
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

October 2021 

Online and Adjusted Human Activities Recognition with Statistical Online and Adjusted Human Activities Recognition with Statistical 

Learning Learning 

Yanjia Zhang 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Statistics and Probability Commons 

Scholar Commons Citation Scholar Commons Citation 
Zhang, Yanjia, "Online and Adjusted Human Activities Recognition with Statistical Learning" (2021). USF 
Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/9274 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F9274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Online and Adjusted Human Activities Recognition with Statistical Learning

by

Yanjia Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
with a concentration in Statistics

Department of Mathematics and Statistics
College of Arts and Sciences
University of South Florida

Major Professor: Kandethody Ramachandran, Ph.D.
Chris P. Tsokos, Ph.D.

Sherwin Kouchekian, Ph.D.
Lu Lu, Ph.D.

Yicheng Tu, Ph.D.

Date of Approval:
October 26, 2021

Keywords: HAR, Online Analysis, Adaptive Learning, Smart Device, Machine Learning

Copyright © 2021, Yanjia Zhang



Dedication

This doctoral dissertation is dedicated to my family, especially

To my father: Zhongjun Zhang

To my mother: Wanzhen Qian

To my sister: Jiaheng Zhang



Acknowledgments

Above all, I offer my genuine gratitude to my major advisor Professor Kanadethody M. Ramachandran,

who inspired me with his support and guidance. Without his advice and help, I could not have developed

the knowledge and accomplished this dissertation. He has not only guided me into the statistical learning

field but also taught me the way to learn new things which will allow me to continue my work and embrace

new knowledge.

I am also truly grateful to the members of my dissertation committee: Professors Chris P. Tsokos, Lu Lu,

and Yicheng Tu for their time and kind assistance during my dissertation preparation. Specifically, Dr. Lu’s

courses taught me how to apply statistical models and experiments from the theoretical to the real world.

And her well prepared and organized classroom presenting added positively to my educational experience.

Also I am truly grateful to my defense chair, Professor Manish Agrawal for his time and support for my

defense.

My heartiest appreciation also goes to all the faculties and staff of the department of Mathematics Statis-

tics who contributed in diverse ways to make my experience a token of memory at University of South

Florida.

I would like to express my thanks to my father, mother, and sister for their many manifold blessings and

supports to me. Without them I would not have been able to complete the pursuit of my doctoral studies.



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Supervised Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Supervised Learning Feature Methods . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Semi-supervised or Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Online Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Data Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Adjusted Method for Human Activity Recognition . . . . . . . . . . . . . . . . . . . . 47
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Proposed Streaming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Features Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Very Fast Decision Tree (VFDT) . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5 Personalized Adjusted Method for Human Activity Recognition . . . . . . . . . . . . . 61
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 K-means Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

i



5.3.2 Discriminant Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Appendix A Copyright Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ii



List of Tables

Table 1 Datasets and Results Summary for HAR Supervised Classification Methods . . . . . . . . 11

Table 2 Datasets and Results Summary for HAR Supervised Feature Selection Methods 1 . . . . . 17

Table 3 Datasets and Results Summary for HAR Supervised Feature Selection Methods 2 . . . . . 18

Table 4 Datasets and Results Summary for HAR Semi-Supervised Methods . . . . . . . . . . . . . 24

Table 5 UCI Features Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 6 UCI Statistical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 7 WISDM Statistical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 8 Total Data Structure Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 9 Number of Observations in Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 10 Optimized Parameters and Time to Convergence for UCI . . . . . . . . . . . . . . . . . . 39

Table 11 Methods Comparison with Average Accuracy (%) . . . . . . . . . . . . . . . . . . . . . 40

Table 12 UCI Test Average Accuracy for Activities . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 13 WISDM Test Average Accuracy for Activities . . . . . . . . . . . . . . . . . . . . . . . 41

Table 14 Comparison With PCA Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 15 UCI Test Average Accuracy for Activities Two Layers Method . . . . . . . . . . . . . . . 46

Table 16 Online Methods Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 17 Size of Activities in UCI Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 18 Size of Activities in WISDM Training data . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 19 Accuracy from VFDT with 36 features . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 20 Accuracy for Jogging with WISDM Data . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 21 Training and Test Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 22 Kologorov-Smirnov Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 23 Average Accuracy Rates from Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 24 Precision Rates for Each Activity from Data 1 . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 25 Precision Rates for Each Activity from Data 2 . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 26 Precision Rates for Each Activity from Data 3 . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 27 Precision Rates for Each Activity from Data 4 . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 28 Verification Observations in Each Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iii



List of Figures

Figure 1 Histogram for Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2 Box Plot for Raw Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3 Coordinates Values of Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4 Box-plot for UCI Transformed Data Variables . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 5 Correlation Coefficient Matrix for UCI Transformed Data . . . . . . . . . . . . . . . . . . 30

Figure 6 Box-plot for WISDM Transformed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 7 Correlation Coefficient Matrix for WISDM Transformed Data . . . . . . . . . . . . . . . 33

Figure 8 Proportion of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 9 Cumulative Proportion of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 10 Two Layers Method Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 11 Feature Selection and Streaming Data Creation . . . . . . . . . . . . . . . . . . . . . . 53

Figure 12 VFDT with DT Pre-training Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 13 Example Sequence for Subject 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 14 Example Sequence for Subject 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 15 Example Sequence for Subject 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 16 Example Sequence for Subject 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 17 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 18 Correlation Coefficient Distribution for Classes from . . . . . . . . . . . . . . . . . . . 64

Figure 19 Personalized Adjusted HAR Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 20 Adjusting Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 21 The Elbow Method Using Distortions for Data 1 . . . . . . . . . . . . . . . . . . . . . . 67

Figure 22 The Elbow Method Using Distortions for Data 2 . . . . . . . . . . . . . . . . . . . . . . 68

Figure 23 The Elbow Method Using Distortions for Data 3 . . . . . . . . . . . . . . . . . . . . . . 68

Figure 24 The Elbow Method Using Distortions for Data 4 . . . . . . . . . . . . . . . . . . . . . . 69

Figure 25 Error Rate for Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure A.1 IEEE Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

iv



Abstract

Wearable human activity recognition (HAR) is a widely application system for our daily life. It has been

built in many devices, such as smartphone, smartwatch, activity tracker, and health monitor. Many research

try to develop a system which requires less memory space and power, but has fast and accurate classification

results. Moreover, the objective of adjusting the classifier by the system self is also a study direction. In the

present study, we introduced the machine learning methods to both smartphone data and smartwatch data

and an adjusted model with the continuous generating data. Further, we also proposed a new HAR system

which could adjust it by customer’s personal input.

First, we present a comparison with several popular machine learning methods using smartphone data

and try to find the most effective model for identifying activities, such as Support Vector Machine (SVM),

K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), Decision Tree (DT), and so forth. Two

datasets with different transition methods from smartphone are used. Also, we used grid search, multi-fold

cross validation, and dimensional reduction method to improve the performance. Meanwhile, a two-layer

method for activity identification is proposed. This method is more flexible of choosing classifiers for

activities.

Then, in order to avoid the fixed built in HAR system, we used an online method called Very Fast

Decision Tree (VFDT) to mimic the real scenario, since we do not have data collected in a streaming basis.

There are two main improvements from the existing models: 1) we train the model online and use the

training data for training and adjusting then delete the previous data; 2) after building VFDT, the model can

be adjusted to identify new activities by adding only small amount of labeled observations.

Finally, we proposed a personalized HAR system with interactive function. With this system, customers

could build their personal HAR system by inputting their data. The system includes two steps, unsupervised

method and supervised method. The unsupervised step is used for identifying if the new input data has any

new activities. K-cluster is applied. The supervised step is used for identifying the specific activities and

update the activity classes if there are new activities. Quadratic discriminant analysis (QDA) is applied.

v



Chapter 1

Introduction

With decades of development on technology in sensors and accelerometers, many different types of devices

in various fields are able to have one or more sensors with low cost and less power consumption. Human Ac-

tivity Recognition (HAR) is one of these fields. Human activity recognition system is built for recognizing

the actions for one or more person from a series of sensor observations on the person’s movements and/or

the movements associated with the surrounding environmental conditions. From some time, researchers

in computer science noticed that HAR had the strength of providing personalized support for many differ-

ent applications, such as in medical assistance, smart home system, healthcare monitoring, and indoor and

outdoor activity surveillance. These systems has different methods to collect information based on visual,

non-visual, and multi-modal sensor technologies. For example, use the visual videos for living assistance

smart homes, accelerometers sensors for healthcare monitoring applications, and multi-modal sensors for

indoor and outdoor activity surveillance systems.

The smart home applications are quite useful in the daily life. As Demiris et al. [26] stated that a smart

home is an environment equipped with sensors that enhance the safety of residents and monitor their health

conditions. As we all know that the continuous improvement of the human’s living conditions and medical

support cause the increasing of life expectancy. But according to the article [79], the birth rates over 50

years decreased substantially. The human societal structure, such as age pyramid, has been changed a

lot, more older person but less young. This results in less people to support the elderly. By monitoring

person’s behavior, an HAR system is possible to track the health condition of an elderly people or patient,

to provide some basic supports, to secure their safety and well-being, and to notify the health personnel in

case of an urgent need. Thus, this type of support system is necessary and essential for elderly people or

people who like to live independently as long as possible. Recently, HAR system uses the combination of

video and wearable sensors and sensors with environment, which will collect sequence of images, audio,

accelerometers data, associate with many environmental data, such as light, humidity, temperature, presence,

electrical sensors. GER’Home project is one of such smart home system for elderly people [105]. This

project aimed to improve elderly life conditions at home and to reduce the costs of long hospitalizations.
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By recognizing a person’s activities, this system could detect the emergency accidents, e.g. Falls, and even

detect the early stage of deteriorated health status and some early illness diagnosis. HERMES is another

project for assisting the user in performing everyday tasks and to support independent living. It combines

a home-based and mobile device to support the user’s cognitive state and prevent age-related cognitive

decline, which includes images, audio, and GPS data. It was designed for people who are suffering from

mild memory problems and tried to assist them when necessary. Kasteren et al. [85] mentioned in their

research about a multi-sensor smart home system, which is used for monitoring and assisting elderly people

in their home. This wireless sensor network includes reed switches to measure open–close states of doors

and cupboards, pressure mats to measure sitting on a couch or lying in bed, mercury contacts for movement

of objects (e.g., drawers), passive infrared (PIR) to detect motion in a specific area; float sensors to measure

the toilet being flushed, temperature sensors to measure the use of the stove or shower. There are many

different smart home systems with different types of sensors, such as Radio-frequency identification (RFID)

[92], [28], and [15], Wireless sensor networks (WSNs) [85], [75], and [84], bio-sensors [23], and so on.

All these types of smart home provide assistance to elderly, disorder, and independently living person to

improve the life quality.

Another popular HAR application is healthcare monitoring system. Comparing to smart home system,

healthcare monitoring system is much simpler and less costly, and it is usually with body-worn sensors, such

as accelerometers, gyroscope, and bi-axial sensors. Basically, healthcare monitoring system are designed

for medical purposes, such as fall detection, human movement tracking, cognitive assistance, and activity

tracking. These are noninvasive, privacy preserving systems. Thus usually, it requires patients to wear the

small devices. Once the patient need help, the system could notify to the data center for quick help. For

example, Zhu et al. [104] developed a smart assisted living system (SAIL) aimed to help elders and sole

seniors. This system combined a body sensor network (BSN), a companion robot, a smartphone, and a

remote health provider. The BSN collected the vital signs and sent them to the robot, which inferred the

human intentions and health conditions and responded back. Then, if needed, the smartphone served as a

gateway to access the remote health-care providers. Another example is for fall detection. Gannapathy et al.

[37] stated in their paper that the National Institutes of Health found that 67% of elderly who fall and fail to

seek help within 72 hours are unlikely to survive, thus, the personal emergency response system is essential

for the elderly. In the article, they also purposed a system used zigbee-based wearable sensor system for

an E-safe system for fall detection and notification. It could automatically detect customer’s fall with the

situation and then notify the correspondents via zigbee technology. Then the external correspondents could

get notified via message and email. Similarly, an European Union founded system called CAALYX [16]

2



was also designed for fall detection events and notifying the providers with emergency situation with a

wearable device. Better thing is that this system could also report the current medical status and the current

location to the emergency team for immediate help. All these small but efficient devices are meaningful for

future society. Based on Goldstone’s research [40] there are 30% of population in Americans, Canadians,

Chinese, and Europeans will be over the age of 60 years in 2050, thus, the individual healthcare could be a

big challenge for the whole society. And the healthcare monitoring might be a good solution.

A new application of HAR is about the indoor and outdoor surveillance, especially for the security firms.

The basic idea is to automatically identify the human anomalies via camera based technologies. As we all

know, the traditional surveillance system are monitored by person through the screen. This becomes more

difficult as the increasing number of cameras and complex outdoor environment. For example, it is hard to

detect the anomaly in a metro station or an airport with crowed people. The HAR surveillance system could

be a solution with non-stop monitor. Brémond [17] proposed a video-based activity-monitoring framework

named VSIP. This system combined several motion detectors and trackers in the cameras, based on the

environment situations and identification methods, the anomalous behavior, such as fighting and vandalism

events, could be recognized and the system will send the alarms to the security. similarly, Chang et al. [20]

conducted a research on multiple cameras with complex social interactions, such as schools, public parks,

city centers, prisons, and other crowed places. They tried to detect and predict suspicious and aggressive

behaviors among groups. There are other specific behaviors surveillance system, such as Fusier et al. [34]

proposed a system used in airport, which is able to recognize 50 types of events including activities such

as baggage unloading, aircraft arrival preparation, and refueling operation. All these surveillance systems

reduce the work and stress under a robust approach for real-world conditions.

Our research is only focused on the daily human action and activity recognition, such as walking, jogging,

walking upstairs, walking downstairs, sitting, standing, and so on. Although there are many devices, such

as smartwatch from Google, Fitbit, and Apple, have many different activities and body conditions, like

swimming, kicking, heat beats, and so on, we only include these 7 simple activities as an example for current

research. And later, we will analysis another dataset with 18 activities from smartwatches. This research

topic could track back to decades ago and continues to be increasing, Moeslund et al. [67] summarised more

than 350 publications from 2000 to 2006. It divided into four research areas: Initialization, Tracking, Pose

estimation, and Recognition. And there were 83 publications in Recognition with 3-axes sensors. Ahad et al.

[3] mentioned various methods from 2001 to 2008 in activity recognition from 3D and 2D version, including

Hidden Markov Model (HMM)-based, Discriminative Conditional Random Field (CRF), Maximum Entropy

Markov Models (MEMM), and principal Components Analysis (PCA) as a way for dimensional reduction.

3



It also mentioned several challenges, such as view-dependent methods might fail from different angles,

outdoor activity recognition lacked the prior environment information, and the larger and larger size of

dataset was required for recognize increasing activities. Moreover, there are many difficulties with privacy

issues in video camera based research [45]. Because of these reasons, the personal-device sensor based

human activity representation research might become another approach for avoiding these challenges and

issues. With the exceptional development of microelectronics and computer systems, as well as the ability

of sensors and mobile devices with unprecedented characteristics, the high computational power, small size,

and low cost allow people to interact with the devices as part of their daily living. All of these made the

personal-device sensor possible for collecting daily life data [59]. Particularly, the recognition of human

activities has become a task of high interest within the field, especially for medical, military, and security

applications. For instance, patients with diabetes, obesity, or heart disease are often required to follow

a well defined exercise routine as part of their treatments [3]. Therefore, recognizing activities such as

walking, running, or cycling becomes quite useful to provide feedback to the caregiver about the patient’s

behavior. Likewise, it could also be used as a activity alarm, such as patients with dementia and other mental

pathologies could be monitored to detect abnormal activities and thereby prevent undesirable consequences.
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Chapter 2

Literature Survey

In order to introduce the research on HAR systems with wearable sensors, a taxonomy is used. The defi-

nition is from Lara et al. [59]. In the survey, the HAR system with wearable sensors was divided into two

levels, the first level was about the response time, either immediate feedback or need more time to identify

activities, which could be named online or offline, The second level was about the learning methods, su-

pervised or semi-supervised, respectively. These categories was divided according to the different purposes

and methods used in the HAR system. They have different system designs, feature extraction approaches,

learning algorithms, and challenges. In this chapter, we summarize several research on the online activity

system. The online activity recognition system asks for real-time response with the data, this means the

system requires high data processing ability. Some of the research even consider the adjustment with the

new labeled data, either new activities or new same activities data. The application of this category system

is usually in healthcare, which may need for continuously monitoring with physical or metal pathologies

safety, recovery, or protection. some of the online human activity recognition research works are introduced

below with Supervised Learning and Semi-supervised or Unsupervised learning. Besides, since the feature

selection step is also crucial for getting a decent classification result, such as Incel [52] stated that by uti-

lizing information from orientation and rotation changes could improve the recognition accuracy with the

smartphone datasets, this chapter also includes some articles on the methods of selecting features.

