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Abstract 

 

 

Detection of specific target biomarkers is a critical step for electronic nose technologies in 

breath analysis. Electronic nose technologies have been successfully demonstrated in the air 

quality, meat processing, and the citrus industries, as well as cancer clinical trials. The novel 

design, assembly, and implementation of a test bed prototype of an electronic nose system is 

introduced in this Dissertation. To verify the feasibility of a test bed prototype design, a Corona 

Virus Disease 2019 (COVID-19) breath simulation mixture of alcohol, acetone, and carbon 

monoxide was presented to the test bed prototype in the laboratory. The COVID-19 breath 

simulation mixture was developed from a literature review and from preliminary gas 

chromatography ion mobility spectrometry data obtained from parallel COVID-19 breath studies 

based in Edinburgh and Dortmund. As a result, the test bed prototype was fit with metal oxide 

semiconductor (MOS) MQ-2 and MQ-135 gas sensors due to their availability, affordability, high 

sensitivity, high selectivity, and low recovery time properties related to their respective target 

gasses. The sensors were configured to show a detection range for alcohol, acetone, and carbon 

monoxide in part per million (ppm) level. 

The problem with the use of MOS based sensors in electronic nose technologies is system 

instability, due to a result of gradual drifts in the output responses of the MQ-2 and MQ-135 

sensors. This instability directly pertains to the baseline output response of the MQ-2 and MQ-135 

sensors not being accurately obtained. A main focus of this Dissertation analyzes a signal 

processing approach  involving the manipulation of the gas sensor output response baseline using
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Orthogonal Signal Correction (OSC) in an attempt to decrease the negative influence of gradual 

drifts associated with the output response of the MQ-2 and MQ-135 sensors. The proposed signal 

processing approach of applying baseline manipulation with OSC was performed to eliminate 

and/or minimize the drift effects of the MQ-2 and MQ-135 gas sensors responding to varying 

concentrations of the COVID-19 breath simulated mixture of methyl alcohol, acetone, and carbon 

monoxide (CO). A Partial Least Squares (PLS) regression model is then employed to determine 

the approximate concentration of gas detected in ppm after the corrected datasheet undergoes 

baseline manipulation. This Dissertation will detail how the proposed signal processing 

approaches increase the reproducibility of the sensor output responses by enhancing the regression 

model stability while maintaining an accuracy suitable for breath analysis applications.
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Chapter 1:  Introduction 

 
 

A portion of this chapter was accepted for publication in [154]. Permission to reproduce 

the works in this Dissertation is included in Appendix A. 

The Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), was identified in December 2019 and has since spread 

rapidly across the globe, resulting in at least 26 million cases and approximately 440,000 deaths 

by January 2021 [102]. The transmission of SARS-CoV-2 includes viral shedding through the 

potential fecal-oral route as well as bioaerosols emitted orally and nasally [105]. For example, 

respiratory droplets retaining SARS-CoV-2, have an approximate size between 65 nm-125 nm, 

which are emitted by the force of a breath, a cough, or a sneeze of an infected individual [103], 

[104]. These infectious airborne particles then contaminate surfaces of the surrounding 

environment, such as a tabletop, doors, or even the mouth, nose and eyes of other individuals. 

Many countries have been implementing reverse transcription-polymerase chain reaction 

(PCR) COVID-19 testing of its population to reduce the spread of COVID-19. Studies have 

revealed that lockdowns and mobility reductions decreased the transmission rate of COVID-19 in 

Europe and North America [106]. However, manufacturers of the current PCR COVID-19 

diagnostic test kits struggle to keep up with demand and experience testing kit shortages and long 

processing times [107]. As a result, test results may be delayed which then delays the intervention 

of quarantining the potentially infected individual who may be transmitting viral particles within 

the wait period for their test results, which is typically 3 or more days. Thus, there is a need for a 
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rapid COVID-19 screening test that can provide results in real-time so that a confirmed COVID-

19 infected individual can be alerted of their infection status within seconds of taking the test. A 

confirmed COVID-19 positive individual would be immediately advised by a healthcare 

professional, at point of care, to quarantine and isolate to slow the spread of infection, so that 

businesses and schools can continue providing services in a COVID-19 free environment. 

This Dissertation details research conducted from April 2020 to May. 2021 which 

culminated in a response to the University of South Florida (USF, Tampa, FL) COVID-19 Rapid 

Response Research Task Force, led by Dr. Salvatore D. Morgera. The Task Force challenged 

researchers to develop novel approaches to address the respiratory illness pandemic in the form of 

COVID-19, to help prevent the spread of the virus by rapid diagnostic detection. The work 

presented here represents the design, assembly, and implementation of a test bed prototype 

configured for detecting volatile organic compounds (VOCs) associated with inflammatory 

biomarkers of viral infection and COVID-19 from exhaled breath samples of infected individuals. 

The test bed prototype consists of a gas collection system having an array of metal oxide 

semiconductor (MOS) MQ-2 and MQ-135 gas sensors in communication with a microcontroller 

and an electronic device such as a computer, a tablet, or a smart phone. 

As a result of MOS based gas sensor commercial availability, low cost, and sensor 

properties, including a high sensitivity to target gases and a short recovery time, the MQ-2 and 

MQ-135 gas sensors are commonly used gas sensor components for electronic nose technologies 

for biomedical applications; however, their suitability has yet been determined for use in electronic 

nose systems directed at real-time monitoring for breath analysis applications [109], [110]. The 

problem with the use of MOS-based sensors in electronic nose technology is system instability 

due to the output response of the sensor not being under stable control because of gradual drifts in 
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the output response of the MQ-2 and MQ-135 sensors. This results in an inability to successfully 

reproduce output responses using these sensors. It would be more desirable to have a gas sensor 

having an increased reproducibility of more controlled output responses so that acquired gas sensor 

data obtained from a laboratory setting may be more efficiently applied toward breath analysis 

applications [114]. This baseline instability directly pertains to the baseline output response of the 

MQ-2 and MQ-135 sensors not being accurately obtained due to factors such as drifts, 

environmental influences, and sampling means [108]. In particular, as it relates to drifts, as a slight 

variation is observed in MOS-based gas sensor output responses of electronic nose devices having 

the sensors exposed to an unchanged target gas sample with an unchanged concentration value 

having the surrounding environment at an ambient status. 

Drift in a sensor is a natural phenomenon in which a low frequency change occurs. Drift 

changes occurring between sample intervals has been investigated to be attributed to many factors 

including, the degradation of the heating element comprising a nickel-chromium coil surrounded 

by a layer of aluminum oxide-based ceramic of the sensor over time or damage to the sensing 

element, comprising a layer of tin dioxide overlaying the heating element, from chemicals that can 

compromise the integrity of the sensor components [111], [112]. Further, unstable drift changes of 

MOS-based gas sensors may result from changes in the environment of the sample chamber such 

as, temperature, humidity, flow rate of the sample, and concentration of target gas [113]. Drift 

variation is magnified in breath analysis applications when the sensors of an electronic nose device 

are exposed to a diversity of target gasses within an exhaled breath sample, at varying 

concentrations, and a changing flow rate corresponding to the inconsistent force of the exhaled 

breath emitted from an individual’s lungs. [154] 
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In addition, undesirable drift variation exists in MOS-based gas sensors due in part to the 

sampling mechanism in which the heated tin dioxide layer of the gas sensor is configured for 

oxygen adsorption on its surface. This oxygen adsorption decreases the flow of electric current 

flowing through the coil of the MOS gas sensor until the surface density of adsorbed oxygen lowers 

during sensor exposure with a target gas. As a result of target gas exposure to a MOS gas sensor, 

a resistance change having a value measured using a voltage divider network occurs and is 

associated with the detection of a specific gas. Thus, in the presence of reducing gases, more 

electrons can flow across the coil. The sampling mechanism comprising the electron flow across 

a coil of a MOS gas sensors requires lengthy cycling time when a saturated sensor refreshes back 

to baseline drift. This response and recovery time may hinder the accuracy of results and not be 

suitable for breath analysis applications unless corrected using signal processing [108]. Although 

an efficient cleaning process is a solution to minimizing drifts after each gas exposure phase, the 

cleaning process requires a length of time that is not suitable for an electronic nose in clinical 

applications for breath analysis. This Dissertation will present a signal processing method to 

minimize the effects of drift on MOS-based gas sensor output responses so that the sensor response 

drifts are reduced, thus providing quicker and continuous measurements. As a result, fast 

measurements as well as maintaining the accuracy of the results are expected from applying the 

signal processing cleaning step [128]. [154] 

Current signal correction methods such as univariate and multivariate are configured for 

increasing the quality of the sensor output response. Univariate methods are capable of applying 

the correction to one variable, such as the gas sensor during baseline manipulation [115]. This 

alteration is commonly referred to as a transformation and is configured for the correction, such as 

differential, relative, or fractional, of the sensor’s signal baseline. Some studies have indicated the 
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use of baseline manipulation as a means for preliminary processing of the output response of the 

gas sensor [116]. Other studies have utilized various filtering techniques such as Moving Median 

Filter (MMF), Fourier Bandpass Filter (FBF), and Discrete Wavelet Transform (DWT) to 

eliminate adverse drift effects from acquired gas data [117], [118]. [154] 

Studies have indicated a correlation between output responses of gas sensors and drift 

effects that have influenced the direction of electronic nose technologies towards utilizing 

multivariate signal correction methods to apply the correction to many variables, such as a plurality 

of gas sensors, resulting in an increased amount of data being detected for modeling of nonlinear 

drift effects [119]. Self-Organizing Maps (SOMs) are a type of adaptive neural network that have 

been incorporated within the signal processing of some electronic nose sensors [143]. Although 

the use of this adaptive neural network can accomplish accurate results for the application of gas 

analysis, the quantification of acquired gas sensor output responses have been identified as a major 

limitation [120], [123]. Taking the literature review into consideration, it can be discerned that 

drift is associated with the output response of a gas sensor even during exposure to a target gas 

having consistent variables such as, temperature, humidity, and time. It would be more desirable 

to minimize the variance of drift. In another example of multivariate linear correction being applied 

in other studies, the use of Partial Least Square (PLS) and Principal Component Analysis (PCA) 

have contributed to the decrease in variance of the gas sensor drift as it flows in a single pathway 

[113], [121], [122]. Further, some studies have investigated and favored the use of orthogonal 

signal correction (OSC) algorithms to eliminate the variance that is absent any correlation to the 

variable for approximate calculation [122], [124], [125]. In a particular study, OSC was used for 

the correction of near-infrared spectra (NIR) and many publications described machine learning 
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algorithms to improve the processing of the OSC method to eliminate the variance not correlated 

to the estimated variable [127], [128]. [154] 

The goal of this Dissertation was to determine candidate VOC biomarkers associated with 

the body’s inflammatory response to SARS-CoV-2 and then design, assemble, and implement a 

test bed prototype capable of detecting these specific VOCs with MQ-2 and a MQ-135 gas sensors. 

After careful review of the literature and consultation with breath experts involved with breath 

analysis for COVID-19, the candidate VOC biomarkers included in the COVID-19 breath 

simulated mixture were alcohol, acetone, and carbon monoxide (CO) for detection analysis with 

the test bed prototype to acquire preliminary gas sensor output response data. The first step of the 

proposed signal processing approach includes applying baseline manipulation with OSC to 

eliminate and/or minimize the drift effects of the MQ-2 and MQ-135 gas sensors responding to 

varying concentrations of the COVID-19 breath simulated mixture. 

