diagonal ma-

trix. Each entry ti is a |Pi| × gi matrix, where 1 ≤ gi ≤ |Pi| denotes the number of

paths selected by the routing template for the flow fi. Each column in ti has only one

entry with value 1 denoting which path is selected and the remaining entries are all

zeros.
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3. The selection matrix C = diag(c1, · · · , cF ) ∈ R

∑

gi×F , where each ci is a gi × 1 all

zero column vector except one 1 indicating which path is selected for the actual packet

transmission.

In the following, by leveraging the above three matrices, we propose a technical model

to separate different factors in performance modeling for randomized routing.

Model 1 Given a network topology G, and the routing template T , the routing matrix Ag

can be modeled as Ag = MTC, where matrices M, T, and C are defined as above.

We use the network topology in Fig. 5.2(a) as an example. Assume the routing protocol

is T3: k-random-path with k = 2, and there is only one flow fSD in the network. Then, the

routing matrix Ag ∈ R
8×1 can be expressed as

Ag =









1 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1









T

︸ ︷︷ ︸
M

×









1 0

0 1

0 0









︸ ︷︷ ︸
T

×






1

0






︸︷︷︸

C

. (5.8)

Three columns in M denote all possible paths between nodes S and D. Thus, M only

relies on the network topology and is independent of routing behavior. There are two columns

in T, meaning two possible path selections (i.e., p1 and p2) in k-random-path with k = 2.

The last matrix C denotes the path p1 is finally used. Hence, the routing behavior decides

T and C.

Remark 9 We decompose the routing matrix Ag into MTC such that each matrix repre-

sents one factor to affect the values in Ag. The overall routing matrix M only depends on

the network topology. The template matrix T relies on a randomized routing template, and

which template to be used is based on many factors such as the link capacity constraints or
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wireless interference. The selection matrix C indicates which path is used to send packets.

Each of its column vector has only one entry with value 1, meaning that only one path is

selected for a source-destination pair. Note that this model does not consider the scenario

that one packet is sent over multiple paths, which is not typical in wireless networks due to

the broadcast nature of the wireless channel.

5.4 Theoretical Results

In this section, we first present the theoretical results of the inference error and delay of

each randomized routing template. Then, we provide the proofs of the results.

5.4.1 Main Results

5.4.1.1 Inference Error

We consider a network G with N nodes and F flows. For the network, without loss of

generality, we assume the flow rate xi ∈ xg of each flow is a random variable with mean µ

and variance σ2. Then, we have the following results on the inference error for each template.

Theorem 6 The inference errors (in terms of the genie bound in Defition 6) of templates

T1 − T3 satisfy

1. for the template T1: k-random-relay,

Θ

(
F 2µ2

√
N/(k + 1) + F

)

≤ IT1 ≤ Θ
(
2F 2(µ2 + σ2)

)
; (5.9)

2. for the template T2: k-random-neighbor,

Θ

(
F 2µ2

N/ϕ(N, k) + F

)

≤ IT2 ≤ Θ
(
2F 2(µ2 + σ2)

)
; (5.10)
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3. for the template T3: k-random-path,

Θ

(
F 2µ2(k − 1)2

k2(
√
N + F )

)

≤ IT3 ≤ Θ

(
2F 2(µ2 + σ2)

k/(k − 1)

)

, (5.11)

where ϕ(N, k) = max{N log(k−1) log(k − 1) ln(N),
√
N}

Remark 10 Theorem 6 shows the impact regions of three routing templates. We note that

only the upper bound of k-random-path is positively related to k, indicating that when k

is small, k-random-relay and k-random-neighbor templates are possible to induce a higher

inference error than k-shortest-path. In addition, we find that the bound is an approximately

linear (quadratic) function of the number of flows F in the network. This interestingly reveals

that increasing the number of flows in the network (i.e., making the communication scenario

more complex) in fact incurs more errors than trying to actively creating randomness in

routing behavior. A reasonably small k should be chosen in practice due to the sub-linear

relationship between the error and k.

5.4.1.2 Delay

We have the following theorem to analyze the costs of delay for three randomized routing

templates.

Theorem 7 The delays of templates T1 − T3 satisfy

1. for the template T1: k-random-relay,

hT1 = Θ((k + 1)
√
N); (5.12)

2. for the template T2: k-random-neighbor,

Θ(ϕ(N, k)) ≤ hT2 ≤ Θ(N ln(N)); (5.13)
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3. for the template T3: k-random-path,

hT3 = Θ(
√
N), (5.14)

where ϕ(N, k) = max{N log(k−1) log(k − 1) ln(N),
√
N}.

Remark 11 Theorem 7 shows the delay impacts of the three randomized routing templates.

It is noted that the delay of k-random-relay increases linearly with k. When k is small, the

lower bound of k-random-neighbor is the same as k-random-path (i.e.,
√
N); thus they are

generally better than k-random-relay in terms of the delay cost. When k is larger, the delay

cost of k-random-neighbor becomes substantially large. This is because when k increases to

the average degree of the network, all neighbors can be selected randomly, leading to a random

walk behavior of packet forwarding with the N logN delay cost.

Remark 12 Theorems 6 and 7 show that there is no uniformly best template among the

templates in terms of both security and cost. However we notice that k-random-neighbor

with a large k is not a good choice for a practical randomized routing design in that (i) it

has the highest delay cost compared with others, (ii) the inference error is still on the same

order with others; and (iii) for a packet with a limited lifespan (e.g., it can be controlled by

Time-to-Live parameter), it cannot guarantee to deliver packets to the destination.

Our results also indicate that k-random-path achieves the inference error with the same

order of the other two templates while maintaining the lowest delay cost. But it requires

knowing the global path information of the network. For k-random-relay, both the inference

error and the delay is larger than k-random-path by a constant order of magnitude.
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5.4.2 Proofs of Results

Now we prove the theoretical results. With Model 1, we first provide a lemma regarding

the generic result of the inference error which depends on the delay overhead.

Lemma 1 For a routing template T satisfying Model 1, in which the average number of

columns of its template matrix is denoted by gT and the delay is denoted by hT , the inference

error IT induced by T satisfies

Θ

(
F 2µ2(gT − 1)2

g2T (N/hT + F )

)

≤ IT ≤ Θ

(
2F 2(gT − 1)

gT/(µ2 + σ2)

)

. (5.15)

Proof: See Appendix. �

Remark 13 Lemma 1 provides a generic impact region of the inference error of any routing

template T . We notice that the inference error IT = 0 when gT = 1, meaning that the

deterministic routing protocol has no inference error.