2.1 Supervised Learning

In HAR system, labeled sensor data is not a big challenge. Some researchers use cameras to take the

video record for the whole process while subjects are performing specific activities, and then manually label

activities with time stamps [83]. Some researchers employ a system that ask the participants to select the

activity to be performed [58]. In this way, the label will be automatically inputted with the time stamp. With

these methods, supervised learning methods could play a great role in activity recognition. Among these

research, there are two big groups with different classification methods, one group uses machine learning,
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such as Decision Tree (DT), Support Vector Machines (SVM), Linear discriminant analysis (LDA), and

so on, another group uses neural network, such as Deep Neural Network (DNN), Convolutional Neural

Network (CNN), Long Short-Term Memory (LSTM). However, these methods are not antithetical to others,

many researchers combine several methods together.

2.1.1 Supervised Learning Methods

Maurer et al. [64] introduced a HAR system named eWatch. This system was built in a sport watch with

four sensors, including accelerometer, light sensor, thermometer, and microphone. The data processing and

identification were executed in the system, thus, no wireless communication is needed. The decision tree

C4.5, LDA transformation with a four second window time-domain, and feature extraction were included in

the system. The best overall accuracy was up to 92% for totally six activities: descending, running, sitting,

standing, ascending, and walking, while ascending and descending the stairs was confused with walking.

The response time for feature extraction and identification is less than 1ms, which is very suitable for a small

device with quick feedback function.

Lara et al. [58] introduced a mobile based real-time HAR system under Android platform. This system

had three sensors devices, two in phone, namely the GPS and accelerometer, and one in a chest trap mea-

suring the heart rate, respiration rate, skin temperature and so on. The Bluetooth, TCP, and HTTP servlets

were required to receive, send, and transform the raw data. C4.5 decision tree was applied after the feature

extraction, and the overall average from subject-independent (the subjects in test set was not in the train-

ing set) was up to 92.64% for three activities, running, walking, and sitting. The response time for each

5-second-long overlapped window totally with preprocessing, feature extraction, and classification could be

reduced to 66.5ms, which made the system responsive. However, with the variety activities in our daily life,

three activities in the system might not satisfy the daily activity requirement.

Attal et al. [11] presented a HAR for remote monitoring of elderly or dependent subjects with daily

activities and detecting unpredictable events, such as standing, walking, stair decent, sitting down, sitting on

the ground. The inertial sensors were placed in three places on chest, right thigh, and left ankle. Bluetooth

was required to pass the raw data to PC. 6 subjects participated in their experiments. The overall accuracy

with extracted feature from subject-dependent (the subjects in test set was the same in the training set) was

up to 99% from k-nearest neighbor and 98.95% from Random Forest. The result showed that the eleven

time-domain features, such as mean, variance, median, and range, were useful to identify for these daily

activities. However, 6 healthy subjects with average of 26 years old, might not be sufficient to provide a

reliable conclusion for elderly or dependent people. Besides, no response time was mentioned in the paper.

6



And Abidine et al. [2] also introduced a combined method with PCA, conditional random filed (CRF), LDA,

HMM, and SVM to classify the activities. The significant components from PCA were added to the set of

feature extraction from LDA, and then the modified weighted SVM (WSVM) was applied. Four similar

datasets with four state-change sensors located in different environments were collected and evaluated.The

data were TK26M, TK57M, Tap80F, and OrdonezA, with 8, 16, 10, and 10 activities, respectively. These

daily activities included Leaving, Toileting, Showering, Sleeping, Shaving, Relax, and so on. The results

regarded to the accuracy rates were from 22% to 95% and did not improve significantly. However, the idea

of combining different dimensional reduction methods was useful, and the weighted SVM for unbalanced

data was also a good try.

Cheng et al. [22] used the dataset from W.Ugulino’s team, which was collected from 4 person with

5 activities, sitting, sitting down, standing up, standing, and walking, by wearing 4 sensors in different

places. They applied SVM, HMM, and multi-layer neural network (MNN) to the data with both subject-

dependent and subject-independent experiments. The results from the subject-dependent were above 90%

overall accuracy, and with the HMM, the accuracy for activities were close to 100%. While the overall

accuracy for one person from subject-independent were less than 50% and some activities could not be

identified, such as sitting was confused with walking. It could indicate that the activity pattern is different

from person to person, and personalized system should be built. However, it is not clear that which body

location the sensor has to be placed that could have a better classification results.

Jiang et al. [53] compared the performance of Deep Convolutional Neural Network (CNN) from three

different data sets, UCI, SHO, and USI, which all based on wearable sensors, first two were from smartphone

and recorded 6 and 11 daily activities, the rest one was from MotionNode and had 7 activities. All these

three data collection platforms were not involved in feature extraction and classification. With different

number of activities, sensor locations, time windows, and number of subjects, the overall accuracy rates

were between 97.59% to 99.93% with CNN+ (the CNN with bi-class SVM). They then converted the signal

data into image data in order to use the 2D CNN algorithm. It also represented that with less than 3% of

improvement, the computational time for CNN+ (3.85ms) was doubled than that for DCNN (1.56ms). Since

the computational time was only for the learning part, the image preparation part was not mentioned, the

total process time was uncertain. Also, without the information of training and test data split, it was not

clear either subject-dependent or subject independent. Meanwhile, the device memory would be another

issue, since image data might need more space to be stored. Because of these reasons, this method would be

more suitable for an offline system, which would provide a large database for both storage and classification,

instead of online.
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Ronao and Cho [78] also used the CNN for identifying the activities. Instead of transferring the sensor

data into window based features, they use the data directly. However, by applying CNN with different layers

and units to the UCI data (6 activities) for subject-independent experiment, the result showed around 90%

of overall accuracy rate. Later, they used the deep CNN to transfer the sensor raw data combined with the

temporal fast Fourier transform method [77]. They achieved an overall accuracy rate of 95.8%. However,

this accuracy rate was used with a large filter size, with more than 100 units and 4 layers. The computational

time was longer than the previous one. Moreover, Liu et, al. [61] also used CNN for identifying human

activities. The data they used was collected by binary PIR sensors (PIR), which might reduce the data size.

They collected data in three groups and 3 activities in each group. The overall accuracy rate was up to

97.7%. However, there was no specific activity mentioned in the research, the applicability of this methods

to the real-world was not certain.

Besides the research on the daily activity recognition, Kautz et al. [54] also used deep covolutional neural

network to the HAR in the beach volleyball players’ actions. The researchers collected the data by putting

a tri-axis sensor on players’ wrist of the dominant hand, and divided the actions into ten classes, Underhand

Serve, Overhead Serve, Jump Serve, Underarm Set, Overhead Set, Shot Attack, Spike, Block, Dig, and Null

Class. With 39 window-fixed transformed features, the overall accuracy rate for subject-independent was

up to 83%, which was 16% better than others, such as KNN, SVM, NB, and decision tree. The required

training computing time was also more than others. It needed more than 2.5hrs. But consider this as a

built-in system, the classification with feature calculation and prediction was 0.06ms on average.

Li et al. [60] applied several deep learning algorithms, including Long-Short-Term-Memory (LSTM),

CNN, Multi-Layer-Perceptron (MLP), and Hybrid Covolutional and Recurrent, to two datasets, namely

OPPORTUNITY and UniMiB-SHAR. The former one required 7 wirless body-worn inertial sensors with

12 additional 3D accelerometers in different body locations. It collected 9 classes, including one Null class,

which was 72.3% of the total data. This data was about opening or closing doors, fridges, and dishwasher.

The later one was based on the smartphone 3D accelerometer, placed on either left or right pocket. The

activities it collected were some daily activities, such as standing up from sitting, standing up from laying,

walking, running, going up, jumping, going down, lying down from standing, and sitting down. The biggest

challenge from these two datasets was the imbalance samples among classes. The best overall accuracy rate

from subject-dependent for the first dataset was up to 91.1% with hybrid model and 77% for the second data

from a soft assignment variant. The split of training and test was not clear, as well as the computational

time. Besides, a large number of sensors were used in the first dataset, which was inapplicable in the daily

life.
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Wang [89] proposed a deep belief network (DBN) with continuous autoencoder (CAE) and fast stochastic

gradient descent (FSGD) to identify 19 activities sitting, standing on the ground, lying on the back, etc. The

data (Altun) was collected by Altun et al. [9] from 5 sensors with different location on the body, one each

on the arms and legs, and one on the body torso. The research showed that the frequency-domain features

had better results than the time-domain had and the Accelerometer with Magnetometer gave the best overall

accuracy rate for a 10 fold cross validation. After the built-in the DBN in the HAR system, the overall

accuracy rate for a single person was around 82% with 0.11 millisecond per 5-s segment. While with an

overall accuracy rate of 99.3% in the training data, 82% for the test data, the model might be overfitting.

However, sensor in five different locations might be uncomfortable and invasive.

He et al.[46] applied the generalized discriminant analysis (GDA) and relevance vector machines (RVM)

with a public dataset named WARD. 20 subjects performed 13 activities wearing 5 sensors on wrists, waist,

and ankles. The data included several transition activities, such as turn right, turn left, and walk left circles.

It showed that with the GDA, the overall accuracy from the 3-fold cross validation was 99.2%, which was

23% higher that from PCA and 59% higher than from LDA. Meanwhile, for single activities, the RVM also

had a good performance, with all above 97%, which is better than SVM and KNN. Since the process time

was not given and with 5 sensors, it was not clear if this was suitable for a single wearable device.

Berchtold et al. [13] proposed an online HAR system named ActiServ. This system included data collec-

tion, data storage, data transmission, classifier sets, personal training, and feedback interface. The data had

10 classes, such as sitting, standing, lying, walking, climbing stairs, cycling, holding phone, talking on the

phone, typing text, and no movement. It used fuzzy inference system and Activity Classification Module Set

(ACMS) combined Personal Trainer Service (PTS) to identify several activities from the phone accelerom-

eter. The overall accuracy rates were up to 99.3% even for the activities such as holding phone, talking on

the phone, and typing text message. However, the delay on the feedback was quite long, the running time

duration was up to hours for one activity for the personalization part. When with the built-in model, which

could be considered as offline part, the overall accuracy rates dropped to 70%. Besides, the whole system

was based on the server, which would cause some connection issues.

Wang et al. [88] compared traditional convolutional neural network (CNN) and DeepConvLSTM methods

with their own method on two datasets. The methods included the network net with attention levels (Net-

att) with dot product for matching the local and global features, operation of parameterized compatibility

(pc), and different normalization functions (softmax/tanh). The two datasets were a well labeled UCI HAR

dataset and a weakly labeled data collected by authors from smartphone. The weakly labeled data only

obtained the information about the activity occurred but without the time. UCI HAR dataset included 6
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daily activities, 3 static activities and 3 dynamic activities and it was divided in 70% for training data and

30% for test data. The weakly labeled data only had 5 dynamic activities and 70% was for training, 10%

for validation, and 20% for test data. The results showed that proposed method was comparable to the CNN

and DeepConvLSTM for UCI HAR data (93.41% compared to 93.21% and 93.54%), and even better than

those two for the weakly labeled data (93.83% compared to 89.62% and 90.04%). Meanwhile, the proposed

method asked less computation time.

Table 1 gives a brief summary of research, includes the data names, the number of activities in the data,

the methods used, the training and test divisions (subject-independe or subject dependent), and the best

overall accuracy rates from the methods. As it shows that the deep learning methods, such LSTM, CNN, the

combination of two deep learning methods, were applied to these sensor data frequently and other machine

learning methods, such as SVM, DT, and KNN, are also used. It is clear that the deep learning methods also

could not grantee a high accuracy rate for different datasets and KNN and RF might give a high degree of

performance. In other words, the data structure is important for selecting method. Supervised methods use

the labeled data to build a model, which could be used for prediction or classification, but it required a lot of

labels, which might need lot of work and might have the error when mark the labels. Thus, for big dataset,

unsupervised method or auto-label creating might need to be considered.
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Table 1 Datasets and Results Summary for HAR Supervised Classification Methods

Data Name # of Activities Research Methods Subject-independent Best Overall Acc.(%)

ActiServ 10 Berchtold et al.[13] ACMS-PTS Yes 70

Altun 19 Wang [89] DBN, KNN Yes 82

eWatch 6 Maurer et al. [64] DT, LDA Yes 92

GPS-HAR 3 Lara et al. [58] DT Yes 92.6

OPPORTUNITY 9 Li et al. [60]
LSTM, CNN, MLP,

Hybrid CNN and RNN No 91.1

PIR 9 Liu et, al. [61] CNN Not Mentioned 97.7

SHO, USI 11,7 Jiang et al. [53] CNN, CNN+, SVM No 97.8, 99.9
TK26M, TK57M,
Tap80F, OrdonezA

8,16,
10,10 Abidine et al.[2]

PCA, CRF, LDA,
HMM, WSVM No

95.6,81.4
77.2, 88.4

UCI 6 Jiang et al. [53] CNN, CNN+, SVM No 97.6

Ronao and Cho [78] [77] CNN No 90, 95.8

Wang et al. [88]
CNN, DeepConvLSTM,

NET-att2-pc-tanh No 93.41

UniMiB-SHAR 9 Li et al. [60]
LSTM, CNN, MLP,

Hybrid CNN and RNN No 77

Volleyball 10 Kautz et al. [54] CNN Yes 83

W.Ugulino 5 Attal et al. [11] KNN, RF No 99

Cheng et al.[22] SVM, HMM, MNN Yes < 50

WARD 13 He et al.[46] GDA, RVM Yes 99.2
F1 represents the best F1 score from methods in the article.



2.1.2 Supervised Learning Feature Methods

Besides generating the appropriate classification algorithms from machine learning and deep neural network

to improve the accuracy rate of identifying activities, the features used in the model also play an important

role. Thus there are some research that focus on feature selection, such as feature transferring and subset of

features selection. Plötz et al [73] discussed several feature selection analysis, and dimensional reduction

methods in their research, such as PCA, LDA, empirical cumulative distribution function (ECDF), and

independent component analysis (ICA), as well as the Restricted Boltzmann Machine (RBM), which is

one of the deep learning methods for autoencoder based feature learning. They compared these methods

with four datasets, Ambient Kitchen (AK), Darmstadt Daily Routines (DA), Opp, and Skoda. These four

datasets were performed under different scenarios with different activities. AK was collected from twenty

participants who prepared either a sandwich or a salad with sensor-equipped kitchen utensils. DA was

collected in a living lab-like environment. Two tri-axial accelerometers were placed on the wrist and pocket

to record 35 daily activities. Opp was collected in kitchen with 19 worn sensors, which contained open

then close the fridge, clean the table, etc. And Skoda contained 46 activities from workers wearing 20

accelerometers on both arms in a car maintenance scenario. With the same classifier, the best accuracy rates

were from FFT and the combination of PCA and ECDF for data AK and DA, the combination of PCA and

ECDF and the combination of RBM and ECDF for data Opp ,and RBM and the combination of PCA and

ECDF for data Skoda. Different datasets had different best feature analysis method, but the combination

ones with ECDF might be a better choice for all the four datasets. The best overall accuracies for these four

datasets were 88.7%, 89.1%, 81.5%, and 75.9%, respectively.