Next, a regression model to determine the approximate concentration of gas detected in 

ppm is realized after the corrected datasheet undergoes Partial Least Square (PLS) regression. As 

the MQ-2 and MQ-135 gas sensors are exposed to differing concentrations of the COVID-19 

breath simulation mixture, PLS regression will be applied to model the output responses of the 

MQ-2 and MQ-135 sensors. This Dissertation will describe the proposed signal processing 

correction approach for quantification of COVID-19 breath simulation mixture using a portion of 

PLS steps in the modeling process for increasing the reproducibility of the sensor output responses 

by enhancing the regression model stability while maintaining an accuracy suitable for breath 

analysis applications. It is envisioned that this drift compensation method presented in this 

Dissertation will enhance electronic nose design capabilities for a wide variety of applications. 

[154] 
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Chapter 2:  A Review of VOC’s and the Means for Their Detection 

 

 

A portion of this chapter was published in [125] and accepted for publication in [154] . 

Permission to reproduce the works in this Dissertation is included in Appendix A. 

Considering this review and in response to the COVID-19 pandemic, breath specialists 

based in Edinburgh, UK, in Dortmund, Germany, and in Jacksonville, Florida U.S., have initiated 

clinical trials of electronic nose technologies directed to VOCs of COVID-19 in exhaled breath. 

Further, a weekly virtual multidisciplinary meeting was established at the University of South 

Florida in April 2020 in collaboration with canine detection specialists to discuss and begin 

understanding neurological manifestations of COVID-19 disease and potential diagnostic breath 

sensor devices to address a long felt, yet unfulfilled need to standardize electronic nose (eNose) 

methodologies into a reproducible method for detection of low noise data signature profiles of 

disease [36]. This section will review several electronic nose devices including their structural 

components, materials, and their breath sample collection procedures. 

This section describes symptoms and standard diagnostic testing methods of COVID-19. 

Endogenous compounds of disease and the clinical detection of chronic rhinosinusitis (CRS), 

COVID-19, Influenza Flu Virus, and inflammatory lung disease such as Respiratory Tract 

Infection (RTI) in a patient’s breath by various eNose devices will be discussed. Brain breath 

biochemistry in neurological complications of COVID-19 will be detailed including the infection 

mechanism of SARS-CoV-2 with a specific focus on its angiotensin-converting enzyme 2 (ACE2) 

interaction, viral infection routes from the olfactory epithelium at the nasal cavity to the central 
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nervous system (CNS), and VOCs in lung disease will be described. Neurological manifestations 

of COVID-19 will be described including, Guillain-Barre Syndrome (GBS), acute demyelinating 

encephalomyelitis (ADEM), and Induced Multisystem Inflammatory Syndrome. Electronic nose 

devices will be reviewed including, the Jet Propulsion Laboratory (JPL) eNose configured for air 

quality monitoring, the Wize Sniffer configured to determine liver health from breath samples, an 

air collection device for breath VOCs and body odor emissions in a variety of species of bats, and 

an eNose sensor configured for monitoring fruit growth and maturation. 

2.1  COVID-19 and Diagnostic Testing 

Electronic nose technology incorporated with breath analysis protocols have been observed 

as a successful approach to noninvasive diagnosis demonstrated in clinical trials for breast cancer, 

colorectal cancer, lung cancer, liver disease, infectious disease such as tuberculosis, and diabetes 

[101]. Further, electronic nose technologies are currently used in monitoring air quality, spoiled 

meats, and ripened fruit; however, its impact on emerging pandemics, such as the respiratory 

illness pandemic in the form of COVID-19, is still under investigation. A significant problem with 

electronic nose technology is accurate detection of a target gas within a diverse environment of 

gasses, such as in a breath sample. The use of MOS based gas sensors within an electronic nose 

system has a great potential as a means of rapid detection of a target gas without having to modify 

the target gas sample. [154] 

2.1.1  Observed Symptoms of COVID-19 

On March 11, 2020 SARS-CoV-2 has caused a respiratory illness pandemic in the form of 

COVID-19 [154]. As illustrated in Table 2.1, a plurality of key symptoms associated with COVID-

19 infections include, but are not limited to: fever and dry cough which accompany approximately  
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Table 2.1  COVID-19 symptoms and associated biomechanisms. 

 

COVID-19 
Symptom 

Biomechanism Reference 

Fever Upper Respiratory/ Inflammatory Immune 
Response 

[28], [31] 

Dry Cough Upper Respiratory/ Inflammatory Immune 
Response 

[28] 

Hypoxia Metabolic/ Upper Respiratory/ 
Inflammatory/ Immune Response 

[28] 

Headache Upper Respiratory/ Inflammatory Immune 
Response 

[29] 

Nasal Congestion Mucus Obstruction/Upper Respiratory/ 
Inflammatory Immune Response 

[29] 

Sore throat Upper Respiratory/ Inflammatory Immune 
Response 

[29] 

Increased Ferritin 
levels 

Inflammatory/ Immune Response [31], [91], [92] 

Nausea Gastrointestinal [29], [30] 

Vomiting Gastrointestinal [30] 

Diarrhea Gastrointestinal [30] 

Dyspnea Respiratory [29], [31] 

Fatigue Musculoskeletal [29] 

Myalgia Musculoskeletal [29] 

Arthralgia Musculoskeletal [29] 

Anosmia Olfactory/Neurodegenerative diseases, 
mucus obstruction 

[32], [33] 

Ageusia Olfactory [32], [33] 
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80% of COVID-19 infections [28], [69]. Further, headache, nasal congestion, sore throat, nausea, 

labored breath or dyspnea, and musculoskeletal symptoms are responses to inflammation while 

immune response symptoms include fatigue, myalgia or muscle pain, and arthralgia or joint pain 

[29], [89]. Recently observed symptoms of COVID-19 include anosmia and ageusia. Anosmia is 

a neurological impairment of olfactory functioning in that the olfactory system is not able to 

accurately detect and/or correctly identify odors and is characterized by a loss of smell. Ageusia is 

characterized by a loss of taste [32], [33]. [154] 

2.1.2  Ferritin Levels and COVID-19 

Clinical laboratory results involving COVID-19 patients have indicated a substantial 

increase in ferritin levels compared to healthy individuals and diabetics possibly due to the 

inflammatory response corresponding to disease severity [31]. For example, healthy individuals 

and diabetics have a combined reference ferritin level range between approximately 30 ng/ml and 

400 ng/ml [31]. Studies have evaluated ferritin levels in exhaled breath condensate of lung cancer 

patients and have identified non-small cell lung cancer (NSCLC) patients having ferritin levels 

above 60 ng/ml and have identified chronic obstructive pulmonary disease (COPD) patients having 

ferritin levels ranging between 35 ng/ml and 40 ng/ml [94]. Laboratory findings of mild COVID-

19 patients showed a substantially high ferritin blood level of approximately 888.2 ng/ml ± 2181.7 

ng/ml and severe COVID-19 patients having a substantially increased ferritin blood level of 

approximately 1869.1 ng/ml ± 2229.4 ng/ml [91]. A study showed that ferritin concentrations were 

measured noninvasively in exhaled breath condensate (EBD) with an EBC collection device [93], 

[94], [95]. 
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2.1.3  Diagnostic Testing of COVID-19 

Due to the highly contagious and life-threatening characteristics of COVID-19, the 

Emergency Use Authorization (EUA) authority has allowed the use of real-time reverse 

transcription polymerase chain reaction (rRT-PCR) testing to detect RNA from SARS-CoV-2 in 

nasal, nasopharyngeal, and oropharyngeal swabs from patients exhibiting symptoms of the virus 

[154]. This rRT-PCR method requires target-specific fluorescent labeled oligonucleotide probes 

which create a signal when they are bound to the amplified RNA [24]. This lengthy procedure 

requires many steps during preparation of the sample including, but not limited to, collecting 

samples from nasal swabs, providing quinidine isothiocyanate to disrupt the SARS-CoV-2 virions, 

providing a magnetic nanoparticle to capture the nucleic acids, washing the sample to remove 

inhibitors and unbound sample components, providing a nucleic acid detection kit for separating 

the nucleic acids from the magnetic nanoparticle with a buffer solution, and amplifying the nucleic 

acids in a deep well plate. An Internal Control Reagent (ICR) is then introduced to the wells and 

the specimen is plated, amplified, and detected on a reaction plate [24]. This diagnostic process 

requires many materials associated with an increase in cost and is subject to human error along the 

process which may adversely affect the accuracy of the testing result. Further, between April-June 

2020, there have been shortages of genetic extraction kits, swabs, reagents, masks, and gowns 

which have halted COVID-19 testing. It would be more desirable to have a method of COVID-19 

testing that eliminates the need for excessive equipment, supplies, and multiple steps. 

Although rRT-PCR is the current standard and diagnostic testing method due to its high 

sensitivity having an approximate range between 66-83% for detecting the RNA of SARS-CoV-

2, studies indicate false-negative (FN) results from respiratory samples for SARS-CoV-2 and show 

FN rates (FNRs) having a range between 1% to 30%. The FN’s may be due to, for example, swab 
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contamination from poor sample collection, low viral load, different rates of viral shedding over 

time in the disease process, and decreased analytic sensitivity [144], [145]. Studies have suggested 

repeating the rRT-PCR test if a chest computerized tomography (CT) scan suggests COVID-19 

specific features despite an initial false-negative test result. Unfortunately, rRT-PCR testing 

materials not be available during a pandemic scenario when testing supplies and lab technician 

resources are in short supply and in high demand. [145]. Thus, the substantially increased range 

of FNRs with rRT-PCR test results serves as a motivation for a diagnostic electronic nose breath 

analysis testing method. In particular, depending on the type of electronic chemical gas sensors 

used and the amount of these sensors that comprise a rapid electronic nose device, the high 

selectivity of these sensors to the breath pattern signature of coronavirus disease would greatly 

reduce the number of false positives and false negatives associated with existing rRT-PCR 

diagnostic testing methods. 

Since there have been shortages of testing materials such as swabs and associated reagents 

to perform rRT-PCR, some non-electronic nose investigations have sought out COVID-19 patient 

breath samples for processing and COVID-19 VOC signature detection with a gas chromatograph 

ion mobility spectrometer (GC-IMS) device. Evidence suggests a signature of inflammatory and 

oxidative stress metabolites detected from COVID-19 positive patients using Gas Chromatography 

(GC) and Ion Mobility Spectrometry (IMS) include, acetone, alcohol, butanone, methanol, 

isoprene, heptanal, propanol, propanal and octanal [98]. Other studies have indicated VOC 

concentrations of approximately 10 to 250 parts-per-billion (ppb) of methylpent-2-enal, 2,4-

octadiene, 1-chloroheptane, and nonanal in breath samples obtained from exhaled breath samples 

of COVID-19 infected patients [145], [146]. [154] 
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2.1.4  Endogenous Compounds of Disease 

Although it is currently known that VOCs are emitted from exhaled breath, it was not until 

the 1970s that one of the first breath studies was carried out. The investigation was directed to 

approximately 200 VOCs emitted from human breath samples using GC methods [153]. From that 

point onward, other studies have investigated identifying specific biomarkers of disease for the 

application of breath analysis. Breath analysis would eventually replace many invasive blood 

testing procedures with this noninvasive testing method for disease diagnosis [153]. As illustrated 

in Table 2.2, inorganic gases such as CO, NO, and VOCs such as isoprene, ethane pentane, and 

acetone are emitted from internal tissue because of the inflammatory response or from oxidative 

stress because of injury or disease [4], [5]. Studies have detected VOCs associated with infectious 

diseases such as COVID-19 and Influenza. Acetaldehyde has been detected in the human breath 

of upper respiratory tract infection (UTRIs) patients; pentane, acetone and isoprene has been 

detected in the human breath of acute respiratory distress syndrome (ARDS) patients; and nitric 

oxide (NO) has been detected in human breath of chronic obstructive pulmonary disease (COPD) 

[4], [5]. Further, pulmonary tuberculosis (TB) patients were found to have elevated levels of 

heptane detected in their breath sample [26]. Electronic nose devices have been implemented in 

clinical settings to diagnose diseases based on biomarker signature detection of patient breath 

samples.  