Next, we prove Theorem 7 to obtain the delay costs for three templates, then prove

Theorem 6 which requires some results in the proof of Theorem 7.

Proof of Theorem 7: We first prove 3): hT3 and 1): hT1 , then we prove 2): hT2 .

3) In the network G, we assume the distance of flow fi is di (the number of hops on

the shortest path). For k-random-path template, the average delay for flow fi is given by

hfi = di +
1
k

∑k
j=1 cij, where cij is a positive constant denoting the extra number of hops for

jth path compared with the shortest one for flow fi. Then the average is given by

hT3 =
1

F

F∑

i=1

di +
1

Fk

F∑

i=1

k∑

j=1

cij . (5.16)

According to Lemma 6, we have 1
F

∑F
i=1 di = Θ(

√
N). In addition, it is easy to know

1
Fk

∑F
i=1

∑k
j=1 cij = Θ(1), then we can obtain hT3 = Θ(

√
N).
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1. For k-random-relay, we randomly select k relays to forward each packet and each path

between two consecutive relays adopts the shortest path. Then the average delay can

be directly written as hT3 = Θ((k + 1)
√
N).

2. The routing path of k-random-neighbor is discovered hop by hop, which is similar with

the random walk (or Markov chain) model [184, 185, 186, 187]. In the following, we

first briefly introduce the difference between the random walk model and k-random-

neighbor, then we state how to use the random walk to model the k-random-neighbor

template.

In a network G, for an arbitrary node pair vi, vj ∈ V, denote hi,j as the delay for the flow

between vi and vj. Denote by Ni the node set containing all neighbors of node vi. Then the

delay cost of the flow between vi and vj satisfies the following recursive function

hi,j =







1 +
∑

w∈Ni
piwhw,j, if i 6= j

0, otherwise,

(5.17)

where piw is the transfer probability that the link between vi and vw is selected. In the

random walk model, every neighbor in Ni has the same probability to be selected, i.e,

piw =
1

|Ni|
, for ∀vw ∈ Ni. (5.18)

For k-random-neighbor with source and destination nodes vi and vj, we define a new

neighbor set Ki ⊆ Ni for node vi containing k neighbors which have the shortest distances

to the destination vj. Then, the transfer probability piw can be given by

piw =
1

k
, for ∀vw ∈ Ki. (5.19)
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Intuitively, if we can remove all neighbors that belong to Ni but not to Ki, then Ki = Ni,

and k-random-neighbor becomes the same as the random walk model. To do so, for the

original network G, given a source-destination pair vi and vj , we generate a new network

Gk
ij = {Vk

ij,Lk
ij}, where Vk

ij is obtained by removing nodes that the source node vi will

never go through under k-random-neighbor for the node pair vi and vj . Denote by Lk
ij the

corresponding remaining link set for the node set Vk
ij . Then, k-random-neighbor can be

modeled as a random walk for the network Gk
ij .

Considering the new generated network Gk
ij, according to (5) and (6) from [188], the

expected delay (5.17) over all node pairs is given by

E(hi,j) = Θ
(

E

(

Nk
ij ln

(√

Nk
ij

)))

, (5.20)

where Nk
ij = |Vk

ij|. For the upper bound, we have E(Nk
ij) ≤ N . For the lower bound, k-

random-path has the smallest delay overhead because it is obtained by averaging k shortest

paths, then according to (5.12), we have that E(hi,j) ≥ Θ(
√
N). Furthermore, according to

Lemma 9, we have

E(hi,j) ≥







Θ
(

N logk−1
δ−1 ln

(

N logk−1
δ−1

)

/2
)

, if k > 2

Θ
(

log(N) ln
(√

log(N)
))

, if k = 2.

(5.21)

Combining them together, we obtain

E(hi,j) ≥ max{N log(k−1) log(k − 1) ln(N),
√
N}, (5.22)

which completes the proof. �
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Proof of Theorem 6: From the generic result (5.15) in Lemma 1, hT and (gT − 1)/gT

depend on routing templates. Note that hT is available in Theorem 7. Therefore, in the

following, we derive (gT − 1)/gT under different routing templates.

For k-shortest-relay, we randomly select k relays from the remaining N − 2 nodes (ex-

cluding source and destination nodes). When the node density λ is sufficiently large such

that any node pair is connected, we have gT1 = Θ(Nk), yielding (gT1 − 1)/gT1 = Θ(1).

For k-shortest-neighbor, at each hop, one neighbor is selected uniformly at random from k

possible neighbors. Assume the average distance for a node pair is d, which can be expressed

as a function d = f(N). Then, the total number of paths gT2 can be approximated by kf(N).

Since f(N) is an increasing function of N , gT2 increases exponentially in N . Therefore, we

have (gT2 − 1)/gT2 = Θ(1).

For k-shortest-path, it is obvious that gT3 = Θ(k). Then, inserting it into (5.15) completes

the proof. �

5.5 Experimental Evaluation

In this section, we use simulations to show the inference errors and delay performance

under routing templates.
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5.5.1 Experimental Setups

5.5.1.1 Network Configuration

In experiments, we use RGG to simulate wireless network topologies, where N ∈ [20, 100]

nodes are randomly placed on region [0,
√

N/λ]. The node density and transmission range

are λ = 5 and r = 2, respectively. In this network, we randomly select F =
√
N node

pairs to have real flow, in which the flow rate of each node pair xi subjects to the normal

distribution with mean µ = 10 and variance σ2 = 2.

5.5.1.2 Performance Metrics

Under the worst case that the adversary’s inference is unknown, we use the genie bound

to measure the inference errors of different routing templates. The method to derive the

genie bound is described in Definition 6. The delay is measured by averaging the number of

hops for all flows in the network.

5.5.1.3 Routing Template Scenarios

The randomness of each routing template depends on the variable k. Therefore, in our

experiments, with respect to k, we consider two different scenarios: (i) fixed k and (ii)

dynamic k.

5.5.2 Fixed k Scenario

We first consider the scenario that three templates adopt the fixed k = 3. Specifically, For

each packet, template T1: k-random-relay randomly selects 3 relays to forward the packet.

For template T2: k-random-neighbor, each packet is forwarded to one of the 3 neighbors

which have the shortest distance to the destination. Template T3: k-shortest-path directly
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selects one path from 3 shortest paths for each flow. We apply F =
√
N into Theorem 6, and

obtain that under any routing template, the inference error satisfies Θ(
√
N) ≤ I ≤ Θ(N).

