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Abstract

This dissertation proposes a novel method called state-dependent sensor measurement

models (SDSMMs). Such models dynamically predict the state-dependent bias and un-

certainty of sensor measurements, ultimately improving fundamental robot tasks such as

localization. In our first investigation, we introduced the state-dependent sensor measure-

ment model framework, described their properties, stated the input and output of these

models, and described how to train them. We also explained how to integrate such models

with an Extended Kalman Filter and a Particle Filter, two popular robot state estimation

algorithms. We validated the proposed framework through a series of localization tasks. The

results showed that our framework outperformed the baseline sensor measurement models.

Our second investigation explored how to learn accurate state-dependent sensor measure-

ment models with limited sensor data. This work is motivated by the difficulty of collecting

large numbers of sensor data for training. To alleviate the burden of collecting large datasets,

we leverage transfer learning to train models with artificially generated sensor data followed

by real sensor data. We used a series of bootstrap experiments to demonstrate that the

proposed transfer learning method produced sensor models that are as accurate as models

learned with significantly larger datasets. These results imply that we can quickly learn

accurate sensor models with limited data, which is broadly beneficial for robot systems such

as autonomous vehicles.

viii



Chapter 1: Introduction

In the context of real-world mobile robots, state estimation is the problem of estimating

the state of a robot [48]1. Typically, states such as the exact location of a robot and the

exact locations of obstacles in a robot’s environment are not directly observable. However,

such states can be inferred from sensor measurements [51]. Therefore, robots rely on sensors

to infer their states and the states of their environment2.

Although sensors play an integral role in estimating the state of a robot, their measure-

ments are generally imperfect because they contain bias and noise. For example, consider

a stationary, autonomous mobile robot that uses an onboard camera to measure its bear-

ing to nearby obstacles. Each time such a robot measures its bearing to an obstacle, the

robot may observe biased and noisy bearing measurements for several reasons. Observing

biased and noisy measurements, in turn, can translate into noisy estimates of the robot’s

state. Additionally, the noisy state estimates can cause hazardous situations. For instance,

the robot may incorrectly estimate that obstacles are not in its path and, as a result, may

collide with those obstacles. This example illustrates that robots need an estimate of sensor

measurement bias and noise so that they can determine how much they should trust a sensor

measurement.

However, merely knowing the average, sensor measurement bias and noise is not enough

because the bias and noise can vary depending on the states of a robot and its environment.

For example, a combination of environment lighting and a camera lens imperfection can

cause nearby, off-centered obstacles to appear further to the side than they actually are.

1A portion of this chapter was published in [58, 59, 60].
2An environment generally describes a set of features that we are interested in observing or tracking (for

example, the locations of landmarks).
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The environment lighting and lens imperfection, in turn, can produce bearing measurements

with high bias and high noise. However, when obstacles are centered and far away, the robot

may not experience the same issue as before; therefore, its measurements may have relatively

less bias and less noise. Thus, this example implies that merely knowing the average sensor

measurement bias and noise is not enough. Instead, a robot must predict the bias and noise

of each measurement, given the robot and environment states.

To address the issue of predicting state-dependent measurement bias and noise, this

dissertation introduces a novel method called state-dependent, sensor measurement models

(SDSMMs). This method learns to predict parameters for state-dependent measurement

distributions. Each state-dependent measurement distribution inherently describes the mea-

surement bias and noise of each sensor measurement at a given state. Thus, a robot can

use such distributions to compute quantities such as measurement bias and noise. We also

demonstrate how to develop SDSMMs when limited data is available.

1.1 Literature Review

This dissertation explores a few topics in robotics and machine learning. Therefore,

we use the following sections to review the literature that is related to our work. Section

1.1.1 discusses the robotics literature related to learning sensor measurement models and

quantifying measurement noise. In Section 1.1.2, we discuss using transfer learning to train

state-dependent sensor measurement models with small numbers of data.

1.1.1 Sensor Measurement Models

1.1.1.1 Overview

A sensor measurement model is an abstract representation that describes how a sensor

measurement is created from a real-world physical sensor and its raw observations. The

abstract representation is realized through an algorithm. This algorithm takes the raw

observations from the physical sensor and outputs a measurement to an agent such as a robot.

2



An example of a sensor measurement model is a camera-based, landmark distance-and-

bearing sensor model. Given an RGB camera image, this sensor model identifies recognizable

features that signify a possible landmark (for example, a QR-code placed on walls to identify

individual rooms). Then, using projective geometry, the sensor model estimates the distance

and bearing of the feature relative to the camera sensor. In this example, the physical sensor

is the camera. The raw observation is the RGB image, while the sensor measurement is

the distance-and-bearing of a feature in the real world. Finally, the sensor model computes

the relationship between the raw observation and the desired sensor measurement. As this

example suggests, the realization of a sensor model depends on the physical sensor, its raw

observations, and the output sensor measurement [51]. In this dissertation, we do not discuss

the plethora of sensor models since it is out of the scope of this work. However, we encourage

interested readers to review resources such as [51].

Aside from the desired output measurement (for example, the distance-and-bearing),

sensor models also specify a measure of measurement uncertainty (or noise). The sensor

measurement noise provides a way of quantifying the reliability of a sensor measurement.

Quantifying this reliability is important throughout various robotics topics, including state

estimation. The literature provides many methods for quantifying the sensor measurement

noise. We discuss those methods in the remainder of this subsection.

1.1.1.2 Learning and Adapting Fixed Measurement Noises

One early method for quantifying sensor measurement noise was to estimate or learn a

fixed measurement noise. For example, one could estimate the sensor measurement noise

by choosing a set of near-zero values and adapting them later. A second method can use

trial and error experiments to select a measurement noise covariance matrix that yielded

the smallest error. Abbeel et al. [1] proposed five methods that learn the process and

measurement noises for an Extended Kalman Filter using an iterative training algorithm.

At the beginning of the training phase, the authors provided initial estimates for both noises.

3



Then the algorithm iteratively increased or decreased the entries of each noise covariance until

the algorithm converged. A third method employed least-squares to estimate the covariance

from the residuals between the sensor measurements and the ground-truth measurements.

Since a fixed measurement noise can reduce filter performance or lead to filter divergence

[45], techniques were developed to adapt the measurement noise to improve filter perfor-

mance. The motivation behind this idea is that the fixed measurement noise is near the true

measurement noise. However, the noise needs to be adapted during runtime to cope with

deviations experienced during runtime. One technique used to adapt measurement noise was

fuzzy logic. For example, fuzzy logic was used to adapt the measurement noise covariance

matrix of a Kalman Filter online and, in turn, improve the accuracy of GPS and differential

GPS sensors using inertial navigation sensors [22, 57]. Chatterjee [7] also presented a fuzzy

logic-based system that adapts the measurement noise covariance matrix of an EKF online.

However, unlike [22] and [57], this fuzzy logic system was used to solve an EKF-based SLAM

problem. This system uses statistical information from the EKF innovation and outputs a

scale factor for each diagonal value in the measurement noise covariance matrix. Wei [55]

proposed another fuzzy logic system in the context of EKF localization. Like [7], the output

of the fuzzy logic system was based on information from the innovation. However, Wei [55]

used the average ratio between the actual and theoretical measurement covariance matrices,

while Chatterjee [7] used the difference between the two matrices. Furthermore, the fuzzy

logic system in [55] outputted a single scale factor for the measurement noise covariance

matrix.

Other techniques used prediction spaces or neural networks to adapt the measurement

noise covariance matrix as well. For example, Peretroukhin et al. [36] used a prediction

space to predict a scalar weight that scaled the measurement covariance matrix based on the

quality of visual and inertial features. In addition to a fuzzy logic system, Wei [55] presented

a neural network-based method that adapted the measurement noise covariance matrix using

a single scale factor. This work also used statistics computed from the innovation as input
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to the neural network. Finally, Brossard et al. [5] used a convolutional neural network to

adapt the diagonal values of the measurement noise using IMU measurements.

Our proposed method is more expressive than the above methods, where we predict

measurement noise directly instead of learning or adapting static measurement noise.

1.1.1.3 Predicting Measurement Noises Directly

Another method for quantifying sensor measurement noise is to learn to predict the noise

directly. This method differs from the work mentioned in Section 1.1.1.2. Here, the idea is to

predict the novel measurement noises directly and dynamically for each input. Vega-Brown

et al. [54] proposed a covariance estimation algorithm called CELLO that used hand-crafted

features to predict the measurement noise covariance of a sensor. Similar to [54], Hu and

Kantor [16] presented a covariance prediction algorithm that used hand-crafted predictors.

However, [16] used positive definite matrix decomposition to decompose the noise matrix into

diagonal and lower triangular matrices. Then Hu and Kantor employed scalar regression to

compute the individual elements of both matrices, which eased the difficulty of computing

a positive definite matrix. Petrovski et al. [42] learned a regression curve that predicted

scalars for the diagonal elements of a measurement noise covariance matrix. Peretroukhin

et al. [39] expanded their work in [36] with generalized kernels to dynamically estimate the

measurement noise using visual and inertial cues for a visual odometry system. Liu et al. [28]

proposed a method called DICE (Deep Inference for Covariance Estimation), which predicted

measurement noise covariance matrices using a convolutional neural network (CNN). Unlike

[54], [16], and [42], Liu et al. [28] focused on predicting the measurement noise for raw, high

dimensional inputs (such as RGB images), while the other methods used low-dimensional

hand-crafted features. Choi et al. [8] employed a sample-free method to predict aleatoric

and epistemic uncertainties in the form of diagonal covariance matrices.

Like these methods, our method uses hand-crafted predictors and is extendable to high-

dimensional data (such as camera images) since it utilizes neural networks. However, unlike
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these methods, our method predicts measurement distributions with full noise covariance

matrices. We also assume that sensor measurements contain bias and, therefore, model the

measurement bias too.

1.1.1.4 Learning Measurement Distributions

As a step beyond directly predicting measurement noise covariance matrices, the litera-

ture proposes methods that predict measurement distributions. For example, Ko and Fox

used non-parametric Gaussian process (GP) regression to estimate Gaussian parameters for

a measurement model as well as a measurement Jacobian matrix for different filters [21].

Meanwhile, Tallavajhula et al. [49] employed a non-parametric distribution regression to

estimate non-parametric distribution to model sensors. Our method can predict complex

distributions like [49]. However, we restrict our method to predicting Gaussian parame-

ters similar to [21] for now. Unlike [21, 49], we do not maintain training data to predict

distributions online, potentially producing a model with a smaller parameter footprint.

Other works utilized neural networks to dynamically predict full measurement distribu-

tions, which is similar to our work. Peretroukhin et al. [37, 38] employed a Bayesian CNN

with dropout layers (which are retained during runtime) to predict the 3D direction of the

sun and its associated Gaussian uncertainty. Gilitschenski et al. [13] proposed a deep learn-

ing method that predicts orientations and their uncertainties using a Bingham distribution.

Peretroukhin et al. [40] used a multi-headed structure named HydraNet to predict an SO(3)

orientation distribution for a visual odometry system. Our method does not rely on dropout

layers to predict a measurement distribution and is not restricted to estimating orientation

alone. Although our method currently predicts aleatoric uncertainty, we are interested in

employing work such as [8] to predict epistemic uncertainty or multi-modal distributions in

future work.
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1.1.1.5 Learning the Parameters for State Estimators

A final set of work realizes state estimators using neural networks. Since a measurement

model is a component of a state estimator, these state estimators inherently learn a sensor

measurement model as well. Examples of this idea are BackProp KF and Differentiable

Particle Filters. BackProp KF [15] is a trainable Kalman Filter that jointly learns a system

model and a measurement model, both of which include variable noise covariance matri-

ces. Like [15], Differentiable Particle Filters [17] also jointly learns a system model and a

measurement model for a Particle Filter.

Since such methods learn measurement and system models jointly, these methods might

require retraining with novel measurements and odometry data if one or more sensors are

replaced. Also, these methods might be fixed to a specific system (for example, a particular

robot and its sensors). However, our method is only tied to a specific sensor and does not

require novel odometry data to learn new measurement models.

1.1.2 Learning Sensor Measurement Models with Limited Data

Learning sensor measurement models requires sizeable training datasets, especially when

the underlying mechanism is a deep learning model. However, gathering sizeable training

datasets can be difficult due to resources and the number of tasks, both of which can be

expensive or time-consuming. To overcome the difficulty of learning with limited data, we

leverage deep transfer learning.

Deep transfer learning is a machine learning technique that enables a model to learn a

novel task by training on a separate yet related task [56, 34]. This technique is popular in

areas such as computer vision and natural language processing (for example, see [56, 34]).

The motivation behind deep transfer learning is that training a model on a diverse dataset

will allow the model to a set of generic feature extractors [14]; this model is referred to as a

pre-trained model. The generic feature extractors can be reused to solve target tasks using

another set of training data [14].
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Formally, transfer learning is defined as the process of improving the performance of

a learner (model) g(·) on a target domain DT with its corresponding target task TT by

leveraging a source domain DS and its corresponding source task TS [56]. A domain is

composed of a feature space C and a marginal probability distribution P(Λ), where Λ =

{λ1, ... ,λI} ∈ C. In the context of this dissertation, λi denotes an input combined state, C

is the space of all possible feature vectors for the model, I is the number of feature vectors

in the sample of states Λ. For a domain D, a task T is composed of a label space and a

model g(·) [56]. We train the model g(·) using pairs of a feature vector and label. In the

context of this dissertation, we say that the label space is Z if we want the model to predict

an expected measurement and noise. Therefore, the model g(·) is trained using the feature

vector and label pairs {λi , zi}, where λi ∈ C and zi ∈ Z. If we desire the model to predict

measurement bias and noise, we say that the label space is E . As a result, we train the

model g(·) using the feature vector and label pairs {λi , ξi}, where ξi ∈ E . For a given λi ,

zi is a corresponding observed sensor measurement, while ξi is a corresponding observed

measurement error.

Transfer learning is beneficial when we have a limited number of data available to learn

a target task [56]. Particularly, we can use the parameters from the pre-trained model to

initialize the parameters of a novel model that will be used for a target task [14]. Weiss et

al. [56] lists three different categories of transfer learning. Each case mostly depends on if

the domains are different (whether or not the tasks are the same) or the tasks are different

(whether or not the domains are the same). This dissertation assumes the source and target

domains are the same, while the source and target tasks are somewhat related. Particularly,

the source and target label spaces are the same. However, the source and target models

are different because the amount of bias and noise may differ between the source and target

label spaces.

In this dissertation, we use deep transfer learning to learn state-dependent sensor mea-

surement models with limited data. We chose deep transfer learning since it has been success-
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fully applied to deep learning applications with limited data [56, 34] and deep learning-based,

sensor measurement models (for examples, see [37, 38, 28]). In addition, transfer learning was

applied to sensor modeling or localization in non-deep learning settings as well (for examples,

see [27, 29, 52]). We generate a large dataset of artificial sensor measurements for our source

domain using a physical model of the sensor of interest (for example, a distance-and-bearing

sensor). Unlike real sensor measurements, we specify the amount of bias and noise in the

artificial measurements. By extension, our source task is to train an SDSMM with artificial

measurements to predict their measurement biases and noises. Our target domain and task

are the data from a real sensor and fine-tuning the SDSMM to predict the measurement bias

and noise for the real sensor. To our knowledge, we are the first to employ transfer learning

for learning sensor measurement bias and noise using data generated from a physical model

of a sensor and data from a real sensor.

1.2 Dissertation Contributions

This dissertation contributes the following to the robotics community:

1. We propose a state-dependent sensor measurement models framework, which predicts

multivariate measurement distributions for each given state.

2. We present a method that trains SDSMMs with limited real data in cases where we

can only collect a small number of data feasibly.

3. We explore how to regularize SDSMMs using the noise from ground truth sensors.

4. We discuss methods for integrating SDSMMs with the Extended Kalman Filter, the

Particle Filter, and the Extended Kalman Particle Filter.

5. We derive back-propagation equations for a multi-modal, multivariate mixture density

network.
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Chapter 2: Learning State-Dependent Sensor Measurement Models

2.1 Introduction

Before we introduce state-dependent sensor measurement models, we state the assump-

tions of the work and common notations3. In this dissertation, we consider a robot with

state xt ∈ Rr that is equipped with a sensor. The sensor captures raw measurements of the

environment. Then software processes the raw measurement to produce a low-dimensional

measurement zt ∈ Rs , where s ≤ r . An example of this scenario is a robot that uses an

RGB camera to estimate the range and bearing of landmarks in the immediate area. We

assume the sensor or a computer atop the robot runs the software that processes the raw

measurements. The robot uses the measurement and a measurement model of the sensor to

infer the state of the robot x̄t . Due to environmental factors and random phenomena, each

low-dimensional measurement zt contains bias and noise. Furthermore, the bias and noise

of each measurement vary as a function of a robot and environment state. For instance,

states such as ambient lighting, robot motion, and camera lens distortions can impact the

amount of bias and noise in camera-based measurements. Let λt denote a multi-dimensional

vector called a combined state. This vector contains a set of robot and environment states

that correlate with the measurement bias δt ∈ Rs and noise σt ∈ Rs for a specific sensor.

Examples of states can include the amount of ambient light, the perceived motion of the

robot, or the positions of landmarks in robot-relative coordinates. We refer to such bias and

noise as state-dependent bias and noise. If a measurement model is inaccurate, the model

will poorly predict these biases and noises. The inaccurate predictions will also cause funda-

mental robot tasks such as localization and mapping to fail, reducing the safety of the robot,

3A portion of this chapter was published in [58].
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humans, other objects, and other beings in the surrounding environment. Therefore, we aim

to learn accurate models that predict state-dependent measurement biases and noises given

a set of robot and environment states.

2.2 State-Dependent Sensor Measurement Models

2.2.1 Overview

Generally speaking, a state-dependent, sensor measurement model (SDSMM) learns how

a robot and environment state affects the state-dependent bias and noise in a sensor mea-

surement. Formally, we define an SDSMM as a trainable model, g(λi ; w), that predicts

parameters Θi for a conditional measurement probability distribution p(zi | Θi). The input

to an SDSMM is a combined state λi , which was described in Section 2.1. If one chooses the

features of a combined state appropriately, the SDSMM can generalize to unseen environ-

ments.

The output of the model is a set of parameters Θi for a conditional measurement prob-

ability distribution. Since input states and output parameters may have different repre-

sentations, an SDSMM also maps from the state space to the measurement space. In this

dissertation, we restrict the parameters to a multivariate mean µ and full covariance matrix

Σ for a Gaussian distribution. We chose a Gaussian distribution because it is a typical

distribution used for measurement models. Furthermore, we can use these parameters in

state estimators such as an Extended Kalman Filter. The multivariate mean and full covari-

ance matrix are a function of a combined state. In the context of SDSMMs, the Gaussian

mean represents either a measurement bias or an expected measurement, the latter of which

incorporates measurement bias. The choice between both representations depends on the

choice of the input and target variables. The full covariance matrix represents heteroscedas-

tic measurement noise [19]. Since the output parameters describe a conditional probability

distribution, we can use the distribution for multiple purposes. Some examples include sam-

pling expected measurements and computing the probability of a measurement z occurring.
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Figure 2.1: How to develop a state-dependent sensor measurement model in three stages.
State-dependent sensor measurement models (SDSMMs) are trained offline and deployed
online via a three-step process. First, we collect data (sensor measurements and
ground-truth states) from an environment (top). Second, we train the SDSMM with the
collected data (middle). Finally, a robot uses the SDSMM (with the original sensor) to
dynamically predict a measurement distribution for each observed landmark in a novel
environment (bottom).
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SDSMMs have other properties as well. First, filters can incorporate SDSMMs with

minimal effort; we show examples in Chapter 4. Second, an SDSMM and a specific sensor

form a pair; therefore, the model is deployed on whichever platform the sensor resides. Third,

after training an SDSMM, we can use the model to identify combined states that correlate

with high measurement bias, high measurement noise, or both. Finally, one can use SDSMMs

to develop competency-aware robots that predict if they can safely navigate an environment

or manipulate an object.