Although other pathogens of disease may share a similar infection mechanism of SARS-

CoV-2, it is an important aspect of this research for the combination of more broadly known 

neurological inflammatory biomarkers, such as NO and CO, from a plurality of pathogens of 

disease to be incorporated with the known breath pattern signature of COVID-19. The VOCs of 

COVID-19 currently consist of specific increases in acetone, isoprene, heptanal, propanol, 
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Table 2.2  Odor analysis of endogenous compounds of disease compared to healthy controls. 

Biomarkers Endogenous 

Compounds 

(EC) 

EC Type Expression 

 

References 

Lung Disease 
/Inflammation/ARDS 

Pentane VOC + [4], [19] 

COPD, Lung 
Disease/Inflammation 

Ethane VOC + [4], 
[19] 

(ARDS), Inflammation Isoprene VOC - [4], [12], 
[19] 

Inflammation 
COVID-19 
Neurological  

CO 
NO 

Inorganic 
gas 

+ 
+ 

[38] 
[19], [43] 

Inflammation Cytokines IL-6 
and TNF-α 

Nonvolatile  + [20] 

URTI Acetaldehyde VOC + [4] 

COPD, lung 
inflammation, 
pulmonary 
tuberculosis (TB) 

Heptane Hydrocarbon 
VOC 

+ [21] 
[26] 

COPD 2-propanol, 2-
butyloctanol 

Alcohol + [21] 

COPD 8-Isoprostane VOC + [4] 

COVID-19 
Gastrointestinal 

Methanol VOC - [98] 

COVID-19 
 

Acetone, 
isoprene, 
heptanal, 
propanol, 
propanal, 
butanone, 
octanal, 
methylpent-2-
enal, 2,4-
octadiene, 1-
chloroheptane, 
and nonanal 

VOC + 
+ 
+ 
+ 

[28] 
[98] 
[145] 
[146] 

Gastrointestinal 
Motility Disorders 

Hydrogen VOC + [99] 
[98] 
[100] 
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propanal, butanone, methylpent-2-enal, 2,4-octadiene, 1-chloroheptane, nonanal, octanal, and a 

decrease in methanol as shown in Table 2.2 [98], [145], and [146]. In regard to diagnostic 

electronic nose detection of SARS-CoV-2 infection and COVID-19 disease biomarkers, a breath 

pattern signature having a wider scope including neurological inflammatory biomarkers is a 

strategy described here to enhance the accuracy of differentiating COVID-19 infection from other 

pathogens of disease.  

2.2  Brain Breath Biochemistry in Neurological Complications of COVID-19 

To date, the direct link between SARS-CoV-2 gaining access to the nervous system 

through the olfactory nerve to invoke reversible anosmia and COVID-19 induced inflammatory 

multisystem syndrome remains unexplored and represents a major gap in knowledge about SARS-

CoV-2 cellular entry and associated detectable biomarkers of COVID-19. Thus, we propose to 

elucidate the olfactory nerve’s role in viral entry of SARS-CoV-2 to the nervous system and 

determine quantitative biomarkers associated with its immune response in an effort to gain insights 

on detecting COVID-19. A highly specified sensor array detection system may be capable of 

identifying SARS-CoV-2 and/or viral components such as the amino acid receptor binding 

domains (RBDs) of Spike 1 (S1) glycoprotein of SARS-CoV-2, and/or a plurality of inflammatory 

biomarkers from the breath of an individual and/or from the odor emitted from an individual. 

Accordingly, we will probe the role of electrochemical and semiconductor-based detection sensors 

as well as canine detection of these viral components and/or inflammatory biomarkers under 

healthy and pathological conditions. [154] 

2.2.1  Infection Mechanism of SARS-CoV-2 

Studies have indicated that SARS-CoV-2 has four main structural proteins including, spike 

(S) glycoproteins, a membrane (M), an envelope (E), and a nucleocapsid (N) [58], [39], [37], [72]. 
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These S glycoproteins are embedded on the surface of the outer E portion of SARS-CoV-2 and 

have a 1273 amino-acid-long structure configured to connect with the human cell membrane 

protein angiotensin-converting enzyme 2 (ACE2) during infection [51], [52], [39], [73]. Studies 

have shown ACE2 to be located at various host sites such as at the nasal epithelial cells, the heart, 

the esophagus, the kidneys, the bladder, and the ileum [62]. The S glycoprotein is divided into 

subunit 1 (S1) and subunit 2 (S2) [50]. S1 is primarily in communication with ACE2 during 

infection and has beta strands and comprises an N-terminal domain (NTD), a first C-terminal 

domain (CTD1), a second C-terminal domain (CTD2), and a third C-terminal domain (CTD3) 

[54]. The CTD1 functions as a receptor binding domain (RBD) facilitating the connection between 

S1 and the peptidase domain (PD) of ACE2 [51], [54]. The CTD1 specifically binds to the cellular 

receptor ACE2. Amino acid residues have unique positioning along the S1 and S2 proteins of a 

variety of coronaviruses [58]. A variation of 70 interactions found in SARS‐CoV‐2 S protein and 

wild‐type ACE2 complex exists having ACE2 alleles forming hydrophobic, electrostatic, and 

hydrogen bonds with SARS-CoV-2 [73]. A strong polar communication exists between SARS-

CoV-2 CTD1 of S1 protein residue A475 with ACE2 residue S19, N487 with Q24, E484 with 

K31, and Y453 with H34 [39], [73]. 

SARS-CoV-2 binds to the host during infection, and studies have shown evidence that 

some viral proteins contribute to the suppression of cytokines, interferon (IFN) – α and β of 

macrophages during immune response [69]. This immune response delay corresponds to the peak 

of viral load detected in the upper respiratory tract of SARS-CoV-2 patients at day 10 of infection 

[62], [69]. This suppression of IFN – α and β may contribute to this infection load peak. When the 

immune system’s IFN– α and β finally become active after approximately day 10 of infection, the 

upper respiratory tract viruses [69]. Studies have revealed SARS-CoV-2 residues including, but 
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not limited to, V445, Y449, Y473, Q474, A475, E484, G485, F486, and N487 facilitate an increase 

in has already sustained significant injury, thus, contributing to the increased fatality rate of 

COVID-19 compared to other electrostatic interactions between S1 protein of SARS-CoV-2 and 

ACE2 receptor. As a result, a high binding occurs between the ligand S1 protein and the ACE2 

receptor [51]. Cryo-EM structure analysis of previous studies have indicated the binding affinity 

of SARS-CoV-2 S protein to ACE2 is approximately 10−20 times higher than the binding affinity 

of SARS-CoV S protein to ACE2 [46]. Zinc metalloprotease functions as a receptor molecule for 

SARS-CoV-2 and is encoded by the ACE2 gene [73]. 

After the SARS-CoV-2 S1 protein infects an individual by connecting with the ACE2 

receiver of an individual, studies have shown indication of a down-regulation of ACE2 prevalence 

on some cell surfaces [57]. Considering these studies, it is believed that the continued infection 

and replication of SARS-CoV-2 results in a reduced membrane ACE2 expression. Consequently, 

the reduced membrane expression of ACE2 expression in the lungs activates neutrophil infiltration 

of white blood cells in response to bacterial endotoxin, resulting in an influx of angiotensin II 

accumulation which may increase blood pressure and cause tissue damage [57]. In fact, many CNS 

infections can result in inflammatory responses including, but not limited to, an increase of 

neutrophils, mononuclear cells, and neuronal necrosis [34]. Further, biomarkers of cell death 

include karyorrhexis, condensed chromatin, karyolitic cells, and/or pyknosis which are potential 

quantitative biomarkers for the detection of COVID-19 [64]. 

2.2.2  Olfactory Nerve 

The cribriform plate separates the nasal cavity from the brain [66]. The goblet cells, 

secretory cells, and ciliated cells of the nasal epithelium lines the nasal cavity and paranasal sinuses 

[35]. Olfactory receptor neurons of the olfactory neural cells have a dendritic end portion extending 
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through the olfactory epithelium of the nasal cavity located opposite an end traversing through 

approximately 15-20 foramina or openings of the cribriform plate and are connected to the 

olfactory bulb [53], [34], [66]. The olfactory bulb is positioned within the frontal lobe of the brain 

and the olfactory tract traverses through the medial temporal lobe of the brain [88]. Next, the 

olfactory tracts divide at the olfactory trigone into three channels. One of the channels is referred 

to as the lateral olfactory stria which continues laterally, traversing the horizontal Sylvian cistern 

and ending at the medial temporal lobe approximately at the uncus [87]. It has been shown that an 

infection route of SARS-CoV-2 is through the nasal cavity in communication with the medial 

temporal lobe of the brain by the olfactory bulb [83]. [154] 

Some studies have revealed evidence from magnetic resonance imaging (MRI) of the brain 

of COVID-19 patients revealing signal abnormalities associated with COVID-19 infection at the 

medial temporal lobe of the brain, which has been shown to retain the olfactory lateral stria [81], 

[87]. Cerebral white matter fluid-attenuated inversion recovery (FLAIR) hyperintensity lesions 

show high intensity bright areas on an MRI where a lesion is being reflected. Although these 

hyperintensity lesions increase with age and with environmental factors such as smoking, they are 

considered to be a signal abnormality of severe COVID-19 patients [81]. Studies have confirmed 

that viral particles up to approximately 100 nm can enter the CNS through the olfactory epithelium 

[34]. Interestingly, clinical investigations of coronavirus-specific viral particles were observed to 

range in size from 60-140 nm in size [68]. Thus, it has been shown that SARS-CoV-2 is more than 

capable of infiltrating the CNS through olfactory receptor neurons and traversing the cribriform 

plate. Studies have indicated infection of the olfactory bulb epithelium as being a contributor in 

neurological symptoms in that SARS-CoV-2 damages ACE2 and then infiltrates into the blood-

brain barrier (BBB) [82]. Interestingly, studies have detected similar viral RNA concentrations 
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within collection swabs from the nasal epithelium of both symptomatic and asymptomatic patients, 

thereby, placing viral RNA at the olfactory epithelium during active infection and/or during 

dormancy [13], [30]. The unique communication of SARS-CoV-2 with the olfactory receptor 

neurons of the olfactory epithelium may serve the basis of diagnostic sensing devices and/or canine 

sensing methods configured for pathogen detection and/or pathogen classification of the nervous 

system. 

Some studies have demonstrated the cribriform plate of younger individuals having 

foramina with a larger sized diameter compared to the cribriform plate of older individuals [66]. 

In younger children, the cribriform plate is undergoing development and the substantially larger 

foramina could result in an increased susceptibility to viral infiltration, especially since SARS-

CoV-2 is attracted to the ACE2 receptors within the nasal cavity. Studies have indicated that viral 

transmission along the olfactory nerve is associated with histological lesions [23]. These 

histological lesions in CNS disease have been known to induce an inflammatory response 

including, but not limited to, NO mediated demyelination and could trigger COVID-19 induced 

inflammatory multisystem syndrome [23]. Therefore, NO and CO are potential biomarker 

candidates for detecting COVID-19. 

Although the olfactory nerve is comprised of nonmyelinated axons, the axonal projections 

of the olfactory bulb that extend to the lateral olfactory tract (LOT) are myelinated [77]. Viral 

mediated nervous system injury may include demyelination of some portions of the olfactory 

system. Odorants are captured by olfactory sensory epithelium in nasal respiratory epithelium [38]. 