Fig. 5.4 depicts the inference error under three randomized routing templates as we

change the number of nodes N from 20 to 100. First of all, we see that for every routing

template, the inference error increases when the number of nodes increases, which verifies

Theorem 6. For instance, the interference error is 718.1 for the k-random-neighbor template

when there are 40 nodes. Since each flow on average has the rate 10, we know the attacker

has the wrong estimation on at least 718.1/102 ≈ 7.18 flows, and this number increases to

8.77 flows when the number of nodes becomes to 100. In addition, we also notice that the

difference between templates does not change as we increase N , implying that the difference

of induced errors among different templates is on a constant order.

Fig. 5.5 shows the delay overhead of different routing templates. From Fig. 5.5, we

observe that the slope of the curve of the k-random-relay template is around 4 times that of

the shortest path protocol (e.g., when N = 100, the delay of k-random-relay and the shortest

path is 5.97 and 1.45 respectively). Note that, under the scenario k = 3, N log k lnN <

(k + 1)
√
N , therefore, the delay performance of k-random-neighbor is less than k-random-

relay.

5.5.3 Dynamic k Scenario

For the dynamic k scenario, we fix the number of nodes N = 50. The total number

of paths increases exponentially for k-random-neighbor as k increases. Fig. 5.6 depicts the

relationship between the inference error and k. We notice that the inference error increases

as k increases for all templates. However, as k keeps increasing, the error starts to increase

slightly and remains approximate the same value, which verifies Theorem 6 that reveals the

inference error increases sub-linearly in k and a large k will not increase the error significantly.
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Fig. 5.7 shows that delay cost of three routing templates with different k. From Fig. 5.7,

we observe that the delay increases linearly for k-random-relay because increasing k results in

adding extra paths and linear increase of the delay according to Theorem 7. It is also observed

that k-random-neighbor and k-random-path have similar delays, because their delays are on

the same order Θ(
√
N) when log k is small.

5.6 Related Work

5.6.1 Random Routing

Due to the dynamics in the wireless environment, network nodes are usually subject

to sleep modes [184], channel fluctuation [188], mobility [189, 190], interference [191] from

neighbors. Therefore, to account for such stochastic and asymmetric natures, random routing

strategies and their performance have been widely studied in wireless networks [181, 186, 184,

188, 187, 185]. For example, [184, 188, 187, 185, 186] leveraged the random walk to model

randomized routing strategies and evaluate the delay and packet delivery ratio. Recently,

the work in [61] presents the initial results that being randomized can help security and

cause substantial errors in malicious network inference. However, there is still a lack of

study regarding how exactly a randomized protocol should be designed to protect network

flow infomration from being disclosed. In this chapter, we categorize randomized routing

into three templates k-random-relay, k-random-neighbor and k-random-path, and carefully

analyze the inference error and delay cost of each template.

5.6.2 Security of Network Inference

Network flow based attack and defense strategies have been explored in a line of works

[64, 180, 192, 193, 194, 176, 177, 178, 195, 196, 197]. However, in the wireless network, the

PHY or MAC layer activities are public, therefore the flow information is still achievable
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through the network inference, which is a family of network monitoring techniques that

build the network characteristics from indirect measurements [57, 39, 40, 41, 42]. Existing

studies on the network inference mainly focused on optimizing inference methods to obtain

more information from given measurements. For example, authors in [41, 58] proposed new

ways to detect anomaly links. In [196], authors proposed a faster and practical interference

method by combining the tomography and gravity; and a more accurate interference method

is investigated in [197] when the measurement frequency is changing. The improved inference

methods in fact open up an opportunity for the adversary to obtain the flow information.

For example, the work in [43] proposed an attack strategy to retrieve the traffic pattern

by using interatrial based traffic analysis. Therefore, in this chapter, we investigate the

fundamental reason of such vulnerability and find the randomized routing protocol can lead

to more inference errors, so that protect the real flow information against leakage.

5.7 Theoretical Results Analysis

In this section, we first prove Lemma 1, then we introduce and prove other necessary

lemmas.

5.7.1 Proof of Lemma 1

Proof: From Model 1, considering the worst case that both M and T are available to the

adversary, for real flows, we have the linear system

y = RCxg, (5.23)

where R = MT is the routing matrix under the template represented by the matrix T.

As aforementioned, the selection matrix C is unknown by the adversary, then we let D =

{di} ∈ R

∑

gi×F be the selection matrix of the adversary, that randomly selects a path for
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any flow. Considering the worst case that the ground-truth matrix C and D have the same

dimension, then from the adversary perspective, the linear system (5.23) can be written as

y = RDxg. (5.24)

Taking the least square estimation of xg, we obtain x̂g = [(RD)TRD]−1(RD)Ty, then

putting it into the genie bound metric (5.7), we have that

G(xg) = E
(
‖x̂g − xg‖22

)

= E
(
‖[(RD)TRD]−1(RD)T (RCxg)− xg‖22

)

= E
(
‖[(RD)TRD]−1(RD)T (RC)− I]xg‖22

)

= E
(
‖U[RC−RD]xg‖22

)
,

(5.25)

where U = [(RD)TRD]−1(RD)T . Then by leveraging Lemma 3, the following inequality

holds with high probability.

λmin(U
TU)‖∆xg‖22

≤‖U[RC−RD]xg‖22 ≤ λmax(U
TU)‖∆xg‖22.

(5.26)

From Lemma 4, λmin(U
TU) and λmax(U

TU) can be replaced by λ−1
max(RD(RD)T ) and

λ−1
min(RD(RD)T ) respectively, then (5.25) can be expressed as the following inequality with

high probability

E

( ‖∆xg‖22
λmax(RD(RD)T )

)

≤G(xg) ≤ E

( ‖∆xg‖22
λmin(RD(RD)T )

)

,

(5.27)
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where ∆ = RC−RD. Then leveraging Lemma 5, we can derive the following asymptotically

solution

E‖∆xg‖22
Θ
(

h(N) + Fh(N)2

N

) ≤ IT ≤ E‖∆xg‖22
Θ(h(N))

. (5.28)

Now we derive the numerator. Denote entries in ∆ as {δij}i∈[1,L],j∈[1,F ], where each entry

δij ∈ {1,−1, 0}. Because the adversary randomly select one path for each flow, we have that

Pr{δij = 1} =Pr{δij = 1|cj 6= dj}Pr{cj 6= dj}

=
gj − 1

gj
Pr{δij = 1|cj 6= dj}

=
gj − 1

gj
Θ

(
h(N)

N

)(

1−Θ

(
h(N)

N

))

.