Vollmer et al. [87] also used the same datasets to evaluate their feature transformation method. They

formalized the sensor feature learning as a sparse coding problem. They tried to minimize an energy function

on the error between reconstruction and input with a penalty on the activation. Later, by combining a variant

of Non-negative Matrix Factorization (NMF), they transferred the sensor data to be a non-negative matrix,

named Shift-invariant Sparse Coding (SISC). The contribution of this was they gave a new idea to transfer

the sensor data with sparse matrix into the statistical features, such as mean, maximum, minimum, standard

deviation, and so on. The overall classification accuracy rates from SISC with KNN for AK, AD, Skoda, and

Opp were 91.7%, 86.1%, 84.5%, and 81.6%, respectively. As we could see that the result from AD data was

worse than it from Plötz et al [73], while others were better. Then Bulling et al [18] also mentioned several

feature selection and dimensional reduction methods in their survey paper. They included some methods

which could reduce the computational time and the memory usage, such as minimal redundancy maximal
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relevance, correlation based features selection method, and ECDF were for dimensional reduction methods.

Different features section or extraction method fit for different datasets.

Zhang and Sawchuk [101] purposed a sparse represented based classification method for identifying 9

human activities from MotionNode, such as walk forward, walk right, up stairs, run forward, and sit on

a chair. Instead of using PCA and LDA as the linear transformation, they applied the random projection

(RP). The data was collected from 14 person wearing a MotionNode with accelerometer, gyroscope, and

magnetometer on their right front hip. The overall accuracy rate for left-out subject was up to 95.2% which

was more than 1.3% higher from the best of SVM, KNN, and NB. Moreover, the results also showed that

the sparse represented based method worked better with more than 40 feature dimension data. It was also

suitable for wearable devices which does not require large memory space. However, some activities were

confused, such as Sit on the chair from Standing, Jump up from Run forward. These activities were also

hard to be identified by SVM, KNN and NB since the similarity of the raw sensor data, such as frequency

in each axis.

Wang et al. [91] purposed a feature pre-process method with game theory based feature selection and

Ensemble empirical mode decomposition (EEMD). The Data was collected from 5 subjects by wearing

triaxial accelerometer on waist and ankle in their laboratory. These subjects preformed 9 activities, including

sitting, lying, standing up from lying, standing, walking, running, two different types of watt bicycling,

jumping. The results from KNN and SVM all shown that the overall accuracy were better with the EEMD

than that without EEMD. However, some of the activities, such as walking, standing up from lying, and

bicycling, were confused with other activities. Thus, the overall accuracy rates for single sensor location

were in 73% - 81%. However, by increasing the number of subjects and combining these two sensors

together, with a subject independent training-test model, the results might be improved.

Zdravevski et al. [97] also focused on the features extraction process. They proposed a 14 steps process to

generate sliding windows based features with magnitude time series, delta series, first derivatives series, and

Fast Fourier Transformation (FFT). The final feature set included all of the best selected subset features from

these groups, which could be considered as an ensemble of features (EF). Then they applied this process to

four different datasets, DaliAc, mHealth, FSP, SBHAR, and SBHARPT. These datasets were from different

sensors or locations. The DaliAc dataset was collected from 19 subjects performing 13 activities with 4

sensors. It recorded several normal daily activities, such as walking, standing, lying, and so on. mHealth

was a dataset from an open framework for agile development of mobile health application. It included 12

activities and some of them were aimed to be special purpose, such as waist bends forward, frontal elevation

of arms, knees bending, and jump front and black. FSP was a dataset with 7 daily activities from 5 wearable
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sensors. SBHAR was also a dataset had 6 daily activities from smartphone sensors, such as accelerometer

and gyroscope. The labels were marked by manually from a simultaneously recorded video. SBHARPT

was from the same authors of the SBHAR, but included 6 extra transition activities, such as stand to sit,

sit to stand, lie to sit, and so on. They then implemented the new features sets with the logistic regression,

RF, (extremely randomized trees) ERT, SVM, KNN, and NB. All of these datasets were divided into three

groups, training, validation, and test. Each group included different subjects. The subject independent

overall accuracy rates were between 91% to 99.8% from SVM. However, sitting, walking downstairs, and

walking upstairs were still confused here, the precision rates for these activities were around 70%. Moreover,

they did not mention the computing time for transferring the original timestamp series data to the features

used in the model. This made it hard to evaluate the suitable for a wearable HAR system.

All of the research mentioned above showed that the dimensional reduction might be depended on the

data information collected from initial sensor. For example, in Plötz et al. [73] and Vollmer et al. [87], they

applied several dimensional reduction methods with KNN to different datasets, the best feature selection

was arbitrary and it was a big challenge to generalize. In other words, there is no universal best method

for feature analysis. Because of this, an automatic extraction of feature process would be a great help for

HAR classification. The deep learning provide methods for learning important features from the raw sensor

data. Zeng et al. [98] used three datasets as Plötz et al [73] in their research, Opp, Skoda, and a new dataset

Actitracker, to illustrate that CNN based features with partial weight sharing approach (CNN-PWS) was

practical on wearable sensor data. Actitracker contained six daily activities, such as walking, ascending

stairs, jogging, etc. It were collected in a controlled laboratory environment using smartphone. All of the

three datasets had a better identification accuracy rate (KNN) with the features selected from CNN and

partial weight sharing than from Statistical RBM, and PCA-ECDF (1.2%, 9.02%, 4.41%, higher than the

best algorithm on Opp, Antitracker, Skoda respectively). Comparing with the results from Plötz et al. [73],

this method improved the overall accuracy more than 10% for Skoda data (75.9%, 88.9%), but performed

worse in Opp data (81.5%, 76.83%).

Later, Ordóñez and Roggen [72] proposed a continuous feature selection method to the same mobile and

wearable sensor data (Opp and Skoda). They used a combination of convolutions neural network and LSTM

for identifying some static and periodic activities, such as open or closed doors, fridge, or drawers, standing,

walking, sitting, and writing on notepad. The overall F1 scores were improved by 6% on average than

other machine learning methods, such as LDA, QDA, and CNN for both Opp and Skoda datasets. Thus the

overall F1 scores were 91.5% and 95.8% from DeepConvLSTM for Opp and Skoda datasets, respectively.

Additionally, they considered the multimodal fusion analysis, which combined several different sensors,
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such as different types of measurement sensors with different locations. The F1 scores were improved up to

16% from only one accelerometer to the Opp set, which had 19 sensors. However, this was not ubiquitous

in daily life. Besides, the computational time was not mentioned. They trained the model on all data from

subject 1 and partial data from Subject 2 and 3, and leaved the rest of Subject 2 and 3 for validation and test.

Alsheikh et al. [7] used a new transform way for a combined deep leaning and HMM model (DL-HMM)

to identify activities. Instead of using the raw time-series sensor segmentation data or statistical transformed

data, they used the spectrogram data. There were three datasets they used to evaluate their model: WISDM,

Daphnet freezing of gait (Daphnet), and Skoda. WISDM inclded 6 daily activities, Daphnet was labeled as

either ”freezing” or ”no freezing”. This data was designed to detect freezing events of patients with Parkin-

son’s disease. And Skoda had 10 activities. The deep generative model was used for computational intrinsic

features and by finding the posterior probability distribution to recognize the activities. Then the HMM

model trained by the emission probabilities was considered as a temporal patterns model in activities. The

performance showed that this DL-HMM combined model had better outcomes. They improved the accuracy

rate from 85.1% (C4.5) to 98.23% with the WISDM data, from 86% (HMMs) to 89.63% with Skoda data,

and improved the Sensitivity (TPR) from 82% (C4.5 and KNN) to 91.5% with the Daphnet data. Ravi et al.

[76] also used spectrongram features, which they called shallow features, with deep features together in a

back-ward propagation deep neural network (CNN). They applied this to five datasets, ActiveMiles, which

included 7 daily activities collected by smartphone in uncontrolled environment, WISDM v1.1 and v2.0,

which were collected from smartphone in a laboratory and uncontrolled environments respectively, Daph-

net, and Skoda. The results showed that the combination features in ActiveMiles, WISDM v1.1 and v2.0

could improve the overall accuracy rates (95.7%, 98.6%, and 92.7%, respectively) up to 1.2% comparing to

only use either shallow features or deep features (95%, 97.4%, and 92.5%, respectively). And the Shallow-

features only could give a better results for the Skoda and Daphnet (95.9% and 95.8%, respectively) than the

combination (95.3% and 95.8%, respectively). However, some activities were still have confusions, such as

the standing from the ActiveMiles data with precision rate of 74.19%, lying down from the WISDM v2.0

with precision rate of 88.65%, and freeze from Daphnet with precision rate of 67.89%.

However, there are also some research showing that the deep learning itself could perform better with

the original signal data than the data with transferred features or selected features. Chen and Xue [21]

used CNN to identify 8 activities from an Android smartphone application data. The results illustrated

that without feature selecting, CNN outperformed the DBN and SVM with transformed features, such as

FFT, Discrete Cosine Transform (DCT), and Time-domain Features (TF), not only better with the overall

accuracy, but also with each activity. The overall accuracy rate was upto 93.8%, and for each activities, the
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accuracy rates were in the range from 88% − 97%. Erfani et al. [30] showed the proof that the deep belief

networks (DBN) could learn robust features and help to reduce the computing time by a factor of 3 and

1000, for training and testing time, respectively. They used the 6 real-life HAR datasets from UCI Machine

Learning Repository (UCI), Forest Adult Gas Sensor Array (Gas), Opp, Dailyand Sport Activity (DSA),

Human Activity Recognition (HAR), Banana, and Smiley. The DBN with one class out SVM method had

a decent performance on human activity recognition data from UCI website. The test time was reduced

from longest 0.88 seconds to 0.0099 milliseconds without losing of accuracy. Yao et al. [94] also used

three datasets to illustrate that arbitrary length based CNN works better on the raw sensor sequence data

than the ones based on sliding window data. The three datasets were the Opp, Hand Gesture, and a new

dataset from a wearable sensor worn by hospitalised patients (Hospital). The overall accuracy would be

improved up to 4%. The overall accuracy rates were 88%, 89%, and 79% for Opp, Hand Gesture, and new

data, respectively. Moreover, utilization of sequence data would help to avoid the multi-class in one window

problem and the difficulty of finding the best window size. This made the HAR system be able to correctly

capture the fast transmitted activities.

Besides these classification and feature transformation research, there are also some people focused on

the multisensor area. This is the trend for the human activity recognition system because of the technolo-

gies. The system could put different sensors together, for example record the environment conditions, such

as humidity and temperature, as well as customer’s health conditions, such as heart rate. Yao et al. [95]

first proposed to use DeepSense architecture to model temporal relationships among the sequence data and

fuse multimodal sensor inputs, such as motion sensors and movement sensors (CarTrack). The DeepSense

involved both convolutional neural network and the recurrent neural networks. Both of these parts had

the ability to automatically learn features. The data HHAR was collected from 9 users wore smartwatch

and smartphone who executed 6 types of activities (biking, sitting, standing, walking, climbstair-up, and

climbStair-down). The overall accuracy was up to 93.8% and much better than the results from single GRU

or CNN. the training process was run on GPU, and the trained model was built on mobile with CPU. How-

ever, there was no computational time mentioned in the paper and this system needed a stable connection

between the devices and the CPU. As Bulling [18] mentioned in their survey, the automatic feature repre-

sentation from deep learning helped to capture both intra-class ad inter-class variables. Table 2 and Table 3

give the summary of the datasets and feature methods.
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Table 2 Datasets and Results Summary for HAR Supervised Feature Selection Methods 1

Data Name # of Activities Research Methods Subject-independent Best Overall Acc.(%)

ActiveMiles 7 Ravi et al. [76] shallow features (CNN) Not mentioned 95.7

Actitracker 6 Zeng et al. [98] CNN-PWS No 96.88

AD 35 Plötz et al [73] PCA, LDA, ECDF, ICA No 89.1

Vollmer et al.[87] SISC No 86.1

AK, 2 Plötz et al [73] PCA, LDA, ECDF, ICA No 88.7

Vollmer et al.[87] SISC No 91.7

Android App 8 Chen and Xue [21] CNN No 93.8
DaliAc, mHealth, FSP,
SBHAR, SBHARPT

13, 12, 5,
6, 12 Zdravevski et al. [97] EF Yes

93.4, 99.9, 99.8,
95.9, 95.8

Daphnet 2 Alsheikh et al.[7] DL-HMM Not mentioned 91.5 (TPR)

Ravi et al. [76] shallow features (CNN) Not mentioned 95.8

HHAR 6 Yao et al.[95] DeepSense Yes 93.8

IMU-based 9 Wang et al. [91] Game theory based EEMD Yes 81

MotionNode 9 Zhang and Sawchuk[101] RP Yes 95.2
F1 represents the best F1 score from methods in the article.
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Table 3 Datasets and Results Summary for HAR Supervised Feature Selection Methods 2

Data Name # of Activities Research Methods Subject-independent Best Overall Acc.(%)

Opp 19 Plötz et al [73] PCA, LDA, ECDF, ICA No 81.5

Vollmer et al.[87] SISC No 81.6

Zeng et al. [98] CNN-PWS No 76.8

Ordóñez and Roggen [72] DeepConvLSTM No 93 (F1)

Erfani et al. [30] DBN

Yao et al. [94] CNN No 88

Skoda 46 Plötz et al [73] PCA, LDA, ECDF, ICA No 75.9

Vollmer et al.[87] SISC No 84.5

Zeng et al. [98] CNN-PWS No 88.2

Ordóñez and Roggen [72] DeepConvLSTM No 95.8 (F1)

Alsheikh et al.[7] Not mentioned 89.6

Ravi et al. [76] shallow features (CNN) Not mentioned 95.9

WISDM 6 Alsheikh et al.[7] DL-HMM Not mentioned 89.6

Ravi et al. [76] shallow features (CNN) Not mentioned 98.6 (92.7 for v2.0)
F1 represents the best F1 score from methods in the article.



2.2 Semi-supervised or Unsupervised Learning

The semi-supervised system is suitable on the system which only has a few activity labels. This makes

the learning process more difficult to learn pattern or activity characteristics from the training data. How-

ever, labeling all cases might be hard or expensive in real world. For instance, for the data collection, the

participation need to follow a strict illustration to avoid for mislabeling with the transition activities. Some-

time, researchers also have to have the video recorder to minimize the mislabeled cases. This makes the

semi-supervised or even unsupervised learning methods more valuable.

The early semi-supervised methods applied on HAR was the ensemble methods from Guan et al. [41].

It modified one of the semi-supervised method called Co-training to avoid strict requirement of the labeled

dataset. The new method was called En-co-training, which was the combination of the semi-supervised with

the ensemble method by majority voting. Instead of using two partial labeled data for training two classifiers

in Co-training, they applied all the labeled data to three different machine learning algorithms, such as DT,

NB, and DNN. The data (Leg40) they used was from an experiment in 2004 [86]. The participants wore

40 sensors on their legs, (20 each) during the performance of 10 basic activities, lying, kneeling, sitting,

standing, walking, running, climbing stairs, descending stairs, bicycling, and jumping. Thus, instead of

training leg data (right and left) separately with Co-training, they used all the 40-sensor data for three

different algorithms (DT, KNN, and NB). The experiments showed that the overall average rates for 10 test

subjects from En-Co-training ( between 80% to 86%) were comparable to these from Co-training (around

83%), when training on 10% of the labeled data. While the increasing the labeled data in the learning

process, the En-Co-training method performed better than others for each subjects data. The overall accuracy

rates were around 90% while others are around 85%. However, both Co-training and En-Co-training did not

mention if the classifiers were updated with the results from the unlabeled data. Also, 40 sensors was not a

good choice for wearable devices.

Cardoso et al. [19] also used the ensemble methods in their research. They selected three learning

methods, NB, Very Fast Decision Tree (VFDT), and KNN, and created two ensemble classifiers, one is

Democratic Ensemble Classifier, also called Most Voted Classifier, another one is Confidence Ensemble

Classifiers, which was used the certainty percentage of the prediction to decide the agreed output. They also

represented a comparison with two different ways of ensemble supervised and semi-supervised methods.

