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Diepenbeek, Belgium
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Abstract

It is our primary focus to study the spatial distribution of disease incidence at different 

geographical levels. Often, spatial data are available in the form of aggregation at multiple scale 

levels such as census tract, county, state, and so on. When data are aggregated from a fine (e.g. 

county) to a coarse (e.g. state) geographical level, there will be loss of information. The problem is 

more challenging when excessive zeros are available at the fine level. After data aggregation, the 

excessive zeros at the fine level will be reduced at the coarse level. If we ignore the zero inflation 

and the aggregation effect, we could get inconsistent risk estimates at the fine and coarse levels. 

Hence, in this paper, we address those problems using zero inflated multiscale models that jointly 

describe the risk variations at different geographical levels. For the excessive zeros at the fine 

level, we use a zero inflated convolution model, whereas we consider a regular convolution model 

for the smoothed data at the coarse level. These methods provide a consistent risk estimate at the 

fine and coarse levels when high percentages of structural zeros are present in the data.

Keywords

Structural zeros; sampling zeros; zero inflated models; multiscale models; scaling effects

1 Introduction

It is natural to collect data at different scale levels such as census tract, county, and state. 

Research shows that aggregating data from a fine (e.g. county) to a coarse (e.g. state) 

geographical level results in a loss of information at the coarse level [1–6]. For example, 

there is a loss of information when we average county-level data to obtain the data at the 

state level. This process results in smoothing out the data at the state level is known as 
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scaling effects. The problem is more challenging when there are excessive zeros at the fine 

level because the excessive zeros at this level will be reduced at the coarse level during data 

aggregation.

A prime example of excessive zeros in spatial data is often observed for rare cancers or low 

incidence cancers in a particular area or a particular period. When count data consist of a 

large proportion of zero values, the standard Poisson model could fit the data poorly because 

it assumes the conditional mean is equal to the conditional variance. For the zero inflated 

count data, the conditional variance is often much larger than the conditional mean, a feature 

known as overdispersion. To solve such problem in spatial data, researchers have 

implemented zero inflated Poisson (ZIP) models and also hurdle models [7–10].

The difference between these two approaches is that the ZIP model assumes a mixture of 

Bernoulli and Poisson distributions for the response variable, whereas the hurdle model 

assumes a Bernoulli distribution and a truncated-at-zero Poisson distribution for the zero and 

positive counts, respectively [11–12]. Moreover, the ZIP model considers two kinds of zeros, 

i.e., structural and sampling zeros, while the hurdle model employs only structural zeros. 

Structural zeros represent a subgroup of individuals who are not at risk for certain diseases, 

while sampling zeros are present for at-risk groups [13]. In particular, structural zeros occur 

because of a separate Bernoulli process, whereas sampling zeros arise from a Poisson 

distribution. Hurdle models are often used when the structural zeros are known. However, 

when the distinction between structural and random zeros is unknown, ZIP is the natural 

choice. Since we do not have information whether the structural zeros are known in our 

example in Section 2, in this paper, we consider ZIP models.

Although there is much research on spatial zero inflated models, limited examples are 

available on extending ZIP models to multiscale data [14]. On the other hand, many studies 

have been done on multiscale models to address scaling effects [15–19] but these models 

have not been applied to zero inflated data. Hence, our aim is to accommodate both scaling 

effect as well as zero inflated problems using a general, simple, and practical, yet flexible 

enough spatial multiscale model for zero inflated multiscale data. If we ignore the excessive 

zeros and the scaling effects, the consequence could be significant. For instance, it can result 

in an inconsistent disease incidence estimate at the fine and coarse levels, i.e., we may obtain 

an elevated risk at the county level, whereas we may find a diminished risk at the coarse 

level. Jointly modeling the risk variation at the fine and coarse levels is very useful and it has 

the following attractive features. 1) It allows one to obtain a more accurate risk estimate at 

both the fine and coarse levels in a single analysis; 2) it permits the incorporation of the 

effect of a parent (e.g. state) on the children (e.g. counties); and 3) it provides a consistent 

result at both the fine and coarse levels. Our method is unique in the sense that we only use a 

zero inflated model for the data at the fine level. We use a standard method at the coarse 

level since the excess of zeros will be reduced during data aggregation. Note, however, that 

if many zeros exist at the coarse level, these models can be easily extended to accommodate 

the zero inflation at the coarse level as well.

In particular, we consider four different models. The first two models (M1 and M2) are zero 

inflated models at the fine level with and without shared components that jointly link the 
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data across scales. Our focus is to compare M1 versus M2 via an extensive simulation study 

as well as in a real life application. As a secondary aim, we also consider two other standard 

multiscale models (M3 and M4) with and without the shared components. These models do 

not contain extra-parameters that handle the excessive zeros in the multiscale data. However, 

M3 and M4 consist of correlated and uncorrelated random effects. Besides assessing the 

effect of zero inflation with aggregation on estimation accuracy, we are interested in 

assessing whether these random effects in M3 and M4 can address overdispersion due to 

excessive zeros.