2.2.2 Learning State-Dependent Sensor Measurement Models

To learn a state-dependent sensor measurement model, we train the model on a set of

sensor measurements and their corresponding combined states. Let Λ = [λ1,λ2, ... ,λI ] de-

note a set of I combined states. Let Z = [z1, z2, ... , zI ] denote the set of sensor measurements

where zi was observed at state λi and 1 ≤ i ≤ I . Let D = [(z,λ)1, (z,λ)2, ... , (z,λ)I ] denote

a set of measurement and state pairs where the members are independently and identically

distributed. Finally, let g(λ; w) denote a state-dependent, sensor measurement model with

trainable parameters w and input λ. An SDSMM learns to predict Θ, parameters for a

conditional measurement probability distribution p(z | Θ), through learning a set of model

parameters w that maximizes the likelihood of observing the data D. Written formally, we

train our model through maximizing the likelihood function:

L(D, w) =
I∏

i=1

(
p(zi | Θi)

)
, (2.1)

Θi = g(λi ; wi), (2.2)

where L(D; w) is the likelihood function, Θi is the parameters for the conditional mea-

surement probability distribution p(zi | Θi), and g(λi ; wi) is the state-dependent sensor

measurement model that we are training. In practice, one usually minimizes the negative
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log-likelihood to improve numerical stability:

E(D, w) = −
I∑

i=1

ln
(
p(zi | Θi)

)
. (2.3)

Since an SDSMM learns directly from sensor measurements and their corresponding

states, the model parameters w also learn how the input state correlates with measurement

bias and noise. As a result, the trained model learns to predict state-dependent measure-

ment bias and noise. In addition to measurement noise, we are also interested in learning

measurement bias because a priori, human-derived measurement models typically do not

capture how states and partial sensor calibrations affect measurement bias. As a result,

these unmodelled correlations may cause a state estimator (such as a Kalman Filter) to

overestimate or underestimate measurement updates when correcting the predicted state of

a robot.

2.3 Mixture Density Networks

2.3.1 Overview

A mixture density network (MDN) [4] is a trainable model that consists of a feed-forward

deep neural network followed by a mixture model [32] (Figure 2.2). Examples of deep neural

networks used include multi-layer perceptions [8, 58], convolutional [13], or recurrent neural

networks [61]. The last layer of the neural network uses linear units (that is, no activation

function) and outputs the vector y. The mixture model serves as the output layer of an

MDN, takes y as input, and then outputs a set of parameters that completely describe

how the target data was generated [4]. As a result, the mixture model allows an MDN

to represent arbitrary probability distributions of the desired quantity conditioned upon an

input. Mathematically, such probability distributions are defined by a linear combination of
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Figure 2.2: The overall architecture of a mixture density network. This neural network can
output parameters Θ = {α,µ,σ} for an arbitrary probability distribution p(z | Θ)
conditioned upon some input λ [4].
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kernel functions

p(z | Θ) =
m∑

k=1

αk(λ)φk(z|λ), (2.4)

where m is the number of kernel functions in the model, αk(λ) ∈ R is the mixing coefficient

of the k-th component, and φk(z|λ) is the k-th kernel function. Following [4], we use a

Gaussian probability density function as our kernel. However, we used two versions of a

Gaussian PDF. The first version comes from [4] and is defined as:

φk(z|λ) =
1

(2π)s/2
[
σk(λ)

]s exp

−
∣∣∣∣∣∣z− µk(λ)

∣∣∣∣∣∣2
2
[
σk(λ)

]2
 (2.5)

where s is the number of dimensions in the vector z, and σk(λ) ∈ R and µk(λ) ∈ Rs represent

the conditional standard deviation and multivariate mean of the k-th Gaussian PDF. Here,

αk(λ), µk(λ), and σk(λ) are the parameters for a Gaussian Mixture Model (GMM) with a

common variance. Each GMM parameter is derived from the vector y. In [4], [σk(λ)]2 is

referred to as a common variance and, unlike µk(λ), the common variance is restricted to

one dimension.

Our second version implements a full covariance matrix to increase the expressiveness of

the MDN. The kernel function, φk(z|λ), is defined as:

φk(z|λ) =
1

(2π)s/2 ·
∣∣∣Σk(λ)

∣∣∣1/2 exp

{(
z− µk(λ)

)>
·
[

Σk(λ)
]−1
·
(
z− µk(λ)

)}
(2.6)

where Σk(λ) ∈ Rs×s represents the conditional multivariate full covariance of the k-th Gaus-

sian PDF. In this version, αk(λ), µk(λ), and Σk(λ) are the parameters for a GMM with a

full covariance matrix and are also derived from the vector y.

Since the MDN conditional parameters completely describe a probability distribution, we

can compute a collection of statistics about the distribution using the values in the parameter

vector. Bishop [4] provides several statistics that an MDN can calculate.
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2.3.2 Computing the Parameters of a Mixture Density Network

We now describe how to compute the output parameters of an MDN. First, we describe

how to compute the k-th mixture coefficient and Gaussian mean. Then we explain how to

compute the Gaussian common variance and the Gaussian full covariance. For the remainder

of this dissertation, we use the abbreviated symbols αk , µk , σk , and Σk to represent the k-th

mixture coefficient, Gaussian mean, Gaussian common variance, and Gaussian full covariance

matrix, respectively. Let yj denote the j-th entry of the network output vector y.

Each mixture coefficient αk represents a probability of a component. Therefore, all the

coefficients must sum to unity:
∑m

k=1 αk = 1. We use the softmax function to compute each

mixture coefficient αk :

αk =
exp(yαk )∑m
c=1 exp(yαc )

, (2.7)

where yαk corresponds to the appropriate entry in the output vector y. To compute the

multivariate Gaussian means, we use the output of the deep neural network with no activation

function:

µk =



µk,1

µk,2

...

µk,s


=



yµk,1

yµk,2
...

yµk,s


. (2.8)

Each Gaussian common variance represents a positive scale in (2.5). Therefore, we apply

the exponential function to the appropriate network output entries:

σk = exp (yσk ). (2.9)

Finally, the multivariate Gaussian full covariance matrix must be a positive definite matrix in

(2.6). As a result, our network would need to predict m Rs×s positive definite matrices. We

want to eliminate this constraint such that we can use Stochastic Gradient Descent-based

methods to optimize our neural network. Therefore, following Liu et al. [28], our neural
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network predicts a decomposition of the covariance matrices using the LDL decomposition.

The decomposition of each covariance matrix is defined as:

Σk = L(yL
k)D(yD

k )L(yL
k)>, (2.10)

where yL
k ∈ R(s2−s)/2 and yD

k ∈ Rs are entries of the vector y. L(yL
k) is a predefined function

that arranges the entries in yL
k into a lower unitriangular matrix:

L(yL
k) =



1 0 0 ... 0

yL
k,1 1 0 ... 0

yL
k,2 yL

k,3 1 ... 0

...
...

...
. . .

...

yL
k,((s2−s)/2)−2 yL

k,((s2−s)/2)−1 yL
k,(s2−s)/2 ... 1


. (2.11)

D(yD
k ) is another predefined function that arranges the entries in yD

k into a diagonal matrix:

D(yD
k ) =



exp (yD
k,1) 0 0 ... 0

0 exp (yD
k,2) 0 ... 0

0 0 exp (yD
k,3) ... 0

...
...

...
. . .

...

0 0 0 ... exp (yD
k,s)


. (2.12)

We use the exponential function exp(·) to ensure the diagonal entries are positive, guaran-

teeing that the decomposition exists and is unique.

2.4 Implementing State-Dependent Sensor Measurement Models

Any method implementing an SDSMM must be able to:

1. Map from an input state space to a measurement space,

2. Model how an input state can affect measurement bias and noise, and
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3. Output a conditional measurement probability distribution given an input state.

In this dissertation, we use MDNs to implement SDSMMs for two reasons. First, neural

networks are regarded as universal function approximators [9]. As a result, a neural network

can learn a state-to-measurement space mapping and how states correlate with measure-

ment bias and noise, fulfilling requirements #1 and #2. Second, MDNs also predict a set of

parameters that can completely describe a probability distribution conditioned upon some

input, which fulfills requirement #3. In the context of SDSMMs, the input to an MDN

is a combined state λ. Once given a combined state, the MDN outputs a set of parame-

ters that describes a conditional measurement probability distribution. For example, if the

output parameters describe a Gaussian distribution, the Gaussian mean µ and covariance

Σ (or common variance σ2) represent the state-dependent expected measurement (which

inherently models measurement bias) and measurement noise, respectively. However, sup-

pose the output parameters describe a mixture of Gaussian distributions. In that case, the

mixture coefficients α, Gaussian means µ, and Gaussian covariances Σ are used to form a

more complex multi-modal distribution, which inherently describes the measurement bias

and noise.

An MDN learns to predict parameters for measurement probability distributions through

training on sensor measurements that were observed at corresponding states. Let D =

{(zi ,λi)}Ii=1 denote a sensor measurement zi that was observed at a combined state λi . To

train an MDN, we first combine the negative log-likelihood function (2.3) and the MDN

equation (2.4) to form a loss function for our model:

E(D, w) =
I∑

i=1

(
− ln

{
p(zi | Θi)

})
=

I∑
i=1

(
− ln

{
m∑

k=1

αk(λi)φk(zi |λi)

})
. (2.13)

Then we use a Stochastic Gradient Descent-based method to optimize the neural network

parameters w such that they minimize the negative log-likelihood (2.13) of observing the
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Table 2.1: Time complexities required to compute all parameters for a distribution.

MDN Formulation Parameter Time Complexity

Both
α O

(
m
)

µ O
(

m
)

Common Variance Only σ O
(

m
)

Full Covariance Only

Σ O
(
m · s2.4

)
L(·) O

(
m
)

D(·) O
(

m
)

data D. We note that the loss function (2.13) works for both Gaussian functions (2.5) and

(2.6). One only needs to use the appropriate Gaussian function for φk(zi |λi).

To optimize the network parameters, we also need to compute the derivatives of the error

E with respect to the parameters w in the neural network. We derived a set of equations

that compute such derivatives in Appendix B.

2.5 Analyzing the Complexity of Mixture Density Networks

Many robotics applications require distributions with multi-dimensional covariance ma-

trices. For example, we may require 2D, 3D, or 6D covariance matrices to represent the

measurement uncertainty for range-and-bearing or LiDAR sensors. However, employing full

covariance matrices instead of 1D variances increases the time complexity during inference4

and the dimension of the network output vector y. Therefore, we discuss how the dimension

of y and the time complexity for inference increase as we increase the number of compo-

nents and the distribution dimension for Gaussian distributions with full covariance matrices.

We also provide a similar discussion for Gaussian distributions with common variances for

comparison.

4The time complexity for multi-dimensional covariance matrices also increases during back-propagation.
However, inference during the runtime tends to be more time-sensitive.

20



2.5.1 Dimension Growth of the Neural Network Output Vector

The dimension of the network output vector y for an MDN with a full covariance matrix

or a common variance depends on the number of components m and the dimension size s of

the distribution. An MDN that employs the full covariance (as described in (2.6)) requires a

network output vector y with (1+ s(s+3)
2

)×m dimensions. We can observe that the dimension

of y exhibits a linear growth as m increases. However, the dimension of y exhibits a quadratic

growth as s increases. The quadratic growth is caused by the number of values needed to

compute the full covariance matrix.

By comparison, an MDN that uses a common variance (as described in (2.5)) requires a

network output vector y with (s + 2)×m dimensions [4]. Like with a full covariance matrix,

the dimension of y grows linearly. However, unlike a full covariance matrix, the dimension

of y also grows linearly as s increases.

Due to linear growths, as both s and m grow, an MDN with common variances requires

less memory compared to an MDN with full covariance matrices. However, the MDN may

become less expressive when we employ common variances, especially as s increases.

2.5.2 Time Complexity for Computing the Output Parameters

Table 2.1 shows the time complexities required to compute all parameters for an entire

distribution. For an MDN with common variances or full covariance matrices, the equations

for the mixture coefficients and multivariate Gaussian means remain the same. We calculate

all mixture coefficients {αk}mk=1 using a sequence of m exponential operations, one summa-

tion, and m division operations (shown in (2.7)), which can be performed in O
(
m
)
. To

compute a µk , we extract a constant number of values from predefined elements within the

output vector y and compute the mean in constant time; see (2.8).

To compute a common variance, we extract the appropriate entry from the output vector

y and apply the exponential function, all of which can be done in constant time. Therefore,

we can compute all m common variances in O
(
m
)
.
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Calculating a full covariance matrix requires relatively more time due to multiple matrix-

matrix multiplications. We can compute the lower unitriangular and diagonal matrices

(using (2.11) and (2.12), respectively) in constant time since the arrangement of the entries

is fixed. To calculate each covariance matrix Σ, we require O
(
s2.4

)
to perform matrix-

matrix multiplication; see (2.10). Therefore, the time complexity for calculating all m Σ is

O
(
m · s2.4

)
.

An MDN with common variances also requires less time to compute its GMM parameters

than with full covariance matrices. However, as mentioned in Section 2.5.1, an MDN with

common variances may be less expressive. Furthermore, technologies such as FPGAs or small

systems with integrated graphics processing units can reduce the compute time of MDNs

with full covariance matrices, making such models more feasible for real-time applications.

2.6 Simulated Experiment

2.6.1 Dataset

We used a simulated environment with known measurement biases and noises to validate

the approach described in this chapter. A simulated environment allowed us to directly spec-

ify the true measurement biases and noises for any given state λ, which is often impractical

in the real world. For our simulated dataset, we designed a simulated distance-and-bearing

sensor whose measurement biases and noises correlate with the position of a landmark. The

measurements came from a single Gaussian distribution. Specifically, let

zi ∼ N ( z∗i + δi , Qi ), (2.14)

where zi = [ρi ,φi ]
> represents a range-and-bearing measurement in polar coordinates, while

λi = [λx ,i ,λy ,i ]
> represents the true Cartesian position of an observed landmark. Both zi and

λi are defined in the sensor’s coordinate frame. All units of length (ranges and positions)

are in meters, while the angles (bearings) are in radians. z∗i represents an a priori, range-
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and-bearing measurement

z∗i =

ρ∗i
φ∗i

 =


√
λ2x ,i + λ2y ,i

atan2(λy ,i ,λx ,i)

 . (2.15)

Each a priori measurement is unbiased and noise-free. δi denotes a true, state-dependent

nonlinear bias observed at a given combined state:

δi =

δρ,i
δφ,i

 =

e0.06ρ∗i − 0.065(ρ∗i − 3)− 1

π
180

(0.0055(180
π
|φ∗i |)2)

 (2.16)

that outputs a state-dependent bias δi = [δρ,i , δφ,i ]
>. The true range bias δρ,i and true bear-

ing bias δφ,i are affected by the true distance ρ∗i and bearing φ∗i of a landmark, respectively.

Finally, Qi represents a true, state-dependent nonlinear measurement covariance noise and

is also a function of a combined state λi :

Qi =

 σ2
ρ,i σρ,i · σφ,i

σφ,i · σρ,i σ2
φ,i

 =

σρ,i 0

0 σφ,i

×
 1 0.1

0.1 1

×
σρ,i 0

0 σφ,i

 , (2.17)

where σρ,i and σφ,i are the true range and bearing noises, respectively. We compute the

range and bearing standard deviations as

σρ,i = 0.001063 + 0.0007278ρ∗i + 0.0035

∣∣∣∣ φ∗i
0.5236

∣∣∣∣ · ρ1.5 + 0.0008(ρ∗i )2, (2.18)

σφ,i = 1.5− ln (3ρ∗i + 0.5) +

(
0.8 + 0.4

∣∣∣∣ φ∗i
0.5236

∣∣∣∣) (ρ∗i )
2
3 , (2.19)

where both noises are affected by the true range and bearing measurements. The equa-

tions for the true bias and noise were randomly created. However, we purposely included

polynomial, exponential, and logarithmic functions to create a complex model.
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To create our simulated dataset, we first sampled 25,000 states using a uniform distri-

bution. Then we computed a true range-and-bearing measurement z∗i for each combined

state λi using (2.15). Afterward, for each z∗i , we computed a true measurement bias and

covariance noise using (2.16) and (2.17), respectively. We created a biased, noisy measure-

ment using (2.14). Finally, we created the training dataset D = {(zi ,λi)}Ii=1 by combining

the measurements zi with their corresponding states λi .

2.6.2 Experimental Setup

The MDN was a multilayer perceptron with five layers. The first four layers had 35

units per layer and used the ReLU activation function, while the last layer had five units

and outputted the vector γ. The vector was used to compute a state-dependent expected

measurement µ and measurement noise Σ (see (2.8) and (2.10), respectively). PyTorch 1.6.0

[35] was used to implement our MDN. We trained the MDN using the negative log-likelihood

loss function (2.13) and Adam optimizer [20, 43].

This MDN was trained for 50 epochs with a learning rate of 5× 10−3 and an L2 regular-

ization of 5× 10−4. We also multiplied the learning rate by 0.1 whenever the loss plateaued.

We used cross-validation to determine the learning rate, number of epochs, learning schedule,

and amount of L2 regularization.

2.6.3 Simulated Dataset Results and Discussion

We analyzed the simulated experiments to determine how well our proposed method

predicts measurement distributions accurately. First, we used Kullback-Leibler (KL) diver-

gence [24, 23] to measure the difference between the MDN predicted distributions and the

true distributions created in Section 2.6.1. Figure 2.3 illustrates the predicted distributions

become more accurate as training progressed.

The we visually compared ten random MDN predictions (µi , Σi) against their correspond-

ing true distributions N (z∗i + δ∗i , Q∗i ). Figure 2.4 illustrates that the predicted distributions
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Figure 2.3: KL Divergence for the simulated distance-and-bearing sensor model. During
training, the Kullback-Leibler (KL) divergence between the MDN predicted distributions
and the simulated true distributions decreased as the epoch increased. As the predicted
distributions get closer to the true distribution, the KL divergence score goes closer
towards zero.
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Figure 2.4: True and predicted measurement covariance matrices for the simulated
distance-and-bearing sensor model. As the true state-dependent, measurement
distributions N (z∗i + δ∗i , Q∗i ) (green dots and solid ellipses) varies, the mixture density
network accurately predicted corresponding distributions (µi , Σi) (red dots and dotted
ellipses). We graphed the covariances at three (3) standard deviations.
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overlap the true distributions, implying the MDN learned to predict the expected measure-

ment (which includes measurement bias) and noise accurately.

2.7 Real-World Experiment I: Distance-and-Bearing Sensor Model

2.7.1 Dataset

We used the University of Toronto’s Institute for Aerospace Studies (UTIAS) multi-robot

cooperative localization and mapping (MR.CLAM) dataset [25] to compare the performance

of our proposed method with an a priori measurement model. The MR.CLAM dataset

was collected during nine separate experiments in a static 15m x 8m indoor, open-space

environment. Each experiment had five iRobot Creates and 15 static landmarks, and the

landmarks were randomly placed throughout each experiment. All five robots arbitrarily and

simultaneously moved throughout a course. The duration of each experiment ranged from

15 minutes to 70 minutes. The robots controlled their movements using velocity commands,

which were issued at a rate of 67 Hz. Each robot used its own onboard, monocular vision

system to 1) identify each landmark via barcode identifiers (the horizontal striped patterns)

and 2) measure the range and bearing of each landmark. In addition, a motion capture

system, which was composed of ten Vicon cameras, tracked the global position of each

landmark and the global pose of each robot during each experiment.