Leave-one-out of the person data was used for the semi-supervised update and test. They used the ensemble

results to re-train the model and applied the new model to the test. The Smartlab data was used,which

was including 6 basic daily activities and 6 transitions between the static postures. Their results implied
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that with the fixed window size sensor data, the semi-supervised learning was better than the supervised

learning, even with small amount of extra unlabeled data updating. Besides, with the perfect segmentation

of the window size, which would give the best prediction later, it was able to identify all the activities with

almost 100% certain. Meanwhile, they also proved that classifiers were confused by the different placed

sensor data. However, this experiment gave the best average accuracy rate was 84.55% from Confidence

Ensemble classifier. The system required 15 minutes of data inputting for training. It might be considered

as a long time practice for a customer.

Garcia et al. [38] used methods mentioned in above [19] to present the hyperparameter’s effects in their

experiment. They applied semi-supervised ensemble method to a public dataset, PAMAP2, which includ-

ing 18 different activities. They also found that the accuracy of this ensemble method was sensitive to the

different user’s data than to the window size and overlapping percentage. The overall accuracy rates were

between 75% to 90%. Additionally, they found that feature extraction process was time and energy con-

suming. The total time, including the time required to access the data and transfer each data window as an

instance, the time for feature extraction, and the time with the classification, was up to 50s for a single user.

This might cause some delay for an online system and not be efficiently working for long periods of time.

Thus, an extension work of this was proposed [39]. Instead of using ensemble of learning methods, they

used Auto-Encoders (AE) to reconstruction every activities individually and labeled the data with the minim

reconstruction error from the AE predictions. And each AE was updated with the new data with the minim

error less than a threshold. The method was applied to three datasets, WISDM, mHealth, and PAMAP2. The

average accuracy rates were up to 82% for both WISDM and MHealth data, but only got 62% for PAMAP2,

which was worse than that from [38]. This ensemble method was not as good as expected neither in time

and the classification, especially in the average accuracy. But the experiment proposed a new idea for the

possibility to identify new activities which were not included in the training, with the minim error greater

than the threshold.

Later, some research also used deep learning, such as CNN in the HAR identification. Zeng et al.

[99] combined the supervised CNN and CNN-Encoder-Decoder ( unsupervised learning) to create a semi-

supervised CNN-encoder-decoder, and with lateral connections to create a semi-supervised Convolutional

Ladder Network (CNN-Ladder) semi-supervised CNN-Ladder. By getting the parameters from both su-

pervised and unsupervised CNN, they applied the semi-supervised CNN to three datasets, ActiTracker,

PAMAP2, and mHealth. ActiTracker and mHealth were the same datasets introduced above. PAMAP2 was

a new dataset used here. It was collected from 9 participants with 12 lifestyle activities, such as walking,

knees bending, lying, etc. The most unique characteristic in PAMAP2 was the records with the heart rate and
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the temperature data. The results showed that the CNN-Encoder-Decoder and CNN-Ladder performed better

than the results from supervised logistic Regression and CNN, especially, CNN-Ladder improved the mean

F1-scores (Fm) with by 17.64%, 3.59%, and 9.65% on ActiTracker, PAMAP2, and mHealth, respectively.

And they were also better than other semi-supervised methods, such as self-training and pseudo-label. The

improvements were 16.46%, 4.11%, and 8.5% for three datasets, respectively. However, the method was

based on empirical labeled and unlabeled data, the rule of dividing them were not clear. The computational

time was not shown in the article.

Balabka [12] also purposed a combined methods with CNN and auto-encoders to predict the activities

in the test data which not included in the training set but only in the validation set. The Sussex-Huawei

Locomotion-Transportation (SHL) dataset was collected from the participants who wore the mobile devices

at different places, including Bag, Hips, Torso, and Hand. They performed 8 different activities. The special

part was the Hand data was only included in the validation and test set, meaning it did not been trained in

the model. And the validation and test set were divided into labeled and unlabeled data. The results showed

that the F1 scores for 8 activities were in the range of 75% to 97%, the activity 3 had 97%, while activity 8

had 75%. The overall average F1 score on the validation test set was 90.2%. However, the algorithm was

hard to apply to specific activities since there was no information for the types of activities. In the research,

it was not clear that how to use the unlabeled data for the new model. Beside, the total computational time

for the validation training set was more than 6 days, it was a very long time for getting the model.

Also, some researchers tried non-parametric methods to HAR, such as Ma et al. [63]. They thought that

for most semi-supervised methods neither sensitive to the outliers and hyper-parameters, or easily be mis-

leading by mislabeled samples and assumptions. So they introduced a graph-based non-parametric method,

named LabelForest (LF) to avoid the weakness. It involved greedy spanning forest, Silhouette-based sample

filtering, and a SVM classifier. In the research, it showed that the LF algorithm improved the accuracy rates

up to 57% and 175% on the balanced and unbalanced data compared to other common algorithms, such

as k-NN, ε-NB, DT, regression (LR), SVM, and sequential k-means. These results were from three sensor

datasets. The datasets included HART, Smartsock, and Phone. The first one included 6 daily activities from

30 subjects, the second one was from 10 subjects with 12 activities, and the last one contained 6 activities

from 9 subjects wore a variety of smartphones. It also showed that the quality of the labeling results was

more important than the quantity. With the lower rate of the labeling rate, LF had the most highest precision

rates, which was up to 86%. Moreover, LF had a steady improvement with the increasing number of seed

data samples, while others were fluctuated. Also, LF had a good performance with small amount of seed

training data for all three datasets, 97.1%, 96.7%, and 86.3% for HART, SmartSock, and Phone, respec-
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tively, while others required more training data to achieve the similar accuracy rate. The semi-supervised

method could result a good perform without lots of labeled observations.

Oh et al. [70] proposed a combination method for semi-supervised UCI data set and mHealth data. They

used the active learning (AL) and transfer learning (TL) separately instead of using active transfer learning

(ATL) together. And they set a small part of the sample as labeled while leave others unlabeled. They first

applied DNN to the labeled training data as a basic model. Secondly, with the transfer learning to create a

correctly predict set, which had a correct high probability and was used for semi-supervised learning, and

false predict set, which had a incorrect high probability and was used for retraining the basic model. The

result from UCI showed that by using 198 queries, the accuracy rate was up to 95.5%, which was better than

the rate from the DNN with random sampling (92.9%, with 1000 queries) and a little worse than that from

the active transfer learning (95.8%). Also, the results from mHealth data showed that the proposed method

had the best accuracy rate (95.9%) with 693 queries, which the accuracy rate from ATL was 94.9%. This

proposed method reduced the size of labeled data (only around 24% of the total data was labeled). Since

it required retraining the basic model with the unlabeled data, the memory of the device might be an issue.

Besides, the whole process might also require a long computational time with the labeled data training and

unlabeled data traning.

Bettini et al. [14] proposed a communicated HAR system between customer and the device, such as

smartphone and smartwatch. The system was a combination of active learning (AL) and transfer learning

(TL) with semi-supervised Federated Learning (FedHAR). They assumed that the system was builtin with

a classifier which was pre-trained with the global data, and provided the options with the results from the

classifier. With the labels provided by the customer, the system delivered these labeled data to a server,

added the them into the sample data, and had a new classifier, (personalized classifier). They then applied

this process to the dataset MobiAct and WISDM. The MobiAct was a labeled dataset from 60 subjects

who holding a smartphone in the pocket. The dataset included 4 activities: standing, walking, jogging,

and sitting. The results showed that FedHAR with active learning and label propagation improved the F1

score significantly (from 3% to 20%). They divided datasets into 3 parts, 15% of data contained data from

users that only for the pre-training, 65% contained the data for federated learning, and the rest 20% for

test only. And the average F1 scores for two WISDM and MobiAct were up to 94% and 85% after 30

rounds of updating, respectively. The advantages of this system was the communication process and low

requirement of memory. The communication process was a good idea for collecting labeled data and the

requirement of memory for a device was not a big challenge since the classifier parameters were the only

information needed to keep in the system. However, during the personality transfer process, the data had to
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be delivered to a server to have the new updated classifier, this might cause delay and might also have issues

when customer switched several activities in a short time.

Table 4 gives the summary of the datasets and feature methods. Unlike the supervised learning, semi-

supervised learning provides more flexibility to modify the HAR system, for example adding the interaction

between the system and customers in Bettini et al. [14]. They designed a step to confirm if the activity

prediction was correct. This not only helped the system to collect new data but also update the model.

However, a method which could implement new activities to the model and adjust the model to personal

preferred will be a new idea. Based on this, we proposed a new streaming system which called as adjusted

HAR. This system could update the built-in model with the new input. It was not only for improving

the classification results but also making the system adaptive to different customers. Moreover, another

advantage of this adjusted system is that it could adjust the personal HAR model with time goes. It is

designed for elder people who might change the activity pattern after unexpected accidents.
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Table 4 Datasets and Results Summary for HAR Semi-Supervised Methods

Data Name # of Activities Research Methods Subject-independent Best Overall Acc.(%)

Actitracker 6 Zeng et al.[99]
CNN-encoder-decoder,

CNN-Ladder No 66.32 (Fm)

HART 6 Ma et al. [63] LF No 97.1

Leg40 10 Guan et al.[41] En-co-training Yes 90

mHealth 12 Oh et al. [70] AL, TL, ATL No 95.9

Zeng et al.[99]
CNN-encoder-decoder,

CNN-Ladder No 54.9 (Fm)

Garcia et al.[39] AE Yes 82

MobiAct 4 Bettini et al. [14] FedHAR Yes 85 (F1)

PAMAP2 12 Zeng et al.[99]
CNN-encoder-decoder,

CNN-Ladder No 69.38 (Fm)

Garcia et al. [38] Ensemble Yes 75-90

Garcia et al.[39] AE Yes 62

Phone 6 Ma et al. [63] LF No 86.3

SHL 8 Balabka [12] CNN-auto-encoders No 90.2 (F1)

Smartsock 12 Ma et al. [63] LF No 96.7

Smartlab 12 Cardoso et al. [19] Ensemble Yes 84.5

UCI 6 Oh et al. [70] AL, TL, ATL No 95.5

WISDM 6 Bettini et al. [14] FedHAR Yes 94 (F1)

Garcia et al.[39] AE Yes 82
Fm represesnts the mean of F1 scores and F1 is the best F1 score from methods in the article.



Chapter 3

Online Human Activity Recognition

Note to Reader:

Portions of this chapter have been previously published in IEEE, 2020, and have been reproduced with

permission from IEEE Publishing. © [2020] IEEE. Reprinted, with permission, from [Yanjia Zhang and

Kandethody M. Ramachandran, Offline Machine Learning for Human Activity Recognition with Smart-

phone, IEEE HPEC, and September, 2020]

3.1 Abstract

Wearable sensors in smart-phone and wrist tracking devices are widely used in the activity tracking and

body monitoring with a low cost. Human activity recognition (HAR) is one of the important applications.

Activities identification then is the core part of HAR. In this chapter, we present a comparison with several

popular online machine learning methods using smartphone data and try to find the most effective model

for analyzing these sensor data. The methods include Support Vector Machine (SVM), K-Nearest Neigh-

bor (KNN), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), and Artificial

Neural Network (ANN). Two datasets with different transition methods from smartphone are used. The data

includes Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing, Lying, and Jogging. The first

dataset has the first 6 activities and shows that the SVM with linear kernel and LDA have the highest test

average accuracy of 96.4% and 96.2%, respectively. Decision Tree performs worse than others with test

average accuracy of 86.0%. While the second dataset excludes the Lying, but has jogging, and shows that

LDA and DT are the most appropriate algorithms, the test average accuracy of these are close to 100%.

KNN is the worse one with 74.3% test average accuracy. Based on all the results, LDA might be the best

one for these sensors data. Moreover, the transition method used to reduce noise and extra information in

the second data might be better than that in the first one. It has lower dimensions and better classification

performance. In order to get these improved accuracy rates, in this chapter, we used grid search, multi-fold

cross validation, and dimensional reduction method. In addition to just doing the comparison, we also pro-
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posed a two-layer method for activity identification. This method is more flexible of choosing classifiers for

activities and we expect to have better results with the combination of methods.

3.2 Introduction

Human activity recognition (HAR) with wearable sensor is an area that focuses on automatically identi-

fying human activities based on transmitted sensor data. Since wearable devices present a convenient and

noninvasive way to record physiological data from users with reduced manual intervention and a low cost,

HAR has been successfully applied to several areas. For example, it is frequently used for health moni-

toring, sport training, and recreational activities recording. Based on the sensors in the smartphone, such

as accelerometer and gyroscope, movements are identified or grouped into the sequences of activities with

a fixed time window transition. For example, walking, standing, walking stairs, sitting and lying. Many

machine learning algorithms have been used over years, including supervised or semi-supervised ways.

The two main classification methodologies are applied to the data. The first one is parametric, such as

the multivariate linear regression, Bayesian methods, etc. Some additional conditions are usually needed to

meet the assumptions, such as normality and non-collinearity. These assumptions are often violated with the

sensor data, as Figure 1 shows the shape from the sensor coordinates, they are not following the normality

assumption. This means that LDA will lose power and robustness when apply to dataset collected from

other volunteers. The second one is non-parametric, which is distributions free and has less assumptions,

such as Support Vector Machine, K-Nearest Neighbor, Neural Network and non-parametric multiplicative

regression. These methods are more suitable for dealing with the data that we do not know the relationship

between the response and the independent variables or the shape among variables. Considering the large

size of the sensor data, the high dimension and the uncertainty of the relationship between variables, we

tend to use non-parametric methods to create models and evaluate the prediction on the test data.

3.2.1 Data Introduction

The data used in this report are downloaded from UCI Machine Learning website [1] and the WISDM dataset

[56] which is available in public domain. The UCI data experiments were carried out with 30 volunteers

with ages 19 to 48 years old. During the experiment, the volunteers were wearing a Samsung Galaxy S II on

the waist. The experiment collected the data in 3-axial linear acceleration and angular velocity at a constant

rate of 50HZ. They performed six basic activities, walking, walking-upstairs, walking-downstairs, sitting,

standing, and lying. The first three are called dynamic activities and the rest are called static activities.
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Figure 1. Histogram for Activities

Before we use this dataset, we plot the raw sensor data use the box-plot in Figure 2 and run the Runs

randomness test. The plot shows that there are lots of outliers from the sensor gyroscope (body gyro 0-2). It

implys that the transformation will be need to reduce the noise. The Runs test The runs test is a randomness

test based on binomial distribution, which can be used to decide if a data set is from a random process [48].

For each variable, we run this runs test. The test results show that all the p-values from the runs test are less

than 0.0001, meaning we reject the null hypothesis, which is these data are generated in a random manner.

Thus, this UCI data are not produced in the random manner. the reason for this might be because these data

were collected from 30 volunteers and each of them performing for a sequence of activities, and this special

way of data collection would generate lots of duplicate data points. In other words, it could be also indicate

that personalized analysis might be needed.

From the data, we also have the sequences of the coordinate’s streams from initial sensors, as shown in

Figure 3 from one of the subjects. The bottom row in Figure 3 shows the activities, 1,2, and 3 represent the
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Figure 2. Box Plot for Raw Sensor Data

Figure 3. Coordinates Values of Activities
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dynamic activities walking, upstairs, and downstairs, and 4,5, and 6 represent the static ones, sitting, stand-

ing, and lying. It is easy to notice that there are big differences between dynamic and static activities. Sensor

coordinates values vary with dynamic activities while static ones have more flat lines. By visualization, it is

hard to identify the activities from the initial sensor data.