(5.29)

Furthermore, it is easy to know Pr{δij = −1} = Pr{δij = 1}. Since all nodes are uniformly

distributed in a region Ω. Then for routing template T , E(gi) = gT for 1 ≤ i ≤ F , and we

have the following two equations:

E{δij} = Pr{δij = 1} − Pr{δij = −1}

=
gT − 1

gT
Θ

(
h(N)

N

)

,
(5.30)

and

E{δ2ij} = Pr{δij = 1}+ Pr{δij = −1}

=
2(gT − 1)

gT
Θ

(
h(N)

N

)

.

(5.31)

Then, we have the lower bound as
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E‖∆xg‖22 = E





L∑

i=1

(
F∑

j=1

δijxj

)2




= Θ(N)E





(
F∑

j=1

δijxj

)2




≥ Θ(N)

(

E

(
F∑

j=1

δijxj

))2

= Θ

(
[Fµ(gT − 1)h(N)]2

g2TN

)

.

(5.32)

On the other hand, by using Cauchy-Schwarz inequality, the upper bound is

E‖∆xg‖22 = Θ(N)E





(
F∑

j=1

δijxj

)2




≤ Θ(N)E

(
F∑

j=1

δ2ij

)

E

(
F∑

j=1

x2
j

)

= Θ

(
2F 2(gT − 1)(µ2 + σ2)h(N)

gT

)

.

(5.33)

Replacing (5.32), (5.33) into (5.28), we complete the proof. �

5.7.2 Proof of Necessary Lemmas

Lemma 2 The probability that each element in the matrix R is

Pr{rij = 1} = Θ

(
h(N)

N

)

. (5.34)

Proof: From Model 1, we have that

Pr{rij = 1} = Pr{path pj traverses link li}. (5.35)
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We assume there are u links in the network and path pj contains uj links, then (5.35) can

be rewritten as

Pr{flow fj traverses link li|u, uj} = uj/u. (5.36)

Take the expectation to u and uj, we have that

Pr{rij = 1} = Euj

(

Eu

(uj

u
|uj

))

. (5.37)

From Taylor series at E(u|uj), we have

Eu

(uj

u
|uj

)

=
uj

Eu(u|uj)
+ f

(

O

(
Varu(u|uj)

E3(u|uj)

))

. (5.38)

By leveraging Lemma 7, (5.37) can be derived as

Pr{rij = 1} = E

(
uj

N(λπr2 − 1)/2

)

=
E(uj)

Θ(N)
. (5.39)

According to Definition 5, E(uj) = h(N), then we complete the proof. �

Lemma 3 For a matrix A, it satisfies

λmin(A)‖α‖22 ≤ ‖Aα‖22 ≤ λmax(A)‖α‖22, (5.40)

where λmin(A) and λmax(A) is the minimum and maximum eigenvalues of matrix A.

Proof: Clearly, we know

‖Aα‖22 = ‖αTATAα‖ =
‖αTATAα‖

αTα
‖α‖22. (5.41)

According to [198], ‖αTATAα‖
αTα

has the minimum value λmin(A
TA) and the maximum value

λmax(A
TA), then we can complete the proof. �
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Lemma 4 For a matrix A ∈ R
m×n where m > n, let G = (ATA)−1AT , then λmax(G

TG) =

λ−1
min(A

TA) and λmin(G
TG) = λ−1

max(A
TA).

Proof: Based on the singular value decomposition, for the matrix A ∈ R
m×n, there exists

a couple of unitary matrices U ∈ R
m×m and V ∈ R

n,n, such that A = UΛVT where Λ =

diag(s1, · · · , sn) ∈ R
m×n is a rectangular diagonal matrix. The numbers si = λi(

√
ATA) for

i = 1, · · · , n are singular values of A. If one sees the diagonal matrix D := diag(s21, · · · , s2n) ∈

R
n×n, we have

ATA = VDVT . (5.42)

Then (ATA)−1 = VD−1VT , and G can be derived as

G = (ATA)−1AT = VD−1VTVΛUT = VΛ−1UT , (5.43)

where Λ−1 = diag(s−1
1 , · · · , s−1

n ) ∈ R
n×m. Similarly,

GTG = U(Λ−1)2UT = UD−1UT . (5.44)

Comparing (5.42) and (5.44) we know that λ(GTG) = λ−1(ATA), which completes the

proof. �

Lemma 5 For a random binary matrix A with size L × F , where the expectation of each

entry of A is E(aij) = Θ(h(N)/N) for h(N) = O(N) and L = Θ(N). Then if F → ∞ with

limL→∞ F/L < ∞, then the following two statements are satisfied with high probability,

1. for the minimum eigenvalue, λmin(A
TA) = Θ(h(N))

2. for the maximum eigenvalue,

λmax(A
TA) ≤ Θ

(

h(N) +
Fh2(N)

N

)
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Proof: For the statement (1), from Lemma 8, we have a function f such that the

Var(fA) = 1. Then statement (1) can be rewritten as

λmin(A
TA) =

L

f 2
λmin(L

−1(cA)T (cA)). (5.45)

From [198], we have λmin(L
−1(cA)T (cA)) = Θ(1) with high probability. Then (5.45) can be

further derived as

λmin(A
TA) =

L

f 2
Θ(1) =

Θ(N)

Θ(h(N)/N)
= Θ(h(N)). (5.46)

For the statement (2), we define two matrix U and V where V is an all-one matrix and

each entry in ui ∈ U satisfies E(ui) = 0. Then we have A = U +Vh(N)/N . Applying to

ATA, we have that

λmax(A
TA) = λmax((U

T +VTh(N)/N)(U+Vh(N)/N))

≤ λmax(U
TU) + 2h(N)/Nλmax(U

TV)

+ (h(N)/N)2λmax(V
TV).

(5.47)

For the second term in (5.47), since V is an all-one matrix with rank 1, then we have

that

λmax(U
TV) = tr{UTV} =

∑

uij∈U

uij. (5.48)

According to the large number law, λmax(U
TV) = o(NF )1/p for 1 < p < 2. Then similarly,

λmax(V
TV) =

∑

vij∈V

1 = Θ(FN) (5.49)
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From [198], the first term satisfy λmax(U
TU) = Θ(h(N)). Replacing λmax(U

TV), λmax(V
TV),

λmax(U
TU) into (5.47), we can complete the proof. �

Lemma 6 For network G with N nodes, the average delay over all flows by leveraging the

shortest path protocol is d = Θ(
√
N).