The MR.CLAM dataset contains timestamped logs that were recorded by the motion

capture system and the five iRobot Create robots. The motion capture system recorded

timestamped logs of the global poses of each robot and the global position of each landmark

during each experiment. In addition, each robot recorded timestamped logs of its odometry

commands and measurements. Each odometry command is composed of a linear velocity

and an angular velocity. Each robot measurement comprises a range, a bearing, and a

signature. The signature is a numeric identifier that specifies which landmark or robot

was observed. Although robots observed both landmarks and other robots, we only used

landmark-observed measurements for our purposes. Here, each landmark barcode, the black
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horizontal lines along the upper half of the landmark cylinders, encodes the signature of a

landmark, which is used for data association.

The motion capture system and each robot recorded their logs independently of each

other. Therefore, the logs of each robot and the motion capture have different timestamps.

2.7.2 Experimental Setup

2.7.2.1 Training Datasets

We divided the nine MR.CLAM experiments (courses) into a training set, a validation

set, and a testing set. We randomly selected courses 2, 3, 8, and 9 for training, courses 5

and 6 for validation, and courses 1, 4, and 7 for testing. During training, validation, and

testing, only measurements and ground-truth states for a particular robot were used to train,

validate, and test its measurement models.

The combined state λ, the input to each MDN, was defined as

λi =

λx ,i
λy ,i

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


−1 mx

my

−
x
y

, (2.20)

where λi represents the spatial relationship between a robot and an observed landmark. From

initial investigations, we found that this combined state representation helped the MDNs

learn a range-and-bearing SDSMM for each robot’s camera sensor. This representation

is advantageous because the learned measurement models are not limited to any specific

MR.CLAM experiment setup.

In (2.20), xi = [xi , yi , θi ]
> denotes the true global robot pose and mx ,y = [mx ,my ]>

denotes the ground-truth global position of an observed landmark. The robot pose and

landmark position are defined in a global coordinate frame. The ground-truth robot poses

and landmark positions came from the logs of the motion capture system.
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The target of the SDSMMs was the range-and-bearing measurements zi , which were

gathered by each robot’s camera.

2.7.2.2 State-Dependent Sensor Measurement Model

We trained five MDNs using the MR.CLAM dataset (one MDN per robot). Each MDN

predicted parameters for a multivariate range-and-bearing Gaussian distribution with a full

covariance matrix. Let g(λ; w) denote an MDN that predicts parameters Θ = [ µ, Σ ]

for a range-and-bearing measurement probability distribution. We used (2.8) and (2.10) to

compute the parameters µ and Σ, respectively. Each robot has its own MDN because each

robot had a different measurement bias and noise.

All MDNs had the same architecture. The architecture was a multi-layer perceptron

(MLP) and was composed of five layers. Each of the first four layers had 35 units and used

a ReLU activation function [33]. In the fifth layer, the number of units was five (5): two (2)

units correspond to the mean, and three (3) units correspond to the full covariance matrix.

During training, we used the Adam optimizer with a learning rate of 10−3, but the

rest of the optimizer parameters remained at their recommended values [20, 43]. We used

the negative log-likelihood loss (2.13) to train each network for 30 epochs. The networks

were regularized using an L2 norm with a weight of 10−3. We decreased the learning rate

by a factor of 0.2 whenever the loss plateaued for more than five epochs. We used cross-

validation to choose the network architecture, learning rate, number of epochs, amount

of regularization, and learning rate decay. PyTorch 1.6.0 [35] was used to implement our

MDNs. All MDNs were trained using Intel® AI DevCloud, which has a cluster of Intel Xeon

processors.
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2.7.2.3 Baseline

We used a traditional range-and-bearing sensor measurement model to compare with our

SDSMM. We defined the a priori measurement model as

zi = h(xi , m) + σ, (2.21)

where h(xi , m) is the measurement function and σ is the measurement noise. The measure-

ment function was defined as

zi =

ρi
φi

 =

 √(xi −mx)2 + (yi −my )2

atan2(yi −my , xi −mx)− θi

 , (2.22)

where xi = [xi , yi , θi ]
> is the global robot pose and m = [mx ,my ]> is the global position of

the observed landmark at the moment the sensor measurement zi was observed.

The measurement noise σ was fixed, which is the typical for traditional measurement

models. We assumed the measurement noise came from a zero-mean Gaussian distribution:

σ ∼ N (0, Q). Q denotes the covariance of the measurement noise and was computed

as Q = Cov(∆Z) for each robot. Here, ∆Z is the difference between the observed sen-

sor measurements and the outputs of the measurement function (2.22). We obtained the

measurement function outputs by computing h(xi , m) for each timestamp i .

2.7.3 Results and Discussion

In the results below, we used log-likelihood and measurement error to evaluate the learn-

ing experiments. Each measurement error was the difference between a predicted measure-

ment and observed sensor measurement. The predicted measurements came from either an

a priori measurement model or an SDSMM. The observed sensor measurements came from

the dataset described in Section 2.7.2.1.
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Table 2.2: Test set log-likelihood means for a priori models and SDSMMs. The best mean
is emphasized for each robot.

A Priori SDSMM

R1 3.07 4.81

R2 2.70 5.44

R3 2.30 5.33

R4 1.83 5.31

R5 3.33 5.27

Table 2.3: Test set distance error mean and standard deviation for the a priori models and
SDSMMs. The best mean and standard deviation is emphasized for each robot. The values
below are in centimeters.

A Priori SDSMM

R1 0.5± 10.5 −0.5± 3.1

R2 −0.2± 14.4 −0.2± 2.7

R3 −4.5± 13.5 −0.3± 2.6

R4 −1.3± 15.3 −0.2± 2.7

R5 −3.8± 14.4 −0.7± 3.0

Table 2.4: Test set bearing error mean and standard deviation for the a priori models and
SDSMMs. The best mean and standard deviation is emphasized for each robot. The values
below are in degrees.

A Priori SDSMM

R1 −0.1± 1.4 −0.2± 1.3

R2 0.1± 0.8 0.5± 0.7

R3 −0.5± 0.7 0.2± 0.7

R4 −0.7± 0.9 −0.2± 1.0

R5 −0.2± 0.7 ∗ 0.2± 0.7 ∗
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Figure 2.5: Test set distance errors for robots 1 and 3 using the apriori models and
SDSMMs. The distance measurements had variable amounts of bias for all courses. Since
an SDSMM can model bias, SDSMM had less distance prediction error than its a priori
counterpart. The top and bottom graphs represent the a priori models with the lowest and
highest error means and standard deviations, respectively.
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Figure 2.6: Test set bearing errors for robots 2 and 4 using the apriori models and
SDSMMs. Since the bearing measurements had a minimal amount of bias, both models
achieved similar prediction errors. The top and bottom graphs represent the a priori
models with the lowest and highest error means and standard deviations, respectively.
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Generally, the training results showed that the SDSMMs predicted distribution parame-

ters that fit the data better than a priori models. The mean log-likelihoods for all SDSMMs

were greater than their a priori counterpart (Table 2.2). SDSMMs had as much or, in most

cases, less mean distance error than a priori models. The standard deviation of the distance

errors were also one magnitude lower than the a priori models (Table 2.3 and Figure 2.5).

Therefore, the SDSMM distance error distributions were centered near zero. However, the

a priori distance error distributions resembled skewed distributions with modes relatively

further away from zero. Unlike distance, the prediction errors of both models for bearing

measurements were similar (Table 2.4 and Fig. 2.6). Both models had similar performance

because the bias in bearing measurements was small.

Specifically, the training results showed that RDO models predicted distributions that

fit the data better than baseline models. The mean log-likelihoods for all RDO models were

greater than their a priori counterpart (Table 2.2). RDO models had as much or, in most

cases, less mean distance bias than a priori models. The standard deviation of the distance

biases were also one magnitude lower than the a priori models (Table 2.3 and Figure 2.5).

Unlike distance, the prediction errors of both models for bearing measurements were similar

(Table 2.4 and Figure 2.6).

2.8 Real-World Experiment II: Pole Detection Sensor Model

This section presents a state-dependent sensor measurement model that learned the mea-

surement error for a LiDAR-based pole detection sensor model. Specifically, we used the

LiDAR-based pole extractor and mapping module proposed in Schaefer et. al [47, 46] as our

baseline. We refer to the baseline as LPD (LiDAR-based Pole Detector). In our experiments,

we combined the LPD and our SDSMM. This combination is referred to as LPD+SDSMM.

The SDSMM dynamically compensates for the state-dependent bias and noise of LPD. We

also evaluated LPD and our proposed LPD+SDSMM using the University of Michigan’s
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North Campus Long-Term Vision and LiDAR Dataset [6] to determine how our proposed

method performs across various times of day, changes in scenery, and weather conditions.

2.8.1 Dataset

We used the University of Michigan’s North Campus Long-Term Vision and LiDAR

Dataset [6] to compare the performance of our proposed method with a LiDAR-based sensor

model. The dataset was collected at the University of Michigan over the course of 27 ses-

sions. All sessions were collected within 15 months, were gathered bi-weekly, and spanned

across all four seasons, various times of day (morning through the evening), different weather

conditions, and dynamic environments. In total, the dataset contains 34.9 hours of data cov-

ering 147.4 kilometers of robot trajectory. During each session, a human manually drove a

Segway robot indoors and outdoors, collecting data using a suite of sensors. The sensors were

a Ladybug3 omnidirectional camera, a Velodyne HDL-32E 3D LiDAR, two Hokuyo planar

LiDARs, and an inertial measurement unit (IMU), a single-axis fiber optic gyro (FOG), a

consumer-grade global positioning system (GPS), and a real-time kinematic (RTK) GPS.

The authors also generated ground-truth robot poses for all 27 sessions using simultaneous

localization and mapping (SLAM).

2.8.2 Experimental Setup

2.8.2.1 Baseline

The method proposed in Schaefer et. al [47] is composed of a LiDAR-based pole extractor,

a mapping module, and a localization module. The input to the pole extractor is a set of

registered 3D LiDAR scans, while the output is the position, width, and score of a pole. The

set of registered 3D LiDAR scans is a collection of scans over a short distance; the distance

used for the NCLT dataset was 1.5 meters. A pole position is represented by a 2D Cartesian

point.
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The pole extractor performs three sequential steps to produce its output. The extractor

first builds a 3D occupancy map of the scanned space. Next, the extractor applies a pole

feature detector for every voxel in the occupancy map to find potential poles. Finally, the

extractor regresses the pole map to a collection of pole positions, widths, and scores.

The mapping module uses the pole extractor to build a global map using all the scans

in a dataset. Since building a map for a large space may be memory intensive, the authors

build smaller maps over short trajectories. The smaller maps are then aggregated into one

global feature-based map. In some instances, the adjacent small maps overlap, causing a pole

landmark to appear multiple times. In such cases, the authors compute a weighted position

and width of a pole. The weights correspond to the pole scores, which are outputted by the

pole extractor.

2.8.2.2 Training Datasets

We performed three experiments using the 27 sessions from the NCLT Dataset [6]. The

experiments were called “clear days”, “1Day”, and “9Days.” The purpose of each experiment

was to measure how well this LiDAR-based SDSMM generalizes to the other sessions, all

of which had varying weather and sky conditions, times of day, and (indoor or outdoor)

trajectories. For the “clear days” experiment, we selected sessions 2012-02-02, 2012-02-04,

2012-02-05, 2012-03-17 for training and sessions 2012-03-25 and 2012-11-17 for testing. These

six (6) sessions represented days where there was no snow or foliage, the skies were clear,

and the data was collected during the morning, mid-day, and afternoon.

Together, the 1Day and 9Days experiments represented scenarios in which we used se-

quential, non-consecutive days to collect data to train a model. For 1Day, we selected session

2012-01-08 for training, which is the first session in the dataset. For the 9Days experiment,

we fine-tuned the 1Day model using sessions 2012-01-15 through 2012-03-17 for training.

The testing set for both experiments was session 2012-03-25. These training sessions had
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various weather conditions (visible or no snow), time of day, vegetation (visible or no foliage),

and sky conditions.

The training and testing sets were comprised of combined states and pole position mea-

surement errors. We modified the pole extractor and mapping module from Schaefer et

al. [47] to generate the combined states and measurement errors for training and testing.

Here, we defined the combined state as the observed parameters for a pole in a local map:

λi = {λx ,λy ,λa,λs}i . The pole position measurement error was defined as the difference

between pole positions in the global and local maps: ξi = λG
i ,[x ,y ] − λi ,[x ,y ]. Since the poles

do not have identifiers, we followed Schaefer et al. [47] in using a KD-tree algorithm [30] to

associate observed poles (in local maps) with poles in the global map. We also ensured that

the pole positions λi ,[x ,y ] and λG
i ,[x ,y ] were in the same coordinate frame during training.

2.8.2.3 State-Dependent Sensor Measurement Model

We trained one MDN using the data created in Section 2.8.2.2. The MDN predicted

parameters for a bi-variate Gaussian distribution with a full covariance matrix. Let g(λ; w)

denote the MDN that predicts parameters Θ = [ µ, Σ ]. Unlike the distance-and-bearing

model presented in Section 2.7, µ and Σ represent pole position bias and noise, respectively.

The architecture for this MDN was an MLP that was composed of five layers. Each of

the first four layers had 50 units and used the ReLU activation function [33]. Like the range-

and-bearing model, the fifth layer had five (5) output units: two (2) units corresponded to

the mean, and three (3) units corresponded to the full covariance matrix.

We trained the MDNs using the Adam optimizer [20, 43] with a learning rate of 10−3. We

used the negative log-likelihood loss (2.3) to train each MDN. The “clear days”, “1Day”, and

“9Days” models trained for 28, 27, and 15 epochs, respectively. The MDNs were regularized

using an L2 norm with a weight of 5× 10−3. Cross-validation was used to choose the network

architecture, learning rate, number of epochs, and amount of regularization. We implemented
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Table 2.5: Test set log-likelihood summary for the LPD and SDSMM-augmented LPD
models. The summary states the 1st quantile, median, 3rd quantile, and maximum value
for each model. These values were derived from the test set. The best log-likelihoods are
emphasized.

LPD LPD-CD LPD-1Day LPD-9Days

1st Quantile −2.28 −0.37 −0.35 −0.24

Median −2.26 0.32 0.73 0.43

3rd Quantile −2.25 1.01 1.33 1.04

Table 2.6: Landmark position error mean and standard deviation (in centimeters) for the
LPD and SDSMM-augmented LPD models. These values were derived from the test set.

LPD LPD-CD LPD-1Day LPD-9Days

X Error Mean ± Stdv. −0.2± 20.0 −1.3± 20.1 1.5± 20.9 0.7± 21.0

Y Error Mean ± Stdv. 0.3± 20.1 0.5± 23.9 −0.7± 24.0 −1.1± 24.5

the MDN using PyTorch [35] and trained the network using an AMD Ryzen 7 3800X 8-Core

Processor.

2.8.3 Results and Discussion

Like in Section 2.7.3, we used the log-likelihood and expected measurement error to com-

pare the performance of the LPD and SDSMM-augmented LPD models. Since we do not

know the true measurement error, log-likelihood helped us determine how well the output

position distributions fit the data. We used the expected measurement error to measure

the difference between the ground-truth landmark positions and the expected measurements

(from either measurement model). The landmark locations came from the global map gen-

erated using the NCLT dataset and the LPD baseline. The results below were generated

using the data from the test set.

We observed five findings from the learning results. First, SDSMM-augmented LPD

models produced measurement distributions that fit the test set better than the standalone

LPD. Figure 2.7 shows that the LPD log-likelihoods peaked between -3 and -2. Although
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Figure 2.7: Test set log-likelihood distributions for the LPD model and SDSMM-augmented
LPD models. Higher log-likelihoods imply a better fit to the test dataset.
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Figure 2.8: Test set prediction errors for the (x,y) output of the LPD and
SDSMM-augmented LPD models. This figure compares the expected landmark position
errors for the LPD and SDSMM-augmented LPD models for the entire test set. Both
models seem to have similar expected measurement errors for the x and y measurements.
The measurement errors are in centimeters.
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Figure 2.9: Test set SDSMM predicted bias and noise for (x,y) output. This figure displays
the SDSMM predicted measurement bias and noise for the entire test set. The range and
frequency of the predicted biases and noises appear similar for the x and y directions.
Many of the predicted measurement noises are also smaller than the σ2 = 150-centimeter
measurement noise that Schaefer et al. [47] in their implementation.
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the SDSMM-augmented LPD log-likelihoods do not peak as much as LPD, we observed that

most SDSMM log-likelihoods were higher than LPD. Furthermore, Table 2.5 quantitatively

showed that at least 75% of the LPD+SDSMM log-likelihoods were higher than all of the

LPD log-likelihoods. We acknowledge that there is a cluster of log-likelihoods between -

10 and -9 for the SDSMM-augmented LPD models. This cluster is NaNs that arose from

numerical instabilities, which were caused by near-zero Gaussian probabilities. To ensure

these NaNs did not affect the log-likelihood distribution summary (Table 2.5) and figure

(Figure 2.7), we set the NaNs to be ln(0.0001), which roughly equates to -9.21.

Our second observation was that the position error for all four models varied as much as

1.5 meters (Figure 2.8). However, whether the high position errors are due to the LiDAR

itself or the entire LPD pipeline is unclear. One possible reason for the higher magnitude

errors is mismatch during landmark data association. Currently, the LPD baseline does not

have a method for uniquely identifying pole landmarks. A second possible reason for high

magnitude errors is the quality of the pole extractions. A third reason may be due to errors

in the aggregated point clouds.

Our third observation was that the SDSMM predicted measurement noises were smaller

than the fixed, isotropic measurement noise of σ2 = 1.5 (or σ = 1.2) meters, which was used in

[47] (Figure 2.9). Although our dynamic measurement noise ranged from 10 centimeters to 70

centimeters across the three models, we also observed that the frequency of the measurement

noises decreased as their magnitudes increased, implying that the fixed measurement noise

in [47] might be overestimated.

Our fourth observation showed that the expected landmark position errors for all four

models were comparable. The largest difference amongst the mean landmark position errors

amongst the models were less 1.8 centimeters, respectively (Table 2.6). The standard devia-

tion of the position errors also differed less than 4.5 centimeters amongst the models. Figure

2.8 illustrates the position error distributions for the X and Y directions. The top graph in
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Figure 2.9 provides insight as to why the position error for both models are similar: most

predicted measurement biases lie between -10 and +10 centimeters.

Our final observation showed that the log-likelihoods, predicted biases, and predicted

noises for all three models were comparable. Quantitatively, we saw that the three models

had similar log-likelihoods and landmark position errors (Tables 2.5 and 2.6, respectively).

We also saw that the predicted bias distribution were similar in shape and range (Figure

2.9 left). The frequency of the predicted noises decreased as the noise magnitude increased

(Figure 2.9 right). However, the range for the LPD-1Day model was roughly half of the

ranges for the other two models.
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Chapter 3: Learning State-Dependent Sensor Measurement Models with

Limited Real Data

3.1 Introduction

This dissertation seeks to train a model to dynamically and accurately predict state-

dependent measurement probability distributions, which quantify measurement bias and

noise5. Accurately quantifying measurement bias and noise is essential in fundamental

robotics applications such as localization and mapping, where a robot uses biased and noisy

measurements from one or multiple sensors to infer its state or the state of objects within

the environment (such as the locations of landmarks). In Chapter 2, we developed a frame-

work that learns state-dependent sensor measurements models (SDSMMs), which quantify

state-dependent measurement bias and noise dynamically. Through simulation, we also

demonstrated that an SDSMM predicts state-dependent measurement probability distribu-

tions accurately.

Since we presently rely on neural networks to implement SDSMMs, our framework as-

sumes we can use sizeable datasets to train a model. However, gathering sizeable datasets

requires multiple resources and tasks, which can be expensive or time-consuming. For ex-

ample, consider an autonomous car that uses a suite of sensors (such as GPS, cameras, and

LiDAR) to map its surrounding area and localize within it. For each sensor on the vehicle,

we must collect a sizeable dataset to learn an accurate sensor model. We must also gather

additional datasets to learn novel models whenever we obtain additional vehicles or when

sensors receive damage, degrade, or are replaced, all of which are inevitable. Even though

many vehicles will use sensors from the same manufacturer, we assume each sensor has its

5A portion of this chapter was published in [59, 60].
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own bias and noise characteristics due to manufacturing differences or differences in the soft-

ware used to process raw measurements. Therefore, one sensor model may not work out of

the box for multiple sensors from the same manufacturer.