The data was modified by applying several filters and same specific hertz rates to remove the noise. After

this, a Fast Fourier Transform (FFT) was applied to these signal data. All of these transformations are based

on a fixed window size with 50% of overlap. Finally, there are totally a vector of 561 features in each record,

including 17 groups, each group has 17 statistical measurements, and 8 out of 17 groups are transferred for

each axis, thus, there are 8 ∗ 3 ∗ 17 + 9 ∗ 17 = 561 features. The details of the transferred features are listed

in Table 5 and Table 6. However, Figure 4 shows that there are still lots of outliers for each transformed

variable, especially for te right part with negative values.

Figure 4. Box-plot for UCI Transformed Data Variables

The subjects were randomly selected into two groups, 70% of them in the training group and the rest in the

testing group. In this case, we have 7352 records for training data and 2947 for testing data. The correlation

coefficient matrix from the training data Figure 5 shows that 50% of the features have a coefficient larger

than 0.25 with others. Almost 25% of the features have negative correlations. Meanwhile, there are highly

positive correlations among groups.
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Figure 5. Correlation Coefficient Matrix for UCI Transformed Data

The WISDM dataset [56] had 36 volunteers with Android-based smartphones in their front pants pock-

ets and they were asked to perform 6 activities for specific periods of time under monitoring, including

walking, jogging, walking upstairs, walking downstairs, sitting, and standing. The data was recorded with

20Hz, lower than the UCI data (50Hz). The researcher used arffmagic program to transfer the raw data

with a fixed 10 second window size. The new data has 43 features. These features include the difference

between maximum and minimum, average sensor value, time between peaks, standard deviation, variance,

and average resultant acceleration. Full description for the features is shown in Table 7. Since the average

sensor value of X-axis is 0 for all the observations, we remove this feature in the analysis. The correlation

coefficient matrix Figure 7 shows that most of the features have weak correlation with others, except the last
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Table 5 UCI Features Groups

Groups Name

tBodyAcc-XYZ

Groups with signal axis tGravityAcc-XYZ

tBodyAccJerk-XYZ

’-XYZ’ is used to denote 3-axial signals tBodyGyro-XYZ

in the X, Y and Z directions tBodyGyroJerk-XYZ

fBodyAcc-XYZ

fBodyAccJerk-XYZ

fBodyGyro-XYZ

tBodyAccMag

tGravityAccMag

Groups with each pattern tBodyAccJerkMag

tBodyGyroMag

tBodyGyroJerkMag

fBodyAccMag

fBodyAccJerkMag

fBodyGyroMag

fBodyGyroJerkMag

few variables (absoldev group, standded group, and the resultant). This is also implied in the box plot below,

that most coefficients are in the range of (−0.2, 0.35). With the boxplot for each transformed variable, we

still see many outliers, especially for the first 30 variables. Again, the Runs test for the randomness gives

all the p-values less than 0.0001, which is statistically significant for rejecting the null hypothesis for the

randomness manner. As we noticed the same results from the UCI data, we will still use the data without

any data process for our applications.

In brief, the UCI data includes 10, 411 total number of observations and WISDM includes 5,424. The

percentage of each activity is shown in Table 8. As we did for UCI data, we split training and test data by

70% and 30% of the subjects, respectively. Since the researchers did not ask all the volunteers to perform

all 6 activities, some subjects might have less activities.
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Figure 6. Box-plot for WISDM Transformed Data
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Figure 7. Correlation Coefficient Matrix for WISDM Transformed Data
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Table 6 UCI Statistical Measurements
Variables Details

mean() Mean value

std() Standard deviation

mad() Median absolute deviation

max() Largest value in array

min() Smallest value in array

sma() Signal magnitude area

energy() Energy measure. Sum of the squares divided by the number of values

iqr() Interquartile range

entropy() Signal entropy

arCoeff() Autorregresion coefficients with Burg order equal to 4

correlation() correlation coefficient between two signals

maxInds() index of the frequency component with largest magnitude

meanFreq() Weighted average of the frequency components to obtain a mean frequency

skewness() skewness of the frequency domain signal

kurtosis() kurtosis of the frequency domain signal

bandsEnergy() Energy of a frequency interval within the 64 bins of the FFT of each window.

angle() Angle between to vectors

3.3 Related Works

The work of human activity recognition based on the sensors can be traced back to 1990s [32]. Sharma,

Lee, and Chuang [80] applied neural networks (ANN) for a chest worn wireless sensor dataset and achieved

83.95% accuracy. Wu [93] used K Nearest Neighbors (KNN) as the best classifier with iPod Touch data,

but the results show that it fails to effectively classify similar activities as well. Anguita [10] used 561

transformed features to classify six different activities using a one vs. all support vector machine (SVM) and

obtained as high as 89% accuracy. Kwapisz, Weiss, and Moore [56] from the WISDM Lab used Multilayer

Perceptron and they got a best accuracy of 91.7%. Zhang, Wu, and Luo [100] point out that the combination

of the Hidden Markov Model and the Deep Neural Network (HMM-DNN) has a higher accuracy compared

with Gaussian mixture method, Random Forest, and their combination with HMM. The accuracy of HMM-

DNN is 93.5%. Guo, Liu, and Chen [42] performed a two layer and multi-strategy framework for sensor
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Table 7 WISDM Statistical Measurements
Variables Details

{X,Y,Z} {0-9} These 30 features collectively show the distribution of values over the x, y,

and z axes. We call this a binned distribution. For each axis we determine

the range of values in the 10s window (max – min value), divide this range

into 10 equal-sized bins, and then record the fraction of values in each bin.

{X,Y,Z}AVG Average sensor value over the window (per axis).

{X,Y,Z}PEAK Time in milliseconds between the peaks in the wave associated with most

activities. Heuristically determined (per axis).

{X,Y,Z}ABSOLDEV Average absolute difference between the each of the 200 readings and the

mean of those values (per axis)

{X,Y,Z}STANDDEV Standard deviation of the 200 values (per axis)

RESULTANT Average resultant value, computed by squaring each matching x, y, and

z value, summing them, taking the square root, and then averaging these

values over the 200 readings.

Table 8 Total Data Structure Summary

Walk Up Down Sit Stand Lay Jog

UCI (%) 16.5 14.8 13.5 17.3 19.0 18.8

WISDM (%) 38.4 11.7 9.8 5.7 4.6 30.0

smartphone data and the result shows a 95.71% average accuracy. Besides, Ronao ad Cho [77] applied

deep learning neural networks (DNN) to both raw sensor data and Fast Fourier Transformed smartphone

data. Their work shows that the data with the transformed information provides average accuracy rate of

95.75%, which is 1% higher than the results from the raw data. Nakano and Chakraborty [69] point out that

the convolutional neural network (CNN) has better performance in identifying dynamic activities than other

methods. The average accuracy is 98% with classifying walking, walking upstairs and walking downstairs.

Ignatov [51] used CNN for the accelerometer data from smartphone. They obtain a 97.63% average accuracy

with the statistical features. Besides, there are also some streaming works, which read the data immediately

when it was generated. Na and Ramachandran [68] used the Online Bayesian Kernel Segmentation method

for classifying 6 activities. The result shows a 92% average accuracy rate with the new segmentation data

instead of fixed window data. In the paper, she first did the segmentation for new windows and then applied
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filters with these windows. Zhang and Ramachandran [102] used Very Fast Decision Tree method for online

classification with the original fixed window transformed data. The result showed that the overall accuracy

85.9%. The advantage of this streaming method is that after inputting a user’s own data to the model from

lab data, the new model will be more personalized. Since not all the data and features are the same, it is hard

to compare which method is better than others. But the challenge for most of the methods is the difficulty in

discriminating between similar activities, especially for sitting and standing, walking upstairs and walking

downstairs.

3.4 Methods

In this chapter we compare performance of some of the most popular machine learning methods for the

smartphone based data with Python packages on a windows 10 laptop. including Support Vector Machine

with three different kernels, K-Nearest Neighbor with different number of neighbors, Artificial Neural Net-

work with 1 and 2 layers with different numbers of neurons, Linear Discriminant Analysis. Also, we com-

pare these methods with the dimension reduction through Principal Components Analysis. For Support

Vector Machine (SVM), Decision Tree and Random Forest methods, we used the grid search and 5-folds

cross-validation to find the best hyper-parameters, since these parameters in the model cannot be estimated

from the training data.

Linear Discriminant Analysis (LDA) is most commonly used as data classifier and dimensionality reduc-

tion technique in the pre-processing step for pattern-classification and machine learning applications. This

method maximizes the ratio of between-class variance to the within-class variance in any particular data set

thereby guaranteeing maximal separability [96]. We use this method because of the high accuracy rate of the

linear-SVM. The assumptions, such as the Gaussian distribution and the identical covariances with classes,

are not verified. Thus, the results are subjected to the data.

SVM is an algorithm that finds classification boundaries so that categories are divided by a clear gap

that is as wide as possible [25]. It can be defined as linear classifiers under the following the assumption

that the margin should be as large as possible [5]. With the labels, the algorithm will output an optimal

hyperplane which categorizes the data into different groups and the support vectors are the most useful

data points because they are the ones most likely to be incorrectly classified. The basic form of SVM is

a two-class classifier so we use the leave-one-out method, which considers the label y as 1 for the class

or -1 as others. There are several commonly used kernels, including linear kernel, Gaussian radial basis

function (rbf) kernel, Polynomial kernel, Gaussian kernel, etc., which could be applied to the data without
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prior knowledge. In this chapter, we applied the first 3 kernel functions. The reason of selecting these three

kernels is that these three kernel functions show three different class boundaries, linear, non-linear, and

curves. By the results from these kernels, we could then decide the boundaries. Before applying the SVM,

we usually standardize the data. The common parameters we need to define are regularization parameter

(C), Degree of the polynomial kernel function (degree), Kernel coefficient for rbf and polynomial kernel

(gamma). In the experiments, we set C from 0.001 to 10 by 10, degree from 2 to 5 by 1, and gamma from

0.001 to 1 by 10.

K-Nearest Neighbor (KNN) is a non-parametric method that assign the class to a point by taking the

majority of votes of its K neighbors [8]. KNN is based on the feature similarity, i.e., the more closely out-

of-sample features resemble the training set, the more likely they are to be classified to a certain group. A

characteristic of KNN is that it is sensitive to the local structure of the data. Euclidean Distance is used to

measure the distance between two sample points.

d(x1, x2) =

√√√√ n∑
i

(x1i − x2i)2

where d(x1, x2) is the distance between sample x1 and x2, n is the number of variables, and i is the ith

variable for the sample. We apply KNN here to see if there are any large distances between any two classes.

The number of neighbors starts from 5 to 20.

Decision Tree (DT) and Random Forest (RF) are other two non-linear methods. We try Decision Tree

here to see that if the greedy method can find a good cut-point for these continuous variables and select

the better variables to do the split. Random Forest (RF) is an ensemble learning method that operates by

constructing a large number of decision trees at training time and outputting the class that is the mode of the

classes of the individual trees [49]. Since Random Forest do the voting and regardless of the collinearity,

we also try this method. The most important parameter for these two are the branch split rules and the stop

criteria. We use the Gini index for the measure of split quality because of less computation, the minimum

number of samples for split is from 2 to 10 by 1, the maximum depth of the tree is from 3 to 10 by 1, and

the number of trees in the forest is from 20 to 100.

Artificial Neural Network (ANN) extracts linear combinations of the inputs as derived features, and then

model the target as a nonlinear function of these features and evolves to encompass a large class of models

and learning methods [33]. Each neuron has an associated weight vector, which is assigned on the basis of

its relative importance to the inputs. With the activation function, the neurons output the non-linear results.

The advantage of using this method is that ANN has a flexibility to capture the non-linearities in the data.

Moreover, it could extract different linear relations.
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Principal Component Analysis (PCA) is a dimensionality-reduction technique that is often used to trans-

form a high-dimensional dataset into a lower dimensional subspace. PCA finds the principal components of

the dataset by transforming the data into a new coordinate system. In the new subspace, the first axis cor-

responds to the first principal component, which is the component that explains the greatest amount of the

variance in the data. Considering the UCI data has 561 variables, it is very unlikely that all the variables are

independent. To overcome this problem, in this paper we also implemented PCA and analyzed the resulting

data. Considering the small number of the features (42) in the WISDM data, we did not apply PCA to this

data.

3.5 Experiments and Results

We apply these machine learning methods to 70% of the subjects to train our model with grid searching

for best parameters. In this case the validation data for parameter optimization is pulled from the training

data. The number of observations for each activity in training data is shown in Table 9. The UCI data

has balanced groups, while WISDM data has different training observations for each activity. This is an

unbalanced dataset, but here we will conduct the experiment same as if it was a balanced data. As we see

from the table, Upstairs, Downstairs, sitting and Standing have less observations in WISDM data than in

UCI data.

Table 9 Number of Observations in Training Data

Activities Walk Up Down Sit Stand Lay Jog

UCI 1226 1073 987 1293 1423 1413

WISDM 1529 447 375 190 170 1200

Since we used grid search for some of the parameters, Table 10 shows all the optimized parameters and

the time to converge for each method. Grid search with 5 folds are time consuming, for example, SVM with

polynomial kernel (Poly-SVM) and RBF (RBF-SVM) costed more than 6000 seconds, even for KNN run

for 1210 seconds. And we show the accuracy rate of the test data in Table 11 to compare the performances of

the models and make a rough conclusion of the relations between different activities. It shows that some of

the models with WISDM data perform better than those with UCI data, such as the SVM with RBF kernal

and the three ANNs, while others are opposite. From this table, the best classifier for these two datasets

are different. It shows that SVM with linear kernel and LDA have the best performance with dataset UCI

(96.2%). This means that the different activities exist linear classifiers based on the feature combination.
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Table 10 Optimized Parameters and Time to Convergence for UCI

Methods Parameter Settings Time (seconds)

Linear-SVM C=1 987

RBF-SVM C=10 , gamma=0.01 , degree =2 8562

Poly-SVM C=0.1, gamma= 0.01, degree =3 6528

KNN n=10 1210

LDA None ≤ 10

DT max depth= 8, min split= 2 572

RF # of trees = 100, max depth= 5, min split= 2 ≥ one day

One-layer-NN layers=1, unites =30, activation=’relu’ ≤ 10

One-layer-NN layers=1, unites =50, activation=’relu’ ≤ 10

Two-layer-NN layers=2, unites =(30,6), activation=’relu’ ≤ 10

This is much better than the result of 89.3% in [10], which also used SVM methods. The reason might be

because of the setting of hyper-parameters, which we got from grid search and cross validation. And The

ANNs have the best performance for dataset WISDM (upto 98.3%). This is also better than the result of

91.7% from [56], which used Multilayer Perceptron. This is because we checked the data structure and

features and found the feature named average sensor value of X-axis is a constant 0. Thus, we removed it

before the analysis. The result shows that better data pre-process might improve the model performance.

The KNN, LDA, DT and RF perform much better with the UCI data than with WISDM data. This might

have many reasons. Comparing these two datasets, there are two main differences. Firstly, the different

ways of collecting and transforming of raw sensor data. Secondly, the different body locations for the

sensors placed. The KNN and DT do not perform as good as others with both datasets. In other words, the

Euclidean distance used in KNN might not be suitable for this type of data, which means the variance within

each activity might vary. And finding the important features and splitting these might have difficulties for

DT. Moreover, this comparison also shows that the neural network does not always ”win”. It depends on

the data type or might be the proportion from the number of variables and the total sample size. Besides,

increasing the layers and the neurons does not improve the accuracy much in the neural network, which

also means that the dataset might have linear relationships among activities. It also implies that non-linear

methods could do better identification for WISDM data with a small amount of observations.