The paper is organized as follows. Section 2 describes the skin cancer example from the 

state of Georgia. Section 3 details the statistical methods and design of the simulation study, 

while Section 4 presents the results from the models applied to the real and simulated data 

sets. Finally, Section 5 provides a discussion and concluding remarks.

2 Georgia Skin Cancer Study

We examine skin cancer data available from the state of Georgia via the Georgia Division of 

Public Health OASIS system (http://oasis.state.ga.us) at both the county and public health 

(PH) district levels in 2008. In Georgia, 159 counties are aggregated into 18 public health 

districts. The aim of organizing the counties to PH districts is to improve the health of the 

people who live in the counties within the PH districts. This is an aligned aggregation (see 

Figure 1) meaning that the counties belong within the given PH district. It is an example of a 

modifiable areal unit problem (MAUP; [20–21]) where the scaling problem is present due to 

aligned data aggregation. Here, we do not address a spatial misalignment problem [22–23]. 

Notice that ecological bias is not a concern here because we make inference at the higher 

aggregation level. Ecological bias should be considered when inference is to be made from 

an aggregated study to an individual level ([2, ch 9]). However, the atomistic fallacy should 

be a concern because we are inferring from a lower into a higher geographical level. We 

attempt to address the atomistic fallacy using the shared components that jointly link the 

data across scales.

Our interest lies in investigating whether the incidence of skin cancer is spatially related to 

daily sunlight (KJ/m2) attained from the North America Land Data Assimilation System 

[24]. Figure 1 displays the average daily sunlight (ADS) in thousands of KJ/m2 as well as 

the standardized incidence risk (SIR) computed as a ratio of the observed response to the 

expected number of cases. At both county and PH levels, the incidence of skin cancer is 

positively related with daily sunlight. For example, higher values of SIR and ADS are 

present in the coastal health district of Georgia. In some of the counties within the coastal 

health district such as McIntosh, the incidence of skin cancer and ADS are high. The ADS 

increases from North to South. Hence, it has a spatial pattern. Note that in the Northwest and 

southwest of Georgia, the SIR is zero for most of neighbored counties. This shows that there 

are clusters of zero risks meaning that neighbored counties in those regions tend to have zero 

risks. In this example, the maximum number of skin cancer cases at the county level in 2008 

is 6, while 122 counties (76.7%) have zero cases (Figure 2). After aggregation, however, the 

percentage of zeros decreases to 16% at the PH district level (higher-level health 

administrative units). This shows that zero inflation could be present at the county-level, 
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whereas scaling effects exist at the PH level. Hence, we aim to address these problems using 

models that are in line with the nature of the data. Note that the 76.7% zeros at the county 

level could come from the sampling and structural zeros.

3 Methodology

The proposed zero inflated multiscale models use joint convolution models that describe the 

risk variation at multiple scale levels via a shared random effect component. Our methods 

have the following advantages. First, they are based on flexible joint models, which 

accommodate the hierarchical structure of multiscale data. Second, they allow a more 

complicated model to be considered for the zero skewed data at the fine level while it 

continues to benefit from using a relatively parsimonious model for the spatial ordinary 

count data at the coarse level. In the next section, we describe our model formulation for 

heavily zero inflated data at two scale levels. The models can be easily extended beyond two 

scale levels. For simplicity, we called the Models 1-4 below as M1, M2, M3, and M4.

3.1 Zero inflated shared multiscale model (M1)

Our zero inflated multiscale models extend the convolution model proposed by Besag et al 

[25]. It is notable that the convolution model consists of correlated and uncorrelated 

heterogeneity. In this paper, the fine level zero inflated convolution model is connected with 

the standard coarse-level convolution model via a shared random effect. The linkage 

component could be one of the following: (1) a correlated heterogeneity (CH), (2) an 

uncorrelated heterogeneity (UH), or (3) both the CH and the UH. If the correlated 

heterogeneity predominates the uncorrelated heterogeneity at the coarse level, it is 

reasonable to use the correlated heterogeneity as a linkage component because the CH will 

explain the aggregation effect better than the UH. Otherwise, the UH component could be 

used as a linkage component. On the other hand, if both the CH and UH equally explain the 

aggregation effect, we can use both CH and UH to jointly link the data at each scale. As an 

example, we demonstrate the multiscale convolution models by sharing both the CH and the 

UH for skin cancer in the state of Georgia. Assume  is the number of persons discharged 

from non-federal acute-care inpatient facilities for skin cancer in 2007 for the  county 

within the  PH district, where  and . Here,  represents the 

number of counties within the  PH district. The zero inflated Poisson model at the county 

level has the following form:

(1)

To model the probability , a logit link, , is often used whereas a log link 

function, , is applied to link  with a linear predictor;  and  are the 

vector of covariates defining the mean  and the probability , respectively [26]. Further, 

 and  are the vector of unknown parameters. We 

assume a non-informative beta distribution,  for . We use a linear predictor only 