The scenario above illustrates that collecting large datasets is challenging, especially as

robots become ubiquitous. On the other hand, collecting smaller datasets might be more

feasible since collecting smaller datasets might require relatively fewer resources. Unfortu-

nately, neural networks may yield poor performance when trained with limited data. For

example, when training with a small dataset, the network might predict accurate outputs for

the data in the small training set. However, the learned SDSMM may be inaccurate when

applied to data outside of the small training dataset since, for example, the network may

not have learned a general mapping between the input states and predicted measurement

bias and noise.

Although the discussion above focuses on neural networks and autonomous cars, we

emphasize to the reader that this discussion is not limited to those cases. Our discussion

also applies to other sensor modeling frameworks that require sizeable training datasets.

Furthermore, the discussion applies to other autonomous vehicles (such as aerial, aquatic,

and other terrestrial vehicles) and their sensors.

In this chapter, we extend our framework to train SDSMMs when we have limited sensor

data, which builds upon our work in [59, 60]. To extend the framework, we leverage transfer

learning, which has demonstrated success in various applications where data is limited [34, 56,

50]. The motivation for employing transfer learning is that we are interested in transferring

knowledge from a related source task (with source data) to improve the performance of our

model on a target task (with target data) [56]. Typically, we learn a related source task using

a large dataset that is more accessible or easier to gather compared to the dataset for the

target task. Here, we leverage inaccurate physical sensor models to generate arbitrarily large

training datasets since such models are generally ubiquitous and describe the measurement

generation process. Therefore, this dissertation treats learning an SDSMM for an inaccurate
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physical model of our real sensor as a source task. By extension, we treat learning an SDSMM

for our real sensor as the target task. We also explore methods for regularizing SDSMMs

while training on small datasets to reduce model overfit.

In summary, this chapter:

• Learns SDSMMs with limited real data, which addresses one difficulty of collecting

sizeable datasets.

• Explores methods for regularizing conditional density estimators such as mixture den-

sity networks.

3.2 Generating Artificial Datasets

The data generator creates artificial data for pre-training SDSMMs. The generator is

composed of two main components. The first component, a basic measurement model,

describes a rudimentary relationship between a combined state λ and a sensor measurement

z. The second component, a basic error model, describes a relationship between a combined

state λ and a measurement error ξ, which contains bias δ and noise σ.

Before discussing the data generator further, it is essential to explain why we cannot use

the artificial training dataset alone to learn a sensor measurement model. By design, the

generated artificial data is a crude representation of the state-dependent measurement bias

and noise for a sensor. Therefore, the learned bias and noise will be crude approximations

of the actual bias and noise of the sensor. This design choice is practical for two reasons.

First, we typically do not know how measurement bias and noise correlate with states. As a

result, we cannot specify accurate bias and noise models for a sensor. Second, we only seek

to learn a mapping from the input state space to the output measurement space.
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3.2.1 Basic Measurement Model

A basic measurement model expresses a relationship between a combined state and an

expected sensor measurement. Given a combined state λ, a basic measurement model out-

puts an expected value z∗. The expected value is unbiased and noise-free. Formally, we

define a basic measurement model as a function hz∗ that defines a relationship hz∗ : Λ→ Z∗,

where Λ is the set of valid combined states and Z∗ is the set of valid unbiased, noise-free

expected measurements. Therefore, the basic measurement model is formulated as:

z∗ = hz∗(λ), (3.1)

where z∗ ∈ Z∗ and λ ∈ Λ. We can derive a basic measurement model using an a priori,

deterministic physical model or heuristics. For example, we can use the physics-based princi-

ples of a (software or hardware) range sensor to derive the basic model. Such models include

the Euclidean distance between a sensor and an observed object (such as in [51]) or the time

of flight for a laser rangefinder.

3.2.2 Basic Bias and Noise Models

The basic bias model expresses a relationship between an expected measurement bias

δ and a combined state λ. Likewise, a basic noise model expresses a relationship between

an expected measurement noise σ and a combined state λ. These models describe the

measurement bias and noise that a sensor would observe at a given combined state. Formally,

the bias and noise models are defined as functions hδ and hσ that define the relationships

hδ : Λ → ∆ and hσ : Λ → Σ, respectively. Here, ∆ is the set of valid measurement biases,

while Σ is the set of all valid measurement noises. We formulate the bias and noise models

as

δ = hδ(λ), (3.2)

σ = hσ(λ). (3.3)
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The outputs of each function can be additive or multiplicative. Like a basic measurement

model, the bias and noise models can be defined using a priori knowledge or heuristics.

However, in simple cases, we can use the manufacturer-reported bias and noise of a sensor

to define the respective models.

3.2.3 Generating an Artificial Dataset with Basic Models

We generate an artificial dataset using a two-step process. In the first step, we begin

by sampling across the set of artificial combined states Λa using the probability distribution

pΛa(λa). Let Λ′a ⊂ Λa denote the set of sampled, artificial combined states according to

the distribution pΛa(λa). Then we use the basic measurement model hz∗ to compute a set

of unbiased, noise-free artificial sensor measurements Z∗a
′ that correspond to each artificial

combined state. That is, we compute the following set: { z∗a ∈ Z∗a
′ | z∗a = hz∗a (λa), λa ∈ Λ′a }.

When generating artificial combined states and unbiased, noise-free measurements, we must

ensure that each λa ∈ Λa is an observable state. Likewise, each z∗a ∈ Z∗a must be within the

field of view of our sensor. That is, the measurement must be observable.

The next step is to corrupt the unbiased, noise-free measurements with bias and noise.

We first generate a set of biases ∆′a ⊂ ∆a and noises Σ′a ⊂ Σa using the bias and noise

models, respectively. Similar to the basic measurement model, we compute the following:

{ δa ∈ ∆′a | δa = hδa(λa) } and { σa ∈ Σ′a | σa = hσa(λa) }. Afterward, we either add or

multiple the biases and noises to the unbiased, noise-free measurements to create the set

of artificial measurements that will be used to pre-train the SDSMM. For example, we can

compute a set of artificial measurements Za as { za ∈ Z′a | za = z∗a + δa + σa }, where

σa ∼ N (0, Σa).
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3.3 Learning with a Large Artificial Dataset

3.3.1 Pre-training State-Dependent Sensor Measurement Models

After we generate the artificial data, we use it to pre-train an SDSMM. The goal of

pre-training is to learn a related source task such that we can transfer the knowledge to

learn our target task. In this dissertation, pre-training helps the SDSMM 1) learn to map

from the input state space to the output measurement space and 2) potentially model how

input states affect measurement bias and noise. Let g(λ; w0) denote an SDSMM, where

w0 is a set of randomly initialized network parameters. Let Da = {(za,i ,λa,i)}Ii=1 denote an

artificial dataset (Section 3.2) that contains I tuples, where each tuple contains an artificial

measurement za,i and its corresponding combined state λa,i .

Given Da, we learn a set of network parameters wa that minimizes the negative log-

likelihood loss E(Da, w) using (2.13). After pre-training, the SDSMM learns to predict

parameters for state-dependent distributions that are similar to a physical model of the

sensor.

3.3.2 Evaluating Pre-trained Models

Since we designed the measurement generation process for the artificial dataset, we know

the true probability distribution for any given state. Therefore, we can use statistical mea-

sures to quantify the divergence between the true and predicted distributions at a given

combined state. The first statistical measure is Kullback-Leibler (KL) divergence [24, 23],

which was proposed by Soloman Kullback and Richard Leibler. Mathematically, KL diver-

gence (also known as relative entropy) is calculated as

KL(P || Q) = −
∑
x∈X

P(x) · log

(
Q(x)

P(x)

)
. (3.4)

Here, || denotes divergence, x denotes an event, and P(x) and Q(x) represent the true

and approximate probabilities of x occurring. A KL divergence score is zero when the
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probabilities P(x) and Q(x) are identical. However, if one probability is large and the

other is relatively small, the KL divergence score is large. Furthermore, KL divergence is

asymmetrical, meaning a score of KL(P || Q) is not equal to a score of KL(Q || P).

The second statistical measure is Jensen-Shannon (JS) Divergence, proposed by Johan

Jensen and Claude Shannon. Unlike KL divergence, the JS divergence is symmetrical. There-

fore, a score of JS(P || Q) is equal to a score of JS(Q || P). A JS divergence score has an

interval of [0,∞]. However, the score lies within the interval [0, 1] if log2(·) is used. A

normalized score of 0 indicates identical distributions, while 1 indicates maximally different

distributions. To calculate a JS divergence score, we use the following equation:

JS(P || Q) =
1

2
· KL(Q || G ) +

1

2
· KL(P || G ), (3.5)

where KL(·) refers to (3.4) and G = 1
2
· (P + Q).

To evaluate a pre-trained SDSMM using KL or JS divergence, we use the true distribu-

tions used to generate the artificial dataset as P(x) and the predicted distributions from the

SDSMM as the approximate distribution Q(x).

3.4 Learning with a Limited Real Dataset

3.4.1 Fine-tuning State-Dependent Sensor Measurement Models

We now use a smaller, yet real dataset to fine-tune the pre-trained SDSMM. In Section 3.3,

we pre-trained the SDSMM so that the model learns a mapping from the input space to the

measurement space using the artificial dataset. Here, the goal of fine-tuning is to leverage the

learned knowledge from the source task and learn to predict parameters for distribution for

the real sensor. Let g(λ; wA) denote a pre-trained SDSMM, where wA is a set of parameters

that were optimized for DA (our artificial dataset). Let DR = {(zj ,λj)}Jj=1 denote our small

real dataset with J tuples, where each tuple contains a real sensor measurement zj that was

observed at the ground-truth combined state λj . Here, I � J where I = |DA|, J = |DR |,
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and |D| is the cardinality of a set D. We also assume the elements of DR are independently

and identically distributed.

Given DR and the network parameters wA, we learn a novel set of network parameters

wR that minimizes the negative log-likelihood loss E(DR , w) using (2.13). Once fine-tuned,

the novel network parameters wR are optimized forDR , and the fine-tuned SDSMM predicts

distributions for our real sensor.

3.4.2 Evaluating Fine-tuned Models

Unlike our artificial dataset, we generally do not know the true measurement bias and

noise for each combined state. Therefore, we must approximate the measurement bias and

noise by gathering samples of measurements at each combined state. However, gathering

samples of measurements at each state can be difficult because the real world is dynamic.

For example, while a camera-based sensor gathers measurements for a particular state, the

ambient lighting may change due to clouds and dynamic obstacles (such as people or vehi-

cles) that may obstruct the view of landmarks. The problem is exacerbated when we can

only collect small numbers of data for training an SDSMM. As a result, we cannot employ

statistical measures such as KL or JS divergence as mentioned in Section 3.3.2.

Since we typically will not have the true distributions for a real sensor, one alternative

mechanism for evaluating an SDSMM is examining model fit. For example, we can employ

statistical measures such as negative log-likelihood to evaluate the predicted distributions of

a model. For each combined state, the goal is to quantify how well the predicted distribution

fits the corresponding measurement. We can also use mean-squared error (MSE) to compare

the predicted distribution means and sensor measurements directly. An MSE informs us how

close the regressed mean is to the measurement. For example, assuming our model predicts

distribution means (which include measurement bias) and the real measurements are biased

and noisy, an MSE informs us how close the predicted mean is to a biased measurement.
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Although the negative log-likelihood and MSE help us evaluate model fit, such metrics are

most helpful in comparing the relative performance amongst multiple models. Therefore, we

can also use SDSMMs to solve localization and mapping problems in addition to the metrics

mentioned above. Assuming we have the true combined states (including robot poses and

landmark positions), we can first use SDSMMs in either problem. Then we can evaluate

average (localization or mapping) error or the errors over time as the robot localizes or

maps the environment. If an SDSMM has a lower localization or mapping error than other

methods, we can assume that the SDSMM predicts more accurate distributions for the

sensor.

3.5 Regularizing State-Dependent Measurement Models

One of the most common issues in machine learning is model overfit. For neural networks,

overfit occurs when the training loss decreases, yet the validation loss stagnates or increases.

In such a case, the network tends to learn the data and the noise in the data well, resulting

in poor generalization with unseen data [2]. Overfitting can occur when a neural network

has a high (memory) capacity or learns with a small number of data [2]. Therefore, we seek

to lessen model overfit, especially when fine-tuning a network on a small training dataset.

There are multiple methods for reducing model overfit. One popular method is increasing

the number of training data. However, in this context, we cannot gather additional real

training data due to resource restrictions.

A second popular method for reducing model overfit is called regularization. According

to Goodfellow et al., regularization is “any modification we make to a learning algorithm

that is intended to reduce its generalization error but not its training error.” We generally

add a weighted penalty term to the loss function as a form of regularization in machine

learning. Common penalties include L1, L2 (or weight decay), and L1 + L2 regularization.

For neural networks in particular, other regularization methods include early stopping [14],

dropout, shakeout [18], whiteout [26], and adding noise to training data [3, 14, 44].
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In this dissertation, we chose Rothfuss et al. [44] to regularize our models because

their method is easy to implement and works specifically for conditional density estimation

methods like MDNs. When fine-tuning an MDN, we follow Rothfuss et al. [44] in perturbing

the input and target variables of a training set. Specifically, we add noise to the true combined

states and the sensor measurements in the real training set DR = {(zj ,λj)}Jj=1. Rothfuss et

al. [44] is used since the work focused on regularizing conditional density estimators (such as

an MDN). In the context of our work, perturbing the states has three useful properties. First,

perturbing states grow a training set artificially, which can improve model generalization [2].

Second, perturbing a combined state λj implies that its neighbors have similar amounts

of measurement bias and noise. Third, in addition to regularization, we can also view

perturbation as data augmentation.

We use two separate sources to add noise to a limited real dataset. The first source is

the empirically measured or manufacturer-reported noise of sensors used to collect true com-

bined states. For example, high-accuracy, ground truth sensors (such as a visual positioning

system) generally capture ground truth states (of the robot and its environment). Although

such sensors are highly accurate, their measurements still contain noise. The second source

is the empirical or manufacturer-reported noise for a real sensor (that is, the sensor we seek

to model).

During training, each variable in the training set receives a random amount of noise

sampled from a zero-mean Gaussian distribution. We use the following equations to perturb

the variables:

λ̃j = λj +N (0, Σt), (3.6)

z̃j = zj +N (0, Σs). (3.7)

Here, λ̃j and z̃j are the j-th perturbed combined state and sensor measurement. Σt and Σs

are the measurement covariance noises for the sensors used to collect true combined states

and the sensor we are modelling, respectively. Therefore, λ̃j and z̃j become the new input

53



and target of the network during training. However, we use the original (unperturbed) values

for the validation set.

We emphasize that introducing error into artificial measurements and introducing error

into real combined states have different purposes. Introducing error into artificial measure-

ments produces measurements that are, to some extent, close to those of a real sensor.

However, introducing noise into real combined states incorporates the noise of ground truth

sensors and arbitrarily creates neighboring combined states, which may not exist in the real

dataset.

3.6 Real-World Experiment

We performed three sets of learning experiments using the MR.CLAM dataset [25] de-

scribed in Section 2.7.1. We referred to the experiments as Fine-tune with Limited Real

Data (FLRD), Real Data Only (RDO), Limited Real Data Only (LRDO), and Artificial

Data Only (ADO). All learning experiments used the MDN architecture described in Sec-

tion 2.7.2.2. However, the hyper-parameters for each set of experiments were different. The

hyper-parameters are described in the appropriate sections. We randomly selected courses

2, 3, 5, 6, 8, and 9 for training.

3.6.1 State-Dependent Sensor Measurement Models

3.6.1.1 Fine-tune with Limited Real Data (FLRD)

FLRD evaluated the method proposed in this chapter. To generate the artificial dataset,

we used a traditional landmark-based distance-and-bearing measurement model. Our ba-

sic measurement model hz∗(λ) was defined as the distance-and-bearing measurement model

(2.22) described in Section 2.7.2.3. We randomly generated 2× 105 unbiased, noise-free mea-

surements using a uniform distribution. The uniform distribution was defined as U(0.15, 12)

for range and U(−0.5236, 0.5236) for bearing. The units for range and bearing were meters

and radians, respectively. Afterward, we used the inverse of the range-and-bearing model to
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Table 3.1: Dataset sizes for all RDO experiments.

Training Set Size Testing Set Size

Robot 1 25,331 10,326

Robot 2 26,251 10,186

Robot 3 30,777 12,921

Robot 4 13,554 7,314

Robot 5 35,803 15,049

calculate the corresponding combined states:

λi =

λx
λy

 =

ρA,i · cos (φA,i)

ρA,i · sin (φA,i)

 . (3.8)

We defined the basic noise model hσ(λ) as a zero-mean Gaussian with a fixed, diagonal

covariance matrix QA:

QA =

σ2
A,ρ 0

0 σ2
A,φ

 . (3.9)

The range and bearing standard deviations were defined as σA,ρ = 10−4 and σA,φ = 3.0× 10−8,

respectively. Next, we sampled the noisy artificial measurements from the distribution

zA,i ∼ N (z∗A,i , QA). Finally, the noisy artificial measurements zA,i and the combined states

λA,i were aggregated into the dataset DA = {(zA,i ,λA,i)}Ii=1, which was used to pre-train an

MDN.

For each real robot MR.CLAM dataset, we used the bootstrap method [12, 10] to create

six datasets with differing sample sizes. The sample sizes were “all”, 104, 5.0× 103, 2.5× 103,

5.0× 102, and 102. “All” fine-tuned the pre-trained model with all available training data for

a particular robot (Table 3.1). The “all” sample size provided an upper bound performance

for the other sample sizes. The remaining sample sizes were used to simulate “limited” real

data. For each robot, we randomly sampled each sample size 100 times to determine average
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performances [11]. In total, we created 3,000 real robot datasets DR = {(zi ,λi)}Jj=1, which

resulted in fine-tuning 3,000 MDNs.

3.6.1.2 Real Data Only (RDO)

RDO represents networks that we were trained on all available real data. Table 3.1

quantifies the dataset sizes for each network. These networks use the method described in

Chapter 2. Each RDO model was trained on data from a particular robot, creating five

individual models. We compare RDO and FLRD to determine if FLRD can achieve similar

performance to RDO but with fewer data.

3.6.1.3 Limited Real Data Only (LRDO)

LRDO served as an ablation study of our proposed method. We trained these networks

using our simulated limited real data only. However, these networks were not pre-trained.

We compare LRDO and FLRD to determine if pre-training is beneficial for learning accurate

SDSMMs with limited real data.

3.6.1.4 Artificial Data Only (ADO)

ADO represents our pre-trained network. Therefore, this network was not fine-tuned

with any real data. ADO represents a learned a priori range-and-bearing model since we

trained this network with the artificial data generated using an a priori range-and-bearing

model.

3.6.2 Real-World Results and Discussion

We compared RDO, LRDO, and ADO against FLRD to evaluate the proposed transfer

learning method (FLRD). Our first comparison (Section 3.6.2.1) examined the performance

amongst FLRD, RDO, and ADO as we decreased the number of available real data. Our
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Table 3.2: Test set log-likelihood means for RDO and ADO models. A higher log-likelihood
implies a better fit to the test data. For each robot, the best log-likelihood is emphasized
for the RDO, FLRD, and ADO models.