Glomeruli located in the olfactory bulb receive electronic impulses associated with an odorant. 

The first synapse is made with mitral and tufted cells, known as projection neurons [40]. These 

projection neurons extend into a LOT to an information processing area in the CNS called the 
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olfactory cortex [77], [38]. The LOT is comprised of axons having promyelinating 

oligodendrocytes [76], [77], [78]. The myelinated axons of the LOT contribute to an increased 

membrane resistance, a decreased membrane capacitance, and an increased nerve impulse 

conduction velocity [77]. Scientific evidence supports regeneration of axons from peripheral nerve 

injuries by suppressing oxidative stress in oligodendrocytes with acetyl-L-carnitine (ALC) [79]. 

Olfactory receptor neurons have nucleotide gated ion channels activated by odorant binding, 

whereby, some volatile odoriferous compounds bind to the mucus layer-odorant binding protein 

(OBP) in the layer of mucus at the olfactory epithelium surface [38]. Some animal models have 

suggested mitral and tufted cells have an increased responsiveness to odors when an animal has 

fasted during detection of the olfactory bulb signals within the gamma band with an 

electrobulbogram (EBG) [49]. 

2.2.3  Olfactory Bulb Signal Recording 

The olfactory bulb has mitral and tufted cells that generate odor response signals within 

the gamma band of an electrobulbogram (EBG) scalp recording [49]. A study has investigated the 

detection and recording of these signals emitted from the olfactory bulb with an electrobulbogram 

having electroencephalogram (EEG) electrodes positioned on either side of the patient’s nasal 

bridge [49]. Although this method is noninvasive and may serve as an ideal method for diagnosis 

and monitoring of the olfactory bulb as it relates to brain health in disease and infection, it would 

be more desirable for an electrobulbogram to have a collection system having electrodes placed 

within the nasal cavity of a patient for collection of olfactory bulb signals and an analysis chamber 

for collection and processing of nasally exhaled breath of a patient. Thus, a unique signature may 

be formed from both the olfactory bulb signals and from the pattern of a plurality of detected 

endogenous compounds within multiple nasally exhaled breath samples over time. This unique 
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signature may serve as a method for the diagnosis and monitoring of progression of a plurality of 

respiratory diseases including, but not limited to, COVID-19. 

2.2.4  Volatile Organic Compound Profiles of Lung Disease 

Volatile organic compound (VOC) profiles include stable chemicals being volatile at 

ambient temperature. In some instances, VOCs are produced by an individual because of an 

infection. Studies suggest that VOCs are transported through the blood from different organs to 

the lungs, excreted by diffusing across the pulmonary alveolar membrane, and then exhaled 

through the individual’s breath [55]. Many VOCs are detectable in exhaled air and their 

concentrations in a breath sample may be measured to determine presence of disease [63]. Some 

VOCs have been identified in studies that have tested the breath of individuals having lung disease 

compared to healthy individuals. Study results have indicated an increase in VOCs such as, alpha‐

pyrene, acetaldehyde, 2‐butyloctanol, octane, methyl isobutyrate, butanal, 2‐propanol, 3‐

hexanone, cyclopentanone and 3‐methyl‐propanal, and a decrease of delta‐dodecalactone, 2‐

methyl butanoic acid, 2‐acetylpyridine, tetradecane, [E]‐cinnamaldehyde, and vinylpyrazine [59].  

Some studies showed that the exhaled breath of an individual having disease conditions 

corresponds to a specific VOC profile [56]. Testing for VOC biomarkers in clinical samples may 

serve as a noninvasive, point-of-care, and low-cost diagnostic screening method for respiratory 

diseases. Further, the breath of a SARS-CoV-2 infected individual may have biomarkers which 

may be detected by a portable gas analysis system configured for rapid and accurate SARS-CoV 

detection. These biomarkers include, but are not limited to: SARS-CoV-2 spike (S) glycoproteins; 

endogenous compounds such as NO and CO; VOCs such as ethane, pentane, acetone, isoprene; 

and nonvolatile substances such as isoprostanes, peroxynitrite or cytokines [8]. Further, studies 

have revealed measurements of increased levels of Pro‐Inflammatory Cytokines (PICs) in the lung 
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and bronchial tissues of the SARS‐CoV‐infected ACE2‐expressing cells of the epithelial cells, 

pneumocytes, and macrophages [22]. Some of these PICs include, but are not limited to, monocyte 

chemoattractant protein‐1 (MCP‐1) and transforming growth factor beta 1 (TGF‐β1), and 

intermediate levels of tumor necrosis factor alpha (TNF‐α), interleukin-1β (IL‐1β), and 

interleukin‐6 (IL‐6) [22]. 

2.2.5  Neurological Manifestations of Inflammation 

Investigations in the beginning stages have shown that an infection of SARS-CoV-2 does 

manifest both neurological and neuropsychiatric illness as described in previously mentioned 

Table 2.2 [80]. The infection mechanism of Guillain-Barre Syndrome (GBS) results in acute 

inflammatory demyelinating polyradiculoneuropathy lesions from an immune response targeting 

myelin and/or the axon of the peripheral nerve [86]. Studies have investigated acute demyelinating 

encephalomyelitis (ADEM) in COVID-19 patients. ADEM is an immune-mediated demyelinating 

disorder in which pathological evidence suggests that although the brain tissue samples had a 

negative PCR test for SARS-CoV-2 and that there was no evidence of axonal damage on a 

neurofilament stain, myelin debris associated with the breakdown of myelin sheaths was detected 

around vessels in the white matter in the  myelin basic protein stain from a brain biopsy [80]. The 

olfactory bulb and track of the medial temporal lobe, as it pertains to adjacent demyelination, is a 

likely candidate for facilitating ADEM and/or GBD in COVID-19 patients. Further, it is known 

that medial temporal lobe atrophy may contribute to retinal thinning, whereby, the retinal nerve 

fiber layer may be noninvasively scanned with a spectral-domain optical coherence tomography 

(OCT) [96]. The OCT system may be used in combination with VOC breath signature analysis to 

more accurately diagnose COVID-19 in infected patients. 
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2.2.5.1  Nitric Oxide Expression 

A recently observed symptom of COVID-19 is anosmia or loss of smell. Studies have 

shown an increased ACE2 expression in SARS-CoV-2 infection at the location of nasal epithelial 

cells [33], [35]. Because the S1 proteins of SARS-CoV-2 bind to ACE2 for infection to occur, a 

strong correlation exists between peripheral nerve injury including virus induced olfactory loss 

and/or injury stemming from viral communication at the olfactory epithelium, resulting in the 

anosmia symptom of COVID-19. Studies have identified both an olfactory bulb and olfactory tract 

volume reduction in size resulting from some respiratory infections and/or diseases such as 

multiple sclerosis (MS) which display the anosmia symptom [61], [41]. Studies have shown that 

demyelinating diseases have an increased inflammatory response compared to non-neurological 

diseases. Further, the atrophy of both the olfactory bulb and the olfactory tract was shown to be 

more pronounced in MS in relation to both demyelination and parenchymal inflammation [41]. 

Hence, this atrophy of the olfactory bulb and olfactory tract might be correlated with 

demyelination, which could trigger an inflammatory response with potentially fatal outcomes in 

patients. This inflammatory response induced from both COVID-19 and MS can be detected 

through volatile organic compound (VOC) brain breath analysis with an electronic nose device. 

Although, the majority of anosmia observations reported in COVID-19 diagnosed cases 

appear to be caused from mucosal congestion, peripheral nerve injury could explain anosmia in 

asymptomatic COVID-19 patients not having mucosal congestion [61]. In particular, because of 

the inflammatory response of SARS-Cov-2 connecting with ACE-2 at the olfactory epithelium, 

macrophages and microglia may be activated to generate cellular debris such as, inflammatory 

cytokines and nitric oxide (NO) which contribute to demyelination and axonal loss [65]. NO has 

been shown to damage mitochondria of axons [74], resulting in lower levels of the enzyme Na+/K+ 
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ATPase, an ATP supply deficiency, and an increase in the amount of Na+ within a cell. The 

olfactory sensory neurons have unbranched dendrites that connect with the olfactory epithelium. 

The cytoplasm of the dendrites is configured to retain mitochondria and the ends of these dendrites 

form olfactory knobs [40]. The ATP production is crucial for nervous tissue to have stable resting 

potentials to propagate electrical signals to transverse the length of nerve fibers. Therefore, nervous 

tissue requires ATP to generate resting potentials. 

When the ATP is broken down into adenosine diphosphate (ADP) and phosphate, the 

Na+/K+ pumps become activated again to reverse the influx of Na+ within the cell. There may be 

a correlation between anosmia as a symptom of COVID-19 with the NO mediated injury to the 

olfactory receptor neurons. Additionally, COVID-19 induced inflammatory multisystem 

syndrome may result from an inflammatory response from this aforementioned peripheral nerve 

injury. Thus, understanding the biomechanism of anosmia may provide anosmia specific 

biomarkers capable of being added to the known breath pattern signature of COVID-19 currently 

consisting of increases in acetone, isoprene, heptanal, propanol, propanal, butanone, octanal with 

a decrease on methanol, thereby, differentiating COVID-19 infection from other pathogens of 

disease [98]. The incorporation of additional biomarkers from the anosmia symptom of COVID-

19 contributes to the unique exhaled breath profile of COVID-19 to increase the accuracy of a 

diagnostic electronic nose for exhaled breath applications. 

Although the epithelium of the paranasal sinuses produces NO even without viral infection, 

macrophages generate excessive NO because of proinflammatory cytokine activation during viral 

infection defense [43], [47]. When NO and oxygen free radicals (OH) and (O2-) are in 

communication with each other from some viral lung infections, toxic byproducts such as 

peroxynitrite (ONOO-) and NOx (NO2 and N2O3) are seen to contribute to the mechanism of viral 
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pneumonia resulting in tissue injuries to the lungs [42], [47]. Further, scientific evidence has 

indicated measurable amounts of NO in nasally exhaled air [44]. Thus, excessive levels of NO 

may be a biomarker of inflammation especially when a biosensor collects breath samples from 

nasally exhaled air as opposed to orally exhaled air. [154] 

2.2.5.2  Carbon Monoxide Expression 

Multisystem inflammatory syndrome is a disease that has recently been observed in 

children and teens that had previously tested positive for COVID-19. Some of the symptoms 

include, but are not limited to, body inflammation, rash, high fever, upset stomach, and cardiac 

dysfunction. Studies have indicated proinflammatory cytokines such as tumor necrosis factor-

alpha (TNF-α), interleukin-6 (IL-6), and IL-8 having increased levels detected after being 

stimulated for inflammatory response and having increased levels as age increases [70], [45]. Thus, 

younger individuals will have less of a protective inflammatory response compared to adults, 

which may contribute to COVID-19 related multisystem inflammatory syndrome.  

It is currently known that NO is a biomarker of airway inflammation [19]. It is a possibility 

that COVID-19 induces NO mediated demyelination of the axons of olfactory receptor neurons. 

An example of energy failure of a neuron in CNS diseases can be caused by deficient Sodium 

Potassium (Na+/K+) ATPase. The enzyme Na+/K+ ATPase is responsible for the pumping of Na+ 

and K+ in opposite directions across the cell membrane [74]. When ATP supply is deficient, the 

enzyme Na+/K+ ATPase loses its function. Without the breakdown of ATP to energize the 

Na+/K+ pumps, these Na+/K+ pumps can fail. When these Na+/K+ pumps are impaired, it results 

in an increase in the amount of Na+ within the inside of the cell from the Na+/K+ pumps losing 

their ability to export Na+ from the cell. Thus, energy failure of the neuron and degeneration of 
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demyelinated axons may occur in response to viral mediated CNS when ATP supply is deficient 

and may result in COVID-19 induced inflammatory multisystem syndrome [74], [125].  

