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ABSTRACT 

 

Research on current methods of ancestral estimation must reflect on biological heritage to 

aid in human identification. Using modern craniometrics methods, how do individuals with a 

varied biological history affect ancestral estimation? Today, the most used and reliable methods 

for craniometrics analysis for ancestral estimation in forensic anthropology are computer 

programs. Two programs are analyzed in this study, Fordisc 3.0 and 3D-ID. The analysis of 

these computer programs goes beyond the controlled environment provided by an osteological 

collection. These remains of individuals were unidentified, only to be identified later, through 

academic research, police work, and public outreach. The selection of samples occurred if they 

fit the following two criteria: 1) To evaluate known ancestry, the victim was initially unidentified 

but was later positively identified, and 2) both Linear and 3D coordinate craniometric data was 

available to test Fordisc 3.1 and 3D-ID. Humans adapt to their environment biologically and 

culturally, identifying with familiar cultures, foods, objects, events and, how we look. Thus, 

ancestral components to a person’s appearance can help outline the parameters in a search to 

return a lost loved one to their family and finish the last chapter in an individual’s life. We 

establish any trends in the correct and incorrect estimations by analyzing the posterior 

probability (pp) and typicalities (typ). Both computer programs struggled with the “Hispanic” 

cohort placement while finding higher reliability in European Americans’ estimations than any 

other ancestral group for both 3D-ID and Fordisc 3.1.  
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CHAPTER ONE: 

INTRODUCTION 

 

A critical component of the biological profile is classifying unidentified remains into 

ancestral categories, which is often considered the most complicated element (1). Practitioners 

commonly take a broad “ancestral” approach. Geographical regions are the foundation for these 

estimations, such as Africa, Asia, and Europe; this has little basis on evolutionary factors and no 

genuine population affinity (2). Consequently, there has been a push within forensic 

anthropology to take an evolutionary approach, defined as population affiliation (4,5). Population 

affiliation is ultimately geographical ancestry (3), connecting ancestral history to geographical 

regions, acknowledging both evolutionary pressures and forces. These factors create human 

variation based on socio-cultural influences, allele frequencies distributed by clines, and 

migratory pressures, all accumulating to affiliate a population through time to a geographical 

location. 

Consequently, ancestry estimations should focus on traits with known heritability and 

evolutionary (environmental) relationships, which results in a more precise population 

designation. This precision gives a more accurate indication of biodistance, which is the 

deviation of groups relatedness through geography and time (6). Numerous approaches for 

estimating ancestry include linear and three-dimensional analyses of craniometric variables and 

analyses of morphoscopic traits and dental morphology (7–12). Today, it is well established that 

biological “race” does not exist (13,14), although race (and ancestry) remain as cultural  
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constructs and contribute to the identification of unknown persons. Culturally, people identify 

with their ancestry and heritage in various ways; other cultures and one’s genetic history may 

contradict those self-beliefs. 

 Moreover, interactions between heredity and one’s environment significantly influence 

factors surrounding a person’s appearance: from eye and skin color to the shape of facial 

features, hair texture, height, etcetera. More recently, research highlights differences in 

individuals’ facial morphology through single nucleotide polymorphisms (SNPs) (15). Changes 

in DNA through mutation, adaptation, and mate selection demonstrate how populations evolve. 

The forces of evolution utilize the biological building blocks available to them, pressured and 

constrained by the local environment. Research on current methods used to estimate population 

affiliation to reflect biological heritage accurately is critical for human identification (16). 

Evaluating the biodistance of populations and the classification of an unknown person into the 

most closely related group(s) is well established (7-8). However, how can accuracy be improved 

by altering the reference populations or the specific measurements used? 

Currently, the most commonly used and reliable methods for estimating population 

affiliation through craniometrics are two computer programs (17–19), Fordisc 3.1 (20), and 3D-

ID (21). As demonstrated in numerous studies, these programs have high success rates, 

indicating 70-90% accuracy (18,22–25). Both programs use craniometric data to establish best fit 

grouping with canonical variant analysis. 3D-ID utilizes three-dimensional coordinate data 

through geometric morphometrics (GM) to estimate population affiliation by relating the 

measurements to stored data within the program, outlining a shared population history via 

biodistance. In contrast, Fordisc 3.1 utilizes linear craniometrics. Additionally, both programs 

utilize Mahalanobis distance (D2), discriminant function analysis (DFA), and Linear 
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Discriminant Function (LDF) (26). DFA is used to establish where an individual falls within the 

centroids (the mean score of the canonical), which is a measure of best fit and indicates how 

strongly aligned the unknown individual is to the population. 

Fordisc 3.1 uses measurements from the Forensic Data Bank (FDB), beginning in 1986 

by a grant from the National Institute of Justice (NIJ) (20). The FDB relies on eight populations, 

with all individuals born after 1930. The reference populations, as defined by Fordisc 3.1, 

include: American Blacks (n=224 males, n=137 females); American Indian (n=59 males, n=32 

females); American Whites (n=737 males, n=454 females); Chinese (n=80 males, n=0 females); 

Guatemalan (n=83 males, n=0 females); Hispanics (n=281 males, n=74 females); Japanese 

(n=84 males, n=58 females); and Vietnamese (n=51 males, n=0 females).  

The FDB measurements are exploited in DFA statistical procedures to determine LDF. 

This program allows the practitioner to analyze multiple ancestral groups and estimates where 

the combined dimensions best fit into the canonical variants. The canonical variates analysis 

compares the measurements to multiple centroids. These centroids are created and defined by the 

mean scores of the reference measurements used for each ancestral group selected.  

3D-ID utilizes a wide range of population data from numerous forensic laboratories and 

museum collections throughout the world. There are also requirements for known demographic 

data for inclusion into the database, such as ancestry, age, and sex. Currently, the database 

consists of n=2,508 individuals (Table 1). The critical differences between the two listed 

programs are different reference populations, the terminology of population groups, and the fact 

that 3D-ID uses both shape and size of the skull to estimate relatedness, rather than just size. It is 

important to note that the creators of 3D-ID found common ancestral terms to have little 
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biological meaning and thus chose group identification related to geographical regions to 

acknowledge clinal variation, utilizing the categories listed in Table 1.  

Both programs are similar in their designs in that the practitioner must select which 

populations and sex groups to include in the analysis. It is at the practitioner’s discretion to 

choose populations within the program, thereby setting the parameters to compare and identify 

the best fit between an unknown individual and population. However, as Jantz and Ousley point 

out (20), these statistical analyses will be less effective with more reference populations utilized 

within any research. Therefore, results will vary based on the populations selected, and it is up to 

the practitioner to use the program to choose the “best” populations for comparison. If there are 

too many reference populations, the practitioner runs the risk of a muddled analysis; too few, the 

practitioner runs the risk of excluding the affiliated population by removing it. 

The purpose of this study is to investigate how population selection influences the results 

of ancestry estimation using the two craniometric methods discussed. The study is not a direct 

comparison of 3D-ID and Fordisc 3.1, but an analysis of how these computer programs are 

mailable, focusing on individuals with known “mixed ancestry.” The individual cases are studied 

to understand how better practitioners can interpret population affinity. Here, the concept “mixed 

ancestry” refers to individuals whose parents came from two different reference populations. 
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Table 1. List of 3D-ID reference populations and their origin (27).  