Proof: The delay is positively related to the distance between the source and destination

nodes. Let ei be the Euclidean distance for flow fi. Since each hop covers a distance of Θ(r),

the delay of flow by using the shortest path is fi is Θ(ei/r). The average delay over all flows

is Θ( 1
N

∑N
i=1 ei/r). Since all nodes are randomly distributed in a region Ω = [0,

√

N/λ]2, for

a large N , we have 1
N

∑N
i=1 ei = Θ

(√

N/λ
)

. Therefore the average delay can be derived as

d = Θ

(√
N/λ

r

)

= Θ(
√
N), which completes the proof. �

Lemma 7 In a RGG with N nodes, L links, and density λ and transmission range r, then

L is on the order of N with high probability, i.e., Pr{L = Θ(N)} = 1−Θ(e−Θ(1)N ).

Proof: In RGG, the degree of an arbitrary node equals to the number of nodes dropping

into the transmission range of this node, then the degree of an arbitrary subjects to Poisson

distribution with parameter λπr2 − 1, and thus the distribution of the total number of link

is also Poisson distribution with parameter N(λπr2 − 1)/2. Then based on the Chernoff

bound, for a small constant c1 < (λ − 1)πr2 and a large constant c2 > (λ − 1)πr2, we have

the following upper and lower bounds

Pr{L ≥ c1N} ≤ 1−
e

−N(λπr2−1)
2

(
eNλ(πr2−1)

2

)c1N

(c1N)c1N

= 1− e
−N(λπr2−1)

2 e
c1N log

(

eλ(πr2−1)
2c1

)

= 1−Θ(e−Θ(1)N )

(5.50)
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and

Pr{L ≤ c2N} ≥ 1−
e

−N(λπr2−1)
2

(
eNλ(πr2−1)

2

)c2N

(c2N)c2N

= 1−Θ(e−Θ(1)N )

(5.51)

where ξ = Θ(e−Θ(1)N ). Then we complete the proof. �

Lemma 8 For the routing matrix R in Lemma 2, there exists a function f =
√

N/h(N)

such that each entry in R has finite mean and invariance 1.

Proof: Denote each entry in fR as eij , then the mean of eij can be derived as

E(eij) = E(frij) = f Pr{rij = 1} = fΘ

(√

h(N)

N

)

= Θ(1), (5.52)

and the variance is

Var(eij) = E(e2ij)− E
2(eij) = f 2

E(r2ij)−Θ(1)

= f 2Θ

(
h(N)

N

)

−Θ(1) = Θ(1).
(5.53)

Then we can complete the proof. �

Lemma 9 For a network G with N nodes and its corresponding generated network Gk
ij with

Nk
ij nodes in the proof of Theorem 7. We have the lower bound E(Nk

ij) > Θ(N logk−1
δ−1 ) if k > 2

and E(Nk
ij) > Θ(log(N)) if k = 2.

Proof: For source node vi, we define node set M
d
i containing nodes which have distance d

with the source node vi, and M
0
i = {vi}. Similarly, Kd

i be the corresponding node set after

removing nodes from M
d
i based on the rule in the proof of Theorem 7. Let |Md

i | = Md
i and
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Figure 5.8. Examples of two network topologys, where (a) δ = 3, and k = 2, and (b) δ = 4,
and k = 3, and dotted lines indicate removed links and dotted circles denote removed nodes.

|Kd
i | = Kd

i . Since the network is connected, then we have that

l∑

d=0

Md
i = N,

l∑

d=0

Kd
i = Nk

ij , (5.54)

where l is the maximum distance.

To derive the low bound of E(Nk
ij), we should remove the most nodes from N nodes. To

do so, we consider an extreme case satisfies two requirements:

1. the destination node is located at the maximum distance l away from the source node

vi,

2. the network is a tree structure, i.e., except for the source node, for any node vd ∈ M
d
i ,

it connects with only one node vd−1 ∈ M
d−1
i (as shown in Fig. 5.8).

Under this case, once a node vd ∈ M
d
i is removed, all nodes that are connected with this

node in M
d+j
i for j ≥ 1 will be removed. Then the expected number of nodes with distance

d can be given by 





E(Md
i ) = δ(δ − 1)(d−1), for the network G

E(Kd
i ) ≥ k(k − 1)(d−1), for the network Gk

ij .

(5.55)
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Then we sum all distances together. For networks G and Gk
ij, according to (5.55), we obtain

two equations
l∑

d=1

E(Md
i ) = N − 1 =

l∑

d=1

δ(δ − 1)(d−1), (5.56)

and
l∑

d=1

E(Kd
i ) = E(Nk

ij)− 1 ≥
l∑

d=1

k(k − 1)(d−1). (5.57)

Combining (5.56) and (5.57) together, we can derive the lower bound of E(Nk
ij). Note that

according to (5.57), k = 2 is a special scenario, therefore we split our results into two

scenarios, i.e., k = 2 and k > 2 . Fig. 5.8 shows an illustrative example of k = 2 and k = 3.

Then after jointly manipulating (5.56) and (5.57), we complete the proof. �

5.8 Summary

In this chapter, we revisited the network inference and found that the inference accuracy

depends on routing protocols. We categorized randomized routing protocols into three tem-

plates, k-random-relay, k-random-neighbor and k-random-path, and theoretically analyzed

the inference errors and incurred delay costs of them. We conducted simulations to confirm

that randomized routing templates can inflict different inference errors and delays, yielding

different capabilities to prevent the flow information leakage.
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Chapter 6: Conclusion

In this dissertation, we proposed four data-oriented approaches that renovate or calibrate

current mobile network and security designs.

For the mobile network design, we found that due to the broadcast nature of wireless

channel, the intensive traffic environment can always jeopardize the performance within a

mobile network. To cope with this issue, we revisited the fundamental part within wireless

mobile networks, and deal with two main aspects to improve mobile network system per-

formance: packet corruption and packet collision. The first one is due to the unpredictable

wireless fading, and the second one is resulted from concurrent transmissions. We discovered

that the inter-packet data and RTS data can be leveraged to further improve mobile network

efficiency and reliability.

For the network security design, we revisited network tomography from a data-driven

perspective, and found that there are two vulnerabilities. The first one is of the measurement

integrity. By taking advantage of this vulnerability, we developed an attack strategy, called

measurement integrity attack, which not only destroys the measuring system, but it can

even mislead the system to scapegoat other innocent users. The second vulnerability is of

the measurement confidentiality. In particular, To prevent disclosing the flow information

by network inference, we found that random routing strategies are capable of hiding the

flow information. Then, by leveraging the measurement data, we systematically studied the

behavior of different randomized routing protocols, and explore the fundamental reason why

randomized routing strategies can prevent information leakage against network inference.
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Appendix A: Supplementary Evidences of Chapter 3

In this appendix, we provide the detailed evidences and proofs of Chapter 3.