RDO ADO

R1 4.81 −14.55

R2 5.44 −13.89

R3 5.33 −13.70

R4 5.31 −15.86

R5 5.27 −12.82

Table 3.3: Test set log-likelihood means and standard deviations for FLRD models. A
higher log-likelihood implies a better fit to the test data. For each robot, the best mean is
emphasized for the RDO, FLRD, and ADO models.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

R1 4.75± 0.05 4.75± 0.04 4.72± 0.06 4.68± 0.06 4.41± 0.05 3.85± 0.30

R2 5.49± 0.02 5.42± 0.04 5.46± 0.03 5.31± 0.06 4.88± 0.20 3.94± 0.29

R3 5.55± 0.02 5.54± 0.02 5.52± 0.03 5.46± 0.03 5.16± 0.06 4.00± 0.41

R4 5.25± 0.05 5.28± 0.03 5.01± 0.34 4.36± 0.42 4.67± 0.33 3.48± 1.00

R5 5.57± 0.03 5.56± 0.03 5.51± 0.03 5.49± 0.04 5.19± 0.06 4.10± 0.36

second comparison (Section 3.6.2.2) examined the performance between FLRD and LRDO

to determine if there is a benefit of transfer learning in this context.

We also used Rothfuss et. al [44] to regularize the FLRD models during fine-tuning. How-

ever, noise regularization did not improve our learning results for this experiment. Therefore,

we did not include those results.

3.6.2.1 Comparing FLRD, RDO, and ADO

The results demonstrated that FLRD performed comparably to RDO. For sample sizes

as small as 2,500 (∼19% of the training data), the results showed that RDO was either

lower than FLRD or within three standard deviations of an FLRD mean log-likelihood

(compare “RDO” in Table 3.2 with Table 3.3). For robots 2, 3, and 5, FLRD had higher
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Figure 3.1: Difference between RDO and FLRD distance errors. This figure illustrates how
close the predicted distance errors are between FLRD and RDO models. Intuitively, each
graph shows that the difference between the FLRD and RDO errors increase as the FLRD
sample sizes decrease. All distance values are expressed in centimeters.
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Figure 3.2: Difference between RDO and FLRD bearing errors. This figure illustrates how
close the predicted bearing errors are between FLRD and RDO models. Generally, each
graph shows that the differences between the FLRD and RDO errors vary less than distance
errors as the FLRD sample sizes decrease. All bearing values are expressed in degrees.
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Table 3.4: Distance error means and standard deviations (in centimeters) for RDO and
ADO models. The best mean is emphasized for each robot.

RDO ADO

R1 −0.5± 2.9 ∗ 0.2± 10.5 ∗
R2 −0.4± 2.5 −0.5± 14.4

R3 −0.3± 2.5 −4.8± 13.5

R4 −0.5± 2.8 −1.5± 15.2

R5 −0.5± 3.1 −4.1± 14.3

Table 3.5: Bearing error means and standard deviations (in degrees) for RDO and ADO
models. The best mean is emphasized for each robot.

RDO ADO

R1 −0.2± 1.2 ∗ −0.0± 1.4 ∗
R2 0.5± 0.7 ∗ 0.2± 0.8 ∗
R3 0.2± 0.8 ∗ −0.4± 0.7 ∗
R4 −0.1± 1.0 −1.0± 1.6

R5 0.2± 0.7 −0.2± 0.8

log-likelihoods than RDO. However, the higher log-likelihoods seem to be a by-product of

fine-tuning (compare Tables 3.3 and 3.6). We also observed that the mean log-likelihoods for

FLRD decreased as the sample size approached 100. For example, the lower log-likelihoods

implied that FLRD predicted measurement probability distributions that had a worse fit

than RDO at sample size 100.

Compared to ADO (Table 3.2), we observed that FLRD (Table 3.3) has significantly

higher log-likelihoods. This observation holds at sample size 100. This result is also natural.

Although the simulated and real data represent distance-and-bearing measurements with the

same predictors, the measurement bias and noise are different. Therefore, the pre-trained

model predicted measurement distributions that were different from the real data.

We also evaluated the errors between the RDO and FLRD predicted means. The goal

of this evaluation was to observe how close the errors were from models. To perform this

evaluation, we first computed the prediction errors for all RDO and FLRD models using the
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test set. Here, the prediction error is the difference between a sensor measurement and an

MDN predicted mean. Next, for FLRD models with the same sample size, we calculated a

mean prediction error across all 100 models. Finally, we computed the difference between

the RDO errors and the mean FLRD errors.

The difference between the RDO and mean FLRD errors are depicted in figures 3.1 and

3.2. A box plot and an orange line represent the inter-quartile range and median of the error

differences for each figure, respectively. The whiskers represent the lowest and highest error

difference within the interval [Q1 − 1.5 × (Q3 − Q1),Q3 + 1.5 × (Q3 − Q1)], respectively.

For robots 1, 2, 3, and 5, Figure 3.1 shows that FLRD and RDO produce similar distance

errors for sample sizes as few as 2,500. The figures illustrate that most error differences

for these robots were as large as ±3 centimeters. The distance errors for robot 4 were

larger than the other robots for sample size 2,500, growing as high as about ±5 centimeters.

Generally speaking, the distance error differences for all robots grew at sample sizes 500 and

100. Compared to the larger sample sizes, FLRD models had fewer examples to learn the

measurement bias, causing the models to predict less accurate measurement biases.

On the other hand, the differences between the RDO and FLRD bearing errors remained

consistent across all sample sizes. Since bearing measurements had little bias, the sample

sizes had little effect.

3.6.2.2 Comparing FLRD and LRDO

In most cases, the results showed that FLRD had similar or slightly better log-likelihoods

than LRDO. Compared to LRDO, FLRD models produced higher log-likelihoods for 23 out

of 25 cases; the two shaded cells in Table 3.6 show the cases where LRDO had higher log-

likelihoods than FLRD. Therefore, tables 3.3 and 3.6 show that FLRD predicted distributions

had a better fit than LRDO.

Like with the FLRD models, we computed the errors between the RDO and LRDO

predicted measurements. Then we compared the LRDO errors (Figures 3.3, 3.4, and 3.5)
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Figure 3.3: Difference between RDO and LRDO distance errors. This figure illustrates how
close the predicted distance errors are between LRDO and RDO models. Due to the range
of the LRDO errors at sample size 100, we only included sample sizes 10,000 down to 500
in this figure. All distance values are expressed in centimeters.
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Figure 3.4: Difference between RDO and LRDO bearing errors. This figure illustrates how
close the predicted distance errors are between LRDO and RDO models. Intuitively, each
graph shows that the difference between the FLRD and RDO errors increase as the FLRD
sample sizes decrease. All distance values are expressed in centimeters.
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Table 3.6: Test set log-likelihood means and standard deviations for LRDO models. A
higher log-likelihood implies a better fit to the test data. A shaded result signifies that
LRDO had a higher mean log-likelihood than FLRD for the same robot and sample size.

Sample Sizes

10, 000 5, 000 2, 500 500 100

R1 4.54± 0.12 4.72± 0.04 4.17± 0.44 4.11± 0.27 0.81± 0.85

R2 5.38± 0.04 5.12± 0.07 4.82± 0.29 3.85± 0.75 0.43± 0.55

R3 5.32± 0.06 5.39± 0.05 5.34± 0.08 4.63± 0.28 0.41± 0.68

R4 5.17± 0.08 5.07± 0.13 5.01± 0.07 4.40± 0.32 0.41± 1.39

R5 5.49± 0.04 5.45± 0.06 5.39± 0.06 4.47± 0.47 0.53± 0.60

Figure 3.5: Difference between RDO and LRDO distance and bearing errors at sample size
100. At the smallest sample size (100), the LRDO models produced distributions that
varied significantly from their RDO counterparts.
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with the FLRD errors (Figures 3.1 and 3.2). For sample size 10,000 down to 500, we observed

that the range of the LRDO errors were comparable to their FLRD counterparts.

At sample size 100, the results showed a noticeable difference in performance (compare

the last columns of Tables 3.3 and 3.6). For sample size 100, LRDO models had signif-

icantly lower mean log-likelihoods and higher log-likelihood variances compared to their

FLRD counterparts. The range of the LRDO errors were also significantly larger than their

FLRD counterparts (see Figures 3.5, 3.1, and 3.2). These observations were not surprising:

we observed a similar trend with the log-likelihoods in Tables 3.3 and 3.6.
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Chapter 4: Using State-Dependent Sensor Measurement Models for Robot

Localization

4.1 Introduction

The previous chapters introduced state-dependent sensor measurement models (SDSMMs),

described methods for implementing and learning them, and evaluated them using simulated

and real-world datasets. Our discussion now pivots to applying these models to solve a fun-

damental problem in robotics: localization. Localization is the process of inferring the state

of a robot (such as the robot’s pose) given the map of an environment [51]. In this chapter,

we apply SDSMMs to localization because localization is a fundamental perceptual problem

in robotics and most robotics tasks require information about the pose of the robot [51].

For example, localization allows a robot to express its state relative to other coordinate sys-

tems (such as a global map), determine the locations of objects within its environment, plan

trajectories to reach goal positions, and map its surroundings.

The rest of this chapter is organized as follows6. In Section 4.2, we describe how to

integrate our state estimator-agnostic SDSMM framework with three state estimators: the

Extended Kalman Filter (Section 4.2.2), the Particle Filter (Section 4.2.3), and the Extended

Kalman Particle Filter (Section 4.2.4). Next, Section 4.3 evaluates distance-and-bearing

sensor models using the Extended Kalman Filter and the Extended Kalman Particle Filter.

Afterward, Section 4.4 evaluates our SDSMM-augmented pole detection sensor model using

the Particle Filter.

6A portion of this chapter was published in [58, 59, 60].
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4.2 Integrating State-Dependent Sensor Measurement Models

4.2.1 State Estimator, Environment, and Robot Assumptions

The following subsections describe how to integrate an SDSMM with three state esti-

mation algorithms: the Extended Kalman Filter (EKF), the Particle Filter (PF), and the

Extended Kalman Particle Filter (EKPF). Although the literature proposes variations of

these algorithms, we focus on their baseline implementations since such implementations are

commonly known. We discuss the EKF and PF due to their popularity. The EKPF is dis-

cussed for two reasons. First, the EKPF offers a richer state distribution than a standalone

EKF. Second, the EKPF also mitigates the sample degeneracy problem of a standalone PF

[53]. For detailed descriptions and derivations of the EKPF, we invite readers to review

[53]. We implement the SDSMM using an MDN. Due to the Gaussian assumption of the

EKF and EKPF, we restrict the MDN to predict parameters for a Gaussian distribution.

Let g(λ; w) represent an MDN that outputs a mean and covariance matrix for a Gaussian

distribution. The mean µ represents either a measurement bias or an expected measurement

(which inherently incorporates measurement bias). The covariance matrix Σ represents the

covariance of the measurement noise. During localization, the MDN uses a propagated (a

priori), sampled, or observed combined state since the robot does not know the ground-truth

state.

We assume the environment is a planar surface, contains landmarks, and has at least one

mobile robot. Such environments include a warehouse, an urban area, or a building. We

forego discussing any data association methods for brevity because they were not a focus of

this dissertation.

Each mobile robot is a land-based vehicle that navigates on the planar surface of our

environment. A robot has a pre-built map of landmarks. To infer its pose, the robot

measures the position of a landmark. Such measurements include 2D polar measurements

(distance and bearing) or 2D Cartesian measurements.
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4.2.2 The Extended Kalman Filter

An EKF is governed by two models: a state transition model and a sensor measurement

model. The EKF state is represented by the parameters {x̄, P}, which are the mean and

covariance of a Gaussian distribution. During localization, the EKF first uses the state tran-

sition model to propagate the previous posterior state distribution {x̄t−1, Pt−1} to produce

{x̄t|t−1, Pt|t−1}, the propagated state distribution. The state transition model is defined

as x̄t|t−1 = f (x̄t−1, ut) + ν. f (·) is the nonlinear state transition function that propagates

the system from previous state x̄t−1 to a propagated state x̄t|t−1. ut is the current control

command to the system. ν is the state transition noise that is sampled from a zero-mean

Gaussian distribution ν ∼ N (0, R), where R is a fixed covariance of the state transition

noise. The state propagation equations are defined as:

x̄t|t−1 = f (x̄t−1, ut) (4.1)

Pt|t−1 = FtPt−1Ft + R. (4.2)

Here, x̄t|t−1 and Pt|t−1 are the propagated state and propagated state error covariance. Ft

is the Jacobian matrix of the state transition function.

After the EKF propagates the state, the EKF then uses the measurement model to incor-

porate a sensor measurement zt and approximate the next posterior distribution {x̄t , Pt}.

Traditionally, the sensor measurement model is defined as zt = h(x̄t|t−1, m) + σ. h(·) is the

nonlinear measurement function that maps from a predicted state x̄t|t−1 and an observed

landmark m to the sensor measurement zt . σ is the measurement noise that is sampled

from the distribution σ ∼ N (0, Q), where Q is a fixed covariance of the measurement noise.

Therefore, the following equations incorporate the traditional sensor model:

Kt = Pt|t−1H
>
t

(
HtPt|t−1H

>
t + Qt

)−1
, (4.3)
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x̄t = x̄t|t−1 + Kt(zt − h(x̄t|t−1, m)), (4.4)

Pt = (I−KtHt) Pt|t−1, (4.5)

where Kt is the Kalman gain, Pt|t−1 is the predicted state error covariance, and I ∈ R3×3 is

an identity matrix. Ht is a measurement Jacobian matrix of the measurement function.

To integrate an SDSMM with an EKF, we use the SDSMM to predict an expected

measurement and a covariance of the measurement noise. Specifically, given a propagated

combined state λ̄t , the SDSMM predicts an expected measurement and a covariance of the

measurement noise. Therefore, the following set of equations use an SDSMM to update the

propagated state distribution:

Kt = Pt|t−1G
>
t

(
GtPt|t−1G

>
t + Σ̄t

)−1
, (4.6)

x̄t = x̄t|t−1 + Kt(zt − µ̄t), (4.7)

Pt = (I−KtGt) Pt|t−1. (4.8)

In (4.6) and (4.7), µ̄t and Σ̄t represent the state-dependent expected measurement (which in-

corporates measurement bias) and the state-dependent covariance of the measurement noise,

respectively. µ̄t and Σ̄t are also the Gaussian parameter outputs of the MDN given a propa-

gated combined state: g(λ̄t|t−1; w). The propagated combined state λ̄t|t−1 is assumed to be

derived from x̄t|t−1. Theoretically, the measurement noise in (4.6) violates an assumption of

the Kalman filter and its variants, where it is assumed that the noise is state-independent.

However, we find that our formulation works in practice. Finally, in (4.6) and (4.8), Gt is a

measurement Jacobian matrix and is defined as

Gt =
∂µ̄t

∂x̄t|t−1
. (4.9)
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This derivative is computed using the MDN output units for the mean µ̄t , the MDN itself,

and the function that derives λ̄t|t−1 from x̄t|t−1. We can compute Gt using frameworks that

provide auto-differentiation (such as [31, 35]).

4.2.3 The Particle Filter

The Particle Filter (PF) is governed by a state transition distribution and a sensor

measurement distribution. The PF uses a next state distribution to propagate the prior

particle states {x̄(i)
t−1}Mi=1 to produce {x̄(i)

t }Mi=1, the predicted particle states. Here, M is the

particles in our system. The next state distribution is defined as x̄
(i)
t ∼ p(x̄

(i)
t | x̄

(i)
t−1, ut). ut

is the control command to the system. x̄
(i)
t and x̄

(i)
t−1 are the propagated and previous states

of the i -th particle, respectively. Generally, the PF assumes that one can sample from the

next state transition distribution to propagate the particle states.

Afterward, the PF computes an importance factor wt to incorporate a measurement into

the system. The importance factor is computed as w
(i)
t = p(zt | x̄(i)

t , m), where p(·) is the

measurement probability, zt is the sensor measurement, x̄
(i)
t is the i -th particle state, and

m is an observed landmark. We propose two ways to integrate an SDSMM with a PF. The

choose of either method depends on what the SDSMM mean represents. For simplicity, we

restrict the measurement probability to a Gaussian distribution

w
(i)
t = p(zt | v(i)

t , Σ̄
(i)

t ) =
1

(2π)k/2 ·
∣∣∣Σ̄(i)

t

∣∣∣1/2 exp

{(
v
(i)
t

)>
·
[

Σ̄
(i)

t

]−1
·
(
v
(i)
t

)}
, (4.10)

where k is the dimension of the sensor measurement, and v
(i)
t and Σ̄

(i)

t are the innovation

and the state-dependent measurement noise for the i -th particle, respectively. If we trained

an SDSMM to output the expected measurement as the mean, we compute the innovation

as:

v
(i)
t = zt − µ̄

(i)
t , (4.11)
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where µ̄
(i)
t represents the state-dependent expected measurement. Conversely, if we trained

an SDSMM to output the measurement bias as the mean, we compute the innovation as:

v
(i)
t = (zt + µ̄

(i)
t )− h(x̄

(i)
t , m), (4.12)

where µ̄
(i)
t represents the state-dependent measurement bias, h(·) is a measurement function,

and m is an observed landmark. In (4.10), (4.11), and (4.12), the mean µ̄
(i)
t and the noise

Σ̄
(i)

t are outputs of the SDSMM given the t-th propagated combined state λ̄
(i)

t . The t-th

propagated combined state is partially derived from the propagated state of the t-th particle.

Unlike with the EKF, the PF does not compute Jacobian matrices for its measurement model.

4.2.4 The Extended Kalman Particle Filter

An Extended Kalman Particle Filter (EKPF) combines two popular state estimation

algorithms: an EKF and a PF. Like the PF, the EKPF uses a collection of particles to

represent the state distribution of the system. Each particle state within the EKPF is

represented as the mean and covariance of a Gaussian distribution. We use the following

notation to represent the system: {w (i), x̄(i), P(i)}Mi=1, where M is the number of particles in

the system. Figure 4.1 illustrates how an EKPF uses an SDSMM.

The EKPF begins by propagating the previous posterior state distribution {x̄(i)
t−1, P

(i)
t−1},

which produces the predicted state distribution {x̄(i)
t|t−1, P

(i)
t|t−1}. The EKPF uses the state

transition equations from the EKF to propagate the particle state distribution:

x̄
(i)
t|t−1 = f (x̄

(i)
t−1, ut), (4.13)

P
(i)
t|t−1 = F

(i)
t P

(i)
t−1F

(i)>
t + R. (4.14)

Like the EKF, ut is the control command to the system, F
(i)
t is the Jacobian matrix of the

state transition model, and R is the state transition noise. When a sensor measurement zt
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Figure 4.1: Integrating the Extended Kalman Particle Filter and a State-Dependent Sensor
Measurement Model. This figure illustrates how an Extended Kalman Particle Filter uses a
state-dependent sensor measurement model (SDSMM). The SDSMM predicts a

state-dependent measurement distribution (µ
(i)
t , Σ(i)

t ) given the current estimated robot
state, map, environment, robot, and sensor data. The model predicts the appropriate
distribution parameters for the Extended Kalman Filter and the Particle Filter
(importance weighting). The SDSMM can also be used to compute measurement Jacobian

matrices G
(i)
t for the EKF. In the pipeline, we only use one SDSMM to compute the

appropriate measurement distributions. However, we depicted the SDSMM twice to show
the data flow into and out of the model.
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is observed, the following EKF equations update each particle state:

S
(i)
t = G

(i)
t P

(i)
t|t−1(G

(i)
t )> + Σ̄

(i)

t (4.15)

K
(i)
t = P

(i)
t|t−1(G

(i)
t )>(S

(i)
t )−1, (4.16)

x̄
(i)
t = x̄

(i)
t|t−1 + K

(i)
t

(
zt − µ̄

(i)
t

)
, (4.17)

P̂
(i)

t =
(
I−K

(i)
t G

(i)
t

)
P

(i)
t|t−1, (4.18)

producing a Gaussian proposal distribution {x̄(i)
t , P̂

(i)

t }. Here, a state error P̂
(i)

t that is

propagated along with its corresponding particle. µ̄
(i)
t , Σ̄

(i)

t , and G
(i)
t are the state-dependent

expected measurement, measurement noise, and measurement Jacobian for the i -th particle,

respectively. Like in Section 4.2.2, the measurement noise in (4.15) violates a theoretical

assumption, where it is assumed that the noise is state-independent. However, we find that

this formulation works in practice too.