Population  Total size (n) Source of Collection 

African 27 
Ross. Morton Collection, Smithsonian National Museum of 

Natural History (NMNH) 

African American 272 
Terry Collection, Pound Lab, Kimmerle, Ross, Maxwell 

Museum 

African Brazilian 55 Urbanova 

Brazilian 125 Urbanova 

Circumcaribbean 26 Ross 

Colombian 71 Bethard, DiGangi, Medellin 

East African 36 Ross, American Museum of Natural History (AMNH) 

East Asian 28 Berg, Ross, Morton Collection 

European American 378 
Ross, Kimmerle, Westcott, Terry Collection, Forensic 

Cases, Maxwell Museum 

European Central 412 Urbanova 

European Eastern 2 Urbanova 

European Southeastern 266 Ross, Urbanova 

European Southwestern 446 Ross 

Japanese Brazilian 27 Urbanova 

Mesoamerican 89 Anderson, Spradley, Ross 

Nigeria 30 Ross, AMNH 

South American 82 Ross 

Syrian 43 Ross, AMNH 

West African 93 Ross, AMNH 

Total 2508  



 

6 
 

 

 

CHAPTER TWO: 

LITREATURE REVIEW 

 

Currently, the field of forensic anthropology categorizes the grouping of individuals over 

time as ancestry. The verbiage to describe in-group and out-group classifications surrounding 

ancestry has not always been classified as such. Forensic anthropology is heavily influenced by 

how the legal system interprets an individual’s categorized ancestry. This categorization was 

done initially as a scientific definition based on taxonomic classifications. Though forensic 

anthropology may no longer be in its infancy, it is still young compared to its parent fields of 

physical anthropology and human anatomy. As such, we draw much of our methods and 

understanding from anatomists and medical doctors throughout history. The father of American 

Forensic Anthropology, Thomas Dwight (1843-1911) from Harvard, identified skeletal remains 

for legal matters in the late 1800s (28). Dwight focused on sex, age, and stature and less on the 

concept of ancestry or race. The concept of race is not new and has seen much debate since Carl 

Linnaeus (1707-1778) created a taxonomic system defining species of plants and animals, 

including human classification. 

  Linnaeus grouped individuals into four categories: American, European, Asian, and 

African. His categorical divisions were based on five components: geographical location, skin 

color, humor (blood, bile, and phlegm), posture, and custom (14). Thus, the concept of race was 

given a firm grounding. The concept was founded on The Great Chain of Being, defining God at 
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the pinnacle and the lowest lifeforms at the bottom. This fundamental ideal maintains in today’s 

western cultures (29).  

Ethnocentric and colonial ideas were soon entrenched into the ideas of race. Johann 

Friedrich Blumenbach (1752-1840), who is considered the Father of Physical Anthropology, 

exemplified these colonial overtones (14). He classified humans into five groupings: Caucasian, 

Mongolian, Ethiopian, American, and Malay. Caucasian was based on his proposed origins for 

Europeans, a region known as the Caucus Mountains. This area Blumenbach described as the 

most beautiful region he had ever witnessed. Thus, it had to be the origin of the European race. 

Blumenbach did not shy from the idea that this was a categorical system based on a hierarchy 

with Caucasians at the pinnacle.   

Races were considered fixed with no secular change, something Charles Darwin had 

refuted in the book On the Origin of Species (1859). Frans Boaz had disproven by studying the 

changes in immigrant’s cranial measurements over time (30). The concept of race saw three 

distinct focal areas: essentialism, cladistic thinking, and biological determinism (31). 

Essentialism defined race, highlighting components that appeared to have scientific merit. Clades 

fueled the Nazi regime and the eugenics program defining some races as better than other races. 

Biological determination saw racial differences as evolutionary, and this evolution explained 

cultural differences. Thus, certain groups could evolve at faster rates and become civilized as 

opposed to savages (32).  

It is no surprise that Ashley Montagu, in the early 1960s, identified the idea of race as a 

charged word, triggering a reaction from the general populous of western cultures (33). Like 

many American anthropologists, Montagu had witnessed the dangers of racism through eugenics 

in the States and the Nazi Party in Germany. In the 1960s, a further racist threat fixated the field, 
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as the civil rights movement gained momentum against segregation. Many stood up and 

denounced the concept of race; as early as 1934, the then President of the AAA, J.B.S. Haldane 

would speak out about the dangers of racism almost as a foreshadow of the tyranny the Nazi 

Germany Party would bring to the world some five years later (31). The shift saw a rise in the 

field of physical anthropology, vocally denouncing the concept of race. Thus, the concept of 

environmental pressures attributed to populations’ evolution gained firm ground as these 

populations adapted to the environment around them. Charles Darwin, in 1859, had outlined the 

pressures of natural selection, citing species need to adapt to their environment to survive (34).   

Frank Livingstone (1928-2005) and Sherwood Washburn saw that variation within the 

human population is based on genetic variation, significantly different within a local population 

(35). Livingstone promoted the idea of clines and defined them as follows:  

1.  the recent advance of an advantageous gene 

2.  gene flow between populations which inhabit environments with different equilibrium 

frequencies for the gene 

3.  a gradual change in the equilibrium value of the gene along the cline. The theoretical 

analysis of clines has barely begun but there seems to be no need for the concept of race 

in this analysis. (35) 

To understand clinal variation, one needs to look at skin color, as this is the most visually 

identifiable example of clinal variation. Closer to the poles, skin variation is lighter to allow the 

synthesis of vitamin B12; on the equator, skin tone is darker due to the need for protective 

pigmentation from the sun’s harsh rays (36).  Montagu echoed these sentiments, and he outlines 

the forces of change: mutation, natural selection, genetic drift, and isolation. These allow humans 

to continue to change. However, there was high mobility in humans with social selection 
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pressures, ensuring continued migration and admixture to static races. Thus, there was little to 

support the concept of race in the eyes of these individuals.  

 There is still the idea that we do identify those around us based on the extremes of the 

clines we see. The question then raised is: if there is a gradual variant, why has the definition of 

race been so prominent? Brace argues a traveler would see a wide variance in groups due to the 

maritime trade’s advent in the 12th and 13th centuries (13). Setting sail from Northern Europe and 

arriving in Africa or the Caribbean would show how different we could be. Thus, this has been a 

difficult concept to break, especially with the general public. Subsequently, there have been four 

distinct ideas regarding the concept of race, especially in forensic anthropology (37). The first 

belief considered race to be a natural category, or more importantly, treated it as such. Stanley 

Rhine asserts that secular change is a slow process and chastised any forensic anthropologist who 

would shy away from the use of race: 

One should at least wistfully entertain the hope that society at the cusp of the 21st century 

would have progressed beyond the petty aspersions of racism to the recognition that, as 

with any species, our survival depends upon diversity (38) 

However, this philosophy of race being a natural category has been dismissed even by Rhine. 

Thus, a more popular theory identifies race as a flawed concept with a small error. While 

apparent on a larger scale, this error can be helpful as a tool in the same way Newton’s Laws 

apply to physicists when doing calculations on a small scale. Thus, this use of race has been 

defined as race as Newtonian Physics (37). 

Another approach to the concept of race is the common thought among forensic 

anthropologists that race is a necessary evil. The idea that there is no biological category for race, 

but the methods employed by forensic anthropologists give an 80-90% accuracy rate when the 
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methods are employed. Norman Sauer exemplifies this belief. Sauer argues that while there is 

more diversity within a group than between a group, there is the ability to determine an 

individual’s classification. This classification can be done by employing many theories that often 

help give a biological profile of any unidentified remains. Thus, Sauer and other forensic 

anthropologists see this concept of race as a necessary evil, an essential aspect of returning 

unidentified remains to their loved ones.  

While the necessary evil concept holds significant ground in forensic anthropology, 

others counter this argument of race being non-existent and race holds no utility in the realms of 

forensic anthropology. Smay and Armelagos argue that there are potentially numerous 

misidentified remains; this can seriously hamper or destroy any chance of identifying the 

remains. In some instances, misidentification has been discovered years later, allowing for 

proper identification (39). This argument has grown traction recently, initially placed in the 

spotlight at the 2020 American Association for Forensic Science (AAFS) Conference. In his oral 

presentation, Justin Maiers highlighted the dangers of ancestral estimation and the limitations of 

attempting to place individuals into categories based on a social construct (40). Racial tension 

converging to fever-pitched in the summer of 2020 after police brutality against the African 

American community rose. The subsequent uprising perpetuated a response from many within 

the forensic anthropological community, with DiGangi and Bethard promoting the concept of 

ignoring ancestral estimation (41). The premise of the argument was that policing authorities 

used ancestral estimation to ignore certain cases, specifically minority cases, and instead promote 

the needs of European American cases. Arguing, many of the unidentified remains are 

unidentified in part by labeling them with an ancestral category. Bethard and DiGangi further 

discuss how no determined relationship between hereditability and nonmetric skeletal traits has 
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occurred. Several researchers have countered this argument (42), calling for an evaluation of the 

methods. However, the call to remove ancestry has gained traction in the last few months for 

many forensic anthropologists.  