Aregay et al. Page 4

Environmetrics. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the Poisson outcome. Hence, we focus on whether the risk of skin cancer is spatially 

related to daily sunlight (KJ/m2). Moreover, we assume , where  is the expected 

number of cases and  is the relative risk for the  county within the  PH district. In 

addition, is given by:  where  is the county level population size 

in county j within the PH district . For the example in Section 2,  is given by:

(2)

where , , and  are the intercept, slope, UH, and CH at the county level, while 

and  are the shared UH and CH at the PH district level, respectively. Hence,  and  are 

the same for all the counties within the PH district meaning that the children (counties) will 

share the common characteristics, which they inherit from their parent (PH district). Here, 

 denotes the average daily sunlight (ADS) in the  county within the  PH district. To 

improve convergence, we standardize the covariate ADS. We consider Gaussian distributions 

for the uncorrelated components, whereas we use an intrinsic conditional autoregressive 

distributions (ICAR) for the correlated components as follows: , , 

, and . We define correlation based on adjacent areas. For 

example, the PH-district ICAR can be expressed as: , where 

denotes PH district  is adjacent to PH district  and  is the number of PH districts that are 

adjacent to the  PH district.

So far, we have seen how to model the excessive zeros at the county level. The data at the 

PH levels are obtained by aggregating the data at the county level, i.e.,  and 

 with  and  are the number of skin cancer cases and the ADS at PH 

district , respectively. Because of scaling effects, the excessive zeros at the county level are 

smoothed out at the PH level and we have only 16% of excessive zeros at the PH district. 

Hence, we assume that  follows a conditionally independent Poisson distribution, i.e., 

 where  is the expected number of cases in PH district  and  is the 

PH-level relative risk in the form

(3)

Here  and  are the intercept and slope parameters. Note that the shared components 

and  link (2) and (3). For this and the subsequent models, we use non-informative normal 

prior distributions for the “fixed” effect parameters, whereas we employ uniform prior 

distributions for the standard deviations of the random effects [27]. In particular, we 

considered non-informative normal priors for , i.e., 
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 and uniform priors for the standard deviation of the random effects, 

, i.e., .

We fitted all models jointly using Markov chain Monte Carlo (MCMC) posterior sampling 

in a single analysis. We considered 15,000 iterations after we discarded the first 15,000 

burn-in samples. We ran three separate chains starting from different initial values for each 

model. Hence, the posterior means were calculated based on 45,000 iterations, which were 

sufficient for convergence. Further, we have run the MCMC algorithm for 100,000 burn-in 

iterations followed by 15,000 iterations and we found the same estimates for the parameters 

as when we ran for 15,000 and then sampled 15,000. We assessed convergence using an 

estimated potential scale reduction factor ( ) and trace plots.

3.2 Zero inflated independent multiscale model (M2)

Here, we are interested in assessing the impact of ignoring the scale effects for aggregated 

small area health data with heavily skewed zeros. This model ignores the scaling effects but 

it still accommodates for the excessive zeros at the county level. Hence, M2 can be 

expressed as in (1–3) without the shared components in (2), which is replaced by

(4)

The convolution model at the PH level is the same as in (3). Note that there is no linkage 

component that jointly connects the relative risk (RR) of the zero inflated model in (4) to the 

RR of the convolution model in (3).

3.3 Shared multiscale model (M3)

This model ignores the excessive zeros at the county level and uses convolution models at 

both the county and PH levels. Hence, we assume a conditionally Poisson distribution at 

both levels, i.e.,  and . The county-level  is 

the same as in (2), whereas the PH-level  is the same as in (3). Hence, the relative risks in 

this model can be expressed as:

(5)

Here, we are interested in investigating whether the CH and the UH terms, i.e., ,  and 

 in (5) could address the overdispersion due to excessive zeros.

3.4 Independent multiscale model (M4)

M4 is the most parsimonious model and it is the simplified version of M3. It neither includes 

an additional mixing probability to address the excessive zeros nor shared components to 

account for the scaling effects. However, the CH and the UH in this model as well as in M3 

may handle some amount of the overdispersion caused by the excessive zeros. Similar to 

M3, here also, we assume a conditional Poisson distribution at both levels and the relative 

risks are of the form:
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3.5 Model Assessment and Goodness of Fit

To select the best model, we consider a range of information criteria. First, we employ the 

deviance information criterion (DIC3) developed by Celeux et al. [28] for mixtures of 

distributions. Celeux et al study different possible variations of the DIC proposed by 

Spiegelhalter et al. [29]. They find that DIC3 and DIC4 were the most reliable tools as 

compared to the other eight criteria, which they considered. Here, we use DIC3 for ease of 

implementation in widely available software such as WinBUGS. In addition, DIC3 is a 

sensible alternative because it uses predictive distribution, which is central to the Bayesian 

inference [28]. It can be expressed as:

where  is the observed likelihood function and . Second, we 

consider DIC, which is composed of deviance and the effective number of parameters ( ). 