Once the Gaussian proposal distribution is computed, the EKPF samples from the pro-

posal distribution

x̂
(i)
t ∼ q(x

(i)
t |x

(i)
0:t−1, z1:t) = N (x̄

(i)
t , P̂

(i)

t ), (4.19)

to create a new particle set {x̂(i)
t , P̂

(i)

t }. Afterward, we compute an importance weight w
(i)
t

for each particle:

w
(i)
t ∝

p(zt | λ̂
(i)

t ) · p(x̂
(i)
t | x

(i)
t−1)

q(x̂
(i)
t | x

(i)
0:t−1, z1:t)

. (4.20)

Here, p(x̂
(i)
t | x

(i)
t−1) is the transition prior, x̂

(i)
t is the sampled particle state from (4.19),

and x
(i)
t−1 is the posterior state from the previous time step (t − 1). We do not define the

transition prior since it is independent of a sensor measurement. The proposal distribution,

q(x̂
(i)
t | x

(i)
0:t−1, z1:t), equates to N (x̂

(i)
t | x̄

(i)
t , P̂

(i)

t ) due to the EKF Gaussian assumption (see

[53] for details). Due to the use of the EKF, we assume the measurement probability can
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be represented with a Gaussian distribution. Therefore, The state-dependent measurement

probability p(zt |λ̂
(i)

t ) is computed as

p(zt | µ̂(i)
t , Σ̂

(i)

t ) =
1

(2π)k/2 ·
∣∣∣Σ̂(i)

t

∣∣∣1/2 exp

{(
zt − µ̂

(i)
t

)>
·
[

Σ̂
(i)

t

]−1
·
(
zt − µ̂

(i)
t

)}
, (4.21)

where µ̂
(i)
t and Σ̂

(i)

t are the Gaussian parameter outputs of the MDN, given the state λ̂
(i)

t as

input. Finally, λ̂
(i)

t is derived from the sampled state x̂
(i)
t in (4.19).

4.3 Real-World Experiments I: A Multi-Robot Localization Study

4.3.1 Experimental Setup

We ran numerous localization experiments using five camera-based range-and-bearing

sensors from the MR.CLAM dataset. We learned four types of measurement models for

each camera sensor. The measurement models were baseline, RDO, FLRD, and LRDO. The

baseline model was an a priori measurement model. This model computed an unbiased

experiment measurement and used a fixed covariance of the measurement noise. RDO,

FLRD, and LRDO represented SDSMMs that were trained techniques mentioned in this

dissertation. RDO learned from all real data, FLRD used transfer learning to learn from

an abundance of artificial and limited real data, and LRDO learned from limited real data

only. We encourage our readers to review Section 3.6 to determine the learning details for

each model.

We used the Extended Kalman Filter and the Extended Kalman Particle Filter as our

state estimators. Our EKPF used 500 particles to approximate the state. We determined

the number of particles through cross-validation using the baseline measurement model. All

localization experiments used courses 4 and 7. For the EKF, we defined the state transition
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model x̄t|t−1 = f (x̄t−1, ut) as follows:

x̄t =


x̄t|t−1

ȳt|t−1

θ̄t|t−1

 =


x̄t−1 + vt cos (θ̄t−1)∆t

ȳt−1 + vt sin (θ̄t−1)∆t

θ̄t−1 + ωt∆t

 , (4.22)

where x̄t−1 = [x̄t−1, ȳt−1, θ̄t−1]> is the previous state, ut = [vt ,ωt ]
> is the linear and angular

odometry commands to the EKF, and ∆t is the incremental time between two odometry

commands ut−1 and ut . We defined the Jacobian of the state transition model Ft as

Ft =


1 0 −vt sin (θt−1)∆t

0 1 vt cos (θt−1)∆t

0 0 1

 . (4.23)

We used similar formulations for the EKPF state transition model. However, in the case of

the EKPF, we computed an individual state variable for each particle.

Both state estimators also employed the state-dependent equations and variables de-

scribed in Sections 4.2.2 and 4.2.4. Since we do not have access to the ground-truth states

during localization, the baseline and state-dependent measurement models used a predicted,

propagated, or updated state as input. We used (2.20) to compute a combined state.

4.3.2 Results and Discussion

4.3.2.1 Localization Metrics

We used the root-mean-squared error (RMSE) and mean absolute error (MAE) to evalu-

ate the localization experiments. The RMSE and MAE were computed between the ground-

truth and estimated states. Each state x̄t = [xt , yt , θt ]
> was represented as a 2D Cartesian

position [xt , yt ]
> and a 1D heading θt . The ground-truth states came from a roof-mounted

Vicon system, while the estimated states came from the state estimators. For the EKF, we
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used the output estimated states directly. To derive the estimated states for the EKPF, we

computed the mean of the particles at each time step: x̄t =
∑M

i=1

(
w

(i)
t · x̄

(i)
t

)
. At time t,

let x̄G
t denote a ground-truth state and x̄t denote an estimated state. The position RMSE

EPE was calculated as

EPE =

√√√√√ 1

|T |

 |T |∑
t=1

∣∣∣∣∣∣x̄G
t,[x ,y ] − x̄t,[x ,y ]

∣∣∣∣∣∣2
2

, (4.24)

where t is a time step, |T | is the number of time steps for a particular robot and course,

and x̄G
t,[x ,y ] and x̄t,[x ,y ] are the 2D positions for the ground-truth and estimated states. We

computed the heading MAE EHE was computed as

EHE =

√√√√√ 1

|T |

 |T |∑
t=1

∣∣θGt − θt∣∣
, (4.25)

where θGt and θt are the ground-truth and estimated robot headings.

Since FLRD and LRDO experiments used multiple models per robot, we computed a

mean and variance of the errors to determine the performance of each model. To describe

how we computed the error means and standard deviations, let us briefly consider the es-

timated states from one robot, one course, and an FLRD measurement model. Let x̄t,s,i

represent the estimated robot state at time step t. The estimated robot state was pro-

duced by a state estimator that used an FLRD model. We fine-tuned the model with

the i -th bootstrapped dataset, which had a sample size of s. Here, 1 ≤ i ≤ 100 and

s = {all , 104, 5× 103, 2.5× 103, 5× 102, 1× 102}. To compute the error statistics, we first

computed the position RMSE EPE ,s,i and heading MAE EHE ,s,i for the s-th sample size and

i -th bootstrapped dataset using (4.24) and (4.25), respectively. Then we computed the posi-

tion and heading error means and standard deviations for a given sample size s. The position
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Table 4.1: Course 4 EKF position errors (in centimeters) for the baseline, ADO, and RDO
models. The best EKF position error is emphasized amongst the baseline, ADO, RDO, and
FLRD models for each robot. An asterisk “∗” denotes the best error for each robot in the
following table.

Baseline ADO RDO

R1 6.8 4.8 4.3∗
R2 8.4 9.9 4.6∗
R3 10.4 6.1 5.9∗
R4 11.6 9.6 9.1∗
R5 9.2 8.9 4.6∗

error mean and standard deviation were computed as:

EµPE ,s =
1

100

100∑
i=1

EPE ,s,i , (4.26)

EσPE ,s =

√√√√ 1

100

100∑
i=1

(
EPE ,s,i − EµPE ,s

)2
. (4.27)

For a given sample size s, the heading error mean EµHE ,s and standard deviation EσHE ,s were

computed using the same equations.

For each combination of a robot, course, and SDSMM trained using bootstrap (FLRD or

LRDO), and dataset sample size, we computed a position error mean and standard deviation

and a heading error mean and standard deviation.

4.3.2.2 Comparing the Baseline, ADO, and RDO

We compared the baseline, ADO, and RDO to measure the difference in performance

amongst the three models. Through our results, we observed three characteristics when we

compared the position errors for the three models. Our first observation showed that RDO

is superior to the baseline and ADO models, no matter what state estimator is used. Tables

4.1 and 4.2 show that RDO reduced the EKF position error by 21.3% to 50% and 10.4%
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Table 4.2: Course 7 EKF position errors (in centimeters) for the baseline, ADO, and RDO
models. The best EKF position error is emphasized amongst the baseline, ADO, RDO, and
FLRD models for each robot. An asterisk “∗” denotes the best error for each robot in the
following table.

Baseline ADO RDO

R1 12.9 40.8 8.7∗
R2 12.0 13.7 6.4∗
R3 16.2 21.6 11.7∗
R4 15.5 30.4 12.2∗
R5 12.2 18.6 7.9∗

Table 4.3: Course 4 EKPF position errors (in centimeters) for the baseline, ADO, and
RDO models. The best EKPF position error is emphasized amongst the baseline, ADO,
RDO, and FLRD models for each robot. An asterisk “∗” denotes the best error for each
robot in the following table.

Baseline ADO RDO

R1 5.9 5.3 3.6∗
R2 8.4 11.8 4.2∗
R3 9.1 6.4 4.0∗
R4 13.6 10.5 5.7∗
R5 7.7 9.4 3.5∗

Table 4.4: Course 7 EKPF position errors (in centimeters) for the baseline, ADO, and
RDO models. The best EKPF position error is emphasized amongst the baseline, ADO,
RDO, and FLRD models for each robot. An asterisk “∗” denotes the best error for each
robot in the following table.

Baseline ADO RDO

R1 13.5 27.2 7.2∗
R2 10.8 15.7 5.4∗
R3 16.5 22.2 10.8∗
R4 19.0 33.5 9.4∗
R5 12.2 21.1 6.7∗
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to 78.7% when compared to their baseline and ADO counterparts, respectively. Likewise,

tables 4.3 and 4.4 show that RDO reduced the EKPF position error by 34.5% to 58% and

32.1% to 73.2% when compared to their baseline and ADO counterparts, respectively.

Our second observation highlighted the importance of accurate measurement noise by

comparing the baseline and ADO. For course 4 and both state estimators (tables 4.1 and

4.3), ADO outperformed the baseline for three out of five robots: robots 1, 3, and 4. We note

that ADO for robot 5 also outperformed its baseline counterpart for the EKF on course 4.

However, for the same robot and course, ADO had a higher position error than the baseline

for the EKPF.

When we examined the ADO position errors for course 7, we observed that the ADO

errors were significantly higher than their baseline counterparts. Furthermore, the percent

increase between the baseline and ADO models was not affected by the state estimator. The

position errors between the baseline and ADO increased by 14.2% to 216.3% for the EKF and

34.5% to 101.5% for the EKPF. Since the baseline and ADO models output similar expected

measurements, the performance difference between the baseline and ADO is likely due to

the measurement noise. Specifically, the ADO predicted measurement noise is smaller than

the fixed measurement noise used by the baseline. The smaller measurement noise made

both state estimators weigh the inaccurate ADO measurements more, which increased the

localization error.

Compared to the EKF, the third observation showed that the RDO position errors con-

sistently improved when we used the EKPF, which is a more expressive state estimator.

However, the baseline and ADO position errors were not consistently better when the EKPF

was used. The EKPF baseline had better position errors than the EKF baseline for three

robots on course 4 and one robot on course 7. For ADO, the results were relatively worse

than the baseline. An EKPF ADO outperformed its EKF counterpart in only one case.
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Table 4.5: Course 4 EKF position errors (in centimeters) for FLRD models. The best error
is emphasized amongst baseline, ADO, RDO, and FLRD models. An asterisk “∗” denotes
the best error(s) for each robot in the following table.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

R1 4.5± 0.2 4.3± 0.2 ∗ 4.3± 0.2 ∗ 4.3± 0.2 ∗ 4.5± 0.2 4.9± 0.5

R2 6.3± 5.4 5.5± 0.4 5.7± 0.5 5.2± 0.2 ∗ 5.5± 0.2 5.7± 0.2

R3 5.5± 0.1 ∗ 5.5± 0.1 ∗ 5.6± 0.1 5.8± 0.1 6.5± 0.1 6.7± 0.2

R4 8.4± 0.2 8.5± 0.2 8.5± 0.2 8.5± 0.2 8.7± 0.2 8.3± 0.3 ∗
R5 4.6± 0.1 ∗ 4.6± 0.2 4.8± 0.1 4.8± 0.1 5.1± 0.2 4.7± 0.2

Table 4.6: Course 7 EKF position errors (in centimeters) for FLRD models. The best error
is emphasized amongst baseline, ADO, RDO, and FLRD models. An asterisk “∗” denotes
the best error(s) for each robot in the following table.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

R1 9.1± 0.2 9.1± 0.2 9.2± 0.2 9.4± 0.3 10.3± 0.4 10.3± 0.6

R2 6.7± 0.5 6.8± 0.2 6.8± 0.2 6.9± 0.1 7.7± 0.2 8.7± 0.3

R3 21.6± 8.7 16.3± 3.5 15.2± 2.7 14.0± 2.0 11.5± 0.2 13.7± 1.3

R4 11.0± 0.7 12.9± 19.0 10.7± 0.5 10.3± 0.4 11.0± 2.4 10.3± 0.5

R5 8.5± 1.1 7.8± 0.5 7.7± 0.1 7.7± 0.2 7.8± 0.2 8.9± 0.6

Table 4.7: Course 4 EKPF position errors (in centimeters) for FLRD models. The best
error is emphasized amongst baseline, ADO, RDO, and FLRD models. An asterisk “∗”
denotes the best error(s) for each robot in the following table.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

R1 3.7± 0.3 3.5± 0.3 3.4± 0.3 3.3± 0.2 3.3± 0.2 3.9± 0.8

R2 3.7± 0.7 3.5± 0.4 3.7± 0.5 3.5± 0.3 3.7± 0.2 4.1± 0.3

R3 3.9± 0.1 3.9± 0.1 3.8± 0.1 3.9± 0.1 4.2± 0.1 4.5± 0.3

R4 5.5± 0.2 5.4± 0.2 5.8± 0.3 6.1± 0.3 5.9± 0.3 6.3± 0.4

R5 3.7± 0.8 3.5± 0.5 3.5± 0.4 3.4± 0.4 3.7± 0.2 3.7± 0.3
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Table 4.8: Course 7 EKPF position errors (in centimeters) for FLRD models. The best
error is emphasized amongst baseline, ADO, RDO, and FLRD models. An asterisk “∗”
denotes the best error(s) for each robot in the following table.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

R1 7.6± 0.7 7.6± 0.7 7.6± 0.7 7.7± 0.7 8.0± 0.6 9.3± 1.3

R2 5.7± 0.3 5.8± 1.0 5.7± 0.2 5.7± 0.2 6.4± 0.4 7.3± 0.5

R3 19.9± 4.9 13.9± 3.9 12.6± 2.9 11.8± 1.9 9.9± 0.3 11.9± 1.5

R4 9.3± 1.1 9.5± 2.3 9.4± 0.5 9.7± 0.6 11.6± 7.4 10.1± 1.5

R5 6.8± 0.5 6.8± 0.4 7.1± 0.5 7.0± 0.5 7.1± 0.6 9.3± 0.8

4.3.2.3 Comparing RDO and FLRD

We compared RDO and FLRD to measure the similarity in performance between RDO

and FLRD. With these results, we observed three findings. First, we observed that FLRD

achieved position errors that were comparable to RDO in most cases. For example, the

results for course 4 showed that FLRD generally had position errors that were either lower

than or within 2 to 8 millimeters of their RDO counterpart (Tables 4.5 and 4.7). The worst-

case difference between FLRD and RDO was 1.7 centimeters (sample size “all” for robot 2 in

table 4.5). Here, one experiment diverged, causing the RMSE mean and standard deviation

to increase.

We also observed that there was a greater difference between RDO and FLRD for course

7. Most RDO and FLRD results were comparable for robots 1, 2, 4, and 5. For sample sizes

as small as 2,500, the difference between RDO and FLRD ranged from 3 and 7 millimeters.

However, as the sample size approached 100, we observed larger differences between RDO

and FLRD RMSEs. At a sample size of 100, the range in differences increased, spanning

from 1 to 2.6 centimeters for both state estimators.

All FLRD experiments did not perform as well as RDO on course 7. Specifically, robot 3

performed noticeably worse on this course for sample sizes “all” down to 2,500. We do not

believe that the higher errors are due to issues with training. Robot 3 had the second-highest
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Figure 4.2: Robot 3 predicted distance and bearing residuals and noises for FLRD models.
Compared to RDO at the same input states, FLRD predicted similar measurement
residuals and noises from sample size “all” down to 2,500 for course 7. Therefore, we do
not believe the FLRD localization results for robot 3 diverged due to training divergence.
Here, z is a sensor measurement, while µ and σ are derived from the MDN outputs.

Table 4.9: Robot 3 position errors (in centimeters) for the ADO and RDO models on
Course 1. The best error is emphasized amongst ADO, RDO, and FLRD models. An
asterisk “∗” denotes the best error(s) for each robot in the following table.

ADO RDO

EKF 9.5 5.7 ∗
EKPF 10.8 4.2 ∗
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Table 4.10: Robot 3 course 1 position RMSEs (in centimeters) for RDO and FLRD models.
The best error is emphasized amongst ADO, RDO, and FLRD models. An asterisk “∗”
denotes the best error(s) for each robot in the following table.

Real Data Sample Sizes

All Real Data 10, 000 5, 000 2, 500 500 100

EKF 5.3± 0.1 ∗ 5.3± 0.1 5.3± 0.1 5.4± 0.1 5.7± 0.1 6.0± 0.4

EKPF 3.9± 0.1 ∗ 3.9± 0.1 3.9± 0.1 4.0± 0.1 4.1± 0.2 6.6± 0.8

likelihood means and standard deviations of all five robots (Table 3.3 in Section 3.6.2.1).

When evaluated at the same input states, FLRD predicted similar measurement residuals

and noises as RDO at multiple sample sizes (Figure 4.2), indicating that FLRD should have

achieved similar errors as RDO. For both filters, FLRD also performed comparably to RDO

on course 4 (Tables 4.5 and 4.7) and on course 1 (Tables 4.9 and 4.10), which we used as an

auxiliary test course.

We also noticed that robot 4 diverged once for sample size 10,000 (Table 4.6) and seven

times for sample size 500 (Table 4.8), causing the RMSE means and standard deviations to

increase. However, the remaining 99 and 93 results (for sizes 10,000 and 500, respectively)

were comparable to RDO.

We believe the arrangement of the landmarks partially caused the greater differences

for course 7. Landmarks were clustered together on opposite ends of the data collection

workspace [25]. As a result, the robots might have had difficulty identifying landmarks or

localizing since they were clustered instead of uniformly distributed.

Lastly, the results imply that combining an EKF with an SDSMM (RDO or FLRD)

may be useful for devices with limited resources or real-time applications, even though this

combination did not yield the lowest errors. When using an SDSMM, we observed that

the EKF and EKPF achieved the second-lowest and smallest errors, respectively. However,

due to the number of computations, some devices or real-time applications may not have

the resources or time needed to use an EKPF with an SDSMM. On the other hand, when
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Table 4.11: Course 4 EKF position errors (in centimeters) for LRDO models. A shaded cell
means that LRDO performed better than FLRD for the same robot and sample size. A
dagger (†) emphasizes that the EKF diverged with 10% or more of the LRDO models.

Real Data Sample Sizes

10, 000 5, 000 2, 500 500 100

R1 4.7± 0.4 4.3± 0.3 5.1± 0.8 5.4± 1.0 22.3± 38.5 †
R2 113.7± 928.8 † 22.5± 42.0 † 7.5± 20.2 10.6± 21.3 20.0± 16.8 †
R3 6.0± 0.1 5.9± 0.1 5.9± 0.1 6.7± 0.4 22.7± 26.3 †
R4 39.8± 263.7 † 9.0± 0.8 9.6± 7.8 9.0± 1.1 27.1± 34.1 †
R5 4.6± 0.2 4.6± 0.2 4.7± 0.2 6.6± 6.9 19.3± 12.9 †

Table 4.12: Course 7 EKF position errors (in centimeters) for LRDO models. A shaded cell
means that LRDO performed better than FLRD for the same robot and sample size. A
dagger (†) emphasizes that the EKF diverged with 10% or more of the LRDO models.