In recent years, there has been a shift in terminology. The AAA and biological 

anthropologists further supported this push initiated with Montagu in the 1950s to tackle race 

problems. The issue was that there is still a significant need from the medicolegal field to rely on 

race or ancestry to define part of the biological profile. Those dealing with finding answers to 

what happened to these remains and who they are are not interested in a philosophical debate 

surrounding ancestry. Ross proposed addressing the definition of ancestry, suggesting a 

paradigm shift shedding the term’s social construct (43). She identified that ancestry had limited 

bases on populations and how they have adapted to their environment and were more in tune 

with a European American ethnocentric view on ancestry—highlighting that populations should 

be defined based on clines, not loose interpretations. Ross argues that individuals should affiliate 

with populations with similar documented traits defining this as population affiliation.   

Nevertheless, as academics, it is imperative to find effective methods to describe an 

individual’s biological profile. Not only must we consider the scientific process but the social 

and cultural ramifications that these methods will incur. Thus, we have to rely on the tools at our 

disposal; understanding those tools and defining their strengths and weaknesses is critical in 

minimizing systems and user error.  
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CHAPTER THREE: 

METHODS AND MATERIALS 

 

We conduct multiple tests within 3D-ID and Fordisc 3.1 utilizing craniometrics data for 

n=36 positively identified individuals. We also exploit n=26 possible reference populations to 

interpret population affiliations estimated by the computer programs. While this study is not a 

direct comparison of Fordisc 3.1 and 3D-ID, we analyze how these programs can evaluate 

population affiliation. The desire is to outline which strategies yield higher accuracy for 

estimating population affiliation for unknown cases.  

The cohort is a contemporary sample consisting of individuals whose birth and death 

occurred in the United States (2010-2020), including n=23 males and n=13 females. The age 

ranged of the cohort within the study at the time of death was 10-97, three individuals under 18 

(ages 10,13 and 17), and four elderly individuals over 70.  We used solved medicolegal cases 

from the sample; this included the juvenile and elderly cases mentioned above for estimating 

population affiliation through Fordisc 3.1 and 3D-ID for identification purposes.  

The sample represents solved cases of previously unknown, unidentified remains 

analyzed by Dr. Erin Kimmerle and graduate student researchers working within the Forensic 

Anthropology Laboratory at the Florida Institute of Forensic Anthropology and Applied Science 

(USF-FAL) at the University of South Florida. The cases were analyzed using the Forensic 

Anthropology Laboratory (USF-FAL) protocols for ancestry estimation (44) that rely on metric 

analyses utilizing Fordisc 3.1 and 3D-ID. Following the analyses, we created facial 
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reconstructions for public engagement to aid in identification. The average of phenotypical 

variations for various populations, in part, assisted in creating facial approximations for many of 

the cases. Through DNA testing, identification for all individuals occurred. Each case had 

antemortem data regarding ancestry and family background obtained from the Medical 

Examiners records, law enforcement records, or court documents post-identification. The 

original analyses were “blind” because the remains were skeletonized at the time of analysis, 

with no prior identification of the victims available. Therefore, there is an exploration of the 

methods in this applied research, determining its accuracy. It also serves as a model for lab 

quality control. 

Samples for this study were selected to fit the following two criteria: 1) The victim was 

initially unidentified but was later positively identified to evaluate known population history. 2) 

Linear and 3D coordinate craniometric data were available to test Fordisc 3.1 and 3D-ID 

methods for population affiliation. 

Since Fordisc 3.1 and 3D-ID consist of different reference populations, the populations 

were organized into geographical regions standardized for comparison and mainly following the 

model established in Fordisc 3.1. For example, African Americans, referred to as “American 

Black” in Fordisc 3.1, or other African groups in 3D-ID were considered African ancestry (Table 

2). European Americans, referred to as “White American” in Fordisc 3.1 and differentiated in 

3D-ID either as “European” groups or “European American” were considered European ancestry 

(Table 2). Hispanic was considered any group from the Americas with Spanish first contact. 

However, Native Americans would classify as a population if any cases were present; none were. 

While there were no consistent Asian populations represented between the two programs, one 

individual in the sample had Asian Ancestry and fell into the Admixture (Admix) category.  
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The term Admix, or admixture, and Hispanic are widely used and highly problematic. 

“Admixture” is a common term used within forensic anthropology, denoting individuals with a 

combined ancestral heritage of human populations long separated prior to exploration and 

colonization (45). “Hispanic” is a catch-all term referring to populations spread throughout North 

America, the Caribbean, Central, and South America. The term does not represent one cultural 

nor biological population; instead, this concept has persisted as simply an ancestral 

nomenclature. This expansive group and lack of data surrounding the group have contributed to 

inaccuracies in this population’s placement affinity (46–48).  

In total, five individuals within the study fell into the Admix category, based on their 

parent’s reported ancestry: one Asian/European, one African/Hispanic, one European/Hispanic, 

and two African/European (Table 2). Within the study, sex was known and did not act as a 

discriminatory factor, assigning appropriate biological sex to each case through known data.  

Four tests were each performed in Fordisc 3.1 and 3D-ID for the complete cohort. The program 

uses the mean scores of reference measurements from all selected ancestral groups to create 

appropriate centroids based on those measurements. The more reference samples used within the 

model, the less precise the results will be (20). Several measurements were greater than two 

standard deviations. These measurements’ accuracy could not be determined, resulting in their 

removal due to potential errors (refer to descriptions below). The computer uses Posterior 

probabilities (pp) to determine how close an individual compares to each of the centroids for all 

selected reference populations. The practitioner selects which populations to incorporate in the 

analysis. The typicality (typ) assesses how likely the case is to belong to the cohort that 

compliments the centroid (25). The typ is based on D2 and is further used to estimate affiliation 

with any group/cohort in the ancestral estimation (47,49).  
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Table 2. Conversion of Fordisc 3.1 & 3D-ID groups for comparison  

 

Antemortem Data Fordisc Population  3D-ID Population  Synthesized Label  

Black American Blacks 

African 

African 
African American 

East African 

West African 

White American White 

European American 

European 

European Central 

European Eastern 

European Southeastern 

European Southwestern 

Hispanic Hispanic  

Circumcaribbean 

Hispanic 
Colombian 
Mesoamerican 

South American 

White/Hispanic 
American White                 

Hispanic 

European American 

Admix 

European Central 

European Eastern 

European Southeastern 

European Southwestern 

Circumcaribbean 

Colombian 

Mesoamerican 
South American 
 

Asian/White 

American White                 
Chinese          

Japanese  
Vietnamese 

European American 

Admix 

European Central 

European Eastern 

European Southeastern 

European Southwestern 

East Asian  

Black/Hispanic 
Black American               

Hispanic 

African 

Admix 

African American 
East African 
West African  
European American 
European Central 
European Eastern 
European Southeastern 
European Southwestern 

White/Black 
Black American                  
White American 

African 

Admix 

African American 

East African 

West African 

European American 

European Central 

European Eastern 

European Southeastern 

European Southwestern 
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Fordisc 3.1  

The four tests in Fordisc 3.1 were as follows: 

1. Test 1: A Shotgun Approach. Test 1 used the total sample (n=36) and all accessible 

populations (n=8), using 26 measurements to demonstrate a broad understanding of 

affiliation with the populations found in the FDB. 

2. Test 2: Altering the Measurements Included. Test 2 utilized the entire sample (n=36) 

and all accessible populations. However, the removal of Biasterionic Breadth (ASB) and 

Zygomaxillary Breadth (ZMB) occurred as these measurements are known to reduce the 

sample size within FDB (20). Other measurements removed ≥ two standard deviations 

from the mean in Test 1; this occurred in 10 cases. The specific measurements removed 

for each case are discussed in the results when significant. 