Since the DIC proposed by Spiegelhalter et al. [29] can lead to a negative result for  in the 

mixture case, we employ the  proposed by Gelman et al. [30]. Hence, this DIC is provided 

as:

where , with  is the estimated posterior variance of the deviance 

and .

Furthermore, we consider a marginal predictive likelihood (MPL) to select the best model. 

For model M, MPL can be expressed as follows:

(6)

As we can see in (6), the MPL is an expectation over the likelihood  with respect 

to the prior distribution of the parameters  [31].

In this paper, we aim to compare M1 with M2 to assess the benefit of including a shared 

component in the zero inflated models. We are also interested in comparing the zero inflated 

multiscale models (M1 and M2) with multiscale models (M3 and M4). In particular, we 

compare M1 versus M3 and M2 versus M4 to investigate the important of addressing the 

county-level overdispersion due to excessive zeros. Since we study M3 with only CH shared 
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component and M4 in our previous paper [3], we do not focus on the comparison between 

M3 and M4 here.

3.6 Simulation Study

The simulation study is designed to evaluate Models 1-4 for their ability to address the 

following issues that could be encountered in a real life application. 1) Clusters of zero risks: 

in a rare disease, the RR in neighboring areas may be zero. Hence, in our simulation, we fix 

the RR as zero for certain neighboring areas and evaluated whether the models could recover 

the simulated risks. 2) Structural zeros: here, we are interested in assessing the impact of 

ignoring high percentage of structural zeros such as 25% and 50%. 3) Scaling effect: in this 

scenario, we simulate first PH-level data from a Poisson distribution. Thereafter, we simulate 

county-level data from a multinomial distribution by conditioning on the PH-level data. We 

explain each of these scenarios in the next section.

3.6.1 Scenario 1: Clusters of zero risks

3.6.1.1 Scenario 1.1: Simulation from M3: First, we simulate the county-level data , 

similar to M3, from a conditional independent Poisson distribution, , 

where  as in (2) and  is simulated from a gamma distribution with hyper parameters 

equal to 1, . To sample , the following values are assumed for the 

parameters in (2): , and  Thereafter, the uncorrelated 

random effects are simulated from a normal distribution, whereas the correlated random 

effects are generated from the ICAR distribution as follows: 

, and . We 

sample  from a standard normal distribution, . In order to create clusters of 

zero risks, we fix  to be equal to zero for some neighbored areas. The simulated county-

level  is shown in the left panel of Figure 3, indicating that the RRs in some neighboring 

counties in south, central, and northern Georgia are zeros. The PH-level relative risks, , in 

the right panel are computed by aggregating the county-level RRs, , 

, with  and  as described in Section 3.1. Similarly, the PH-level outcome 

is obtained by summing up the simulated county-level outcomes,  and the PH-

level covariate is computed by averaging the county-level predictor values, 

. In this and subsequent scenarios, we simulate 200 data sets and we fit and 

compare Models 1-4 by averaging the DICs values, bias, and MSE estimates of the 

parameters over the 200 simulated data sets. As an example, we present in Figure 1a (see in 

the Supplementary appendix) one realization of the simulated outcome at the county and PH 

levels. For the county level, the percentage of zeros are 52%, while at the PH level, they are 

17%. This indicates that the excessive zeros at the county level are smoothed out when they 

are aggregated to the PH-level due to the scaling effect. Note that, although we simulate the 

county-level data from M3, which ignores the excessive zeros, we introduce excess zeros to 

the data by fixing some counties to have zero risks.

Aregay et al. Page 8

Environmetrics. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.6.1.2 Scenario 1.2: Simulation from Equation 4: This simulation design is similar to 

scenario 1.1, except, we simulate the county-level RRs, , as in (4). This design can help us 

to assess whether the complex models, M1-M3, simplify to M4. We make the following 

assumptions about the parameters in (4): , and  The random 

effects,  and , and the predictor  are generated in a similar fashion as in scenario 1.1. 

Here also, we fix the RRs equal to zero for some neighboring areas as shown in Figure 4. 

Thereafter, we simulate  from a Poisson distribution, , with 

. , , and  are computed as in scenario 1.1.

3.6.1.3 Scenario 1.3: Simulation from a Poisson Model: One can argue that the CH and 

the UH in M3 and M4 can address to a degree overdispersion due to excessive zeros. Hence, 

in this scenario, we simulate  with excessive zeros from the following simple Poisson 

model, i.e., , where =  with . As 

in scenario 1.1., we assume ,  as well as we fix  equals to 0 for 

some neighboring counties. The simulated RRs are shown in Supplementary Figure 2A. We 

simulate 200 data sets and we fit Model 1A (M1A) and Model 2A (M2A) without the 

random effects as shown in Supplementary Table 1A. Note that M1A is a simplified version 

of M1 and M2, whereas M2A is the parsimonious model for M3 and M4. We also apply 

M1-M4 to the simulated data to investigate how these complex models behave when the data 

are generated from a simple Poisson distribution with excessive zeros.