Similarly, energy failure of the neuron results from Ca+ mediated injury to myelinated 

axons when an increase in the amount of Na+ is retained within the inside of the cell [74]. When 

there is an influx of Na+ inside of a cell, the reverse operation of the Na+-Ca2+ exchanger is 

activated, thereby, importing excessive levels of Ca2+ into the axon. Ca2+ mediated injury 

includes, but is not limited to, fragmented neurofilaments, depolymerized microtubules, or a 

lowering of organelles of residual demyelinated axons [61]. An influx of Ca2+ occurs as a result 

from both ATP depletion and from odorant binding. For example, in odorant binding, cyclic 

adenosine monophosphate (cAMP) causes a depolarizing flow of current into olfactory receptor 

neurons, which slows odorant stimulation by closing cyclic nucleotide-gated (CNG) channels [38]. 

Studies have evidence supporting CO as the diffusible intracellular and intercellular biomarker of 

CNG channel activity in olfactory receptor neurons. Thus, CO is a byproduct of olfactory 

transduction associated with CNG channel activity reduction, whereby, a loss of olfactory receptor 

neurons occurs for minutes [38]. These excessive concentrations of CO byproduct may be detected 

by a gas sensor and compared to CO concentrations of healthy individuals. 

2.3  Electronic Nose Technology 

Currently, diagnostic testing of many diseases often requires invasive means such as tissue 

biopsy, post-mortem microscopic testing, blood collection, and/or implantable electrodes. It is 

more desirable for the breath profile of a human to be non-invasively analyzed for the presence of 

disease specific biomarkers including a plurality of endogenous compounds for clinical disease 

screenings, diagnosing disease, and monitoring disease progression in humans. In particular, some 

eNose devices utilize gas chromatography and mass spectrometry and are capable of detecting 
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various odors and toxic substances. The use of biosensors eliminates many ethical considerations 

that may arise with either human or canine detection of infectious disease or biohazardous material. 

Although studies have shown biosensors being capable of detecting odor associated with immune 

responses, biosensors lacked specificity and have signal suppression due to poor data processing 

and a noisy signal. Table 2.3 shows a broad scope of eNose devices and their respective materials 

and methods including the locations monitored, target gas discrimination, and sensor type. 

2.3.1  Space Shuttle Air Quality Monitoring 

Early eNose devices such as those that have been developed for air quality monitoring at 

the NASA Jet Propulsion Laboratory (JPL) have 32 conductometric sensors made from carbon 

loaded insulting polymer films in communication with a computer [23]. The computer obtains 

sampled data from a database of air samples, independent component vectors are generated to 

represent each subset of the sampled data, and each subset of sampled data undergoes independent 

component analysis whereby, each subset of sampled data is linearized using a plurality of specific 

operating points by subtracting the averaged value from each element to determine the data 

distribution. This method of air quality monitoring involves complex mathematical modeling and 

lengthy algorithms for the response pattern extraction and for the pattern recognition of gasses 

such as, methanol, ethanol, 2-propanol, ammonia, benzene, indole, methane, formaldehyde, Freon 

113, and toluene [23]. The JPL eNose is configured for use in a space shuttle setting and is not 

conducive to the widespread, rapid diagnostic testing of the public for COVID-19. Thus, there 

remains a long felt, yet unfulfilled need for an improved eNose capable of measuring the air quality 

from the breath of an individual at point-of-care for a rapid diagnosis for COVID-19.  



28 

Table 2.3  Electronic nose devices with target gas discrimination and gas sensor type. 

Electronic Nose 

Devices 

Location 

Monitored 

Target Gas 

Discrimination 

Sensor Type  References 

Jet Propulsion 
Laboratory 
(JPL) 

Air Quality  Gasses such as, 
methanol, 
ethanol, 2-
propanol, 
ammonia, 
benzene, indole, 
methane, 
formaldehyde, 
Freon 113, and 
toluene 

32 conductometric 
sensors made from 
carbon loaded 
insulting polymer 
films 

[23] 

Wize Sniffer 
with 
Mouthpiece 

Liver 
Dysfunction 

Carbon 
monoxide, 
carbon dioxide, 
hydrogen, 
ethanol, hydrogen 
sulfide, 
hydrogen, and 
ammonia 

6 metal oxide 
semiconductors 
(MOS) 

[1] 

Cyranose 320 
eNose  

Diagnosing 
White-Nose 
Syndrome in 
bats 

6 alcohols 
including 
methanol, 
ethanol, 1-
propanol, 2-
propanol, 1-
butanol, t-
butanol; six 
aldehydes; 2 
amines; four 
ketones; and four 
carboxylic acids 

32-sensor array 
with carbon black 
polymer 
composite 
sensors/conducting 
polymers 

[2] 

Gas 
Chromatography 
and Mass 
Spectrometer 
(GC-MS) 

Fruit Quality 
Monitoring 

Aldehydes, 
alcohols, esters, 
ketones, and 
terpenoids 

12 chemical tin 
oxide sensors/8 
MOS sensors 

[3] 

Gas 
Chromatography 
and Mass 
Spectrometer 
(GC-MS) 

Fruit Quality 
Monitoring 

Acetone, n-
hexane, benzene, 
ethanol, 
isobutane, carbon 
monoxide, and 
methane 

13 MOS gas 
sensors 

[3] 
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2.3.2  Detectable Breath Ammonia and Liver Health 

Liver dysfunction is detectable by measuring quantities of ammonia in the breath of a 

patient with an eNose device referred to as the Wize Sniffer. The gas sensor array is retained within 

the gas collection chamber and has six MOS based sensors. The MQ7 sensor detects carbon 

monoxide and hydrogen, the TGS2620 sensor detects carbon monoxide, hydrogen, and ethanol, 

the TGS2602 sensor detects ethanol, hydrogen sulfide, hydrogen, and ammonia, the TGS821 

sensor detects hydrogen, the TGS2444 sensor detects ammonia, and the TGS4161 sensor detects 

carbon dioxide [1]. A mouthpiece is connected to the gas collection chamber and is configured for 

a user to exhale a single breath as per the mixed expiratory breath sampling technique from the 

user’s mouth into the mouthpiece. The cited study indicated the need to establish a clearly defined 

boundary of the best detection range in parts-per million to differentiate patients having liver 

disease from healthy controls. 

2.3.3  Air Collection Devices for Breath Emissions in Bats 

A study investigating the presence of a fungal pathogen, Pseudogymoascus destructans, in 

bats utilized the portable Cyranose 320 eNose for diagnosing White-Nose Syndrome in bats [2]. 

Each species of bat was placed inside of the air collection chamber for a time of 10 minutes and 

the sample was processed with the VOC pure chemical standards for a sixty second run time [2]. 

The Cyranose 320 has a 32-sensor array with carbon black polymer composite sensors with 

conducting polymers. The sensor sensitivity to VOC analytes of the air collection chamber 

retaining the bat is configured to detect the following: six alcohols including methanol, ethanol, 1-

propanol, 2-propanol, 1-butanol, t-butanol; six aldehydes; 2 amines; four ketones; and four 

carboxylic acids. The VOC signatures were detected from nine different bat species and stored 

into a database. 3-Dimensional Principal Component Analysis (PCA) includes the spatial 
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distribution of the unique VOC profiles detected from differences in the intensity and polarity of 

the sensor array of the eNose in six different bat species [2]. The composition of the VOC 

metabolic eNose data were statistically analyzed and plotted to show both VOC types and 

measurable quantities detected by the eNose. 

2.3.4  Metal Oxide Semiconductor Gas Sensors in Fruit Industry 

There have been a number of studies that describe a variety of VOCs using a gas 

chromatography and mass spectrometry (GC-MS) in the farming industry to monitor the freshness 

and quality of peaches. VOC detection of aldehydes, alcohols, esters, ketones, and terpenoids 

emitted from Eragil peaches at different concentrations depending on the date range of peach 

growth after full bloom are known [3]. One eNose sensing device has 12 chemical tin oxide sensors 

and 8 MOS sensors configured to measure the degree of peach ripeness and freshness. Another 

eNose device has 13 MOS gas sensors such as TGS822 configured to detect acetone, n-hexane, 

benzene, ethanol, isobutane, and methane; TGS2600; TGS2602; TGS2603; MQ-2; MQ-3, MQ-4, 

MQ-5, MQ-6, MQ-7 is configured to detect carbon monoxide having a detection range of 20-200 

ppm, MQ-9, and MQ-135 [1],[3]. This eNose has a fan configured to move the flow of air carrying 

VOCs emitted from a peach into a chamber. The air flow is then heated for 10 minutes prior to the 

air coming into contact with the sensor array, whereby, electrical signals are read through a 10-bit 

analog-digital converter (ADC) into the microcontroller [3]. The digital signals from the sensor 

array may be wirelessly transferred and/or stored as data into a computer database. In addition to 

the MOS-based MQ-7 sensor for carbon monoxide (CO) detection of the Wize Sniffer device, 

another known CO gas sensor comprises reduced graphene oxide (rGO)/Fe3O4 nanocomposites 

having an interdigitated chromium electrode capable of high selectivity for detection of CO gas 
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[6]. This sensor detected 5 ppm of CO gas in 3.59 seconds and detected 50 ppm of CO gas in 8.78 

seconds [6]. 

2.3.5  Electronic Nose Detection of Chronic Rhinosinusitis  

Some common gas sensor technology in eNose devices includes amperometric 

electrochemical (AEC), field effect transistor (FET), quartz crystal microbalance (QCM), and 

surface acoustic wave (SAW) sensors [9], [11]. An eNose device using acoustic wave technology 

with gas-chromatography (GC) and SAW capability is referred to as a ZNose. The ZNose has a 

heated inlet and a vapor pre-concentrator configured to output a pictogram of a quantity of 6 peaks 

associated with detected VOCs of nasal infections such as, chronic rhinosinusitis (CRS) within 10 

seconds from invitro cultured cells [5], [25], [26]. The breath collection technique implemented 

with this ZNose required the use of a cotton swab positioned for 5 minutes within the middle 

meatus of a nasal fossae for collection of nasal secretions of 14 healthy controls and from 14 CRS 

affected individuals [25]. The intensity and quality of the detectable endogenous compounds of 

this study are biomarkers of bacterial and/or fungus induced sinus infections.  

Investigations suggest odors emitted from the nasal exhalation of a patient having CRS are 

a result of the load quantity of bacteria and/or fungus within the nasal cavity and from the 

metabolic process of pathogenic infiltration of the bacteria and/or fungus into the nasal cavity. One 

eNose device has an array of 5 SAW resonators having 3 odorant binding proteins connected 

thereto. The SAW resonators are configured for detection of vapor-phase odorant molecules of 

octenol and carvone [7], [10]. In another study, biological agents such as sarin, ricin, and anthrax 

were detected with a biosensing system comprising a mist-generator integrated within an air 

collection chamber, as the biosensors require the sample reagent to be dissolved in water [8]. A 

glycol chip in communication with the air collection chamber is configured for localized surface 
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plasmon resonance (SPR) processing, whereby, gold nanoparticles are configured to connect the 

biological agent or analyte to the ligand mounted on the chip. SPR monitors binding events 

between a receptor of a biological agent and a ligand. This eNose technology provides binding, 

kinetics, specificity, and concentration, without the need for labels and is ideal for detecting viruses 

such as SARS-CoV-2. A glass slide is provided. A layer of gold film or nanoparticles overlays the 

glass slide. A dexamethasone (dex)-strand matrix functions as a substrate to which molecules can 

be attached. A ligand is connected to the dex-strand on the chip. The analyte then binds to the 

ligand. SPR causes a reduction in the intensity of light reflected at a specific angle from the glass 

side of the sensor surface. As binding occurs the refractive index close to the surface changes, 

which alters the angle of minimum reflective intensity.   