3. Test 3: Incorporating Posterior Probabilities. For Test 3, the removal of populations 

occurred when the pp ≤0.001 from Test 1. Testing was unavailable for nine cases due to 

the removal of specific populations, either because 1) No population had a pp ≤0.001, or 

2) only one population had a pp>0.001. The exclusion of Vietnamese males and 

American Indian males occurred nine times; the exclusion of Japanese females occurred 

eight times; the exclusion of Guatemalan males and American Indian females occurred 

seven times; the exclusion of Chinese males and Japanese males occurred five times. The 

following populations were all removed once: Hispanic males, American White males, 

American Black males, Hispanic females, American White females, and American Black 

females, thereby reducing the pool of possible matches, leading to a more accurate result.  

4. Test 4: Removing both Outlying Measurements and Atypical Reference 

Populations. The removal of populations occurred in Test 4 of populations with pp 
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≤0.001 from Test 2. The exclusion of measurements also occurred when they were 

greater than two standard deviations from the mean. The removal of the same reference 

populations from Test 3 also occurred in this test.   

 

3D-ID 

Akin to the population selection criteria for Fordisc 3.1, four tests were performed in 3D-

ID, utilizing Generalized Procrustes Analysis (GPA) to compare the skulls’ shape and size 

(21,27). By analyzing multivariate measurements, the program can estimate the best fit centroid 

for the specific case giving an estimation of both sex and ancestry. The computer program 

utilizes posterior probabilities (pp) and typicalities (typ) to estimate the affiliation a specific case 

has with an ancestral group, listing potential population cohesion (49). Following the 

recommendations of Ross and Slice (27), the tests followed specific criteria for group selection. 

The only test that did not meet the stipulations outlined by Ross and Slice was Test 4, which 

combined the variable criteria found in Tests 2 & 3 for this study. Due to a constant 

measurement error, the removal of one case occurred from the cohort. Rectification of the errors 

was unobtainable due to the inability to re-evaluate measurements. Thus, the removal of an 

established European ancestry case occurred. The sample for all 3D-ID tests was n=35. At the 

time of testing, the identified ancestry was unknown, and each test was run blind. Again, all tests 

employed appropriate sex estimation with the following parameters: 

 

1. Test 1: The Shotgun Approach. Test 1 included all recommended measurements (n=23) 

for a generalized test, as outlined by Slice and Ross (27), using all of the available 

reference groups (n=19) as defined in Table 3.   
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2. Test 2: Measurement Selection Based on European Populations. Slice and Ross (27) 

suggest specific reference samples for Brazilian and European cases and the exclusion of 

the following measurements when using this test: Ectoconchion left and right (ectl, ectr), 

Lower Orbital Border left, and Upper Orbital Border left (obhi, obhs), Opisthion (ops). 

The inclusion following measurements occurred from Test 1: ecml, ecmr, mastl, mastr 

(Table 3).  

3. Test 3: Measurement Selection Based on MesoAmerican Populations. For the 

estimation of MesoAmerican populations, Slice and Ross (27) include the following 

reference samples: Mayan, Indigenous, and European populations. Therefore, the 

exclusion of the following measurements occurred for this test: Frontomalare Temporale 

left and right (fmtl, fmtr), Subspinale (ssp), Zygomaxilare left and right (zygoml, 

zygomr), Zygoorbitale left and right (zygool, zygr), ecml, ecmr, obhi, obhs, obhsr, obhir, 

mastl, and mastr (Table 3).  

4. Test 4: Combination of Measurement Selection Based on MesoAmerican, European, 

and Brazilian Reference Samples. Test 4 used the following measurements: Asterion 

left and right (astl, astr), Basion (bas), Bregma (brg), Dacryon left (dacl), Glabella (glb), 

Nasion (nas), Zygion left (zygl), fmal, fmar, proHEST, and zygr (Table 3).  
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Table 3. Identifies all Landmarks utilized for Tests 1-4. 

 

Comparison 

Each test’s overall performance is analyzed to evaluate how the populations and 

measurement variation affected the tests’ outcome. Comparison occurred of Fordisc 3.1 tests to 

establish potential relationships within the four tests, using Fisher’s exact test. For 3D-ID, the 

application of identical statistical analysis occurred. The final step was applied when we 

compared correct estimations between Fordisc 3.1 and 3D-ID utilizing the same methods. We 

could not perform a parallel analysis on all tests due to the different parameters found within the 

tests. Therefore, a comparison of all Fordisc 3.1 Tests against 3D-ID Tests 1 & 4 utilizing 

Landmark Name 
Landmark 

Abbreviation  
Test 1 General 

Test 2 European 
and Brazilian 

Test 3 
Mesoamerican 

Test 4: Derivative 
of Test 2 & 3 

Asterion Left astl ✓ ✓ ✓ ✓ 

Asterion Right astr ✓ ✓ ✓ ✓ 

Basion bas ✓ ✓ ✓ ✓ 

Bregma brg ✓ ✓ ✓ ✓ 

Dacryon Left dacl ✓ ✓ ✓ ✓ 

Ectomolare Left ecml   ✓     

Ectomolare Right ecmr   ✓     

Ectoconchion Left ectl ✓   ✓   

Ectoconchion Right ectr ✓   ✓   

Frontomalare Anterior Left fmal ✓ ✓ ✓ ✓ 

Frontomalare Anterior Right fmar ✓ ✓ ✓ ✓ 

Frontomalare Temporale Left fmtl ✓ ✓     

Frontomalare Temporale Right fmtr ✓ ✓     

Glabella glb ✓ ✓ ✓ ✓ 

Lambda lam ✓ ✓ ✓ ✓ 

Mastoideale Left mastl   ✓     

Mastoideale Right mastr   ✓     

Nasion nas ✓ ✓ ✓ ✓ 

Lower Orbital Border Left obhi ✓   ✓   

Upper Oribital Border Left obhs ✓   ✓   

Opisthion ops ✓   ✓   

Prosthion-Howells Estimated proHEST   ✓ ✓ ✓ 

Subspinale ssp ✓       

Nasomaxillary Suture Pinch Left wnbl     ✓   

Nasomaxillary Suture Pinch 

Right 
wnbr     ✓   

Zygion Left zygl ✓ ✓ ✓ ✓ 

Zygomaxilare Left zygoml ✓ ✓     

Zygomaxilare Right zygomr ✓ ✓     

Zygoorbitale Left zygool ✓ ✓     

Zygion Right zygr ✓ ✓ ✓ ✓ 

Total number of measurements used 23 22 20 13 
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Fisher’s exact test occurred. When the result was p ≤ 0.05, it was considered statistically 

significant and demonstrated differences between the compared tests.  

We then analyzed significant differences between group classifications for each test. 

However, due to the sample size difference, the z-score test for two populations was utilized to 

analyze small and varying sample sizes. We compared like groups with each other; all the 

European groups were compared for the Fordisc 3.1 tests, as were the African groups and 

Admixture groups. There were no comparisons for Hispanic groups, as the sample size was too 

small. For 3D-ID tests, the same comparisons occurred. The final comparison was assessing 

Fordisc 3.1 and 3D-ID. However, Test 2 for Fordisc 3.1 was not directly comparable with 3D-ID 

Test 2. Thus, we compared all the Fordisc 3.1 tests with two 3D-ID tests, the two tests not 

designed to focus on specific ancestral groups. Therefore, evaluating 3D-ID Test 1 & 4 against 

all Fordisc 3.1 tests ensued. Some individuals’ exclusion in Fordisc 3.1 Tests 2 & 3 happened as 

they did not meet inclusion parameters. The test sizes varied and further reduced the number of 

cases. These inconsistent and small sizes led to concerns for consistency parameters resulting in 

the use of the z-score test for two populations, which utilized the following formula: 

 

z =
[( p̂1 −  p̂2) − 0]

√[p̂(1 − p̂) (
1

𝑛1 +
1

𝑛2)]
 

 

In this equation, p̂ represents the number of correct estimations within the ancestral 

cohort for the specific test. The n represents the sample size of the ancestral cohort for that test as 

there was a different number of accurate estimations between the tests when comparing ancestral 

cohorts. We then assessed any significant difference in the test’s performance. After establishing 

the z-score, we determined the p-value. When comparing two like ancestral cohorts, a significant 
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difference occurred with results of p ≤0.05. We compared each ancestral cohort against each of 

the Fordisc 3.1 tests. We repeated this process for 3D-ID. Both computer programs’ comparison 

occurred as all ancestral cohorts within all Fordisc 3.1 tests against all ancestral cohorts within 

3D-ID Tests 1 & 4. Due to the sample size, no analysis occurred of the Hispanic cohort. Thus the 

exclusion of this cohort occurred for these tests.  