A.1 Firmware Analysis

We analyze popular WiFi drivers and AP firmware to understand these practical con-

straints: (i) Linux kernel drivers: ath9k (Qualcomm/Atheros 802.11n chipsets), brcms-

mac (Broadcom 802.11n chipsets), and iwlwifi (Intel 802.11n/ac chipsets); (ii) 802.11ac AP

firmware in Linksys EA8500, EA9500, TP-Link AC1200, C5400, and AD7200.

In particular, ath9k allows the maximum length of a data payload to be either 8,192

or 65,535 bytes (aPSDUMaxLength for 802.11n is 65,535) based on its version number (as

shown in Listing A.1); brcmsmac uses the maximum duration of 5,000 µs (aPPDUMaxTime

for 802.11n is 10,000 µs) (as shown in Listing A.2); iwlwifi allows the maximum duration to be

4,000 µs (aPPDUMaxTime for 802.11ac is 5,484), as the excerpted code shown in Listing A.3.

In addition, Linksys EA8500, EA9500, and TP-Link AC1200, C5400 and AD7200 share the

same code: the maximum length of a data payload is 65,535 bytes (aPSDUMaxLength for

802.11ac is 4,692,480)(as shown in Listing A.4).

Listing A.1. Source code in Qualcomm/Atheros ath9k (802.11n)
/* hw.h */
...
#define ATH_AMPDU_LIMIT_MAX (64 * 1024 - 1)
...
/* hw.c */

...
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))

pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
else

pCap->rts_aggr_limit = (8 * 1024);
...
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Listing A.2. Source code in Broadcom brcmsmac (802.11n)
/* ampdu.c */
...
/* max dur of tx ampdu (in msec) */
#define AMPDU_MAX_DUR 5
...

ampdu->dur = AMPDU_MAX_DUR;
...

Listing A.3. Source code of Intel iwlwifi (802.11ac)

/* mvm/constants.h */
...
#define IWL_MVM_RS_AGG_TIME_LIMIT 4000
...
/* mvm/rs.c */
...

lq_cmd->agg_time_limit =
cpu_to_le16(IWL_MVM_RS_AGG_TIME_LIMIT);

...

Listing A.4. The same source code in Linksys EA8500/EA9500 and TP-Link

AC1200/C5400/AD7200.
/* include/linux/ieee80211.h */
...
/*
Maximum length of AMPDU that the STA can receive.
Length = 2 ^ (13 + max_ampdu_length_exp)-1 (octets)
*/
enum ieee80211_max_ampdu_length_exp {

...
IEEE80211_HT_MAX_AMPDU_64K = 3

};
...

A.2 Statistical Results of Packet Traces

Our comprehensive data collections capture WiFi packet traces under a diversity of traffic

load conditions over long time periods. For each transmitter in the packet traces, we compute

the NAV distribution in its RTS packets. We find that the NAV distribution is highly

patterned or uneven in its value space. Figure A.1 shows the NAV distributions of top five

devices that send the largest numbers of RTS packets in different measurement environments.

We observe from Figure A.1 that each device’s NAV values almost concentrate in the small

value regions. For example, in the lab scenario, 92.1% NAV values in RTS packets from

device 3 is 156.
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Figure A.1. NAV distributions at different locations.
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Figure A.2. NAV distributions of different vendors.

We also notice that, interestingly, WiFi devices from the same manufacturer (identified

by their MAC addresses) do exhibit similar NAV distribution in their RTS packets. Fig-

ure A.2 illustrates the distributions of all NAV values in RTS packets transmitted by devices

from 15 common manufacturers. It is seen from Figure A.2 that the distributions exhibit

different patterns by manufacturers, mainly due to their distinct firmware designs. Similar

to Figure A.1, Figure A.2 shows the NAV distributions are highly uneven and patterned

with a small number of NAV values much more likely to show up in RTS packets than the

others.
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Figure A.3. RTS data rate distributions.

In addition to NAV, we also measure the data rates of RTS packets. Figure A.3 depicts

the distribution of RTS dta rates in different environments. We can see that a large number of

devices adopt 12 Mbps and 24 Mbps data rates to send RTS. Furthermore, in the conference

and hotel scenarios, most devices even only use the 24 Mbps data rate.

Based on the packet trace analysis, if we select the NAV values that are most likely in

RTS packet from each device to construct the comb matrix M, we should be able to decrease

the size of M at the cost of a small performance penalty.

A.3 Performance Analysis of γ-Decimation

In this part, we provide the performance analysis of γ-decimation. For the tooth vector

set M = {mi}i∈[1,M ], where M = |M| and mi ∈ CL×1, γ-decimation selects M/γ tooth

vectors with largest correlation values to form a new comb matrix. Denote by M
′ the set

consisting of these selected M/γ tooth vectors by γ-decimation. Without loss of generality,

we assume the collided signal y contains the first S tooth vectors, i.e., m1, · · · ,mS. In this

section, notations are summarized as follows: (i) o(1) denotes a function that converges to 0

as L → ∞; (ii) E(·) and Var(·) denote the expectation and variance operators, respectively;
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(iii) for a complex number m, m∗ is the complex conjugate of m, and |m| is the magnitude

of m. Now we state the following theorem to show the performance of γ-decimation:

Theorem 8 Define event A as the event that m1, m2, · · · , ms are all selected by γ-

decimation in M
′. Then, it holds that P(A) = 1 − o(1) (i.e., event A happens with high

probability).

Proof: We first normalize the correlation between comb matrix M and the received vector

y. From (3.2), we have

z =
1

L
MHy

=
1

L












mH
1 m1 mH

1 m2 · · · mH
1 mM

mH
2 m1 mH

2 m2 · · · mH
2 mM

...
...

...
...

mH
Mm1 mH

M−1m2 · · · mH
MmM























g1

g2

...

gM












.
(A.1)

Let z = [z1, z2, · · · , zM ]H . It holds that ∀zi ∈ z,

zi =
1

L

M∑

s=1

gsm
H
i ms =

1

L

M∑

s=1

L∑

k=1

gsm
∗
i,kms,k. (A.2)

Because each tooth vector mi has the random property by coding, for any entry mj,i ∈ mi,

we have E(mj,i) = 0 and let E(|mj,i|2) = σ2.

Since tooth vectors m1,m2, · · · ,mS are the ones to be resolved, we know the first S

members in g are not zeros. Define Y as

Y =

M∑

m=S+1

1{|zm|>h}, (A.3)
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denoting the number of false alarms (i.e., noise exceeding the threshold), where h is a thresh-

old, and 1{|zm|>h} is the indicator function defined as

1{|zm|>h} =







1, if |zm| > h

0, otherwise.