Real Data Sample Sizes

10, 000 5, 000 2, 500 500 100

R1 10.0± 2.4 9.4± 0.9 10.0± 1.1 11.0± 1.8 23.1± 10.9 †
R2 6.6± 0.5 7.6± 5.1 7.3± 0.3 8.8± 2.4 23.0± 14.4 †
R3 26.0± 42.8 † 23.9± 42.5 † 33.4± 42.3 † 35.8± 43.9 † 31.8± 22.3 †
R4 32.2± 64.2 † 37.2± 109.6 † 21.8± 34.3 † 38.1± 56.9 † 34.6± 48.1 †
R5 9.9± 15.3 8.2± 4.8 8.3± 2.6 8.5± 1.1 45.4± 48.0 †

appropriate, such devices or applications could use an EKF with an SDSMM to trade better

accuracy for faster computations.

4.3.2.4 Comparing LRDO and FLRD

FLRD and LRDO were compared to measure the benefit of transfer learning (FLRD)

versus learning with limited data only (LRDO). Generally, the results showed that FLRD

performed as good or better than LRDO. LRDO had better mean position errors in 8 out

of 100 cases (shaded in Tables 4.5, 4.7, 4.6, and 4.8). However, the performance gains in

localization were negligible in six cases, ranging from 1 to 2 millimeters. The performance
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Table 4.13: Course 4 EKPF position errors (in centimeters) for LRDO models. A shaded
cell means that LRDO performed better than FLRD for the same robot and sample size. A
dagger (†) emphasizes that the EKPF diverged with 10% or more of the LRDO models.

Real Data Sample Sizes

10, 000 5, 000 2, 500 500 100

R1 3.6± 0.4 3.4± 0.3 4.1± 0.8 4.4± 1.1 59.7± 50.2 †
R2 4.3± 4.7 4.5± 3.2 4.2± 3.0 9.4± 17.9 † 89.3± 81.9 †
R3 4.1± 0.1 4.0± 0.1 4.0± 0.1 4.6± 0.4 114.7± 125.5 †
R4 5.8± 0.3 6.0± 0.3 6.0± 0.3 6.5± 0.9 59.9± 40.2 †
R5 3.5± 0.6 3.6± 0.7 3.7± 0.7 4.2± 0.9 71.5± 65.0 †

Table 4.14: Course 7 EKPF position errors (in centimeters) for LRDO models. A shaded
cell means that LRDO performed better than FLRD for the same robot and sample size. A
dagger (†) emphasizes that the EKF diverged with 10% or more of the LRDO models.

Real Data Sample Sizes

10, 000 5, 000 2, 500 500 100

R1 8.2± 4.0 7.5± 0.7 8.2± 1.1 10.7± 13.9 † 87.1± 88.4 †
R2 6.8± 7.9 7.3± 9.7 6.2± 0.5 7.8± 2.4 90.0± 89.9 †
R3 15.6± 10.9 11.5± 3.8 17.7± 21.8 † 22.6± 22.0 † 152.1± 132.4 †
R4 13.8± 20.5 † 13.9± 28.0 11.8± 11.5 12.4± 13.4 63.0± 63.4 †
R5 7.5± 8.3 6.6± 0.6 6.8± 0.6 7.5± 2.7 45.4± 46.9 †
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gains for the other two cases were 5 and 11 millimeters, which were at sample size 5,000 for

robots 5 and 3 course 7 (respectively); see Table 4.14.

The results also showed a noticeable difference in performance at a sample size of 100,

which demonstrated the benefit of the proposed method. At sample size 100, all LRDO

localization experiments diverged for both filters (Tables 4.11, 4.13, 4.12, and 4.14). Aside

from sample size 100, LRDO also diverged 16 other times for robots 1 through 4.

To understand why LRDO failed localization and FLRD did not fail localization, we

compared the predicted measurement residuals and noises for all LRDO and FLRD models

at sample size 100 and an RDO model. Qualitatively, Figure 4.3 shows that, at sample

size 100, FLRD learned measurement distributions that were close to RDO. However, the

LRDO predicted measurement residuals and noises varied significantly from RDO. We also

observed that the distance measurements had a bias near -8 centimeters relative to the

real sensor’s distance measurements. From the figure, we conclude that FLRD learned

reasonable measurement distributions at sample size 100 due to transfer learning. Pre-

training potentially helped the model learn a relationship between the input states and the

output a priori measurements. Fine-tuning then helped the model learn the measurement

bias and noise for each sensor.

Since LRDO learned relatively poor measurement distributions, we believe the follow-

ing occurred during localization. During an EKF update, inaccurately high measurement

residuals caused over-corrections in the pose. Although high measurement noise reduces the

confidence in measurements and, in turn, lessens over-corrections (via the Kalman gain), high

noise also reduces relatively smaller (possibly more accurate) pose corrections. Inaccurately

high residuals and noises also impacted measurement and transition probabilities, which in

turn affected importance weighting. For example, over-corrections might have placed the

sampled state x̂t far away from the previous state xt−1, producing near-zero transition prob-

abilities. Inaccurately high measurement residuals or noises might have also produced low
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Figure 4.3: Comparing an RDO model with FLRD and LRDO models at sample size 100.
The graphs illustrate the test set measurement residuals and noises for Robot 1. Each
graph was created using the predictions from all 100 FLRD and LRDO models at sample
size 100 and an RDO model. z is a sensor measurement. µ and σ are the MDN outputs.
Compared to all LRDO models, the graphs illustrate that all FLRD models (the proposed
approach) produced estimates closer to RDO (the prior approach). Specifically, the
residuals (z − µ) and standard deviations (σ) vary significantly for LRDO. This figure
shows that transfer learning helped FLRD achieve performance comparable to RDO with
fewer data and produce more accurate estimates than LRDO at a small sample.
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or near-zero measurement probabilities, causing particles to have similar probabilities and

degrade the performance of the filter.

4.4 Real-World Experiments II: A Long-term Localization Study

4.4.1 Experimental Setup

We ran localization experiments using all sessions from the University of Michigan’s

NCLT dataset [6]. We used the pole-detection method and the Particle Filter (PF) proposed

in Schaefer et al. [47] as our baseline. Schaefer et al. [47] defined the PF state transition

model as a trivariate normal distribution with Gaussian motion noise R: x̄
(i)
t ∼ N (x̄

(i)
t−1, R).

The measurement model in [47] was a pole-detection algorithm that used a Velodyne HDL-

32E LiDAR sensor, which was mounted atop a Segway robot. Given a point cloud captured

using the LiDAR sensor, the pole-detection method outputted four (4) parameters for each

pole detected within the cloud. We refer to these four parameters as a pole measurement.

Each pole measurement zt,k was composed of the 2D Cartesian position of the pole relative to

the Segway robot (zx , zy ), the width of the pole zw , and a pole score zs : zt,k = {zx , zy , zw , zs}.

Here, t referred to the timestamp of the LiDAR point cloud, while k referred to the index of

a pole that was observed in the point cloud. The PF measurement probability was defined

as

p(zt,k | x̄(i)
t , mk) = N

(∣∣∣∣∣∣transform(z
[x ,y ]
t,k , x̄

(i)
t )−mk

∣∣∣∣∣∣ ,σ
)

. (4.28)

The function transform(z
[x ,y ]
t,k , x̄

(i)
t ) transformed the pole position z

[x ,y ]
t,k from the vehicle co-

ordinate frame to world coordinate frame, outputting the expected pole position. mk is

the position of a pole in the global map that was associated with the pole observed in the

measurement zt,k . All poles in the global map are defined in the world coordinate frame.

Finally, σ is the isotropic pole position noise. In [47], the pole position noise was a fixed

value of σ2 = 1.5 meters. The authors used a KD-tree to perform data association given the
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expected pole position in the world coordinate frame. The KD-tree outputted a pole in the

global map that was closest to the expected pole position for each input.

Our proposed measurement models combined the baseline measurement model with an

SDSMM. We labeled the SDSMM-augmented LPDs as LPD-CD, LPD-1Day, and LPD-

9Days. Each SDSMM represented an MDN that was trained under a particular scenario.

LPD-CD, where “CD” means “clear days”, was trained using data collected during clear

weather and ample daylight. LPD-1Day was trained with data from the first session (2012-

01-08). For LPD-9Days, we fine-tuned LPD-1Day using data from the following nine sessions

(2012-01-15 through 2012-03-17). The training details for each model was described in

Section 2.8. Each SDSMM learned to predict the state-dependent measurement bias and

noise given a pole measurement from the baseline model. That is, a combined state λt,k for

these experiments was a pole measurement zt,k : λt,k = zt,k . We then used the predicted

bias µt,k (the MDN output mean) to augment the expected pole position from the baseline.

Mathematically, our measurement probability was defined as

p(zt,k | x̄(i)
t , mk) = N

(∣∣∣∣∣∣transform(z
[x ,y ]
t,k + µt,k , x̄

(i)
t )−mk

∣∣∣∣∣∣ , max(diag(Σt,k))
)

, (4.29)

where [µt,k , Σt,k ] = g(λt,k ; w) and max(diag(Σt,k)) extracts the maximum variance value

along the main diagonal of the state-dependent measurement noise Σt,k . We computed the

measurement noise using this method to mimic the isotropic measurement noise in [47].

4.4.2 Results and Discussion

4.4.2.1 Localization Metrics

For each session, we computed a root-mean-squared error (RMSE) and a mean absolute

error (MAE) for both the position and angle errors. The RMSE and MAE were computed

between the ground truth and estimated states. The estimated states came from the Particle

Filter. To derive the estimated states at time t, we followed Schaefer et al. [47] in computing
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the mean of the best 10% of the particles. The ground truth states came from the SLAM

solution that Carlevaris-Bianco et al. [6] derived for the NCLT dataset.

4.4.2.2 Comparing LPD and LPD-CD

We compared LPD (the baseline) and the SDSMM-augmented LPDs to measure the

differences in performance from incorporating the measurement bias (LPD-CDµ), the mea-

surement noise (LPD-CDΣ), and both (LPD-CD with no subscript). Table 4.15 shows the

position RMSEs for each session using the four measurement models. Through these results,

we observed three findings. Like in [58], we first observed that employing the state-dependent

bias, noise, or both generally reduced the localization position RMSEs (Tables 4.15 and 4.16).

LPD-CDµ achieved lower position RMSEs than LPD (the baseline) in 9 out of 23 sessions.

LPD-CDΣ achieved lower position RMSEs than LPD in 20 out of 23 sessions, performing

relatively better than LPD-CDµ. Together, both models performed the best (in terms of

position RMSEs) in 6 out of 23 sessions, five of which were achieved by LPD-CDΣ.

By comparing the results for LPD-CDµ and LPD-CDΣ alone, our second observation

was that predicting measurement noise produces lower position RMSEs than predicting

measurement bias. This observation suggests that predicting an accurate measurement noise

may be more important for this experiment, yielding more accurate localization. In 20 out of

23 sessions, LPD-CDΣ outperformed LPD-CDµ. Relative to LPD-CDµ, LPD-CDΣ decreased

the position RMSEs by almost 20% on average. In the best case, LPD-CDΣ decreased the

position RMSE by as much as 98% (for session 2013-02-23). However, this trend does not hold

true for all sessions. Specifically, LPD-CDµ outperformed LPD-CDΣ in three sessions: 2012-

01-15, 2012-05-26, and 2012-11-16. For sessions 2012-01-15 and 2012-05-26, the difference

in position RMSEs were small: 1.1 centimeters for the former and 0.7 centimeters for the

latter. For session 2012-11-16, we observed an almost 400% increase in the position RMSE

for LPD-CDΣ.
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Table 4.15: Testing set position RMSEs (in centimeters) for the baseline and
SDSMM-augmented measurement models. The baseline was the standalone LPD, while the
SDSMM-augmented measurement models were LPD-CDµ, LPD-CDΣ, and LPD-CD. An
asterisk “∗” denotes the best error for each session.

Sessions Measurement Models

LPD LPD-CDµ LPD-CDΣ LPD-CD

2012-01-08 17.8 18.3 17.2 15.8 ∗
2012-01-15 22.5 21.6 ∗ 22.7 21.7

2012-01-22 22.2 21.6 19.9 19.0 ∗
2012-02-12 100.5 100.5 100.0 ∗ 100.1

2012-02-18 22.1 21.9 18.6 ∗ 18.8

2012-02-19 19.4 19.2 19.1 17.5 ∗
2012-03-25 26.2 26.6 24.3 24.1 ∗
2012-03-31 18.4 18.2 16.6 16.0 ∗
2012-04-29 25.1 25.1 22.5 22.2 ∗
2012-05-11 22.5 22.1 19.5 18.9 ∗
2012-05-26 21.7 21.0 21.7 20.9 ∗
2012-06-15 23.8 23.8 20.2 18.6 ∗
2012-08-04 34.0 32.4 24.5 23.4 ∗
2012-08-20 26.4 26.5 21.9 19.5 ∗
2012-09-28 31.1 31.9 22.4 21.7 ∗
2012-10-28 33.8 35.7 28.8 ∗ 28.8 ∗
2012-11-04 45.6 46.9 27.2 ∗ 29.1

2012-11-16 72.2 80.1 399.9 46.1 ∗
2012-11-17 37.7 38.3 35.3 32.7 ∗
2012-12-01 49.2 49.9 35.8 34.6 ∗
2013-01-10 27.8 28.6 17.6 16.8 ∗
2013-02-23 548.0 2905.6 55.0 54.3 ∗
2013-04-05 92.0 91.8 86.0 ∗ 86.7
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Figure 4.4: LPD and LPD-CD trajectories during session 2013-02-23. The LPD trajectory
(top graph) drifted away from the ground truth in the middle and top of the graph.
However, LPD-CD (the SDSMM-augmented model) trajectory (bottom graph) remained
close to the ground truth. Estimated trajectories are red, ground-truth trajectories are
gray, and landmarks are blue.
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Table 4.16: Testing set angle RMSEs (in degrees) for the baseline and SDSMM-augmented
measurement models. The baseline was a standalone LPD, while the SDSMM-augmented
measurement models were LPD-CDµ, LPD-CDΣ, and LPD-CD. An asterisk “∗” denotes
the best error for each session.

Sessions Measurement Models

LPD LPD-CDµ LPD-CDΣ LPD-CD

2012-01-08 0.857 0.815 0.87 0.768 ∗
2012-01-15 0.999 0.975 1.017 0.949 ∗
2012-01-22 1.291 1.273 ∗ 1.316 1.273 ∗
2012-02-12 1.04 1.005 1.059 0.994 ∗
2012-02-18 0.938 0.895 0.952 0.884 ∗
2012-02-19 0.944 0.909 0.956 0.889 ∗
2012-03-25 1.836 1.837 1.82 1.815 ∗
2012-03-31 0.973 0.953 0.99 0.933 ∗
2012-04-29 1.079 1.031 1.078 1.018 ∗
2012-05-11 0.998 0.96 ∗ 1.045 0.973

2012-05-26 0.889 0.89 0.924 0.875 ∗
2012-06-15 0.879 0.857 0.904 0.834 ∗
2012-08-04 1.143 1.138 1.117 1.094 ∗
2012-08-20 0.941 0.928 0.934 0.882 ∗
2012-09-28 0.952 0.926 0.948 0.877 ∗
2012-10-28 0.919 0.897 0.924 0.851 ∗
2012-11-04 0.996 0.995 0.958 0.916 ∗
2012-11-16 2.031 2.075 2.43 1.983 ∗
2012-11-17 0.959 0.95 0.91 0.84 ∗
2012-12-01 0.93 0.943 0.89 0.825 ∗
2013-01-10 0.911 0.886 0.899 0.823 ∗
2013-02-23 1.769 6.205 0.88 0.819 ∗
2013-04-05 1.028 1.001 1.028 0.935 ∗
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Our third observation was that LPD-CD (which used both bias and noise) achieved the

lowest position RMSEs for 17 out of 23 sessions (or about 75% of the sessions). Compared to

LPD, LPD-CDµ, and LPD-CDΣ, LPD-CD reduced the position RMSE by 23.9%, 24.6%, and

9.7% on average (respectively) during the sessions where LPD-CD had the lowest position

RMSE. Figure 4.4 depicts one session where LPD-CD outperformed LPD significantly. In

cases where LPD-CD did not achieve the lowest position RMSE, the performance difference

was sub-centimeter (for sessions 2012-01-15, 2012-02-18, 2012-10-28, and 2013-04-05) or less

than two centimeters (for session 2012-11-04). Therefore, LPD-CD arguably achieved the

lowest position RMSEs overall.

As for the angle RMSEs (Table 4.16), our fourth observation was that LPD-CD achieved

the lowest errors for 22 out of 23 test sessions. However, aside from session 2013-02-23, there

was a negligible, sub-degree performance difference amongst the four measurement models

across all 23 test sessions. For session 2013-02-23, LPD and LPD-CDµ had larger angle

RMSEs than the other two models.

4.4.2.3 Comparing LPD-CD, LPD-1Day, and LPD-9Days

We compared the LPD-CD, LPD-1Day, and LPD-9Days models to measure the dif-

ferences in performance as the data collection conditions changed. Since Section 4.4.2.2

demonstrated that using both measurement bias and noise achieved the lowest errors, our

discussion focused on such implementation for the three models. From our analysis, we iden-

tified three findings. Our first finding was all three models demonstrated improvement over

the baseline LPD, especially during the last eleven days (Figure 4.5). During the last eleven

days, the LPD-CD, LPD-1Day, and LPD-9Days reduced the position RMSE by a median of

10.6, 10.9, and 10.5 centimeters, respectively. In the extreme case, the three models reduced

the position RMSE by 493 to 495 centimeters for session 2013-02-23.

Our second finding was that the three models achieved similar position RMSEs for most

sessions. The median difference between the best and worst position RMSES for each session

94



Table 4.17: Testing set position RMSEs (in centimeters) for the LPD-CD, LPD-1Day, and
LPD-9Days models. An asterisk “∗” denotes the best error for each session. Training
sessions (for any model) were omitted. Aside from LPD-1Day during session 2012-05-26,
the three SDSMM-augmented models performed better than the baseline LPD.

Sessions Measurement Models

LPD-CD LPD-1Day LPD-9Days

2012-03-25 24.1 ∗ 25.4 24.4

2012-03-31 16.0 ∗ 16.1 16.3

2012-04-29 22.2 ∗ 22.4 22.4

2012-05-11 18.9 ∗ 20.9 19.0

2012-05-26 20.9 ∗ 39.3 21.1

2012-06-15 18.6 ∗ 20.3 19.1

2012-08-04 23.4 23.2 ∗ 23.6

2012-08-20 19.5 22.3 19.3 ∗
2012-09-28 21.7 21.5 19.6 ∗
2012-10-28 28.8 28.3 28.2 ∗
2012-11-04 29.1 ∗ 30.3 32.8

2012-11-16 46.1 47.5 44.3 ∗
2012-11-17 32.7 32.6 32.0 ∗
2012-12-01 34.6 33.5 ∗ 34.2

2013-01-10 16.8 16.1 16.0 ∗
2013-02-23 54.3 53.5 ∗ 54.1

2013-04-05 86.7 85.5 ∗ 86.3

95



Table 4.18: Testing set angle RMSEs (in degrees) for the LPD-CD, LPD-1Day, and
LPD-9Days models. An asterisk “∗” denotes the best error for each session. Training
sessions (for any model) were omitted.