The pp and typ for the correct results were analyzed separately. To analyze the results 

accurately, we divided them by computer program and test. The generation of descriptive 

statistics occurred utilizing SPSS v.26 for the pp and typ in Fordisc 3.1 and 3D-ID, which 

indicated potential trends in the data distribution. We plotted pp and typ together to establish 

other trends once they were analyzed individually. We analyzed this to outline how confident in 

the results a practitioner utilizing the data could be, as the computer program estimating ancestry 

is only helpful when there is high confidence in the findings. Thus, higher pp and typ should 

encourage a practitioner to be comfortable with their potential estimations.  

Since it is up to every investigator to evaluate either program’s results and use their 

interpretation to make an ancestry estimation, we graphed the posterior probabilities and 

typicalities in Microsoft Excel for each Test. Each Test was further broken down into the correct 

number of classifications and plotted to utilize the typ over pp results. The population affiliations 

were assigned a color: red for European, blue for African, orange for Hispanic, and green for 

admixture. We established ancestral grouping and the estimated populations created by Fordisc 

3.1 or 3D-ID for the misclassified cases. The pp/typ is divided into four quadrants: Quadrant 1 – 

pp/typ<0.5; Quadrant 2 – pp>0.5, typ<0.5; Quadrant 3 – pp<0.5, typ>0.5; Quadrant 4 – 

pp/typ>0.5.  
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CHAPTER FOUR: 

RESULTS 

 

Fordisc 3.1 

Test Accuracy and Correct Classifications 

The overall success for correct classifications in Fordisc 3.1 for all four tests was over 

80.0% (Figure 1). As expected, there was a high degree of variation within each cohort for each 

test, and the frequency of correct classifications depended on the population reference samples 

included. Test 1 results show correct classification was highest for the African cohort (100%), 

followed by Europeans (83.3%), Admixed cohort (80.0%), and then Hispanics (0.0%). The 

overall percentage for Test 1 was 80.6%.  

Test 2 had an overall accuracy of 83.3% and was higher than that of Test 1 for 

Europeans, but otherwise followed the same pattern as Test 1: African 100%, European 87.5%, 

Admixture 80.0%, and finally Hispanic 0.0%.  

The overall accuracy demonstrated in Test 3 was slightly less accurate at 81.4%, with the 

classifications following the same pattern: African 100%, European 87.5%, Admixture 80.0%, 

and once again Hispanic 0.0%. The final test, Test 4, produced an overall accuracy rate of 

82.7%. The classification groups reached the following accuracy levels, with the African cohort 

achieving 100%, European 88.9%, Admixture 60.0%, and Hispanic 0.0%. Note that the Admix 
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group performed lowest in test four, no Hispanic cohorts correctly classified for any of the 

Fordisc 3.1 tests. 

Fishers Exact Test & Z-Score Test for Two Populations 

Fisher’s exact test showed no significant difference (p≤0.05) in the performance between 

any of the four Fordisc 3.1 tests. When the classification groups were compared for each test, 

using the z-scores for two populations, there was no significant difference (p≤0.05) for the 

European cohort, African cohort, or Admixture cohort. All the p-values for each of the compared 

groups were p>0.49.  

Posterior Probabilities 

Using Fordisc 3.1, the four tests show similar results for the pp among correct 

classifications (Table 4), the range for the tests extends from 0.6790 to 0.7540. Fordisc 3.1 Test 1 

demonstrated a left skew of -1.8110 and a range of 0.7080. The kurtosis is -0.6090, and this 

results in a platykurtic and left-skewed distribution for Test 1. There is a left skew in all the other 
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tests for Fordisc 3.1, along with negative kurtosis, illustrating that each of the Fordisc 3.1 test 

distributions is platykurtic and left-skewed, having more p-values closer to 0 than 1 (Table 4). 

Typicalities 

The typ observed in Fordisc 3.1 tests shows a broader range than pp in each of the four 

tests (Table 5). There is negative kurtosis in all four tests for typ for Fordisc 3.1, giving a 

consistent platykurtic distribution. All skews are narrower than pp giving a more normal 

distribution for all tests. Tests 1, 3, and 4 have a slight right skew, not seen in Fordisc 3.1 pp 

results (Table 5). 

Understanding Classification 

Test 1 for Fordisc 3.1 had 80.6% correctly estimated cases (29/36). Table 5 shows the 

number of cases relative to their posterior probability and typicality; in this test Quadrant 2 had 

the highest percentage (48.2%), with Quadrant 3 having the lowest percentage (3.4%) (Table 6). 

Misclassified estimations demonstrated far more interesting results (n=7) (Figure 2). Figure 2 

shows individuals misclassified, including one individual from a European ancestry classified 

highest with the Chinese reference group. The two Hispanic cases were classified as European, 

shown in Quadrant 4. Two individuals could not be classified, whose ancestry was European, 

and both fell within Quadrant 2. 
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Table 4. Posterior Probability Descriptive Statistics for Fordisc 3.1 Tests 1-4. 

 

 

 

 

 

 

 

 

Table 5. Typicality Descriptive Statistics for Fordisc 3.1 Tests 1-4. 

 

Correct Posterior Probabilities 

Test n 
Mean 
Score 

Mean 
Error 

Std 
Deviation   

Range Interquartile 
range 

Skewness 
Score 

Skewness 
error 

Kurtosis 
Score 

Kurtosis 
error 

Test 1 Fordisc 30 0.7755 0.0401 0.2198 0.7080 0.3290 -0.8110 0.4270 -0.6090 0.8330 

Test 2 Fordisc 30 0.7030 0.0417 0.2283 0.7540 0.3700 -0.3430 0.4270 -0.9180 0.8330 

Test 3 Fordisc 22 0.7794 0.0470 0.2204 0.6830 0.3410 -0.7340 0.4910 -0.7650 0.9530 

Test 4 Fordisc 24 0.7752 0.0412 0.2017 0.6790 0.3720 -0.4050 0.4720 -0.9290 0.9180 

  Correct Typicality 

Test n 
Mean 
Score 

Mean 
Error 

Std 
Deviation   

Range 
Interquartile 

range 
Skewness 

Score 
Skewness 

error 
Kurtosis 

Score 
Kurtosis 

error 

Test 1 Fordisc 30 0.3868 0.0519 0.2841 0.9580 0.5320 0.3170 0.4270 -0.8970 0.8330 

Test 2 Fordisc 30 0.5047 0.0479 0.2621 0.9430 0.4410 -0.0600 0.4270 -0.7170 0.8330 

Test 3 Fordisc 22 0.3529 0.0636 0.2981 0.9350 0.4790 0.4410 0.4910 -0.8860 0.9530 

Test 4 Fordisc 24 0.5138 0.0559 0.2734 0.9300 0.4440 0.0580 0.4720 -0.7670 0.9180 
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Test 2 for Fordisc 3.1 showed 83.3% correct classifications (30/36). Quadrant 4 gave the 

highest percentage with 50.0% of all correct classifications (Table 6), while both Quadrant 1 and 

Quadrant 4 had the lowest percentage (6.7%). Figure 3 highlights the six misclassified cases. 