3.6.2 Scenario 2: Simulation from a ZIP Model—In the previous scenarios 1.1-1.3, 

we fix the counties with zero risks, and then, we generate data from a Poisson distribution at 

the county level. In this scenario, first, we simulate the relative risks  from (2) as shown in 

the Supplementary Figure 3A. Note that the assumed values of the model parameters and 

are the same as in scenario 1.1. Thereafter, we simulate 200 data sets from the ZIP model in 

(1) at the county level using the rzipois function available in VGAM package in R [32]. We 

consider 0%, 10%, 25% and 50% structural zeros (i.e. ignoring the Poisson distribution). 

Supplementary Figure 4A displays an example of the simulated data set with 25% structural 

zeros at the county level. In this example, we have a total of 57% zeros in which the 25% 

represent the structural zeros (non-risk groups), whereas 32% represent random (sampling) 

zeros, i.e., they are part of the Poisson data. Poisson models are not flexible enough to 

accommodate the difference between structural and random zeros. For a detailed description 

about the difference between structural and sampling zeros, we refer to He et al [13]. As in 

scenarios 1.1-1.3, the data at the PH level are an aggregation of the county-level data.

3.6.3 Scenario 3: Scaling effect—In scenario 1, we only simulate the county-level 

outcome and then we obtain the PH-level data by summing up the county-level data within 

the PH district. Although this approach introduces a scaling effect due to data aggregation, it 

does not provide a tool to investigate whether the parameters at the PH-levels in M1-M4 are 

unbiased and precise estimates. Hence, in scenario 3, we simulate data at both the county 

and PH levels. First, we simulate PH-level data from a Poisson distribution as follows: 

, where = . To focus on the parameter of 

interest , we assume the expected rate equals 1,  for all . We make the following 
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assumptions for the model parameters: , , 

. Conditioning on the simulated PH-level data, we sample the county-

level data from a multinomial distribution as following: , 

where  with =  and  for all  and . 

Here also, we assume the following values: , , 

, , , . Note that we 

average  to obtain  as follows: . For this scenario, the simulated risks 

are shown in Figure 5. We also present one realization of the 200 simulated data sets in 

Supplementary Figure 5A indicating that there are nearly 72% of zeros at the county-level 

data, whereas there are 0% of zeros at the PH-level data.

4. Results

4.1 Simulation Results

4.1.1 Scenario 1.1: Simulation from M3—Table 1 displays the goodness of fit (GoF) 

measures. The  and MPL values suggest that M4 is the best model at the county level, 

whereas M3 is the best model at the PH-level. However,  indicates that M1 is the best 

model at the county level, while M3 is still the best model at the PH level. For this scenario, 

the expected best fit is M1 at the county-level because the data are simulated with excessive 

zeros from a Poisson distribution with mean structure of  as in (2). Hence,  provides 

the expected result, while  and MPL produce unexpected results. At the PH level, we 

anticipate M1 and M3 to provide a better fit because the shared components could address 

the scaling effect due to data aggregation; all the criteria confirm this expectation. However, 

all the criteria prefer M3 as compared to M1 at the PH level. We find similar results in 

scenarios 1.2, 1.3, and 2 below. Note that M1 and M3 have the same model formulation at 

the PH level but they are different at the county level. The same is true for M2 and M4. 

When we compare the zero inflated models (M1 versus M2), M1 outperforms M2 across the 

levels. This shows that the shared components in M1 are useful to link the risks across the 

levels.

With respect to the parameter estimates, as expected, M1 followed by M2 offers the most 

unbiased and precise estimates. However, M3 and M4 results in more biased and imprecise 

estimates suggesting that ignoring the overdispersion due to excessive zeros may yield 

biased and imprecise results (Table 2). Note that M3 and M4 underestimate the overall 

relative risk, , while they tend to overestimate the covariate effect ( ), contextual 

effect (  and ), and county-level variance components (  and ).

In terms of recovering the simulated risks, M3 and M4 recover the clusters of zero risks in 

Figure 3 better than M1 and M2 (Figure 6), especially at the county level. However, M1 

detects the elevated risks to northeastern Georgia better than the other models. This is an 

important result because in public health, we are often interested in identifying high-risk 

areas. Moreover, at the PH level, M1 recovers the simulated risks well when compared to the 
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other models. Note that the range of the county-level simulated risks in Figure 3 is 0 to 3.09, 

while the range of the county-level risks obtained from M1, M2, M3, and M4 in Figure 6 are 

0.34 to 3.11, 0.97 to 2.34, 0.13 to 2.64, and 0.17 to 2.54, respectively.

4.1.2 Scenario 1.2: Simulation from M4—Similar to scenario 1.1, M1 is the best model 

at the county level using  measures followed by M2. Yet, M3 is the best model at the 

county level using . MPL slightly prefers M4 as compared to M3 at the county level. 