Sessions Measurement Models

LPD-CD LPD-1Day LPD-9Days

2012-03-25 1.815 ∗ 1.821 1.823

2012-03-31 0.933 ∗ 0.933 ∗ 0.938

2012-04-29 1.018 1.015 ∗ 1.016

2012-05-11 0.973 ∗ 0.981 0.976

2012-05-26 0.875 ∗ 0.939 0.878

2012-06-15 0.834 ∗ 0.859 0.834 ∗
2012-08-04 1.094 1.075 ∗ 1.085

2012-08-20 0.882 ∗ 0.899 0.888

2012-09-28 0.877 ∗ 0.882 0.884

2012-10-28 0.851 0.852 0.850 ∗
2012-11-04 0.916 0.913 ∗ 0.919

2012-11-16 1.983 1.982 1.971 ∗
2012-11-17 0.840 0.826 ∗ 0.837

2012-12-01 0.825 0.820 ∗ 0.823

2013-01-10 0.823 0.832 0.818 ∗
2013-02-23 0.819 ∗ 0.820 0.820

2013-04-05 0.935 ∗ 0.938 0.937

Table 4.19: Differences in position RMSEs (in centimeters) for sessions that had the same
or similar conditions to session 2012-05-26.

Sessions
Data Collection Conditions Differences in

Time Sky Foliage Snow Position RMSE

2012-05-26 Evening Sunny Yes No 18.4

2012-08-20 Evening Sunny Yes No 3.0

2012-09-28 Evening Sunny Yes No 2.1

2012-02-18 Evening Sunny No No 0.3

2012-11-16 Evening Sunny No No 3.2

2012-12-01 Evening Sunny No No 1.1

96



Figure 4.5: Percentage decrease of position RMSEs over baseline LPD for the last eleven
sessions. This figure depicts how much the SDSMM-augmented LPD models (LPD-CD,
LPD-1Day, and LPD-9Days) decreased the position RMSEs when compared to the
baseline.
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Figure 4.6: Differences in performance for LPD-1Day on days that had the same data
collection conditions. This figure depicts the LDP-1Day trajectories for sessions 2012-05-26
(top) and 2012-08-20 (bottom). The bottom graph shows that the model performed better
along a similar trajectory on different days with the same data collection conditions. In
both graphs, the ground-truth trajectory is gray, the estimated trajectory is red, and the
blue dots represent pole landmarks.
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was 1.2 centimeters (Table 4.17), while the 75th percentile difference was 2.1 centimeters.

There were three sessions where the difference in position RMSEs were greater than 2.1

centimeters: 2012-11-04, 2012-11-16, and 2012-05-26. For sessions 2012-11-04 and 2012-11-

16, the worst and best performing models were not the same, which did not indicate a best

or worst performing model. There was also a stark difference in performance for session

2012-05-26. The LPD-1Day model had a position RMSE that was almost 2× greater than

LPD-CD and LPD-9Days. However, we believe the stark difference in position RMSE is an

outlier. We came to this conclusion by analyzing the differences in position RMSEs for five

sessions that had the same or similar data collection conditions as session 2012-05-26. For

the five sessions, we observed that the position RMSEs were comparable amongst LPD-1Day

and the other two models (Table 4.19). We also examined the sessions (in Table 4.19) where

the robot traversed similar trajectories in which the error occurred (for example, Figure 4.6).

The results show that the robot trajectory was closer to the ground truth during the other

sessions.

Our final finding was that all three models had comparable angle RMSEs (Table 4.18).

Although LPD-CD achieved the lowest angle RMSE for most sessions, the performance

differences amongst all three models were less than one degree.
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Chapter 5: Conclusion and Future Work

This chapter concludes this dissertation by reviewing the discussions in each chapter,

summarizing our experiments, and describing our findings (Section 5.1). Afterward, we

discuss potential future work (Section 5.2).

5.1 Conclusion

This dissertation introduced a novel method called state-dependent sensor measurement

models (SDSMM). An SDSMM learns to predict the measurement bias and noise of a sensor

given the states of a robot and its environment. In Chapter 1, we described the motivation

behind this dissertation. Then we discussed the related work, including methods for learning

sensor measurement models and learning such models with limited data.

Chapter 2 discussed SDSMMs in detail and described how to implement SDSMMs using

Mixture Density Networks (MDNs). Instead of using a traditional MDN with a common

variance, we employed an MDN with a full covariance matrix, which increases the expres-

siveness of the MDN. We also analyzed how the dimension growth and time complexity of

an MDN as we increase the number of components are in the distribution or the number of

dimensions in the distribution.

We evaluated our proposed method using a simulated experiment and two real-world

experiments. We quantitatively and qualitatively showed that the MDN learned to predict

the true measurement bias and noise for the simulated experiment. The first real-world

experiment discussed how to learn an SDSMM for a camera-based range-and-bearing sen-

sor measurement model. We evaluated our proposed method against an a priori sensor

model (the baseline) using an indoor multi-robot localization and mapping dataset. The
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results showed that our proposed method learned better expected measurements (which in-

corporated the measurement bias) and measurement noises compared to the a priori model.

Particularly, our quantitative results showed that the error between the a priori expected

measurement and real sensor measurement was 3.4× to 5.7× larger than the MDN errors.

Our second real-world experiment discussed how to learn an SDSMM for a LiDAR-based

pole extraction sensor model. We used a state-of-the-art pole extractor (LPD) as the baseline.

An SDSMM was trained to compensate for the measurement error in the baseline method.

We then evaluated the baseline and SDSMM against the standalone baseline method using

a long-term indoor and outdoor vehicle localization dataset. The results showed that our

proposed method (combining the LPD and an SDSMM) produced a more accurate measure-

ment model compared to a standalone LPD. The results also implied that the fixed isotropic

noise might be an overestimate of the actual measurement noise.

In Chapter 3, we proposed a novel extension to the state-dependent sensor measurement

model (SDSMM) framework. This extension is a two-stage method that leverages transfer

learning to train SDSMMs with limited real data. This method can alleviate collecting an

abundance of sensor and ground truth data to learn accurate sensor models and reduce poor

generalization.

We evaluated the proposed method using two real-world experiments. The first real-

world experiment demonstrated how to use our proposed method to pre-train an SDSMM

with artificial sensor data. The artificial sensor data came from the physical model of a

distance-and-bearing sensor. We then used multiple, limited numbers of real sensor data

from a real distance-and-bearing sensor to fine-tune the pre-trained SDSMM. To simulate

limited numbers of real sensor data for each robot, we used the bootstrap method to sample

datasets of size 10,000 down to 100. Finally, we compared the proposed method (FLRD)

with three other types of SDSMMs. The other SDSMMS were trained with artificially-

generated data only (ADO), all available real data only (RDO), or limited real data without

pre-training (LRDO). The results showed that FLRD learned measurement models that were
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similar to RDO, implying that we can learn accurate measurement models with as little as

∼19% of the real data. Furthermore, compared with ADO, FLRD produced more accurate

predictions since FLRD learned using the real sensor data while ADO did not. Finally, FLRD

learned slightly better measurement models than LRDO for large sample sizes. However,

FLRD outperformed LRDO at small sample sizes.

Our proposed method broadly implies that we can learn accurate SDSMM with limited

real data, reducing the burden of collecting large real-world datasets. With less difficulty,

researchers or organizations can develop SDSMMs relatively quickly or with less hassle.

Finally, Chapter 4 demonstrated how to integrate state-dependent sensor measurement

models with three state estimation algorithms. These algorithms were the Extended Kalman

Filter, the Particle Filter, and the Extended Kalman Particle Filter. We discussed the

assumptions of our state estimators, environment, and robot. Afterward, we provided a list

of equations that described how to use an SDSMM with each state estimator.

To demonstrate that SDSMMs can reduce localization error, we used SDSMMs and

baseline models in two real-world localization experiments. The first real-world experiment

examined the performance of SDSMMs with an indoor, multi-robot localization study. We

used the Extended Kalman Filter and the Extended Kalman Particle Filter as our state

estimators. Both state estimators used a priori and state-dependent distance-and-bearing

sensor models, which were learned in Section 3.6. The results showed that the SDSMMs that

were trained with real data only (RDO) and fine-tuned with real data (FLRD) outperformed

the baseline, SDSMMs trained with simulated data (ADO), and SDSMMs trained with

limited real data only (LRDO). Furthermore, the results imply that employing an EKF with

an SDSMM (RDO or FLRD) may be useful for robots with limited resources even though

the EKF achieved the second-lowest errors.

Our second real-world experiment examined the performance of SDSMMs with an indoor

and outdoor long-term localization study. For this experiment, we used the Particle Filter

as our state estimator. The Particle Filter used a baseline and SDSMM-augmented LiDAR-
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based pole detection sensor models during localization. We described how to train the

SDSMMs in Sections 2.8.2.2 and 2.8.2.3. Like in [47], the results showed that using the

SDSMM predicted bias, noise, or both yields the lowest error. The results also showed

that using both the bias and noise generally outperformed a model that used bias or noise

only. In another experiment, we compared three SDSMMs that were trained under different

conditions. The data collection conditions (and their resulting models) were named “clear

days”, “1Day”, and “9Days.” Clear days represented a model trained on sessions (days)

with clear skies, clear weather, and ample lighting. Next, 1Day represented a model trained

on the first session in the dataset. Finally, 9Days represented the 1Day model that was fine-

tuned with the following nine sessions. We observed that the three models decreased the

position RMSEs by median errors of 25% to 28% during the last eleven sessions compared

to the baseline. We also observed that the three models had comparable position and angle

RMSEs. Amongst the three models, 75% of the differences between the best and worst

position RMSEs were at or below 2.1 centimeters. In one case, the 1Day had a position

RMSE that was 2× greater than the other two models. However, we did not observe a

comparable difference in performance for sessions with similar data collection conditions or

trajectories. Therefore, we believe this case was an outlier.

Although the three models performed comparable, the “9Days” might be most valuable

and practical. The training data for the 9Days model was the most diverse in terms of

conditions, which improves generalization. Furthermore, the training data represented a

practical scenario where one would collect training data over sequential sessions.

5.2 Future Work

Presently, our work assumes that our datasets are diverse and, in some cases, abundant.

However, this assumption does not hold in practice. The datasets that we (the robotics

community) aggregate do not reflect all the scenarios (or states) a sensor will experience (for

example, weather conditions, times of day, geography, and other environmental characteris-
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tics will vary). Therefore, a natural progression would be to collect data that the model has

not experienced. As mentioned before, the task of data collection, including ground-truth

information, is tedious, complicated, time-consuming, and resource-intensive. To alleviate

the burden of collecting all novel data, we can randomly choose new experiences to collect,

focusing on gathering ground-truth data from those experiences as well. However, random

selection may not improve the performance of an SDSMM over time, potentially wasting

time and resources.

Active learning is one principled technique for selecting which data (including ground-

truth) to obtain to improve the performance of an SDSMM. Active learning is a technique

in machine learning in which a learning algorithm can ask an oracle to provide a label to

new observations interactively. This technique is helpful in cases where we want to improve

the performance of our model, but we only have access to unlabelled data. We believe that

active learning would help improve state-dependent sensor measurement models over time.
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Appendix B: Back-propagation Equations for Mixture Density Networks

We derive the back-propagation equations for a Mixture Density Network (MDN) that

predicts parameters for a Gaussian Mixture Model (GMM). We assume the GMM is a multi-

modal, multivariate distribution with full covariance matrices. In the following subsections,

we derive back-propagation equations for the mixing coefficient, the multivariate mean, and

the full covariance matrix.

Before we begin the derivation, we briefly restate related equations for the reader’s con-

venience. The GMM equation for an MDN as

p(z | Θ) =
m∑

k=1

pk(z | Θk) =
m∑

k=1

αk(λ) · φk(z | λ). (B.1)

Here, p(z | Θ) is the total probability of the distribution, and pk(z | Θk) is the weighted prob-

ability of the k-th component. m is the number of Gaussian components used to represent

the total probability distribution. Θ = {Θ1, ... , Θk , ... , Θm} and Θk denote the distribution

parameters for the entire model and the k-th component, respectively. αk is the k-th mixture

coefficient and
∑m

k=1 αk = 1. φk(z | Θk) is the k-th Gaussian probability density function

(PDF) and is defined as

φk(z | Θk) =
1

(2π)s/2 ·
∣∣∣Σk

∣∣∣1/2 exp

{(
z− µk

)>
·
[

Σk

]−1
·
(
z− µk

)}
. (B.2)

z ∈ Rs is the target variable (such as a sensor measurement) and µk ∈ Rs is the conditional

mean of the k-th Gaussian PDF. The variable s is the dimension of the target and Gaussian
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mean vectors. Σk ∈ Rs×s is the conditional, full covariance matrix for the k-th Gaussian

PDF. Θk = {αk ,µk , Σk}mk=1 are the output parameters of a GMM layer of an MDN.

The notations below are used in the following sections. We first use the shorthand

notation in the following equations. We use p, pi , and N instead of p(z | Θ), pk(z | Θ), and

Nk(z | λ), respectively. Second, like Bishop [4], we use the notation π to help simplify some

equations:

π(λ, z) =
αk · φi∑m
j=1 αj · φj

, (B.3)

where
∑m

i=1 π = 1. π represents a posterior probability, and Bishop [4] obtained this equa-

tion using Bayes theorem.

B.1 Back-propagation Equations for a Mixture Model Component

We derive the back-propagation equations for the k-th weight probability pk :

∂E i

∂pk
=
∂E i

∂p
· ∂p
∂pk

, (B.4)

where E i is the error for the i -th example, and p and pk are defined in (B.1). For this

derivative, we used the chain rule to transform the left-hand side of the equation into the

right-hand side. The first partial derivative in (B.4) becomes

∂E i

∂p
=

∂

∂p

{
− ln(p)

}
= −1 · ∂

∂p

{
ln(p)

}
= −1

p
= − 1∑K

j=1 αj · φj

. (B.5)
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The second partial derivative in (B.4) is

∂p

∂pk
=

∂

∂pk

{
p1 + ... + pk + ... + pm

}
=

∂

∂pk

{
pk +

m∑
j 6=k

pj
}

(B.6)

=
∂

∂pk

{
pk
}

+
∂

∂pk

{ m∑
j 6=k

pk
}

= 1.

Combining (B.5) and (B.6), we compute (B.4) as

∂E i

∂pk
=
∂E i

∂p
· ∂p
∂pk

= − 1∑m
j=1 αj · φj

. (B.7)

B.2 Back-propagation Equations for the Mixture Coefficients

We describe the partial derivative of the loss E i with respect to γαk :

∂E i

∂γαk
=

m∑
c=1

∂E i

∂pc
· ∂pc
∂αc
· ∂αc

∂γαk
. (B.8)

Here, γαk ∈ R is one of m linear outputs from the network that is used to compute the

mixture coefficient αk . Since each αk is a function of the outputs {γαk }mk=1 (via the softmax

function), we compute this partial derivative as a summation (see [4] for details). ∂E i/∂pc

is (B.7) and ∂pc/∂αc is

∂pc
∂αc

=
∂

∂αc

{
αc · φc

}
= φc ·

∂

∂αc

{
αc

}
= φc . (B.9)

Combining (B.7), (B.9), and (B.3) we derive

∂E i

∂αc
=
∂E i

∂pc
· ∂pc
∂αc

=
−1∑m

j=1 αj · φj
· φc

1
=

−1∑m
j=1 αj · φj

· αc

αc
· φc

1
= − π

αc
. (B.10)
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Finally, we focus on the last partial derivative in (B.8). This partial derivative becomes

∂αc

∂γαk
= α− α2 (B.11)

when c = k . However, when c 6= k , the partial becomes

∂αc

∂γαk
= −αcαk . (B.12)

Combining (B.8), (B.10), (B.11), and (B.12), we get

∂E i

∂γαk
= αk − π. (B.13)

B.3 Back-propagation Equations for the Mean

We begin the derivative of the loss function E i with respect to γµk,a, the linear outputs for

the location µk,a. Here, the index a is the a-th dimension in the multivariate location µk .

We remind the reader that µk,a = γµk,a. Therefore, ∂E i/∂γµk,a is

∂E i

∂γµk,a
=
∂E i

∂pk
· ∂pk
∂φk
· ∂φk

∂uk
· ∂uk
∂γµk,a

, (B.14)

where Nk is (B.2) and

uk = −1

2
· (z− µk)>Σ−1k (z− µk). (B.15)

The first partial derivative in the chain rule is (B.7). The second partial derivative becomes

∂pk
∂φk

=
∂

∂φk

{
αk · φk

}
= αk ·

∂

∂φk

{
φk

}
= αk . (B.16)

We compute the third derivative as

∂φk

∂uk
=

∂

∂uk

{
S · exp{uk}

}
= S · ∂

∂uk
exp{uk} = S · exp{uk} = φk .
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Finally, we use (86) from [41] to compute the last partial derivative in (B.14):

∂uk
∂γµk,a

= −1

2
· ∂

∂µk,a

{
(z− µk)>Σ−1k (z− µk)

}
=

1

−2
· −2

1
·Σ−1k,a(z− µk) (B.17)

= Σ−1k,a(z− µk),

where Σk,a is a row vector that corresponds to the a-th row of the covariance matrix Σk .

Putting together (B.7), (B.16), (B.17), and (B.17), we get

∂E i

∂γµk,a
=
∂E i

∂pk
· ∂pk
∂φk
· ∂φk

∂uk
· ∂uk
∂γµk,a

=
−1∑m

j=1 αj · φj
· αk

1
· φk

1
·

Σ−1k,a(z− µk)

1
(B.18)

= π ·Σ−1k,a(µk − z).

B.4 Back-propagation Equations for the Full Covariance Matrix

Our final derivation focuses on the free parameters γdk,a and γ lk,a,b for the matrices Dk

and Lk (respectively), where Σk = LkDkL
>
k . Particularly, we derive

∂E i

∂γdk,a
=

∂E i

∂Σk
· ∂Σk

∂Dk,a,a
· ∂Dk,a,a

∂γdk,a
, (B.19)

∂E i

∂γ lk,a,b
=

∂E i

∂Σk
· ∂Σk

∂γ lk,a,b
, (B.20)

where each γdk,a maps to Dk,a,a, a diagonal position in Dk , and each γ lk,a,b maps to Lk,a,b, a

lower triangle index in Lk . Leveraging (396) in [41], the first partial derivative in (B.19) and

(B.20) equates to

∂E i

∂Σk
=

π

2

(
Σ−1k −Σ−1k vkv

>
k Σ−1k

)
, (B.21)
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where vk = z− µk . Given Σk = LkDkL
>
k , the second partial derivative in (B.19) becomes

∂Σk

∂Dk,a,a
=

∂

∂Dk,a,a
LkDkL

>
k = Lk1k,a,aL

>
k , (B.22)

where 1k,a,a denotes an s × s matrix with a value of 1 at index (a, a) and zeros everywhere

else (see [16] for example). The last derivative in (B.19) becomes

∂Dk,a,a

∂γdk,a
=

∂

∂γdk,a
exp
(
γdk,a
)

= Dk,a,a. (B.23)

Combining (B.21), (B.22), and (B.23) for (B.19), we get

∂E i

∂γdk,a
=

π

2

(
Σ−1k −Σ−1k vkv

>
k Σ−1k

)
Lk1k,a,aL

>
k Dk,a,a. (B.24)

We now focus on the last partial derivative in (B.20). The product rule is applied to the

partial derivative to produce the result

∂Σk

∂γ lk,a,b
= 1k,a,bDkL

>
k + LkDk1k,b,a. (B.25)

We draw the reader’s attention to the matrices 1k,a,b in the first term and 1k,b,a in the second

term, where indices a and b are swapped due to transposing Lk . Combining (B.20), (B.21)

and (B.25), we get

∂E i

∂γ lk,a,b
=

π

2

(
Σ−1k −Σ−1k vkv

>
k Σ−1k

)(
1k,a,bDkL

>
k + LkDk1k,b,a

)
. (B.26)
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