Table 12 and Table 13 show the prediction details from each method. These two tables show that most of

the methods can successfully identify Walking, Lying and Jogging with more than 95% in accuracy rates.
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Table 11 Methods Comparison with Average Accuracy (%)

Methods UCI WISDM

Linear-SVM 96.4 89.9

RBF-SVM 95.3 97.9

Poly-SVM (2)/(3) 93.7 90.8

KNN (10) 88.5 78.8

LDA 96.2 76.0

DT 86.0 73.1

RF 92.5 80.4

One-layer-NN (30) 94.6 97.3

One-layer-NN (50) 94.4 97.3

Two-layer-NN (30, 6) 95.2 98.3

They are also able to identify the Upstairs and Downstairs with a decent accuracy rate, which is around 90%

for UCI data. But it is a big challenge for WISDM, some of the accuracy rates are even below 50%. The

biggest challenge is to identify the sitting and standing for UCI, but walking upstairs and walking downstairs

for WISDM. These two activities have the similar pattern and very small differences with the raw sensor

data, such as the frequency. Thus, they are difficult to be classified correctly from each other. For example,

the result from Linear-SVM for the UCI data shows that, 59 out of 66 misclassified sitting are identified as

standing, and all of the misclassified standing are identified as sitting. The same thing to the LDA, 62 out of

63 misclassified sitting cases are identified as standing and all of the 23 misclassified standing are identified

as sitting.

Then, we use PCA to reduce the data dimensions for the UCI data. Since the WISDM only has 42 features,

PCA is not necessary. Figure 8 shows that the proportion of variance explained by each component is less

than 0.1% after the first 40 principal components. And Figure 9 shows that the cumulative proportion of

variance explained by the components are close to 1 (99.99978%) after the first 200 principal components.

Then we can have a conclusion that the first 200 principal components are sufficiently explained the data

information and we can reduce the data dimension from 561 to 200.
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Table 12 UCI Test Average Accuracy for Activities

Methods Walk Up Down Sit Stand Lay

Linear-SVM 0.99 0.97 0.97 0.87 0.97 1.0

RBF-SVM 0.97 0.97 0.92 0.90 0.96 1.0

Poly-SVM (2) 0.99 0.94 0.84 0.89 0.95 1.0

KNN (10) 0.98 0.88 0.73 0.81 0.93 0.94

LDA 0.99 0.98 0.96 0.88 0.96 1.0

DT 0.88 0.78 0.83 0.77 0.88 1.0

RF 0.97 0.90 0.84 0.88 0.94 1.0

One-layer-NN (30) 0.99 0.94 0.93 0.89 0.95 0.97

One-layer-NN (50) 0.99 0.95 0.92 0.87 0.96 0.96

Two-layer-NN (30, 6) 0.99 0.94 0.93 0.88 0.97 1.0

Table 13 WISDM Test Average Accuracy for Activities

Methods Walk Up Down Sit Stand Jog

Linear-SVM 1.0 0.54 0.69 0.84 0.97 1.0

RBF-SVM 0.99 0.99 0.99 0.91 0.79 1.0

Poly-SVM (3) 0.96 0.70 0.89 0.68 0.91 1.0

KNN (10) 0.94 0.36 0.14 0.87 0.82 0.98

LDA 0.66 0.33 0.3 1.0 0.8 0.97

DT 0.71 0.47 0.3 0.85 0.95 0.96

RF 0.76 0.55 0.0.47 0.98 0.84 0.97

One-layer-NN (30) 1.0 0.99 0.99 0.73 0.91 1.0

One-layer-NN (50) 1.0 1.0 0.99 0.75 0.93 1.0

Two-layer-NN (30, 6) 1.0 0.99 0.99 0.84 0.93 1.0
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Figure 8. Proportion of Variance

Figure 9. Cumulative Proportion of Variance
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Table 14 Comparison With PCA Methods

Methods # of Components Avg. accuracy (%) Methods # of Components Avg.accuracy (%)

Linear-SVM 50 91.49 LDA 100 93.69

100 94.43 150 95.16

150 96.06 200 95.96

200 96.46 250 96.36

250 96.06 300 96.53

RBF-SVM 100 96.43 KNN(10) 100 89.89

150 94.73 150 90.02

200 93.52 200 90.39

Poly-SVM(2) 100 92.59 KNN(20) 100 90.15

150 92.39 150 90.62

200 91.32 200 90.45

One-Layer- 100 94.55 Two-Layer- 100 95.45

NN(30) 150 95.02 NN(30,10) 150 95.10

200 95.78 200 96.14



Figure 10. Two Layers Method Flowchart

As we can see from Table 14, the PCA method successfully reduces the data dimension to less than half

of the original data dimensions without losing the features variance. Again, the linear classifiers have better

performance, since the highest accuracy rates are from Linear-SVM with 200 principal components and the

LDA with 250 and 300 principal components, with accuracy 96.06%, 96.36%, and 96.53%, respectively.

Additionally, Poly-SVM and KNN do not perform as well as others. From this, it is reasonable to think

that PCA reduces the data dimensions but does not change the data structure and the relationships among

categories. However, there is little improvement for the average accuracy, which still around 96%. In this

point of view, PCA reduces the dimensions effectively without loss in performance.

Table 12 and Table 13 also imply that most of the algorithms are good at identify dynamic activities but

have worse performance with static activities. To create an algorithm which has more flexibility to adapt

two different methods according to the type of activity, we propose a two layers method for UCI data, as

shown in Figure 10. By experiments, we selected the LDA as the first layer binary classifier. There are two

reasons. First, LDA gives a good result for identifying dynamic and static activities. It has a high degree of
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average test accuracy rate, close to 100%, for 1 out of 1609 static cases misclassified as dynamic. Secondly,

LDA has stable result. All the parameters are from training data, while linear-SVM have hyper-parameters.

We used Linear-SVM and Poly-SVM for dynamic and static classification, respectively. These selections

were based on the performance of the algorithm with the single group data. Table 15 shows that the average

test accuracy is improved a little by using different classifiers. The biggest challenge is Sitting and Standing

identification. The problem might imply that the transition of these two activities sensor data might not be

appropriate. It loses the power to extra characteristic for these two.

3.6 Conclusion

Comparing results from two different datasets, the best method for each datasets are different. It seems that

the linear methods prefer better than others for UCI, while the non-linear methods prefer better for WISDM.

It is also obvious that the methods perform better with the UCI data than these with WISDM data. The

reasons are not clear yet. But we might guess that the way of collecting and transforming the raw data. UCI

data had higher frequency 50Hz and first applied median and butterworth filters to reduce noise and used

FFT to transform the signal data, while WISDM lab collected in 20Hz and used the original signal data

with arffmagic program. More detail information is collected for UCI. This might affect the window fixed

transform data. Based on this result, we might have a conclusion that for human activities recognition with

smartphone sensors, the FFT with statistical transformation is better than arffmagic program and might be in

the lab experiment, noise reduction might be necessary. Besides, without resorting to complicated methods,

simple linear classification is sufficient for data analysis.
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Table 15 UCI Test Average Accuracy for Activities Two Layers Method

Methods Two Layers Method Linear-SVM

Activity Walk Up Down Sit Stand Lay Recall % Recall %

Walk 492 2 2 0 0 0 99 99

Up 20 451 0 0 0 0 96 97

Down 4 9 407 0 0 0 97 97

Sit 0 1 0 464 43 0 91 87

Stand 0 0 0 19 537 0 97 97

Lay 0 0 0 2 0 543 100 100

Precision% 95 97 100 96 93 100 96.6 96.4
1The number in the circle is the misclassified case in the first layer.
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Chapter 4

Adjusted Method for Human Activity Recognition

Note to Reader:

Portions of this chapter have been previously published in IEEE, 2019, pp 1-6, and have been reproduced

with permission from IEEE Publishing. © [2019] IEEE. Reprinted, with permission, from [Yanjia Zhang

and Kandethody M. Ramachandran, Human Activity Recognition with Streaming Smartphone Data, IEEE

GCAT, and Oct.2019]

4.1 Abstract

With the widely used smartphones, dynamic data coming from built in sensors, such as human activity

data, can be easily obtained. Many applications’ developments, such as applications in health care, fitness

monitoring, and elder monitoring, are based on this kind of dynamic data. Although there are many online

methods that have made a great progress in analyzing these kinds of data, it is still a big challenge to get

good results from a streaming data perspective. Currently, streaming data analysis methods are in its infancy.

In this chapter, we use an online method called Very Fast Decision Tree (VFDT) to mimic the real scenario,

since we do not have data collected in a streaming basis. There are two main improvements from the existing

models: 1) we train the model online and only use the examples data once for training instead of using them

more than once; 2) after building VFDT, the model can be adjusted to identify new activities by adding

only small amount of labeled observations. Our experiment on the same existing activities shows that the

proposed algorithm achieves an average accuracy of 85.9% for all subjects and single subject accuracy rates

are between 60.5% and 99.3%. Moreover, the average accuracy of learning new activity from a different

data is 84% and single subject accuracy rate goes close to 100%.

4.2 Introduction

With the development of technology, more and more wearable devices have become available and afford-

able and the apps with health trackers have become popular. These daily worn devices with applications
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present a convenient way to record physiological data from users and to provide a basic overview of health

status and summary of activities. For example, accelerometer, gyroscope, and magnetometers sensors in

the smartphones provide the 3-axis (x, y, z) data, which can be used to track motions, such as walking,

standing, and jumping, called Human Activity Recognition (HAR). Because of these advantages, daily ac-

tivity data is frequently used for health and fitness monitoring or recreational activities. However, most of

these devices are not suitable for the medical monitoring of high-risk patients [44]. Meanwhile, there are

several challenges and bottlenecks for these data from wearable devices to be more useful and reliable in

medical purposes [44]. First, an IoT platform with simple and secure connectivity is required, including

data collection, transmission, storage and observation in a medical station. Second, the power needs to be

easily managed and monitored long-term without significant power loss. Finally, the data quality should be

preserved. From the statistical perspective, these challenges are related to the collection, storage, and com-

pression of the original data, effective ways of selecting data features, and good algorithms using the least

information to build the precise models for prediction and classification. Based on these purposes and based

on the fact that a truly streaming data is not publicly available, we proposed pseudo streaming methods

of identifying human activities of smartphone-based data with high speed classification and efficient data

usage. We use the data from the UCI Machine Learning website [1] as the case study. We also use WISDM

lab data [56] to explore the adaptive power of this model.

4.2.1 Previous Works

The work of human activity recognition based on the sensors can be traced back to 1990s [32]. Sharma

et al.[80] applied neural networks (ANN) for a chest worn wireless sensor dataset and achieved 83.95%

accuracy. Kwapisz [55] performed the J48 decision tree and multi-layers perceptron’s method to the HAR

data from a smartphone with only one accelerometer. They point out that these two methods have higher

accuracy than other data mining methods. However, both lack the ability to efficiently identify similar ac-

tivities, for example, walking upstairs vs. downstairs and sitting vs. standing. He and Jin [47] combined

Principal Components Analysis (PCA) and Support Vector Machine (SVM) to classify four activities and

got 97.5% average accuracy. Sohn and Khan [81] also used PCA but they combined it with Linear Dis-

criminant Analysis (LDA) and Artificial Neural Net (ANN) to detect if activities are abnormal. The highest

accuracy rate they got is 78%. Wanmin Wu et al. [93] used K Nearest Neighbors (KNN) as the best clas-

sifier with iPod Touch data, but the results show that it fails to effectively classify similar activities as well.

Anguita et al.[10] used 561 transformed features to classify six different activities using a one vs.all SVM

and obtained as high as 96% accuracy. Fergani [31] used PCA based multi-classfier to get 96.9% average
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accuracy for daily activities. Zhang, Wu and Luo [100] point out that the combination of the Hidden Markov

Model and the Deep Neural Network (HMM-DNN) has a higher accuracy compared with Gaussian mix-

ture method, Random Forest, and their combination with HMM. The accuracy of HMM-DNN is 93.5%.

Guo et al. [42] performed a two layer and multi-strategy frame work for sensor smartphone data and the

result shows 95.71% average accuracy. Besides, Charissa Ann Ronao and Sung-Bae Cho [77] applied deep

learning neural networks (DNN) to both raw sensor data and FFT smartphone data. Their work shows an

overall 94.79% accuracy with raw sensor data and 95.75% with additional FFT information. Nakano and

Chakraborty [69] point out that the convolutional neural network (CNN) has better performance in identify-

ing dynamic activities than other methods. The average accuracy is 98% with classifying walking, walking

upstairs and walking downstairs. Andrey Ignatov [51] used CNN for the accelerometer data from smart-

phones. They obtain a 97.63% average accuracy with the statistical features. As we can see, that DNN

and CNN give higher average accuracy rates comparing to others, but they are conducted off-line. These

manners ignore the characteristic of data generation and cannot update with new activities. Another issue

for most of the methods is the difficulty in discriminating between similar activities, especially for sitting

and standing, walking upstairs and walking downstairs.

Some methods consider sensor-based data as time series data, but they are still unlikely to be updated with

the upcoming new data, which implies that they all assume the data is a random sample from a stationary

distribution [50]. In reality, we can only use the training dataset for creating the model. This dataset comes

from small sample subjects in a lab and stores on the local devices. However, when the application is

activated, there is only one single subject; this means the new pattern might not be recognized well. Further,

the system itself should have the ability to identify more activities if the user provides new labeled data. In

this case, we need a model which can quickly deal with incoming data, can keep the useful information from

the previous examples, and can be updated with these new labeled data. Because of these considerations,

the most appropriate way to build the HAR system might be online with a streaming data.

There are some studies that are conducted for online data analysis. In 2009, N. Gyorbiro, A. Fabian,

and G. Homanyi [43] proposed an on-line HAR mobile system. Wang, Liang, et al. [90] used a real-time

hierarchical model for recognizing complex activities with body sensor data and had an average accuracy

of 82.87%. Okeyo, George, et al. [71] applied a dynamic segmentation model using varied time windows.

This work shows an average accuracy above 83% for recognizing activities. Considering the necessity of

the sequential training in the real world for sensor data, Al Jeroudi, Yazan, et al. [4] used a sequential

extreme learning machine method (OSELM) and achieved an average accuracy of 82.05%. Shuang Na, et

al [68] used the Online Bayesian Kernel Segmentation method for classifying 6 activities. The result shows
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a 92% average accuracy rate. The details of these four papers are in Table 16. The first two papers use

video data and the advantage of this kind of data is obvious. With visualization, we might be able to classify

more complex activities and scenarios, such as making coffee, washing hands, and so on. But saving and

processing these streaming videos requires large memory storage and complex pre-process data steps. So,

smartphones with one or two accelerometer sensors are more suitable for recording daily activities. [4] and

[68] are two examples of this. They both use the same data from UCI. Unfortunately, [4] needs a large size

window segmentation to train the hidden layers. And [68] only uses the last data window to create a new

classifier but forgets all the previous information. Both [4] and [68] lack the ability to adapt the incoming

labeled data from single users and might violate the stationary assumption at the very beginning.

Table 16 Online Methods Summary

Paper Data Type Method Acc. (%)

[90] Sensory Data Emerging Pattern Based Algorithm 82.87

[71] Video Data Window Approach 83.0

[4] UCI Sequential Extreme & One layer network 82.05

[68] UCI Online Bayesian Kernel Segmentation 92

To address the above challenges and try to improve the existing methods, we propose an online tree

based method with pre-processed feature selection. Very Fast Decision Tree (VFDT) is a tree based online

classifier, which was first proposed by Pedro Domingos and Geoff Hulten in 2000 [29]. The purpose of

this algorithm is to deal with continuous data streams by building decision trees using constant memory and

time per example [29]. This method is used in many streaming fields, including fraud detection [65, 66],

and sensor networks [24, 35, 36]. It can also be applied for handling missing values [82] and implementing

in distributed environment [27]. These works provide the evidence that VFDT is a most prevalent learner in

streaming data classification problems. In our case, the main reasons for selecting VFDT are as follows: 1)

it has small memory space requirement, thus making it suitable for smartphones; 2) its use of subsampling

to build decision trees helps in detecting activities changing; 3) it adjusts the previous decision tree to the

new coming labeled data; 4) it avoids segmentation, which is another big challenge for streaming data

analysis. These advantages make VFDT to be a suitable online classifier for human activities system built

for smartphones data.
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4.2.2 Structure

In this chapter, VFDT is implemented to identify 6 human activities, including walking, waling upstairs,

walking downstairs, sitting, standing, and lying down. Our purpose is to build a decision tree-based learner

which can update and adjust the previous tree. The contributions of this paper include the following:

1. Selecting features: instead of using principal components analysis, which is used in most of the refer-

ences above, we use the decision trees to preprocess feature selection from the 561 transformed attributes.