Misclassification occurred for both Hispanics, identified as European. Misclassification occurred 

for three European cases, all estimated with origins from the Americas (Figure 3). Test 2 

performed better than any other tests and had a high percentage of cases within Quadrant 4.  

Test 3 for Fordisc 3.1 showed 81.5% correct classifications (22/27) (Table 6). The 

highest percentage for correct estimations was Quadrant 2 (54.5%), and the lowest was Quadrant 

3 (0.0%). Figure 4 illustrates five misclassifications. The misclassification of the entire Hispanic 

cohort occurred again, with both estimated as European with strong pp. Test 3 performed the 

weakest as most of the correctly estimated cases fell in Quadrants 1 and Quadrants 2, resulting in 

low typ and the misclassifications mostly fell in high pp quadrants.  

Test 4 for Fordisc 3.1 showed 82.7% correct classifications (24/29). Quadrant 4 had the 

largest percentage (50.1%), with Quadrant 3 giving the lowest percentage (0.0%) (Table 6). 

There were five misclassified cases, four of which were in a quadrant with high pp (Figure 5). 

Misclassification occurred for two admixture cases; both labeled as Hispanic and Native 

American. Only one Hispanic case was analyzed in this test, again classified as likely European.   
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Table 6. Fordisc 3.1 Correct Classifications by Quadrant. 

 

 

 

 

 

 

 

 

 

 

 

 

*Q1 – pp/typ,0.5; Q2 – pp>0.5, typ<0.5; Q3 – pp<0.5, typ>0.5; Q4 – pp/typ>0.5 

 

 

 

    Fordisc Correct classifications (%) Fordisc Incorrect classifications (%) 
    Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4 

Q1* 

European 10.3 6.7 9.1 4.2 14.3 33.3 20.0 0.0 

African 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hispanic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Admixture 3.4 0.0 9.1 0.0 0.0 0.0 0.0 0.0 

Total 13.7 6.7 18.2 4.2 14.3 33.3 20.0 0.0 

Q2* 

European 34.5 26.7 36.4 33.3 28.6 0.0 0.0 20.0 

African 10.3 0.0 13.6 4.2 0.0 0.0 0.0 0.0 

Hispanic 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 

Admixture 3.4 3.4 4.5 8.3 14.3 0.0 20.0 40.0 

Total 48.2 30.1 54.5 45.8 42.9 0.0 40.0 60.0 

Q3* 

European 3.4 6.7 0.0 0.0 14.3 16.7 20.0 20.0 

African 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hispanic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Admixture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 3.4 6.7 0.0 0.0 14.3 16.7 20.0 20.0 

 Q4* 

European 20.7 26.7 18.1 29.2 0.0 0.0 0.0 0.0 
African 6.9 13.3 4.5 16.7 0.0 0.0 0.0 0.0 
Hispanic 0.0 0.0 0.0 0.0 28.6 33.3 20.0 20.0 
Admixture 6.9 10.0 4.5 4.2 0.0 16.7 0.0 0.0 
Total 34.5 50.0 27.1 50.1 28.6 50.0 20.0 20.0 
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3D-ID 

Test Accuracy and Correct Classifications 

3D-ID has an overall accuracy ranging between 48.6% to 74.3% (Figure 6).  Test 1 total 

accuracy was 68.6% (24/35). However, there was a high variance between the different ancestral 

cohorts, with each group performing correctly to the following levels: Admix 80%, European 

73.9%, African 60.0%, and Hispanic 0.0%.  

Test 2 produced an overall accuracy rate of 65.7% (23/35). Each ancestral cohort varied 

for correct classifications at the following rates: Admixture 80.0%, European 69.6%, African 

60.0%, and Hispanic 0.0%.  

For Test 3, the overall accuracy was 48.6% (17/35). The frequency for correct 

classification were as follows: African 80.0%, Admixture 60.0%, European 43.4%, and Hispanic 

0.0%.  

For Test 4, the overall accuracy was 74.3% (26/35), the ancestral cohorts achieved the 

following correct classification rates: European 87.0%, African 80.0%, Hispanic 50.0%, and 

Admixture 20.0%. Test 4 was the only test to affiliate a Hispanic case to a Hispanic population 

accurately.   
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Fishers Exact Test & Z-Score Test for Two Populations 

The Fisher’s exact test comparing the 3D-ID tests demonstrated a statistically significant 

difference between Test 3 versus Test 4 (p=0.049). The z-score test for two populations also 

highlighted a statistically significant difference for Tests 3 versus Test 4 (p=0.0271). The z-score 

test for two Populations for European cohorts when comparing Test 1 versus Test 3 had a 

marginally significant difference (p=0.057), as did the Admixture groups between Test 1 versus 

Test 4, and Test 4 versus Test 2 (p=0.057 for both). No other comparisons within 3D-ID had any 

statistically significant results.  

Posterior Probabilities 

The pp for 3D-ID tests showed a range of 0.7999 (Test 4) to 0.9991 (Test 1) (Table 7). 

Tests 1-3 have negative skews, with both Tests 1 and 3 being over -1.0. As a result, many of the 

pp values are closer to a p-value of 0 than 1. However, Test 4 has a positive skew of 1.6480, 
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delivering p-values closer to 1 for pp. The kurtosis within the four tests shows a differing range 

of values. Test 2 and Test 3 have normal distributions, whereas Test 1 and Test 4 produce a 

leptokurtic distribution. 

Typicalities 

For all 3D-ID tests, the typ data shows a narrow range for correct classifications (Table 

8). The lowest range, Test 4, is 0.9436, and the most extensive range, Test 1, is 0.9868 (Table 8). 

Test 3 (-0.4560 skew) and Test 4 (-0.1370 skew) have two tests with negative skews. Test 1 

(0.9550 skew) and Test 2 (0.7630 skew) have positive skews. The estimations have negative 

kurtosis giving a platykurtic distribution. Test 1 has the closest to a normal distribution (-0.2000 

kurtosis), and Test 3 had the most profound platykurtic distribution with a -1.4190 kurtosis. 

Understanding Classification 

We used A shotgun approach for Test 1, including all reference groups and possible 

measurements in the analysis. 68.8% of all cases were correctly classified (24/35) (Table 9). 

Quadrant 4 had the highest success rate at 54.2%, and Quadrant 3 had the lowest success rate at 

0.0%. This test boasted a high pp throughout the test but varying typ. There were 11 

misclassifications (Figure 7). The misclassification of both Hispanic cases occurred and 

estimated them European Americans. The misclassifications assignment appeared to be related to 

South American populations, with several European and African cohorts classified as 

Colombian. 
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Table 7. Posterior Probability Descriptive Statistics for 3D-ID Tests 1-4. 

 

 

 

 

 

 

 

 

Table 8. Typicality Descriptive Statistics for 3D-ID Tests 1-4. 

  Correct Typicality 

Test n 
Mean 
Score Mean Error 

Std 
Deviation   

Range Interquartile 
range 

Skewness 
Score 

Skewness 
error 

Kurtosis 
Score 

Kurtosis 
error 

Test 1 3D-ID 23 0.3135 0.0648 0.3109 0.9868 0.3790 0.9550 0.4810 -0.2000 0.9350 

Test 2 3D-ID 20 0.3659 0.0779 0.3482 0.9800 0.5643 0.7630 0.5120 -0.8070 0.9920 

Test 3 3D-ID 15 0.5426 0.9655 0.3739 0.9751 0.8593 -0.4560 0.5800 -1.4190 1.1210 

Test 4 3D-ID 25 0.5554 0.0617 0.3085 0.9436 0.5371 -0.1370 0.4640 -1.3080 0.9020 

 

 