However, at the PH level, all the three criteria opt for M3 followed by M1, indicating that 

the shared components in M1 and M3 improve the GoF at the PH level. We expect M1 and 

M2 to be the best models as the data sets are generated with excessive zeros at the county 

level and  offers the expected results. At the PH level, we anticipate M1 and M3 to 

outperform M2 and M4 and all the criteria confirm our expectation (Table 3). As in scenario 

1.1, M1 is better than M2.

As for the estimation of the parameters, M1 yields the most unbiased and precise estimates 

for most of the parameters. Similar to scenario 1.1, M2 provides the most unbiased and 

precise estimates for the intercept term. However, M3 and M4 result in larger bias and MSE 

estimates for most of the parameters (Table 4).

With respect to recovering the simulated risks, M3 recovers the county-level risk pattern, 

especially the clusters of zero risks, better than the other models. Although M1 and M2 

slightly overestimate the cluster of zero risks, they correctly identify the elevated risks for 

some counties better than M3 and M4. For example, in southwest Georgia, M1 and M2 

offers higher county-level risks than M3 and M4. At the PH level, all the models provide 

similar risk estimates. However, M1 slightly underestimates the PH-level risks in the 

southwest and southeast of Georgia when compared to the other models (Figure 7).

4.1.3 Scenario 1.3: Simulation from a Poisson Model—The results obtained from 

M1-M4 are shown in Supplementary Tables 2A and 3A. The findings from this scenario are 

similar with the findings in scenarios 1.1 and 1.2. Here also,  picks M3, whereas 

selects M1 as the best model at the county level. However, when we compare M1A and 

M2A (see Supplementary Table 4A), both  and  agree and pick M1A as the best 

county-level model. This is interesting because both criteria, unlike in Models 1-4, agree and 

provide an expected result. Note that, unlike M3 and M4, M2A does not contain random 

effects that could adjust for overdispersion effects. Hence, it lacks enough parameters to fit 

the simulated data adequately. On the other hand, M3 and M4 consist of correlated and 

uncorrelated random effects, which could handle to some extent an overdispersion due to 

excessive zeros. This could be the reason why  selects M3 and M4 over M1 and M2 

although we simulate the data with excessive zeros. We also notice that MPL opts for M1A 

as the county-level best model.

When we compare M1 versus M2, as in scenarios 1.1 and 1.2, M1 outperforms M2 across 

the range of criteria. This shows that even when the data are simulated from a simple ZIP 

model without random effects, the shared components in M1 are useful to describe jointly 

the risk variations across the scales.
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Another interesting result is that M2 and M1A perform similarly at the county level. This is 

an expected result because M2 simplifies to M1A when the data are simulated from a ZIP 

model without random effects. At the PH level, we notice identical results for Models 1A 

and 2A (see Supplementary Table 4A). This is because neither model has a linkage 

component that jointly describes the risk at both levels. However, M1A yields more 

unbiased and precise estimates for the county-level model parameters as compared to M2A 

(see Supplementary Table 5A).

Figures 6A and 7A (see Supplementary Appendix) display the average relative risk estimates 

obtained from Models 1-4 and Models 1A-2A, respectively. Similar to scenarios 1.1 and 1.2, 

M3 and M4 recover the clusters of zero county-level risks in Figure 2A, while M1 and M2 

recover the elevated county-level risks well. When we compare M1 and M2, M1 recover the 

simulated county-level risk pattern better than M2. On the other hand, M2 overestimates the 

clusters of zero risks. Comparing M1A and M2A, M1A returns the simulated county-level 

risks much better than M2A. Note that the estimated county-level risk pattern from M2 and 

M1A are almost identical. These results are consistent with the findings in Supplementary 

Tables 2A and 4A. At PH level, there is a slight difference among Models 1-4 in terms of 

recovering the simulated risks, while M1A and 2A produces almost identical PH-level risk 

patterns.

4.1.3 Scenario 2: Simulation from a ZIP Model—The results are displayed in 

Supplementary Tables 6A–7A. We can see that all the criteria prefer M3 when the data are 

simulated with 0% and 10% structural zeros. When the structural zeros increase to 25% and 

50%,  selects M1, while  and MPL opt for M4. From Supplementary Table 7A, 

when the percentage of the structural zeros increases, the bias and MSE of the parameters, 

especially for the intercept and variance-components, obtained from M3 and M4 increase 

most of the time. When the percentage of structural zeros are 0, 10, and 25, M1 results in 

more unbiased and precise estimates of the PH-level variance-components (  and ), 

whereas M2 yields a less biased and more precise estimate for the slope parameter ( ). On 

the other hand, when the percentage of structural zeros is 50, M2 provides less biased and 

more precise estimates for the intercept and PH-level variance-components, while M1 

produces a less biased and more precise estimate for the county-level variance components.

In terms of recovering the county-level simulated risks, M1 recovers the simulated risks 

much better than the other models, while M3 and M4 do not recover the simulated risk well, 

especially the elevated risks when the percentages of structural zeros are 25 and 50. 