(A.4)

To evaluate the performance of γ-decimation, we define another event

B =

(
S⋂

s=1

{|zs| > h}
)
⋂

{Y ≤ (γM − S)},

where the first part denotes that the correlation values z1, z2, · · · , zS are all above the given

threshold h and the second part indicates that there are at most (γM −S) other correlation

values above h. If event B happens, m1, m2, · · · , mS will be selected by γ-decimation and

thus event A must happen. This means P(A|B) = 1 and P(A) ≥ P(B). Therefore, according

to Fréchet inequalities, we obtain

P(A) ≥ P

((
S⋂

s=1

{|zs| > h}
)
⋂

{Y ≤ (γM − S)}
)

≥ P

(
S⋂

s=1

{|zs| > h}
)

− P (Y > (γM − S)) .

(A.5)

From (A.5), we need two steps to finish the proof:

1. Prove P

(
⋂S

s=1{|zs| > h}
)

= 1− o(1).

2. Prove P (Y > (γM − S)) = o(1).
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For step 1, by Fréchet inequalities, we have that

P

(
S⋂

s=1

{|zs| > h}
)

≥
S∑

s=1

P(|zs| > h)− (S − 1). (A.6)

According to Cantelli’s inequality [199], for 1 ≤ s ≤ S, we have the probability

P(|zs| > h) ≥ 1− Var(|zs|)
Var(|zs|) + (h− E(|zs|))2

. (A.7)

Next we derive E(|zs|) and Var(|z2s |) respectively. Because 1 ≤ s ≤ S, without loss of

generality, we consider the first element z1. From (A.2), by leveraging Lemma 10, we have

E(|z1|) = E(
1

L
g1m

H
1 m1 +

1

L

S∑

s=2

gsm
H
1 ms) = g1σ

2, (A.8)

and

E(|z1|2) = E




1

L2

(

mH
1

S∑

s=1

gsms

)2




=
1

L2
E

(
S∑

s=1

L∑

k=1

gsm
∗
1,kms,k

S∑

s′=1

L∑

k′=1

gs′m
∗
1,k′ms′,k′

)

=
1

L2

S∑

s=1

L∑

k=1

S∑

s′=1

(
L∑

k′=1,k′ 6=k

gsgs′E(m
∗
1,kms,k)

×E(m∗
1,k′ms′,k′) + gsgs′E(m

∗
1,kms,km

∗
1,kms′,k)

)
.

= g21σ
4 +

1

L
Ξ1,

(A.9)

where

Ξ1 =

(

g21(E(|m1,k|4)− σ4) + E((m∗
1,k)

2)E(m2
1,k)

S∑

s=2

g2s

)

.
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From (A.8) and (A.9), we obtain the variance of z1 as

Var(|z1|) = E(|z1|2)− (E(|z1|))2 =
1

L
Ξ1. (A.10)

Replacing (A.10) into (A.7), we have

P(|z1| > h) ≥ 1− Ξ1

Ξ1 + L(h− gsσ2)2
. (A.11)

Then, (A.6) can be rewritten as

P

(
S⋂

s=1

{|zs| > h}
)

≥ 1−
S∑

s=1

Ξs

Ξs + L(h− gsσ2)2

≥ 1− S
Ξmax

Ξmax + L(h− gmaxσ2)2
,

(A.12)

where Ξmax = max{Ξs}s∈[1,S], and gmax = max{gs}s∈[1,S]. When L → ∞, the probability

converges to 1.

For step 2, letting y = γM − S, by Markov’s inequality, we have

P(Y > y) ≤ 1

y
E(Y ), (A.13)

then from (A.3), we have

E(Y ) = E

(
M∑

m=S+1

1{|zm|>h}

)

=

M∑

m=S+1

P(|zm| > h). (A.14)

According to Chebyshev’s inequality, we can obtain

P(||zm| − E(|zm|)| > h) ≤ Var(|zm|)
h2

. (A.15)
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Next, we derive E(|zm|) and Var(|zm|). Without loss of generality, we consider the last

element zM . Similarly, we have

E(|zM |) = 1

L
E

(
S∑

s=1

L∑

k=1

gsm
∗
M,kms,k

)

= 0, (A.16)

and

E(|zM |2) = 1

L2
E

(
S∑

s=1

L∑

k=1

gsm
∗
M,kms,k

)2

=
1

L2

S∑

s=1

L∑

k=1

S∑

s′=1

gsgs′E(m
∗
M,kms,km

∗
M,kms′,k)

=
1

L

S∑

s=1

g2sE((m
∗
M,k)

2)E(m2
s,k).

(A.17)

Let ΨM =
∑S

s=1 g
2
sE((m

∗
M,k)

2)E(m2
s,k), then we can obtain

Var(|zM |) = E(|zM |2)− (E(|zM |))2 = 1

L
ΨM . (A.18)

Replacing (A.16) and (A.18) into (A.15), we have

P(|zM | > h) ≤ ΨM

Lh2
. (A.19)

Thus (A.14) can be rewritten as

E(Y ) ≤
M∑

m=S+1

ΨM

Lh2
≤ (M − S − 1)

Ψmax

Lh2
, (A.20)
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where Ψmax = max{Ψm}m∈[S+1,M ]. Finally,

P(Y > y) ≤ 1

y
E(Y ) ≤ (M − S − 1)Ψmax

Lyh2
. (A.21)

When L → ∞, P(Y > y) converges to 0, which completes the proof. �

Lemma 10 Given tooth vectors mi and mj, for all mk,i ∈ mi and ms,j ∈ mj satisfying

E(mk,i) = E(ms,j) = 0 and E(|mk,i|2) = E(|ms,j|2) = σ2, the following two statements are

true: (i) if i 6= j, E( 1
L
mH

i mj) = 0 and E(| 1
L
mH

i mj |2) = 1
L
σ4; (ii) if i = j, E( 1

L
mH

i mi) =

E( 1
L
mH

j mj) = σ2 and E(| 1
L
mH

i mi|2) = 1
L
(L− 1)σ4 + 1

L
3σ4.

Proof: Let z = 1
L
mH

i mj =
1
L

∑L
k=1m

∗
i,kmj,k.

For statement (i), since E(mi,k) = E(mj,k) = 0, we have

E(
1

L
mH

i mj) = 0.