In another CRS study, 5 nasally exhaled breath samples were obtained from healthy 

controls and were compared to 5 nasally exhaled breath samples from CRS affected individuals. 

A plastic collection sack comprising a rubber tube connected to a bifurcated nasal tube has a valve, 

whereby, the bifurcated nasal tube is positioned within the nostrils of the study participant and the 

plastic collection sack is filled with nasally exhaled air [27]. Processing of the collected breath 

samples was accomplished with 8 quartz microbalance sensors configured to produce a molecular 

composition-based pattern qualitatively classified using principal component analysis (PCA) 

having an 80% successful classification rate and artificial neural network (ANN) analysis having 

a 60% successful classification rate [5], [26],[27]. Because some biomarkers of disease result from 

an immune mediated response, studies indicate metabolic byproducts specific to the infiltrated 

pathogen, thus, a unique signature of metabolic biomarkers may be detectable with an eNose 

device [4], [25].  
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2.3.6  Field-Effect Transistor Biosensor Detection of SARS-Cov-2 

The detection of SARS-CoV-2 may be accomplished with a glycan-based or graphene-

based field-effect transistor (FET) biosensor [37], [97]. A study has indicated the biosensor 

comprises graphene sensing material having a SARS-CoV-2 S antibody in communication with 

the graphene having a 1-pyrenebutyric acid N-hydroxy succinimide ester probe linker. FET based 

bio sensors have a high sensitivity and immediate results [37]. Graphene is utilized for its high 

electronic conductivity, increased carrier mobility, and increased specific area [37]. The SARS-

CoV-2 S antibody was used as a receptor to detect SARS-CoV-2. In a study, an undisclosed SARS-

CoV-2 antibody is evaluated for its limit of detection on the graphene surface of the FET biosensor 

which detected 1 femtogram per milliliter (fg/mL) which measures concentrations of SARS-CoV-

2 S protein in phosphate-buffered saline in parts per quadrillion [37]. In another experiment, the 

FET biosensor was evaluated for its limit of detection on the graphene surface with cultured SARS-

CoV-2 which detected concentrations 1.6 X 101 pfu/mL and in clinical nasopharyngeal samples, 

the FET sensor detected concentrations 1:1X105 (242 copies/mL) [37]. The study concluded that 

further research was required to determine materials having a more reduced associated noise. 

2.3.7  Nanocrystalline Metal Oxide Film Sensor for Influenza Detection 

The metabolic processes involved with inflammatory responses and oxidative stress of 

diseases produce byproduct biomarkers such as, NO and CO, whereby, some of which are expelled 

in the exhaled breath of an infected individual at an altered composition and concentration 

compared to healthy controls [16], [17], [18], [26]. It is this difference in concentration of a 

plurality of biomarkers in disease that creates a signature pattern, whereby, a detected biomarker 

may have markedly increased levels of concentration or decreased levels of concentration 

compared to a healthy control, that may be used to differentiate healthy controls with infected 
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individuals. For example, some studies have investigated the detection of influenza induced 

infection by monitoring levels of isoprene, NO, acetone, and/or ammonia in exhaled breath of an 

individual with an eNose device [12]. In particular, an isoprene sensor device configured for an 

individual to orally exhale a single breath into a mouthpiece is connected to a chamber in 

communication with a sensor having a Bluetooth interface integrated within a printed circuit board 

(PCB) [12]. This isoprene sensor comprises a nanocrystalline metal oxide film configured to 

monitor viral infections by detecting a plurality of exhaled biomarkers simultaneously over time. 

In another study, a NO sensitive single exhale breath sensor is configured to communicate with a 

PCB having a breath sample chamber and sensor circuitry [15]. 

2.3.8  Gas Chromatography for Inflammatory Lung Disease Detection 

Central nervous system (CNS) infections result in immune-mediated responses such as 

inflammation. Scientific data from several studies indicate that hospitalized patients having 

COVID-19 also develop acute respiratory distress syndrome (ARDS) [35]. As a result of infected 

individuals having these aforementioned highly pathogenic coronaviruses, the lung and bronchial 

tissues may be susceptible to acute lung injury (ALI) and ARDS, which are associated with chronic 

and acute inflammation [22]. Some studies suggest that exhaled concentrations of ethane and lipid 

peroxidation biomarker, pentane were measured at increased levels in inflammatory diseases [19]. 

Other studies have revealed that isoprene is another biomarker having a presence in inflammatory 

lung disease [19]. In particular, the exhaled breath of individuals infected with bacterial RTI was 

analyzed for VOC concentrations with the GC-IMS sample collection, whereby, patients orally 

exhaled the last 3 seconds of the exhaled breath into a mouthpiece directly connected to the device 

after 30 minutes of fasting [13]. The IMS is configured to detect separation of chemicals within 

the GC with a sensitivity in the parts-per trillion (ppt). Further, the 10-minute analysis time for 
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each sample was implemented. Some data associated with the GC-IMS was processed for machine 

learning applications to reduce noise and to correct the baseline of 30 recorded VOCs including, 

but not limited to, ethanol, benzene, octane, and hexanal [14]. Although GC–IMS is considered to 

be a leading standard test for exhaled breath analysis due to its high specificity of identifying VOCs 

of varying metabolic processes, GC-IMS technology requires lengthy processing times in 

additional to technical requirements, involving skilled technicians to process the sample, which is 

not an ideal approach for diagnostic VOC profiling [148], [149]. Electronic noses have been shown 

to successfully recognize complex VOC mixtures from a sample breath indicative of a metabolic 

process in respiratory diseases. 

Many electronic nose devices comprise an electronic chemical sensor array configured for 

detection of a target gas, such as VOCs, and implements pattern recognition to differentiate the 

target gas from a diversity of gasses [149]. Current existing electronic nose technologies have been 

developed and investigated for their diagnostic performance in respiratory diseases including, but 

not limited to, inflammatory lung disease such as asthma [147], [148]. For example, the Cyranose 

320 is an electronic nose having a carbon black-polymer sensor array [147]. Studies have 

investigated the performance of the Cyranose 320, configured for 96% accuracy in distinguishing 

patients with asthma from patients with COPD [148]. Another study indicated the Cyranose 320 

could differentiate patients having mild asthma from patients having severe asthma at a cross-

validation value (CVV) of 65% [147], [150]. In yet another study, the Cyranose 320 was shown to 

discriminate between healthy controls, controlled asthma, and partially controlled and 

uncontrolled asthma with an AUC (Area Under the Curve) ROC (Receiver Operating 

Characteristics) curve of 85%, a sensitivity of 79%, and a specificity of 84% [147], [151]. The 

Aeonose is an electronic nose device having micro hotplate metal-oxide sensors and demonstrated 
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a lower accuracy and sensitivity compared to the Cyranose 320 when discriminating asthma from 

healthy controls, whereby, the Aeonose performance results indicate an AUROC curve of 79%, a 

sensitivity of 74% , and a specificity of 91% [147]. [154] 

This section presented a review of VOCs and their means for detection. First, symptoms 

and diagnostic testing methods of COVID-19 were described. Then endogenous compounds of 

diseases, such as COVID-19, were presented to provide an indication that detectable VOCs are 

emitted from infected individuals. Next, brain breath biochemistry in neurological complications 

of COVID-19 were discussed. The SARS-CoV-2 infection mechanism, olfactory nerve route, and 

inflammatory biomarkers of inflammation provided a biological perspective of COVID-19 

infection and potential VOC targets for an eNose device to detect. Finally, structural components 

of differing electronic nose devices were reviewed in varying applications such as, in space shuttle 

air quality monitoring, for measuring breath ammonia, for monitoring liver health, for monitoring 

fruit ripeness in the citrus industry, and for monitoring breath emissions in bats. Further, 

performance results configured for use in diagnostic breath analysis applications that have shown 

moderate to good accuracy in providing a rapid detection of the breath pattern of biomarkers of 

respiratory disease. Electronic noses may also be usefully extended to diagnostic applications of 

other inflammatory and infectious diseases such as in chronic rhinosinusitis, influenza, and 

inflammatory lung disease [149]. Due to their portability, ability to rapidly provide point-of-care 

diagnostic test results without a laboratory technician and their relatively low cost elevate the 

electronic nose to an attractive diagnostic tool in breath analysis.  
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Chapter 3:  Materials and Methods 

 

 

A portion of this chapter was published in [124] and was accepted for publication in [154]. 

Permission to reproduce the works in this Dissertation is included in Appendix A. 

A major limitation in this study was the inaccessibility to certain gas sensors and electronic 

nose systems because of state and locally mandated business closures in response to the 2019 novel 

COVID-19 pandemic during the timeframe of April 2020-May 2021. This study was limited to 

MQ sensors due to their commercial availability when potentially more suitable gas sensors were 

currently unavailable. A testbed prototype of an electronic nose device having a sampling chamber 

in communication with an MQ-2 gas sensor and an MQ-135 gas sensor was designed and built. In 

addition, all proposed laboratory-based research involving SARS-CoV-2 virus at USF requires the 

use of either a Biosafety Level (BSL) 2 or a BSL-3 facility. At the time of this study, the USF 

BSL-2 and BSL-3 facilities were not accessible due to either closures and/or long wait lists. Thus, 

this study was not able to work with viral cultures to determine VOCs firsthand and was limited 

to information obtained through the literature review in regard to VOCs of COVID-19. 

COVID-19 breath samples were not obtained by researchers of USF for this Dissertation 

research because of the deadly risk of researchers being contaminated by and/or transmitting 

COVID-19 via exhaled breath. The exhaled breath collection process would have generated 

SARS-CoV-2 contaminated aerosols and/or droplets. Research collaborators provided this 

Dissertation research with data from clinical breath studies located in Loughborough, UK, and 

Dortmund, Germany. The results of the literature review and these breath studies done by research 
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collaborators revealed that some of the major components of COVID-19 positive breath samples 

contained acetone, alcohol, and CO as previously described in Table 2.2. This study formulated 

and tested a COVID-19 breath simulation solution of acetone, alcohol, and CO. Although these 

formulation ingredients are based on literature review and COVID-19 breath analysis results, the 

formulation ingredients are subject to change as more study results are obtained [98].  

3.1  Electronic Nose Gas Detection Experiments 

Acquired gas data presented in this Dissertation was obtained from an experimental test 

bed prototype illustrated in Figure 3.1 comprising an electronic nose having a breath collection 

vessel with a first check valve and a second check valve. The first check valve located at the top  

 

Figure 3.1  Electronic nose prototype comprising a breath collection vessel, a mask, and a 
computer.   
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of the housing allows exhaled breath to enter the collection chamber. The first check valve is 

configured for a patient to breath into through a one-way valve of a mask. A specialized 

mouthpiece was built to comprise a mask and a one-way valve having a filter so that an individual 

could provide a breath sample into the collection vessel without having to remove a mask barrier 

member from their face due to COVID-19 precautions. The second check valve located on the side 

of the housing allows exhaled breath to escape the collection chamber, therefore, purging the 

collection chamber of encased exhaled breath. Thus, the exhaled breath is trapped within the 

collection chamber and is positioned between the first check valve and the second check valve. 

The gas sensors are retained within the collection chamber of the housing and a microcontroller is 

in electrical communication with a computer.  