2. Generating streaming data: instead of using all the training data, we use a streaming data generator to

release examples at constant times. Thus, we mimic the real data recording process.

3. Updating model: instead of keeping the final model from the lab data, VFDT is capable of implement-

ing new labeled data generated by users. Thus, the model initially built in the system can be considered as

the first stage of the training process. During usage, new activities, such as jogging, can be added, then the

system can identify the user’s personality.

The rest of the paper is organized as follows: Section 2 introduces the data process and structure; Section

3 introduces the proposed method include the feature selection and the VFDT; Section 4 gives the results of

the experiment and Section 5 concludes the paper.

4.3 Data Processing

In this paper, we used the smartphone data from UCI [1] and WISDM Lab [56]. For UCI data, there are

30 volunteers with an age range between 19 to 48 years old. They are randomly divided into training

and testing groups, 21 of them are in the training group and the rest 9 are in the testing group. All of

them perform 6 activities (walking, walking upstairs, walking downstairs, sitting, standing, and lying down)

wearing Samsung Galaxy S II on the waist. The smartphone collected the data in 3-axial linear acceleration

and angular velocity. Then the data provider modified the data using a median filter and 3rd order low pass

Butterworth filter with a corner frequency of 20Hz. Besides, Fast Fourier Transform (FFT) is also applied

to the signals. After all of this, we have 561 features from each window of the raw data. In order to mimic

the real time online situation, we then leased examples one by one during the training process and discard

old observations later to simulate a stream data for which the data points can be used only once, and model

is updated gradually. The training data has a total of 7352 examples. The detailed size of each activity in

Table 17, where W is Walking, WU is Walking Upstairs, WD is Walking Downstairs, ST is Sitting, SD

is Standing, and LD is Lying Down. The sizes of each activities are close in number, it is reasonable to

consider all the classes as balanced.
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Table 17 Size of Activities in UCI Training data

Activity W WU WD ST SD LD

Size 1226 1073 986 1286 1374 1407

We also used WISDM lab data to evaluate capability of our algorithm to recognize new activities without

going through extensive training. This data collected from 36 volunteers. They performed 6 activities

with an Android-based smartphone in their front pants leg pocket. Every volunteer was asked to walk, walk

upstairs, walk downstairs, sit, stand and jog for specific periods of time. Jogging is the new activity. Some of

them might not do all the 6 activities. Instead of recording 3 sets of 3-axis data, WISDM data only recorded

2 sets, which means that there are only 6 features in raw data. Besides, WISDM data were transformed

in a different way. It calculated some statistics, such as average, standard deviation and difference, instead

of using FFT. There are 44 features after transformation, much less than 561 features in UCI data. Since

there are several missing values in each feature, we replaced these missing values with 0. To test whether

our method can use less examples to identify classes or not, we randomly selected nine volunteers’ data as

training set. The number of each activity is in Table 18. Since there are two volunteers who did not perform

Jogging, we ignored these data in out testing. Thus, there are 25 cases.

Table 18 Size of Activities in WISDM Training data

Activity W WU WD ST SD JOG

Size 552 185 153 116 76 425

4.4 Proposed Streaming Methods

In this section, we will discuss the proposed method, including the features selection and VFDT algorithm.

The big difference here for selecting features from other methods in the literature is using Decision Tree for

extracting instead of using Principal Components Analysis (PCA), which is most used in the research, such

as [47, 81] and [31].

4.4.1 Features Selection

Consider all the 561 features for each observation, there is high dimensional complexity and high correlation

between these features. Then, we first selected the most important features. The normal approach is PCA,

which sets the eigenvalues of the covariance matrix as the weights for all of features, then uses the linear
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combinations of these eigenvalues to get the new low dimensional inputs. However, PCA is not a suitable

method in online HAR since the activity distribution is changing all the time and hence non-stationary.

Lansangan and Barrios said in their paper that PCA of non-stationary time series, the first component will

be a linear combination with similar weight for all inputs [57]. Besides, the covariance matrix only based

on the training data, it is hard to be updated in a streaming fashion. On the other hand, suppose we ignored

the non-stationary aspect and used PCA with 95% of variance explanation in the training and transformed

the testing data, result shows that the average accuracy is 76.1% using VFDT, which is lower than proposed

feature selection. Also, implementing PCA in algorithm needs more time to compute components than just

to use a subset of features. To overcome above mentioned limitations of PCA based methods, we used

Decision Tree (DT) to extract important features. When we built a univariate tree, the algorithm only used

the necessary variables and selected the most important ones first. This means that the closer to the root,

the more important the features are [6]. This method is suitable for non-stationary streaming data, and also

from our experiment, this method gives a good preprocess of the data that resulted in 36 features, which in

turn results in better classification accuracy. The process is shown in Figure 11.

Figure 11. Feature Selection and Streaming Data Creation
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4.4.2 Very Fast Decision Tree (VFDT)

Geoff,etc.[50] introduced a streaming classification method in 2001, namely Very Fast Decision Tree

(VFDT). They used the Hoeffding bound to decide the minimum observations needed for each new split

and grouped the tree based on the new branch. In other words, VFDT waits for new examples to arrive

instead of recruiting previous ones to split the internal nodes. The two main crucial aspects needed to build

this tree are deciding when to split a node and which feature is used to split. For the former one, it involves

the Hoeffding bound, which states that with probability (1 − δ), the difference between the true mean of

a real-valued random variable in range R and the estimated mean will be less than ε after n independent

examples, where:

ε =

√
R2ln(1/δ)

2n
. (4.1)

Equation 4.1 states that a small part of the sample will be enough to choose an optimal feature for splitting.

For the latter one, it needs a heuristic measure. The most popular measures are information gain (IG) which

measures the ’purity’ of each subset of a split [74], and Gini Index (GI) which estimates the probability

of misclassification under the split [62]. For any given potential split, VFDT checks if the difference of

heuristic measure of the top two attributes is greater than ε2 under a given δ, if so, the winning attribute will

be picked and tested. Thus, this algorithm can determine the smallest number n of examples needed with

a high probability. Moreover, it is easy to estimate learning time since it uses constant time per example.

The pseudo-code for VFDT after our tree-based feature selection is shown below. The novelty of the VFDT

used in this work lies in using the pre-training examples to build a DT first instead of building the Hoeffding

Tree from root. The whole process including feature selection is given in Figure 12.

The VFDT Algorithm

S : a streaming of example

X: a set of selected features

IG: Information Gain

δ: probibility of misclassification

τ :a tie threshold

npre: # of examples used in pre-training

nmin: # of examples for checking new split VFDT
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VFDT {S, X, IG, δ, τ , npre, nmin}

Let DT be a tree from the npre examples using 36 features Let nijk(l) be # of examples in leaf l for ith

feature jth value in class k

Updating:

Let X1 = X ∪{X∅} Let IG(X∅) be the most frequent predicted class in S each (x, y) in S Sort (x, y) into

leaf l using DT each xij in x such that Xi ∈ X1 Increment nijy(l) Label l with the majority class among

nijk(l)

(examples at l are not in the same class and nijy(l) mod nmin = 0) Compute IG(Xi) for each feature

using nijk(l) Select the highest two IG(Xi1) and IG(Xi2): 4IG = IG(Xi1) − IG(Xi2) Compute

ε =
√

R2 ln(1/δ)
2nijk(l)

(4IG > ε or 4IG ≤ ε < τ and Xi1 6= X∅) Add new split to l with Xi1 and have a new

leaf lm Let nijk(lm) = 0

Return VFDT

4.5 Results

We used the training observations to extract the features by Decision Tree. By selecting the best depth

among 2 to 10 and using the 10-folds cross validation to avoid the overfitting, we got the best tree with

an average validation accuracy of 87.36% from all the 7352 observations, with maximum depth at 7. The

number of features is reduced to be 36. Then we used these 36 features to create an online tree model.

After preparing the training data as the streaming data, we fixed the minimum number of checking if a new

splitting is needed, nmin = 20. As time goes by, the tree will be more and more deep until it runs out of the

lab-data or the threshold of the information gain. In our experiments, the tree will be paused after reading

7352 records. We call this as lab step, which prepares the model and system. The result of the model will be

built into the single device. Next, testing data from 9 new volunteers will be used. This step generates two

types of data: with labeled activities and without labels. We used the labeled records to continually update

the tree model to be more personal and used the unlabeled records to evaluate model performance. The

finally results we got from VFDT with an overall average accuracy for 9 subjects together is 85.9% (without

personality). While for single subject self, some of them have lower average accuracy, such as Subject 4

only has 60.5%, the main problem for recognizing the right activities is Walking Upstairs. It only has 8% of

the accuracy. The accuracy for Subject 7 with Walking Downstairs is even worse. Some of them performed

much better than the overall average, such as Subject 6, it achieves 99.4% of accuracy. The details are shown

in Table 19.
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Table 19 Accuracy from VFDT with 36 features

Subject W WU WD ST SD LD Average

Sub 1 1.0 1.0 1.0 0.45 0.91 1.0 0.903

Sub 2 0.97 1.0 1.0 0.62 0.93 1.0 0.915

Sub 3 1.0 0.96 1.0 0.36 0.65 1.0 0.826

Sub 4 0.69 0.08 1.0 0.60 0.24 1.0 0.605

Sub 5 0.78 0.88 1.0 0.39 0.94 1.0 0.849

Sub 6 0.96 1.0 1.0 1.0 1.0 1.0 0.994

Sub 7 0.96 1.0 0.00 0.48 1.0 1.0 0.761

Sub 8 0.29 1.0 0.87 0.37 0.66 1.0 0.707

Sub 9 1.0 0.8 0.89 1.0 0.97 1.0 0.948

Average1 0.92 0.87 0.77 0.65 0.91 1.0 0.859
1Average means the average acc. we got by testing all the 9 subjects together.

These results indicate that the activities are varied from person to person, and it is necessary to import

personal activity pattern at the beginning and update to the personal model from the general case. Take

four activities sequence plots for examples. In Figure 15, we can visualize that for Static activities, Sitting,

Standing, and Lying Down, the 3-axis of total acceleration gave enough information for identifying them.

But the Sitting and Standing do not have many differences for most of the volunteers, such as in Figure 14.

The rest of 3 activities are more complex as the changes between them are tiny, such as in Figure 14 and

Figure 16.

To show the ability of updating our model to new activities, we use another data set from WISDM Lab

[56]. Although these two data types are different, it can roughly show the power. This data has 36 volunteers

who performed a new activity Jogging instead of Lying Down. Moreover, the data transform method is

different, thus the data only has 44 features including the single axis. To keep the same number of attributes,

we selected the last 36 ones since the decision tree method shows that the most important attributes are the

last ones. By randomly selecting only 9 of all the volunteers as the training, we evaluated our model with

Jogging. The average accuracy of all the 25 test subjects for Jogging is 84%. The accuracy for one single

person can close to 100% and 16 out of 25 accuracy rates are higher than 90%. More details can be found in

Table 20. This proves that our model can learn new activities which are not present in the training dataset.

This is one of the big differences from all the other models so far.
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Table 20 Accuracy for Jogging with WISDM Data

Sub. Acc. Sub. Acc. Sub. Acc. Sub. Acc.

Sub 1 0.98 Sub 8 0.79 Sub 17 0.98 Sub 24 0.97

Sub 2 0.98 Sub 9 0.66 Sub 18 0.95 Sub 25 0.13

Sub 3 0.46 Sub 11 0.39 Sub 19 0.94 Sub 26 0.97

Sub 4 0.98 Sub 12 0.97 Sub 20 0.36 Sub 27 0.98

Sub 5 0.93 Sub 13 0.84 Sub 21 0.99

Sub 6 0.98 Sub 14 0.98 Sub 22 0.80

Sub 7 1.00 Sub 15 0.96 Sub 23 0.96 Average2 0.84
2Average means the average acc. we got by testing all the 25 subjects together.

4.6 Conclusion

To provide a human activity recognition system with automatic updating and adjusting, an online streaming

system is required. Most of the methods in the literature are online, while other online methods do not have

this ability. In this paper, we proposed and evaluated the VFDT to identify existing activities online and to

recognize new activities when new labeled data available.

The results show that the average accuracy is 85.9% for identifying 6 activities, and 4 out of 9 accuracy

rates for single person are above 90%. It can recognize Lying Down with close to 100% of accuracy. For a

new activity, VFDT gives an average of 84% accuracy rate and above 90% accuracy for 64% of the testing

people.

57



Figure 12. VFDT with DT Pre-training Diagram.
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Figure 13. Example Sequence for Subject 2

Figure 14. Example Sequence for Subject 4
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Figure 15. Example Sequence for Subject 6

Figure 16. Example Sequence for Subject 7
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Chapter 5

Personalized Adjusted Method for Human Activity Recognition

As mentioned in Chapter 2, most research focus on improving the results accuracy rate, including creating

classification models and transforming sensor data, reducing the process time, etc. Although, the final

overall accuracy rates are improved by the complex models and some of the activities could be identified

for near to 100%, there are still some activities are confused to other activities, such as walking upstairs and

downstairs, sitting and standing. Meanwhile, from our previous study, the data is different from person to

person. Thus few research start to pay attention to the personal adjustable HAR system, for example [14].

A personal HAR system means that this system could be adjusted as customer’s requirement, such as

transfer the classifier model from the general data to customer’s data model and add new frequently oc-

curred activities to the system. With this aim, we propose an HAR system which could be considered as

personalized adjusted HAR system. In this system, we show the performance of a combination method

with unsupervised and supervised learning. For the unsupervised method, we choose the k-means cluster

as it could gather the same activity as a cluster. For supervised method, we choose discriminant analysis.

According to [103], LDA gives well performance for identifying the activities for both UCI and WISDM

data, we first consider the discriminant analysis method as the classifier. This model is flexible to adjust

personal based activity patterns and add new activities. While the human activity patterns is different from

person to person, it is better to use the updating data to modify the parameters to improve the result and ad-

just the system with personal performance, for example adding some additional activities, instead of using

the built-in model from the lab training parameters. Besides, it is also beneficial to discover if the lab data

could be generalized to personal activity pattern. With this purpose, we create 4 different datasets from the

WISDM data.

5.1 Data

These two data sets are from WISDM lab. It has totally 36 subjects with smartphone sensors and each subject

performs 6 activities. Each sensor records the raw data in 20Hz with x, y, and z dimensions. The data we
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Figure 17. Data Sets

used here is transformed data based on a fixed 10 seconds window. In other words, each observation from the

transformed data is based on 200 raw records (10s x 20 records/s). The features contain 43 variables, include

Average (3), Standard Deviation (3), Average Absolute Difference (3), Average Resultant Acceleration (1),

Time Between Peaks (3), and Binned Distribution (30). The details of the variables are shown in the table

Table 7.

We randomly divide the data into training set and test set with 26 and 10 subjects from the WISDM1,

respectively. To create a personal activity recognition model, we then randomly divide each subject in the

test data into two groups: 70% for updating set and 30% for verification set for each activity. The data is

divided as Figure 17.

To compare the results from adaptive discriminant model with the results from the whole training data

with 70% of the personal data and the personal data only, three different datasets, Data 1, Data 2, and Data 3,

are used. Meanwhile, Data 4 is a new training set which excluding the Jogging activity from the old training

set and keeping the same for the updating and verification set. The details for these datasets are shown in

Table 21. For example, subject s is from test data, and we then divide this series data into 70% for updating

the personal model and 30% for test the model’s performance for each activities, respectively. Specially,

Data 4 has a new activity Jogging in the test set, which not included in the training set.