Furthermore, as we know E(|mi,k|2) = E(|ms,k|2) = σ2, we can obtain

E(| 1
L
mH

i mj |2) =
1

L2
E

(
L∑

k=1

m∗
i,kmj,k

L∑

q=1

m∗
i,qmj,q

)

=
1

L
σ4

(A.22)

For statement (ii), it is easy to know that

E(
1

L
mH

i mj) = E(
1

L
mH

i mi) = σ2
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and

E(| 1
L
mH

i mi|2) = E

(

1

L

L∑

k=1

m∗
i,kmi,k

)2

=
1

L2
L(L− 1)σ4 +

1

L2

L∑

k=1

E(|mi,k|4)

=
1

L
(L− 1)σ4 +

1

L
3σ4.

(A.23)

Therefore, we complete the proof. �

192



Appendix B: Copyright Permissions

Below is permission for the reuse of materials in Chapter 2. !"#!"$"# %&&'()!!*+,-.&'/+0.102'3,45%&102*!,(67468.9!*'!/40.:(.!;9 #+<=#6>?9>6@>=>6>; <6< 90"$$.09$$!#@<#$..06>$?#6@>">6>=#96# @?A0#BC

%&&'()!!*+,-.&'/+0.102'3,45%&102*!,(67468.9!*'!/40.:(.!;9 #+<=#6>?9>6@>=>6>; <6< 90"$$.09$$!#@<#$..06>$?#6@>">6>=#96# @?A0#B"=@0 #!@

DEFGHFGHIHJFKLMGLHNOPLLQLMRHSLRTLLMHUEIMOVFMOHWEIXHYZ[X\Z]HIM̂HN_̀ HYNGGXKFIRFXMHaXPH_XQb\RFMOH̀IKEFMLPc]HYZd\SeFGELPZ]bPXfF̂L̂HScH_XbcPFOERH_eLIPIMKLH_LMRLPHYZ___Z]gHDELHeFKLMGLHKXMGFGRGHXaHcX\PHXP̂LPĤLRIFeGhHRELHRLPQGHIM̂HKXM̂FRFXMGHbPXfF̂L̂HScN_̀ HYNGGXKFIRFXMHaXPH_XQb\RFMOH̀IKEFMLPc]hHIM̂HRELH___HRLPQGHIM̂HKXM̂FRFXMGgNeeHbIcQLMRGHQ\GRHSLHQÎLHFMHa\eeHRXH___gJi_jkUjlH_mkDjkDnjopjUDHljDNiJU
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¡���y�H¡vª�v�yvu `IFMHbPX̂\KRw��yt���y��� qXPêTF̂L�tx���xy��� mPFOFMIeHeIMO\IOLHXab\SeFKIRFXM ���v�H��tHy�vHu��x��vü kX«���tHvu�y���H�t�¬��v�v�̈ kX����uv�yx�H�t�¤�y���x�H��v̈ kX �ttv��� pUl��y�v URIRLa\eHiMRLP|dIK�LRHUFOMIedPXKLGGFMOHaXPHqFPLeLGGkLRTXP�FMO���yt��y�tH�x¤v UEIMOVFMOHWEIX ���y�y�y���H�x¤v pMFfLPGFRcHXaHUX\REH­eXPF̂I®̄�v�yvuH�tv�v�yxy���Huxyv ~{~z|{�|z�stuvtHtv�vtv��vH��¤�vt k�N ��vHtvª�v�y���H�vt���H°�t�x��±xy���Hy�Hx��vxtH��Hy�v���v��v UEIMOVFMOHWEIX��y�v²Huv��t��y���H�tH��¤vt��tv�vtv��vH��Hy�vH��ty���¢�£ URIRLa\eHiMRLP|dIK�LRHUFOMIedPXKLGGFMOHaXPHqFPLeLGGkLRTXP�FMO®u�y�tH��H��ty���¢�£ k�N³���¤vH��H�vt�x�H�t¤����tx�� k�N�x�vH�tH�x�vHtx��vH��H��ty��� ~|�hHz�|�� ��y�vH��Hy�vHxty���v°��x�yvty�vH��ty���H��H�t�¤ lIRI|mPFLMRL̂HNbbPXIKELGRXTIP̂GH̀XSFeLhHkLRTXP�HIM̂ULK\PLHUcGRLQG�́y��tH��H��ty���¢�£ UEIMOVFMOHWEIXhHWELMObFMOJ\XhHWE\XHJ\hHµFIMOHJ\hH[IXHJF\����v²H��Htv����������Hx�xty���vH�t�¤HxH�vt�x� k�N������xy���HuxyvH��H��ty��� ~{z�|z{|{�

193



Below is permission for the reuse of materials in Chapter 3.

194



Below are permissions for the reuse of materials in Chapter 4.

6/4/2021 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Home Help Live Chat Sign in Create Account

© 2021 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. |  Privacy statement | Terms and Conditions

RightsLink

Measurement Integrity Attacks against Network Tomography:
Feasibility and Defense

Author: Shangqing Zhao

Publication: IEEE Transactions on Dependable and Secure Computing

Publisher: IEEE

Date: Dec 31, 1969

Copyright © 1969, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:  

Requirements to be followed when using any portion (e.g., !gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis: 

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.  
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted !gure and/or table.  
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.  

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:  

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]  
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line. 
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.  

If applicable, University Micro!lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

195



6/4/2021 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Home Help Live Chat Sign in Create Account

© 2021 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. |  Privacy statement | Terms and Conditions

RightsLink

When Seeing Isn't Believing: On Feasibility and Detectability of
Scapegoating in Network Tomography

Conference Proceedings:

2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)

Author: Shangqing Zhao

Publisher: IEEE

Date: June 2017

Copyright © 2017, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:  

Requirements to be followed when using any portion (e.g., !gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis: 

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.  
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted !gure and/or table.  
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.  

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:  

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]  
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line. 
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.  

If applicable, University Micro!lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

196



Below is permission for the reuse of materials in Chapter 5.

6/4/2021 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Home Help Live Chat Sign in Create Account

© 2021 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. |  Privacy statement | Terms and Conditions

RightsLink

How Can Randomized Routing Protocols Hide Flow Information in
Wireless Networks?

Author: Shangqing Zhao

Publication: IEEE Transactions on Wireless Communications

Publisher: IEEE

Date: Nov. 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:  

Requirements to be followed when using any portion (e.g., !gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis: 

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.  
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted !gure and/or table.  
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.  

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:  

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]  
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line. 
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.  

If applicable, University Micro!lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

197


	Data-Oriented Approaches towards Mobile, Network and Secure Systems
	Scholar Commons Citation

	main.dvi