It is envisioned that sterilization elements such as ultraviolet-C (UVC) light emitting diodes 

(LEDs) can be incorporated into the conceptual design of the breath sample chamber and the 

exhaust or output valve can be connected to a filtration system to purify the air being purged from 

the breath collection chamber. However, the design limitation did not include these limitations due 

to lack of adequate funding and time restraints directed to the completion of this study. Further, as 

previously mentioned, although a limitation of this study focused on obtaining data from a 

simulated breath sample solution rather than from a clinical breath sample, future opportunities 

with additional funding and IRB approval will allow this experimental test bed prototype for 

clinical use in obtaining exhaled breath samples of COVID-19 infected individuals.  

Figure 3.2 illustrates a side cut-away view of the electronic nose housing retaining 

electrical components and gas sensing components retained within an internal bladder being in 

communication with a sample vessel, compressed oxygen carrier gas, and a flowmeter. In 

particular, two MOS gas sensors are retained in the chamber of the housing. These sensors are 
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Figure 3.2  Electronic nose having gas sensing components retained within an internal bladder 
being in communication with a sample vessel, compressed oxygen carrier gas, and a flowmeter 
[124] © 2021 IEEE. 
 
capable of being saturated by a target gas to then produce a resistance change across the sensors 

resulting in an output response in volts (V). The MOS-based sensors are capable of detecting gas 

concentrations in parts-per-million (ppm) of CO, acetone, and alcohol. Referring now to Figure 

3.3, the COVID-19 breath simulation solution has equal parts of liquid methyl alcohol and liquid 

acetone mixed together. The solution is within an airtight sample vessel. Compressed CO gas is 

emitted from a controlled high pressure aluminum cylinder in communication with the gasses 

emitted from the sample vessel retaining the liquid alcohol and the liquid acetone solution. The  
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Figure 3.3  Schematic diagram of the experiment comprising a testbed prototype having MQ-2 and 
MQ-3 gas sensors. 
 
concentration of the COVID-19 breath simulation solution in oxygen carrier gas is controlled by 

a model A-5 In-Line Dual Scale Flowmeter. The flowmeter is in communication with a 

compressed oxygen carrier gas so that the flow rate of COVID-19 breath simulation solution 

having equal parts of acetone, CO, and methyl alcohol remains continuous across the gas sensors. 

Varying concentrations of methyl alcohol and acetone of the COVID-19 breath simulation solution 

were subsequently introduced and retained by a sample vessel. Different concentrations of CO 

were generated by modifying the percentage of the CO flow rate over the total flow of COVID-19 

breath simulation solution. The gas sensors were retained within an internal bladder of a housing 

to maintain a continuous climatic environment [124]. 

3.1.1  COVID-19 Breath Simulation Mixture 

Studies have indicated measured concentrations of CO emitted from the breath of non-

COVID-19 individuals as having approximately 2 ppm-100 ppm of CO present in their exhaled 
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breath [19], and [126]. Although SARS-CoV-2 is considered a respiratory illness, scientific 

evidence demonstrates that viruses may utilize the olfactory nerve to infiltrate and damage the 

nervous system including the central nervous system (CNS) and/or the peripheral nervous system 

(PNS) by activating T-lymphocytes which then activate microglia and inflammatory mediators 

[84], [90], [69], [80], [81], [82], [86]. Nervous system damage is associated with disease specific 

metabolites and abnormal chemical biomarkers that are emitted into the air from soft tissue 

samples and body cavities such as, the lungs and/or the nasal cavity, which may be detected in the 

breath of an individual with an eNose sensor configured for diagnostic screening for COVID-19 

[4], [34], [57], [45].  

Referring to Table 3.1, in addition to carbon monoxide being an inflammatory biomarker, 

preliminary data obtained from parallel COVID-19 breath studies, based in Edinburgh and 

Dortmund, have indicated statistically significant concentrations of methanol gas which is an 

alcohol and a ketone gas being acetone, using gas chromatography-ion mobility spectrometry (GC-

IMS), as being capable of discriminating between patients with COVID-19 and healthy individuals 

[98]. For example, at the Royal Infirmary of Edinburgh (RIE), a participant’s COVID-19 positive 

breath sample was collected within the GC-column to separate the plurality of compounds of the 

breath. Next, the plurality of compounds was ionized, whereby, the ions exhibited a characteristic 

drift time determined by the detector based on properties such as mass and charge [98]. Referring 

again to Table 3.1, detected exhaled methanol monomer and methanol dimer concentrations have 

a relative drift time of 0.99 ms and 1.036 ms, respectively, whereby, signal processing of GC-IMS 

data with MATLAB and statistical analysis indicated a lower methanol signal volume emitted 

from exhaled breath of RIE COVID-19 positive participants compared to non-COVID-19 exhaled  
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Table 3.1  VOC concentration trends in exhaled breath of healthy samples compared to viral 
infiltrated samples [124] © 2021 IEEE. 

 

breath samples [98]. Although this aforementioned RIE study resulted in an identification of a 

decreased concentration of methanol in the exhaled breath of COVID-19 positive participants 

using GC-IMS and did not use a gas sensor capable of detecting methanol concentrations in ppm, 

the results contribute to our understanding of the COVID-19 exhaled breath pattern signature. 

Table 3.1 further shows detected exhaled acetone concentrations having a relative drift 

time of 1.159 ms, whereby, signal processing of this GC-IMS data with MATLAB, preliminary 

modeling, and statistical analysis indicated an increased acetone signal volume emitted from 

exhaled breath of RIE COVID-19 positive participants compared to non-COVID-19 exhaled 

breath samples, corresponding to an increased concentration of acetone in COVID-19 positive 

participants [98]. It is currently known that environmental contaminants exist in both the ambient 

VOC 

type 

Sensor 

type 

 VOC 

measured 

values 

emitted from 

non-COVID-

19 breath 

Relative drift 

time in GC-

IMS  

of RIE 

samples of 
COVID-19 

breath 

Referen

ces 

Acetone MQ-135  0.24 ppm-1.69 
ppm 

1.159 ms [15], 
[16], 
[17] 

Methanol 
Monomer- 
Alcohol  

MQ-2  0.4 ppm-2.0 
ppm 

0.99 ms [15], 
[17] 

Methanol 
Dimer-
Alcohol 

MQ-2   0.4 ppm – 2.0 
ppm 

1.036 ms [15], 
[17] 
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air and/or an exhaled breath sample. For example, Table 3.1 shows concentrations of acetone in 

non-COVID-19 exhaled breath samples having a detected concentration range between 0.24 ppm-

1.69 ppm [98]. Hence, a gas sensor, such as the MQ-135, capable of detecting acetone at levels 

exceeding 1.69 ppm is desirable for the application of detection of breath acetone levels. In 

addition, the reduction of environmental contaminants within ambient air can be reduced and/or 

eliminated with an air tight sample collection and processing system. Thus, the simulated breath 

sample solution of this current Dissertation was based on breath studies and comprises equal parts 

of CO, alcohol and acetone within an air tight sample collection and processing system [98]. 

Appendix D shows IRB approval was not required for this Non-Human Subject Research. 

3.1.2  Design and Assembly of the Gas Sensor Array Test Bed Prototype 

Circuitry of the first Arduino Uno microcontroller electrically connects to the MOS-based 

MQ-2 and MQ-135 gas sensors produced by Hanwei Electronics CO., LTD with sensor modules 

produced by Flying-Fish company and the second Arduino Uno microcontroller is electrically 

connected to a Bosch BME280 sensor configured to measure pressure and temperature within the 

chamber of the housing. The housing chamber retains an internal bladder which connects the input 

port of the electronic nose to the exhaust port of the electronic nose to separate the microcontrollers 

and electronic circuitry from the gas obtained from the sample solution, whereby, at least a portion 

of the BME280, MQ-2 sensor is configured to detect both CO and alcohol, and an MQ-135 sensor 

is configured to detect acetone and are retained within the internal bladder. The microcontrollers 

are electrically wired to a 5V power source being an electronic device such as a computer. The 

electronic device has a graphic user interface configured for a programmer to calibrate the gas 

sensors, to define threshold values, and to collect data pertaining to the detected gas signature. 
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It would be desirable for a gas analysis system to indicate to a user when concentrations 

within an exhaled breath fall within a suitable range considered to be a breath pattern signature of 

COVID-19, whereby, elevated concentrations of CO and acetone combined with the lowered 

concentration of alcohol are detected in COVID-19 breath samples and are not characteristic of 

non-COVID-19 breath samples. In order to accomplish incorporating a light emitting unit indicator 

to the current electronic nose system to accurately activate in response to both the CO and alcohol 

concentrations detected within a sample, a first gas sensor having a high sensitivity to CO and a 

second gas sensor having a high sensitivity to alcohol would need to be provided. Figure 3.4 

illustrates the electronic nose testbed prototype housing having LEDs illuminating in response to 

predetermined threshold levels of target gas concentration in ppm. For example, CO emitted from 

a non-COVID-19 breath sample has a concentration range of approximately 2 ppm – 100 ppm, 

corresponding to a “healthy” signature [126]. When a first gas sensor, having a high sensitivity to 

CO, detects a concentration value of CO emitted from the simulated breath sample solution having 

a value over 100 ppm, the red colored light emitting diode (LED) of the breath chamber housing 

of the electronic nose will illuminate to indicate a potential inflammatory response symptom of 

COVID-19. 

In another example, referring again to Table 3.1, it is shown that alcohol is emitted from a 

non-COVID-19 breath sample having a concentration range between 0.4 ppm – 2.0 ppm, 

corresponding to a “healthy” signature [142]. When a second gas sensor, having a high sensitivity 

to alcohol, detects a concentration value of alcohol emitted from the simulated breath sample 

solution having a value less than 0.4 ppm, the green LED of the breath chamber housing of the 

electronic nose will illuminate to indicate a potential inflammatory response symptom of COVID- 
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Figure 3.4  The electronic nose testbed prototype housing has LEDs illuminating in response to 
predetermined threshold levels of target gas concentration in ppm. 
 
19. Since the sensitivity characteristics of the MQ-2 sensor have a broad detection range for 

alcohol, this sensor was calibrated to increase sensitivity by rotating the potentiometer clockwise. 

In yet another example, the MQ-135 sensor of Table 3.1 is configured to detect a 

concentration of acetone. Acetone emitted from a non-COVID-19 breath sample has a 

concentration range between 0.24 ppm – 1.69 ppm, corresponding to a “healthy” signature. When 

the MQ-135 sensor detects a concentration value of acetone emitted from the simulated breath 

sample solution having a value over 2.0 ppm, the yellow LED will illuminate to indicate a potential 

inflammatory response symptom of COVID-19. It would be more desirable if the target gas 

concentrations in the sample of exhaled breath exceeds threshold values of at least 2 gas sensors, 

as this may be a strong indication of presence of an inflammatory response associated with 

COVID-19. 
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3.1.2.1  System Architecture  

The Arduino Uno comprises a board and a chip being the microcontroller. The Arduino 

Uno has many connectors configured to be electrically connected to the sensor array. Further, the 

board portion has six Analog to Digital Conversion (ADC) channels which are capable for analog 

voltage inputs. The Arduino Uno ADC has a 10 bits maximum resolution for the collection of 

input voltages between values of 0 volts and 5 volts in the form of integer values ranging from 1 

to 1024. The gas sensors in the sensor array of the electronic nose device include a commercially 

available MQ2 and MQ-135 gas sensor. This MOS based gas sensor is categorized as a 

chemiresistor because its functionality is dictated by a resistance shift between the target gas and 

the Tin (IV) oxide of the senor.  