Correct Posterior Probability 

Test n Mean 
Score Mean Error 

Std 
Deviation   

Range Interquartile 
range 

Skewness 
Score 

Skewness 
error 

Kurtosis 
Score 

Kurtosis 
error 

Test 1 3D-ID 23 0.7327 0.0635 0.3046 0.9991 0.3803 -1.3080 0.4810 0.8280 0.9350 

Test 2 3D-ID 21 0.6842 0.0540 0.2476 0.8149 0.3710 -0.5760 0.5010 -0.3900 0.9720 

Test 3 3D-ID 17 0.7754 0.0609 0.2512 0.8175 0.3886 -1.1070 0.5500 0.2780 1.0630 

Test 4 3D-ID 25 0.4347 0.0353 0.1766 0.7999 0.1837 1.6480 0.4640 3.4580 0.9020 
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Test 2 eliminated specific measurements to propagate the European reference samples 

found within 3D-ID. This test correctly classified 65.7% of all cases (23/35) (Table 9).  There 

was an expectation that the European cohort would classify at a higher rate in this test. The 

European cohort achieved a 69.6% success rate, with two 3D-ID tests performing at a higher 

standard (Tests 1 and 4). Quadrant 2 had the highest correct classifications rate (52.1%), with 

Quadrant 3 producing the lowest rate (4.3%). There are 12 misclassified cases (Figure 8). Again, 

Hispanic cohorts are classified into European populations. All the misclassifications were either 

of European or Brazilian reference populations except for two European cases classified as 

Colombian. There was a lean in this test towards the European and Brazilian populations, 

possibly due to the landmarks utilized to exploit both Brazilian and European reference samples. 

Test 3 utilized landmarks on the skull for analysis that exploited the MesoAmerican 

reference populations. For the total sample, the correct estimation was 48.6% (17/35) (Table 9). 

This test should favor individuals with MesoAmerican ancestry; however, no classifications of 

individuals with MesoAmerican or South American ancestry occurred; rather, they all aligned 

closest to the European groups. Quadrant 4 has the largest rate for correct classifications 

(52.9%), while Quadrant 3 shows no correct classifications. There were 18 misclassified cases 

(Figure 9). The misclassification of Hispanic cases estimated as European occurred in Quadrant 

4.  Four cases had pp=0.0 and typ=0.0. Such low results demonstrate a lack of confidence from 

3D-ID in its analysis of these cases; this lack of confidence allows the practitioner to dismiss 

these results. 

Test 4 selects specific landmarks to exploit European, MesoAmerican, and Brazilian 

reference populations (see methods section). The Hispanic cohort had the highest success rate 

than any other test within this study (50%). Overall, the success rate was 74.3% (26/35) (Table 
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8). While this was the highest correct classification for any of the 3D-ID Test, the correct 

estimations were found mainly in Quadrant 3 (42%), giving low pp but high typ. Figure 10 

provides details about the nine misclassified cases, 66.6% of which fall into Quadrant 2. Only 

one case (Syrian, Quadrant 2) was not from a European population or populations found in the 

Americas. These results are consistent with the reference populations accentuated in this test.  

 

Comparing Methods 

We compared each of the four tests in Fordisc 3.1 and 3D-ID utilizing Fisher’s exact test, 

and there were no significant differences in the model’s performance (p≤0.05). These tests were 

analyzed by group classifications using z-scores for two populations for each set of samples. The 

European and African groups had statistically significant differences when compared to the tests 

performed within Fordisc 3.1. For Admix cohorts in 3D-ID Test 4 versus Admix cohorts in 

Fordisc 3.1 Tests 1-3, there were marginal differences observed; all these comparisons yielded a 

p =0.057. 
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Table 9. 3D-ID Correct Classifications by Quadrant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Q1 – pp/typ,0.5; Q2 – pp>0.5, typ<0.5; Q3 – pp<0.5, typ>0.5; Q4 – pp/typ>0.5 

 

    3D-ID Correct classifications (%) 3D-ID Incorrect classifications (%) 

    Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4 

Q1† 

European 12.5 13.0 11.8 30.8 9.1 25.0 16.7 0.0 

African 0.0 0.0 0.0 3.8 0.0 0.0 5.6 0.0 

Hispanic 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 

Admixture 12.5 8.7 5.9 0.0 0.0 0.0 5.6 0.0 

Total 25.0 21.7 17.7 34.6 18.2 25.0 27.9 0.0 

Q2† 

European 45.8 39.1 17.6 11.5 18.2 25.0 22.2 22.2 

African 4.2 4.3 5.9 3.8 18.2 8.3 0.0 0.0 

Hispanic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Admixture 4.2 8.7 5.9 0.0 9.1 8.3 5.6 44.4 

Total 54.2 52.1 29.4 15.3 45.5 41.6 27.8 66.6 

Q3† 

European 0.0 4.3 0.0 26.9 18.2 0.0 5.6 0.0 

African 0.0 0.0 0.0 7.8 0.0 0.0 0.0 11.1 

Hispanic 0.0 0.0 0.0 3.8 0.0 0.0 0.0 11.1 

Admixture 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 

Total 0.0 4.3 0.0 42.3 18.2 0.0 5.6 22.2 

Q4† 

European 12.5 13.0 29.4 7.8 9.1 8.3 27.8 11.1 

African 8.3 8.7 17.6 0.0 0.0 8.3 0.0 0.0 

Hispanic 0.0 0.0 0.0 0.0 9.1 16.7 11.1 0.0 

Admixture 0.0 0.0 5.9 0.0 0.0 0.0 0.0 0.0 

Total 20.8 21.7 52.9 7.8 18.2 33.3 38.9 11.1 
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CHAPTER FIVE: 

DISCUSSION 

 

When it comes to ancestry estimation in forensic anthropology, there are many biological 

and technical challenges. Biodistance studies and population affiliation estimated through crania-

metric analysis offer the most robust measures. Such a claim is supported in the literature and 

demonstrated in this study. The application of software programs designed to aid in population 

estimation through reference samples for comparison are tools for investigators. Nevertheless, 

the data must be analyzed and interpreted correctly for an accurate result. The choices 

investigators make for landmark selection, reference populations, and the threshold for 

acceptable posterior probabilities and typicality can significantly affect the outcome, as 

demonstrated in this study. The choices’ importance is especially true for populations with 

complex genetic histories as those seen in Central and South America and culturally combined as 

“Hispanic.” Not only is there a lack of adequate reference populations, but the genetic 

contribution of indigenous peoples, Europeans, and Africans throughout Brazil and South 

America is also unclear. Likewise, Mayan and indigenous people’s genetic influence in Central 

America and Europeans also makes those reference populations problematic at times, as 

demonstrated in this study.  

Of the eight models evaluated, with different reference populations and thresholds for 

acceptance and landmarks, the tests generally performed consistently and show that the problem 

areas continue to be for individuals with combined European and Indigenous genetic histories. 
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Of all the misclassifications, regardless of the tests, 73 cases fell into this category, where only 

six of the cases involved African or Asian populations.  

Directly comparing Fordisc 3.1 and 3D-ID is not possible due to the different reference 

populations used in each. Using the 36 solved cases tested in this study, classifications through 

different Fordisc 3.1 models demonstrated consistent accuracy of just over 80% in each of the 

tests. However, this was unexpected as Ousley and Jantz (20) point out accuracy should increase 

when the reference groups selected are reduced, as the computer program has less biodistance to 

navigate. This reduction did not occur in this current study, and perhaps this cohort had a high 

affinity with the reference samples from Fordisc 3.1. We examined each reference group further 

to identify consistencies in correct-classifications/misclassifications to investigate the potentially 

high affinity to Fordisc 3.1. Accuracy was highest among African populations (100% throughout 

all tests) and European populations (83%-88%). The individuals with mixed ancestry showed a 

more significant discrepancy in the accuracy of each test’s performance (60%-80%), suggesting 

one of the parent’s genetic contributions to craniometrics form was dominant but not reflected in 

the classification of the individual. It may also suggest these cases classified as European, based 

on the craniometrics analysis, and the catch-all category of “Hispanic” is a cultural construct, not 

a biological one. Over 50% of these cases show there is significant room for error. The results 

for individuals with “Hispanic” ancestry were by far the weakest, as none of them were correctly 

classified. The sample size for individuals falling within this category is small; however, the 

results are consistent with the literature (47,48). This study utilizes real-life cases with the 

creation of a complete biological profile to include ancestral estimation.  