However, when the structural zeros are 0% and 10%, M3 and M4 recover the simulated risks 

well. Yet, M1 better recovers the elevated risks, For example, in the south west of Georgia. 

At the PH level, there is a slight difference among the models (see Supplementary Figures 

8A, 9A, 10A and 11A).

4.1.4 Scenario 3: Scaling effect—As in scenarios 1 and 2,  and MPL pick M3, 

whereas  opts for M1 as the county-level best model. In addition, all the criteria select 

M1 and M3 as the PH-level best model. In contrast to scenarios 1 and 2, all the criteria 

equally prefer M1 and M3 at the PH level. Comparing between M2 and M4,  and MPL 
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pick M4, while  chooses M2 at the county level. As in scenario 1, both models perform 

similarly at the PH level. When we compare M1 to M2, as in scenario 1, M1 outperforms 

M2 (Table 5).

Table 6 displays the bias and MSE estimates for the model parameters. Unlike in scenario 1, 

we include the bias and MSE estimates of  and  because we able to fix the values of 

those PH-level parameters in the simulated PH-level RR. In contrast to scenario 1, M1 does 

not provide the most unbiased and precise estimates for most of the parameters. Yet, it is 

doing well for the county-level variance components. On the other hand, M2 offers the best 

results for the PH-level variance components, while M3 yields the most unbiased estimates 

of the covariate effects (  and ).

Figure 8 depicts the estimated risks, indicating that M1 and M2 recover the county-level 

simulated risks in Figure 5 well when compared to M3 and M4. Interestingly, at the PH 

level, the risk patterns from M1 and M3 are similar with the simulated risk patterns in Figure 

5. Similar to the simulated risks, the range of the PH-level risks in M1 and M3 is from 0.76 

to 3.75, while it is from 0.96 to 3.11 for M2 and M4. At the county-level, the range of the 

risks for M1 and M2 is from 0.13 to 1.56, whereas it is from 0.05 to 1.34 for M3 and M4. 

These results show that as in scenarios 1 and 2, M1 and M2 better detect the elevated 

county-level risks, while M3 and M4 better detect the lower (zero) county-level risks. In 

contrast to scenarios 1 and 2, the estimated county-level risks are biased because the scale 

for the simulated county-level risks ranges from 0 to 10, while the estimated one ranges 

from 0 to 1.6. This is not surprising because the county-level data are simulated from a 

multinomial distribution, whereas the fitted models assume a county-level Poisson 

distribution.

4.2 Application to Georgia Skin Cancer Study

Tables 7–8 and Figure 9 show the results obtained from Models 1-4 applied to the Georgia 

skin cancer study. As in Section 4.1,  and MPL suggest that M3 and M4 are the best 

models at the county level, whereas  indicates that M1 is the best model at the county 

level. Moreover, at PH level, all the criteria select M3 as the best model but the difference 

between M1 and M3 is not significant. When we compare M1 versus M2, we find that M1 

outperforms M2, indicating that the shared components in M1 are useful to link the two 

scale levels simultaneously. From Table 8, we obtain that all the models provide non-

significant positive spatial relationship between the daily sunlight and the incidence of skin 

cancer. However, as in Section 4.1, M3 and M4 yield a negative estimate of the county-level 

intercept whereas M1 and M2 have positive estimates. We also find that, most of the time, 

M3 and M4 yield higher estimate of the variance components, especially at the county level, 

than M1 and M2.

With respect to the RRs, M1 results in estimates that are more consistent across the scales. 

For example, in northcentral and southeast Georgia, the RR pattern from M1 at both county 

and PH levels are similar. When we compare the estimated RRs in Figure 9 with the 

observed SIR in Figure 1, as in Section 4.1, M3 and M4 identify the clusters of zero risks 

better than M1 and M2. On the other hand, M1 and M2 detect the higher risks better than 
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M3 and M4. These results show that the zero inflated multiscale models (M1 and M2) tend 

to overestimate lower risks, while the convolution models (M3 and M4) attempt to 

underestimate elevated risks.

5 Discussion and Conclusion

Our results indicate that the zero inflated multiscale model with shared components (M1) 

fits the simulated and the real data better than the zero inflated multiscale model without the 

shared components (M2) at both the county and PH levels. These findings accentuate the 

importance of jointly addressing scaling effects and zero inflated problems. We also find that 

M1 recovers the simulated risk patterns much better than M2. In addition, M1 often offers 

more unbiased and precise parameter estimates than M2. We also compare the zero inflated 

multiscale models (M1 and M2) with multiscale models (M3 and M4). We discover that 

 and MPL always prefer the multiscale models over the zero inflated multiscale 

models, whereas  often opts for the zero inflated multiscale models. This could be due 

to  penalizes more for model complexity than . Another important reason could 

be that the correlated and uncorrelated random effects could capture the overdispersion due 

to excessive zeros [33].