The purpose of setting such different kinds of dataset in the training, we try to discover the potential

relation between the model and the single person’s activity pattern. The training set in Data 1 includes the

updating set, means it includes customer’s activities information in the training, and the data in test set could

find the same person’s information. The training set in Data 2 only includes the updating set, means it only

has the personal data, and the test data is from the same person in training. Then, training in Data 3 includes

the training set, and uses the updating set to adjust the training model, then test the adjusted model. Data

4 is used for adding new activities. Jogging is not in the training set, but in the updating set, and then test
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Table 21 Training and Test Data Sets

Name Training Set Updating Set Test Set

Data 1 Training + Updating Set None Verification Set

Data 2 Updating Set None Verification Set

Data 3 Training Updating Set Verification Set

Data 4 Training without Jogging Updating Set for Jogging Verification Set

the model with all 6 activities. By comparing the results, we might know if the activity pattern could be

generalized from sample lab data.

5.2 Method

The personal activity recognition model includes two stages: one is the unsupervised machine learning

stage, which is used to group a set of objects with similar characteristic, which means they could possibly be

interpreted as the same activity. With this purpose, the best choice will be the cluster methods. Considering

the computational time and the useful of centroids, the k-means is a suitable method for the data. Then,

we could use the centroid set of each cluster comparing with the mean set of each activity to detect if new

activities are performed. Another stage is the supervised learning, Quadratic Discriminant Analysis (QDA)

is used for classification. Instead of assuming the data has equal covariances for classes to use linear classi-

fier, QDA is more adaptive to the different covariances with the quadratic discriminant functions. And from

boxplot of the correlation distribution for each activity in fig. 7, we could see that most likely, the covariance

matrix for each activity is different, especially for the walking upstairs and downstairs. To proof this, we use

two sample Kologorov-Smirnov (KS) test, which is sensitive to differences in both location and shape of the

empirical cumulative distribution functions, to test if the covariance matrix are significant by pair. The most

important reason for us to choose the KS test is that it is a non-parametric statistic, which means assump-

tions are not required. According to Figure 18, the distributions from Walking Upstairs and Downstairs are

different than others, Walking, Sitting, and Jogging might have a similar distribution. We apply the KS test

on the Walking vs. Walking Upstairs, Walking vs. Walking Downstairs, Walking vs. Jogging, and Sitting vs.

Standing. The Hypotheses are these two covariance matrices for two activities are the same. The test results

are shown in Table 22. As we expected that Walking Upstairs and Walking Downstairs are significantly

different from the Walking, while Jogging is statistically not significantly different from Walking based on

5% significance level. However, the p-value from Sitting vs. Standing is also less than 0.0001.
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Figure 18. Correlation Coefficient Distribution for Classes from

Table 22 Kologorov-Smirnov Test Results

Activities Results (p-value)

Walking vs. Walking Upstairs p-value < 0.0001

Walking vs. Walking Downstairs p-value < 0.0001

Walking vs. Jogging p-value = 0.513

Walking vs. Sitting p-value = 0.046

Sitting vs. Standing p-value < 0.0001
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Figure 19. Personalized Adjusted HAR Process

After we decide these methods, the two step process will be shown in following figure Figure 19.

Suppose that we have a set of N ×D dimensional samples, D is for number of features, x1, x2, · · · , xN

belonging to K different classes and nk represents the number of instances of training data in class k. By

minimizing the within cluster sum of squares, K-means method shows C clusters, C as the number of

clusters from the training result. Let nj represents the number of instances in cluster Cj . The distortions

objective function will be:

J =

∑C
j

∑nj

ij
||xij − cj ||2

C

The elbow point will be selected as the optimal C and the euclidean distances between centroids set and

the mean set µ from true classes are calculated and the criteria is made, e.g. the average of the distances

will be the θ. If the distances are larger than the threshold θ, then new activities will be considered. Suppose

data U is the set from clusters that have a larger θ from any µ.

δk(x) = −1

2
log|Σk| −

1

2
(x− µk)TΣ−1k (x− µk) + logπk,

here

Σk =
K∑
k=1

nk∑
i=1

(xi − µk)(xi − µk)T /(N −K),

πk = Nk/N,

and µk is the mean vector of the training data belonging to class k.

The decision boundary between class k1 and k2 can be described by

{x : δk1(x) = δk2(x)}
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Since discriminant function is based on the class means, updating classifiers can be modified by the

training class means (µk) and the added class means (µ(2)k ). Let new observations of the updating data

x′1, x
′
2, · · · , x′L set L is incremented. lk is the number of observations of added data belonging to class k.

The new class is possible to be incremented by the updating data, and the number of classes becomes K ′.

Thus the new mean vector for data belongs to K is

µ′k = (1− p)µk + pµ
(2)
k ,

here p is the weight for the added class mean vector. For new activity as (K + 1)th class,

µ′(K+1) = µ
(2)
(K+1),

and the new co-variance matrix can be written as

Σ′ =
K′∑
k=1

lk∑
i=1

(x′i − µ′k)(x′i − µ′k)T /(L−K ′)

Figure 20. Adjusting Illustration

Figure 20 illustrates the idea for personal adjusting. If the personal data centroid is away from the training

data centroid, the model will adjust the centroid from both and make the prediction more reliable. Moreover,
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Figure 21. The Elbow Method Using Distortions for Data 1

the model can be updated with new activities with the updating dataset by creating a new class. In this case,

we only need to save the center information in the system regardless the details from the training set.

5.3 Results

5.3.1 K-means Results

The experiments for Data 1 and Data 2 are subject-dependent, while experiments for Data 3 and Data 4

are subject-independent. The subject-dependent experiment includes the test subjects’ information in the

training, such as the Updating Set is included in Data 1 and Data 2. While subject-independent experiment

is ones without any information from the test subjects, such as Data 3 and Data 4. The optimal number

of clusters are different for each test subject. Figure 22 shows that the optimal number of clusters for

each subject. However, the clusters are not accurate comparing to the true activity classes. For example,

subject 2 only performed 2 activities, Walking and Jogging, the K-means gives 5 clusters. In this case, we

could get the conclusion that even for the same person, the same activity data might not center well. And

from Figure 21 and Figure 23 we see that the updating set has a small impact on the whole training data.

And without Jogging, the k-means cluster method gives 5 optimal clusters which is exactly true number of

activity classes.
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Figure 22. The Elbow Method Using Distortions for Data 2

Figure 23. The Elbow Method Using Distortions for Data 3
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Figure 24. The Elbow Method Using Distortions for Data 4

5.3.2 Discriminant Analysis Results

In the previous step, K-means method gives the optimal number of classes without a specific activity name.

Thus, in the step, we need to give the activity name to each cluster with major vote. The new class is

determined by ”maximum value” in discriminant functions from the training parameters. The accuracy

rates achieved by different datasets are listed in Table 23 and the error rates is shown in Figure 25. It is

obvious that without adaptive step, Data 1, which includes the whole training data and 70% of personal

data from the test subject, has lowest accuracy rate. This implies that the activity patterns are different from

person to person, and even with some personal data, the model could not identify the activities accurately.

This personal differences also could be found from Data 2, which only includes 70% of the same person’s

data from the test but has the lowest error rates. For example, the accuracy rates for Subject 2 is improved

from 61% to 97% with the personal data. The density centroids of activities from subject is different to

the general training data. Thus adjustment step is necessary. The accuracy rates from Data 3 are after

adjustment. The performances for Subject 2, 5, and 10 are as good as those from Data 2 or even better. Most

of the results lose 2% in accuracy rate. By adding a new activity to the updating data, the performance of

adjustment model for Data 4 is as good as for Data 3, and even has improvement for Subject 8.

For single activity precision rates, the big improvement from Data 1 to Data 2,3, and 4 is the performance

on Upstairs and Downstairs. It is a big challenge to identify these two activities according to Table 24. In
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Table 23 Average Accuracy Rates from Datasets

Activities1 Data 1 Data 2 Data 3 Data 4

Subject 1 1,2,3,6 0.78 0.95 0.93 0.93

Subject 2 1, 6 0.61 0.97 1.0 1.0

Subject 3 1,2,3,4,5,6 0.72 0.93 0.91 0.91

Subject 4 1,2,3,6 0.83 0.95 0.93 0.93

Subject 5 1,2,3,4,5,6 0.57 0.95 0.95 0.95

Subject 6 1,2,3,6 0.56 0.94 0.91 0.91

Subject 7 1,2,3,4,5,6 0.75 0.83 0.80 0.80

Subject 8 1,2,3,6 0.76 0.96 0.92 0.96

Subject 9 1,2,3,5 0.67 0.88 0.85 0.85

Subject 10 1,2,3,4,5,6 0.82 0.96 0.98 0.98

1 Activities column shows the activities performed by the subject, 1: walking, 2: Upstairs, 3: Downstairs, 4: Sitting, 5: Standing,

6: Jogging.

Figure 25. Error Rate for Datasets
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Table 24 Precision Rates for Each Activity from Data 1

Walking Upstairs Downstairs Sitting Standing Jogging

Subject 1 0.70 0 0 0.89

Subject 2 0.57 1.0

Subject 3 0.65 0.50 0.5 1.0 0.5 1.0

Subject 4 0.76 0 0.5 1.0

Subject 5 0.45 0 0 1.0 1.0 0.86

Subject 6 0.43 0 0 1.0

Subject 7 0.53 0 0 1.0 1.0 0.90

Subject 8 0.65 0 0 1.0

Subject 9 0.77 0.25 0 1.0

Subject 10 0.69 0 1.0 1.0 1.0 1.0

most subject cases, the precision rates are 0s. While, in other three Datasets,from Table 25, Table 26, and

Table 27, the precision rates are much better, some of them have a high degree of accuracy, which is close

to 100%.

Although the model with 70% personal data shows good performance for classification, the system with

this model is fixed, means it could not be adaptive to new activities or to new activity patterns. The adaptive

model solves this concern. The training set in Data 4 excludes the Jogging and the updating and verification

sets in Data 5 is from different experiment and adding Kicking. The precision rates in Table 27 and ?? show

that the model adjusts to the new activities very well. In most of the case, the model identifies the new

activity with almost 100% accuracy.

5.4 Discussion

We notice that some of the precision rates has a low value, for example Subject 7 in Data 2 and Data 4, the

precision rate for activities Sitting and Standing are 50% and 0, while in Data 1, they are close to 100%.

The most possible reason might be because of the sample size limitation. Table 28 shows the number in

the verification set, there is only 1 case for both activities (Sitting and Standing) in Subject 7, thus, they

either 100% correct or wrong. It also implies that there might be only 2 or 3 cases/windows are used for

updating, which means these activities might not being updated fully. Thus, the improvement for the model

will need to consider the way to use small sample size to update the classifier. Meanwhile, the model based
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Table 25 Precision Rates for Each Activity from Data 2

Walking Upstairs Downstairs Sitting Standing Jogging

Subject 1 1.0 1.0 0.71 1.0

Subject 2 1.0 0.95

Subject 3 1.0 0.75 1.0 1.0 0.5 1.0

Subject 4 1.0 1.0 0.67 1.0

Subject 5 1.0 0.88 0.88 1.0 1.0 1.0

Subject 6 1.0 0.89 0.83 1.0

Subject 7 0.75 1.0 0.75 0.50 0 0.90

Subject 8 0.91 1.0 1.0 1.0

Subject 9 1.0 0.75 0.57 1.0

Subject 10 1.0 0.75 1.0 1.0 1.0 1.0

Table 26 Precision Rates for Each Activity from Data 3

Walking Upstairs Downstairs Sitting Standing Jogging

Subject 1 1.0 1.0 0.62 1.0

Subject 2 1.0 1.0

Subject 3 1.0 0.67 0.83 1.0 1.0 1.0

Subject 4 1.0 1.0 0.57 1.0

Subject 5 1.0 0.88 0.88 1.0 1.0 1.0

Subject 6 1.0 0.80 0.80 1.0

Subject 7 0.69 0 0.6 1.0 0 0.95

Subject 8 0.87 0.80 1.0 1.0

Subject 9 1.0 0.57 0.5 1.0

Subject 10 1.0 0.86 1.0 1.0 1.0 1.0
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Table 27 Precision Rates for Each Activity from Data 4

Walking Upstairs Downstairs Sitting Standing Jogging

Subject 1 1.0 1.0 0.62 1.0

Subject 2 1.0 1.0

Subject 3 1.0 0.75 0.83 1.0 0.5 1.0

Subject 4 1.0 1.0 0.57 1.0

Subject 5 1.0 0.88 0.88 1.0 1.0 1.0

Subject 6 1.0 0.80 0.80 1.0

Subject 7 0.75 0.50 0.67 0.5 0 0.9

Subject 8 0.91 1.0 1.0 1.0

Subject 9 1.0 0.57 0.5 1.0

Subject 10 1.0 0.86 1.0 1.0 1.0 1.0

on the personal data from beginning give a better result for identifying the activities. This could imply that

if the HAR system could collect customer’s information at the beginning and create the classifier based on

these collected data, the performance might be improved dramatically. For this reason, we think that add an

interactive screen might be a good idea.
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Table 28 Verification Observations in Each Activity

Walking Upstairs Downstairs Sitting Standing Jogging Total

Subject 1 19 5 5 17 46

Subject 2 18 18 36

Subject 3 18 6 5 3 2 10 44

Subject 4 17 4 4 16 41

Subject 5 10 8 7 2 4 6 37

Subject 6 11 8 6 9 34

Subject 7 9 5 5 1 1 19 40

Subject 8 20 6 6 18 50

Subject 9 21 5 5 2 33

Subject 10 20 6 5 3 2 19 55
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Chapter 6

Conclusion and Future Work

In previous chapters, We present several machine learning classifications and two streaming based adjusted

activity recognition algorithms. All of these methods are used to apply on smartphone platform for human

activity identification. We introduce some algorithms in Chapter 3, including SVM with different kernel

functions, LDA, KNN, ANN, and a two layers LDA-SVM classifier. The basic machine learning algorithms

give the best options for us to create the two layers classifier. For example, we select the LDA as the first

layer classifier and select the Linear-SVM and Poly-SVM as the second layer classifier for dynamic and

static, respectively. The reason is that the LDA gives an overall accuracy rate of 96.2% for UCI data, which

is stable and one of the best output, the Linear-SVM gives 99%, 97%, and 97% for dynamic activities

(walking, walking upstairs, and walking downstairs), respectively, and the Poly-SVM gives a better results

for static activities (sitting, standing, and lying down). The two layers algorithm gives the highest overall

accuracy rate 96.6%, with a high degree of accuracy rate for the first layer.

Considering the nature of the HAR system on wearable devices, we then introduce VFDT to mimic the

streaming data incoming and adjust the model with these data. With the personal data updating, the VFDT

has personal accuracy rates from 60.5% to 99.6%. The reason might because of the limit new cases. The

results from Chapter 4 imply that the HAR system should be considered from person to person and the VFDT

could classify the specific customer’s activities for almost 100% certain. Because of these conclusion, we

then proposed a combination algorithm with unsupervised and supervised methods. The largest advantage

of this propose method is that it is possible to add new activities into the system, every customer could

have his/her own specific HAR system. When apply to the WISDM data, the personal accuracy rates are

from 80% to high degree, even with a new activity, which was not included in the first training process.

Meanwhile, it also shows that the updating process only requires small amount of the data, which is a

beneficial for us to apply this model to the real world. Also, these personalized model could adjust the

classifiers by time goes. It is very useful in practice. For example, after several years, the customer has

health issues, which might change his/her activity patterns, based on the built-in functions, the HAR system

could possibly identify these activities with high error. But with our adjusted system, these classifiers
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could gradually update to the new recognition setting, which was adjusted by the customer’s current activity

pattern. This could have a better performance.

The future work will mainly focus on the feature transformation, a personalized adjusted HAR system,

and the multiple sensor combination. In the previous chapters, we do not include any sensor data trans-

formation method. We apply all the methods to the transformed datasets, UCI and WISDM, which only

include the statistical features, such as means, standard deviations, correlations, etc. There are many other

method, such as time and energy domain. Besides, the window drift and flexible window size methods are

also interesting directions. The personalized HAR system is the future trend from our results, thus, have

a simple algorithm with low power and small space requirement will be the next step. Also, with the de-

velopment of the technology, it is also possible to build more sensors in smartphone and smartwatch, such

as heart rate recorder and environment detector. The multiple sensor combination will be the big issue for

creating model.
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