Casework that involves misclassification of individuals as “Japanese” or “Vietnamese” 

has been an ongoing problem in forensic anthropology (47,48,50). Interestingly, unlike 
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previously published studies, the Hispanic individuals in this study all classed with European 

populations (Figure 2-5) and not Asian populations (47,48). The trend for misclassifying 

individuals from Northern Mexico as European within Fordisc 3.1 is not unheard of (51,52). 

Understanding common errors are essential because it demonstrates that one can get closer to the 

correct classification by carefully choosing the right reference populations and landmarks.  

The population classifications utilizing 3D-ID, at first, show the overall results appear to 

be more capricious, with Tests 1 & 2 producing correct classifications at 68.6% and 65.7%, 

respectively. Test 3 had the lowest accuracy of all the study tests, at 48.6%, whereas Test 4 had 

the highest accuracy rate at 74.3% (Figure 2). However, this does not tell the whole story, as the 

models have different functions; we outlined these functions in the methods section. Three of the 

four tests for 3D-ID accentuated specific reference populations. Did these tests more accurately 

place cases from associated cohorts at a higher accuracy rate or not? 

Model 1 was the shotgun approach and assumed an equal likelihood among all ancestral 

groups. It is a “blind” attempt to assess population affiliation without utilizing measurements and 

landmarks highlighting specific reference sample populations. This approach paid off for 

individuals who had a mixed ancestral background and fell into the “Admix” category, as they 

classified correctly over 80% of the time. This finding is significant and speaks to the program’s 

strength overall, with these results not achieved using Fordisc 3.1. Consistent with Fordisc 3.1, 

this model did classify the Hispanic individuals as European American (Figure 6). The Hispanic 

cohort is affiliated with European populations regularly, suggesting this cohort had a European 

background, consistent with other individuals living in Central or South America. We found 

consistent accuracy levels in this model compared to other tests, which we expected for a 

shotgun approach.  
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Changing the model to consider specific populations had mixed results; the models 

utilized the following reference sample populations: Brazilian, MesoAmerican, and European. In 

Model 2 of 3D-ID, Test 2 used Brazilian and European reference samples by selecting specific 

landmarks to exploit these reference populations. The overall success rate was 65.7%, with the 

Hispanic cohort again classifying the members as European. The remaining cases are all 

classified as either European or Brazilian populations. These results were expected with varied 

typicalities and posterior probabilities, highlighting the varying confidence 3D-ID demonstrated 

with each case. In this model, there is an expectation for high performance in the European 

populations. Although only 69.6% of European cases correctly estimated here, scoring third in 

the four 3D-ID tests.  

 3D-ID Test 3 utilized specific landmarks and measurements to focus on MesoAmerican 

and other reference samples from the Americas. This test misclassified most of the sample, with 

a correct classification at 48.6%. Only cases in the African cohort produced correct 

classifications at a high accuracy rate (80%). If Hispanic populations had genuine population 

affinity, we would expect high success in the Hispanic cohort test; this did not occur as no 

Hispanic cases were correctly classified. 

3D-ID Test 4 is a mixed model pulling from Tests 2 and 3. This model produced a high 

accuracy rate for the European and African cohorts, with correct classifications of 87% and 80%, 

respectively.  Test 4 had the highest Hispanic accuracy rate (50%). Nevertheless, this test rarely 

classified the Admix cases correctly (20%). The classification of “Hispanic” individuals was 

most often with European populations, consistent with all other tests in this study. This test 

performed well in the European and African cohorts. It also had the most robust performance of 
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any test in this study for the Hispanic cohort. However, the test struggled with “Admix” 

individuals.  

Throughout all the models tested in 3D-ID and Fordisc 3.1, the European classification 

consistently had a higher percentage of correct classifications. In Fordisc 3.1 African cohort had 

a consistent 100% accuracy rate over 10% higher than any of the European cohort. This trend 

continued in 3D-ID; Admix cohort had an accuracy rate of 10% higher than the European cohort 

in 3D-ID Test 1 and Test 2. In Test 3, the African cohort outperformed the European cohort by 

over 30%. Test 4 for 3D-ID highlighted the European cohort’s best performance achieving an 

86.5% accuracy rate. There are many correct classifications for the European cohort due to the 

disproportionate representation of European cases found within the study. 

Numerous components are essential in ensuring accuracy when estimating population 

affinity. Is the reference sample an adequate representation of an actual population built around 

clines, for example, elevation or distance from the equator, not simple nomenclatures based on 

continental proximation (Asian, African, European)? Are the typicalities and posterior 

probabilities high enough to afford confidence for the practitioner running the test? Tables 6 and 

9 demonstrate that typicality and posterior probability were not a guarantee of correct population 

affiliation, but between 70-85% of all correct estimations for all Tests in both 3D-ID and Fordisc 

fell into Q2 or Q4 (both quadrants with high posterior probability). There was one exception, 

3D-ID Test 4 having 22.1% correct estimations in Q2 or Q4. 

Ousley and Jantz suggest removing populations with low posterior probability to increase 

accuracy (20). However, there was no increase in the overall effectiveness in reducing the 

number of reference populations in this study. In contrast, 3D-ID produced very different results 

based on population selection. The exclusion and use of specific landmarks to exploit certain 
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reference sample populations are encouraged by Slice and Ross (27), with the effectiveness 

illustrated in Figures 8-10. This study’s point was to demonstrate how changes in the tests’ 

parameters can affect investigators’ outcomes and results on unidentified persons. Thus, the 

practitioner must be mindful of the model they construct using these programs and utilize the 

parameters to fit the case’s needs best. We recommend using both programs and analyze the 

results of both for the most accurate estimations in applied casework.  
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CHAPTER SIX: 

CONCLUSION 

 

This study demonstrates that both Fordisc 3.1 and 3D-ID produce accurate population 

affiliation in over 80% of cases. Changing the model to include selected reference samples, 

landmarks, measurements and analyzing the typicality and posterior probability results can 

change the outcome in “ancestry estimation.” A holistic approach is often critical in 

differentiating key components. Analyzing multiple aspects surrounding a case is essential in 

estimating what data are relevant and skew the results (53). 

In the results, there is room for interpretation; these interpretations can be problematic. 

The programs can estimate the ancestry of an individual. However, the results create an error due 

to two factors:1) the results are incorrect, but the practitioner accepts them due to high pp and 

typ; 2) the practitioner dismisses the results due to low pp and typ, but the results are correct. As 

can be seen from Tables 3-4 and Figures 2-9, there are wide-ranging scores within the tests. In 

many instances, there is a pp≈0 where the classification is correct and incorrect estimations with 

pp≈1; both scenarios can lead to misclassifications.  

Forensic Anthropology is an applied science and provides a service to solve real-world 

questions, assisting in identifying unknown individuals’ remains in legal cases, conflicts, natural 

disasters, and humanitarian efforts. Being confident in population affiliation is critical. While 

these software programs have shown success in this study with specific populations, there is a 

need to increase the sample populations used for reference. Also, these populations should be 
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based on biodistance and not a nomenclature based on US Census designations, such as Hispanic 

or Asian. There are some conscious efforts to achieve this through databases. One such database 

is the Forensic Anthropology Case Database or FADAMA, which incorporates real-world cases 

into the FDB (54,55). The successful application for both programs also rests on continued 

research and increasing sample sizes and should include increased diversity in the reference 

populations. Forensic anthropologists must continue to employ these methods as accurately as 

possible to develop facial approximation. This tool has been significant in the successful 

identification of the sample used here. Without understanding the genetic history of the unknown 

individual and what regions of the world may contribute to the skull’s shape, it would be 

impossible to apply any phenotypic data for facial reconstructions.  

Nevertheless, this sample of 36 identified individuals did just that. Work still needs to be 

done to create reference samples within these programs to allow unidentified remains to affiliate 

with these populations. As populations evolve and adapt, so must our methods within forensic 

anthropology. 
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