To investigate why  and MPL opt for the multiscale model instead of the zero inflated 

multiscale model, we simulate data from a simple Poisson model without random effects but 

with excessive zeros (scenario 1.3). We fit M1A (zero inflated multiscale model without 

random effects) and M2A (multiscale model without random effects) to the simulated data 

sets (see Supplementary Appendix Table 1A). We find that , MPL and  select 

M1A as the best model over M2A. However, when we fit the models with the random 

effects (Models 1-4),  and MPL still prefer M3 and M4. This could reflect that the 

random effects could accommodate the overdispersion due to many zeros.

The zero inflated multiscale models (M1 and M2) often provide more unbiased and precise 

estimates when compared to the multiscale models (M3 and M4). In scenario 1 where the 

data are simulated with cluster of zero risks, M3 and M4 yield biased and imprecise 

estimates for the intercept and some of the county-level variance-components ( ). In 

scenario 2 where we simulate with different percentage of structural zeros, the bias and MSE 

of the parameter estimates, especially for the intercept, increase as the percentage of 

structural zero increases (see Supplementary Table 7A). Furthermore, in scenario 3 where 

we simulate the county-level data from a multinomial distribution conditioning on the 

simulated PH-level Poisson data, the bias, and MSE for the intercept from M3 and M4 are 

much larger than that of M1 and M2.

In terms of recovering the simulated risks at the county level, M3 and M4 recover the 

clusters of zero risks, while M1 and M2 recover the elevated risks well (scenario 1). When 

the percentages of structural zeros are 25 and 50, M3 and M4 poorly recover the simulated 

risk patterns, while M1 recover the simulated risk patterns well (scenario 2). When the data 

are simulated using scenario 3, M1 and M2 recover the simulated risk patterns better than 

M3 and M4. In all scenarios, there is no significant difference among the models in terms of 
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recovering the simulated PH-level risks. Although there is a slight difference among the 

models, all the models recover the PH-level risk patterns well.

Furthermore, we implement the models to investigate whether daily sunlight is spatially 

related to the incidence of skin cancer in the state of Georgia and find that all the models 

provide non-significant positive relationship between these two variables at both county and 

PH levels. M1 provides more consistent risk estimates across scales. As in the simulation 

study, here also, M3 and M4 better detect the lower (zero) risks, while M1 and M2 identify 

the elevated risks better than M3 and M4. Moreover,  and MPL select M3 and M4 as 

the best county-level model, whereas  picks M1 as the best county-level model.

We believe that this paper contributes to the field concerning when and how to implement 

zero inflated multiscale models to describe risk variation across scales for aggregated data 

with excessive zeros. The results show zero inflated multiscale models with shared 

components (M1) are useful to describe risk variations accurately when the percentages of 

structural zeros are high. Furthermore, they are important to investigate covariate effects 

across scales. However, several issues require further investigation. First, , MPL and 

 measures provide different results. While  offers expected results for the 

simulated data sets,  and MPL provide unexpected results which appears due to the fact 

that random effects absorb the overdispersion. Second, we only include a single covariate in 

the models. This can be extended to include multiple covariate effects. Third, all the models 

considered here use the data twice because the data at the PH level are an aggregation of the 

county-level data. To overcome this issue, multilevel models with spatial interaction effects 

[34–37] could be considered.

Zero inflated multiscale models with shared components address both scaling and zero 

inflated problems simultaneously. To obtain accurate and consistent risk estimates across 

scales, we recommend using these models when there are high percentages of structural 

zeros in the data. Furthermore, these models can be used to detect elevated risks when 

excessive zeros are present in the data. For identifying areas with zero risks, multiscale 

models with shared components could be a better choice than the zero inflated multiscale 

models. However, the zero inflated multiscale models provide more unbiased and precise 

estimates of the intercept and slope parameters when clusters of zero risks exist in the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The observed standardized incidence ratio (SIR; top panel) and Average Daily Sunlight 

(ADS; bottom panel) in thousands of KJ/m2 at both the county and PH levels.
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Figure 2. 
The number of persons discharged from non-federal acute-care inpatient facilities for skin 

cancer in the state of Georgia at both the county (left panel) and Public health (PH) district 

levels (right panel).
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Figure 3. 
Scenario 1.1: Simulated relative risks at both the county and PH levels.
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Figure 4. 
Scenario 1.2: Simulated relative risks at both the county and PH levels
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Figure 5. 
Scenario 3: Simulated relative risks at both the county and PH levels.
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Figure 6. 
Scenario 1.1: Averaged relative risks (RR) over 200 simulated data sets at both county (top 

panel) and public health (PH; bottom panel) levels.
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Figure 7. 
Scenario 1.2: Averaged relative risks (RR) over 200 simulated data sets at both county (top 

panel) and public health (PH; bottom panel) levels.
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Figure 8. 
Scenario 3: Averaged relative risks (RR) over 200 simulated data sets at both county (top 

panel) and public health (PH; bottom panel) levels.
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Figure 9. 
Georgia skin cancer study: Relative risks (RR) obtained from the models fitted to the data at 

both county (top panel) and public health (PH; bottom panel) levels.
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