The MQ gas sensor is depicted in Figure 3.4 and is comprised of a housing having two 

stainless steel mesh layers referred to as an anti-explosion network, covering the sensor. The anti-

explosion network is connected to a clamping ring. An internal heater begins to heat up when 5V 

is applied. The MQ sensors require preheating for 24-48 hours prior to data acquisition. The anti-

explosion network forms a barrier surrounding the heating element to retain any explosion 

byproducts if the gas sensor is damaged and to prevent contaminants other than gas from entering 

the chamber of the sensing element. The sensing element comprises an aluminum oxide-based 

ceramic having a layer of gas sensitive tin dioxide and is supported by 6 legs as best shown in 

Figure 3.4. Referring to Figures 3.5 and 3.6, the MQ sensor side has two of the 6 legs labeled H 

and is configured to heat the sensing element connected by a nickel-chromium coil. Platinum wires 

of the 4 remaining legs, labeled A and B, are connected to the sensing element and are configured 

to convey output responses of current changes occurring through the sensing element. Referring  
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Figure 3.5  The MQ sensor side comprising 6 legs, wherein, two of the legs are labeled H and are 
configured to heat the sensing element connected by a nickel-chromium coil and platinum wires 
of the 4 remaining legs, labeled A and B, are connected to the sensing element and are configured 
to convey output responses of current changes occurring through the sensing element. 
 
to Figure 3.6, the MQ module component side has four pins being common collector voltage 

(VCC), Ground (GND), Digital (D0), and analog (A0), a power LED that illuminates when 

connected to a 5V power source, and a digital output (DOUT) LED that is configured to illuminate 

when a gas is detected. 

3.1.2.2  Gas Sensor Signal Conditioning and Interfacing 

The MQ2 and MQ135 sensors are not capable of connecting directly with a breadboard, so 

the MQ sensors are coupled to a module interfaced with the Arduino Uno microcontroller. 

Referring again to Figure 3.5, the VCC pin supplies the module with power when it is connected 
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to the 5V output of the Arduino Uno microcontroller. The GND pin is connected the GND pin of 

the Arduino Uno microcontroller. The analog output voltage is provided by A0 and is based on 

the concentration of exposed gas. Figures 3.7 and 3.9 have been designed using Fritzing open-

source electronic automation designer software, wherein, the power source is not shown and they 

illustrate the signal interfacing of the gas sensor unit with the Arduino Uno microcontrollers. In 

particular, the A0 pin of the MQ2 sensor module is connected to A0 of the Arduino Uno 

microcontroller and the A0 pin of the MQ-135 sensor module is connected to the A1 of the Arduino 

 

 

Figure 3.6  The MQ module component side has four pins being Common Collector Voltage 
(VCC), Ground (GND), Digital (D0), and Analog (A0). 
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Figure 3.7  A systematic design of the sensor unit having a breadboard in electrical communication 
with a first and a second Arduino Uno microcontroller, a MQ-2 gas sensor, a MQ-135 gas sensor, 
a BME280, and 5 LEDs. 
 
Uno microcontroller. The D0 output pin provides a digital representation of detected gas. The D0 

output pin of the MQ2 sensor module is connected to Digital pin#8 of the Arduino and the D0 

output pin of the MQ-135 sensor module is connected to Digital pin#9 of the Arduino.  

Figure 3.7 depicts a systematic design of the sensor unit having a breadboard in electrical 

communication with a first and second Arduino Uno microcontroller, a MQ-2 gas sensor, a MQ-

135 gas sensor, a BME280, and 5 LEDs. In regards to the 5 LEDs shown in Figure 3.4 and Figure 

3.8, the cathode is the short leg of each LED and it is connected to ground through a 220-ohm 

resistor. The anode is the long leg of each LED. The anode of the white led is electrically connected 

to Digital pin#6 of the Arduino. The anode of the blue led is electrically connected to Digital pin#7 
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Figure 3.8  Each light emitting diode is individually electrically connected to a 220-ohm resistor 
on a breadboard. 
 
of the Arduino. The anode of the green led is electrically connected to Digital pin#2 of the Arduino. 

The anode of the yellow led is electrically connected to Digital pin#3 of the Arduino. The anode 

of the red led is electrically connected to Digital pin#5 of the Arduino. The source code is attached 

in Appendix B. 

The Bosch BME280 sensor module measures pressure, temperature, and humidity. 

Referring again to Figures 3.7 and 3.9, the Bosch BME280 module has four pins being a power 

pin (VIN) connected to 5V of a second Arduino Uno microcontroller, a common ground pin 

(GND) electrically connected to GND of the second Arduino Uno, a serial clock pin (SCL) for  
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Figure 3.9  A schematic wiring diagram of the sensor unit having a first and a second Arduino Uno 
microcontroller in electrical communication with a MQ-2 gas sensor, a MQ-135 gas sensor, a 
BME280, and 5 LEDs. 
 
12C interface is connected to A5 of the second Arduino Uno, and the serial data pin (SDA) is for 

12C interface and is connected to A4 of the second Arduino. Measurements from the BME280 

sensor were obtained using Arduino Uno with the Adafruit_ BME280 library attached in Appendix 

C. The MQ gas sensor is configured to detect VOCs by volume in air in parts-per-million (ppm) 

by the resistance ratio of the sensor (RS/R0). The ratio of the resistance of the sensor when exposed 

to the target gas (RS) to the resistance of the sensor when exposed to clean air (R0). The resistance 
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ratio (RS/R0) is used to calculate the concentration of detected gas in parts-per-million, whereby, 

RS is the resistance of the sensor when the sensing element detects a gas and R0 is the sensor 

resistance in clean air with an absence of target gas. The following equation is used to obtain the 

R0 value: 

R0 = �	

 ,  (1) 

where f is the fresh air ratio value from the Hanwei Electronics CO., LTD MQ sensor data sheet. 

The MQ sensor calibration line is shown as follows: 

y = mx + b.  (2) 

A log-log scale is applied due to the calibration line being nonlinear and is expressed as the 

following equation: 

log�y) = m ∗ log�x) + b. (3) 

where y is the ratio (RS/R0), x is the ppm value, m is the slope of the line, and b is the intersection 

point. Two points are selected on the MQ sensor calibration line and they are denoted (x�, y�) and 

(x�,y�) and the slope is determined using the equation expressed as: 

m =[log(y�) − log �y�)]/[log �x�) − log �x�)]. (4) 

The intercept of the MQ sensor calibration line is calculated with the following equation: 

b = log�y) − m ∗ log�x). (5) 

After calculating the slope and intercept values, the concentration of target gas in ppm can be 

determined using the following equation: 

x = ��[�� �!)"#]

$ . (6) 

The signal conditioning circuit of the MQ-2 and MQ-135 gas sensors is depicted in Figure 3.9 in 

which the MQ gas sensor has resistor (RL), 5V supply voltage (VC), and the measured  
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Figure 3.10  Signal conditioning circuit of the MQ gas sensor having resistor (RL), 5V supply 
voltage (VC), and the measured analog/digital value being the output voltage (Vout). 
 
signal condition resistance to voltage comprising a gas sensor with load resistance , whereby, 

analog/digital value being the output voltage (Vout). The MQ gas sensors have a resistance change 

when exposed to a target gas concentration. A voltage divider network is used for the resistance is 

converted to voltage. The calibration equation of the MQ-2 and MQ-135 gas sensors are based 

from the schematics of the sensor in Figure 3.10 and Ohm’s law and is depicted as follows: 

RS = %&'(�)
&*+, - − RL, (7) 

where RS is the resistance of the sensor when the sensing element detects a gas, RL is the load 

resistance at 10K, VC is the circuit voltage being 5V±0.1 for the sensors, and Vout is the measured 
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analog/digital value being the output voltage. Attached Appendix B details the Arduino source 

code for calculating the detected concentrations of target gas in ppm. The calculated values for 

RL, R0, m, and b are entered into the program. 

3.2  Gas Measurement Protocol and Results for Preliminary Gas Data Acquisition 

During laboratory tests on the COVID-19 breath simulation mixture formulated during this 

Dissertation research, two postulated breath analysis strategies were examined to acquire gas data 

to assess the suitability of using MOS-based gas sensors. This was for the application of exhaled 

breath analysis to differentiate between potential COVID-19 breath and breath exhaled from a 

non-COVID-19 individual. First was to acquire gas data as it relates to the concentration values 

each ranging between 10 ppm-300 ppm of COVID-19 breath simulation mixture and the respective 

output responses from the gas sensors. In the second strategy, it was to acquire gas data as it relates 

to the gas sensors being exposed to the COVID-19 breath simulated mixture at differing flow rates 

ranging between 15 -41.67 mL/min and the respective output responses from the gas sensors. 

Regression analysis results indicated that both the MQ-2 and the MQ-135 sensors generated an 

effective response to the COVID-19 breath simulation mixture presented at varying 

concentrations. However, results from the output response of an MQ-2 and an MQ-135 sensor to 

a diverse environment of target gasses indicated the MQ-2 gas sensor as taking a greater length of 

time to normalize baseline drift compared to an MQ-135 gas sensor due to cross interferences with 

other gasses, which supports the MQ-135 gas sensor as being a potential component of a viable 

electronic nose for breath analysis applications.  

The electronic nose has a housing retaining an array of metal-oxide semiconductor (MOS) 

gas sensors retained in the chamber of the housing. These sensors are capable of being saturated 

by a target gas to then produce a voltage drop across the sensors resulting in an output response in 
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volts (V). The MOS-based sensors are capable of detecting gas concentrations in parts-per-million 

(ppm) of CO, acetone, and alcohol. Referring again to Figure 3.2, circuitry of the first Arduino 

Uno microcontroller electrically connects to the MOS-based MQ-2 and MQ-135 gas sensors. The 

second Arduino Uno microcontroller is electrically connected to a BME280 sensor configured to 

measure pressure and temperature within the chamber of the housing. The housing chamber retains 

an internal bladder which connects the input port of the electronic nose to the exhaust port of the 

electronic nose to separate the microcontrollers and electronic circuitry from the gas obtained from 

the sample solution, whereby, at least a portion of the BME280, MQ-2 sensor configured to detect 

both CO and alcohol, and a MQ-135 sensor configured to detect acetone are retained within the 

internal bladder. The microcontrollers are electrically wired to a 5V power source being an 

electronic device such as a computer. The electronic device has a graphic user interface configured 

for a programmer to calibrate the gas sensors, to define threshold values, and to collect data 

pertaining to the detected gas signature. 

The internal bladder of the housing chamber is purged with compressed oxygen, as the 

carrier gas, to reset the sensors to baseline. A sample solution comprises liquid alcohol and liquid 

acetone mixed together and retained within an air tight sample vessel to reduce and/or eliminate 

environmental contaminants. In an attempt to mimic the temperature of exhaled breath, the sample 

solution of liquid alcohol and liquid acetone were heated to approximately 94˚F within the known 

range of 87.8˚F-95˚F for exhaled breath temperature [141]. Again, Figure 3.2 illustrates the 

orientation of the compressed oxygen vessel being in communication with the flow meter, the 

sample vessel retaining the simulated breath sample liquid solution, and the internal bladder of the 

electronic nose housing. The gasses emitted from the simulated breath sample liquid solution being 

retained within the sample vessel are carried by compressed oxygen to mix with 150 ppm of 
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compressed CO calibration gas. The compressed CO gas is emitted from a controlled high pressure 

aluminum cylinder in communication with the sample vessel retaining the gasses emitted from the 

liquid alcohol and the liquid acetone solution. These gasses are then pumped into the internal 

bladder through a one-way valve of the inlet port. The t-handle of the ball valve of the exhaust port 

is oriented in a closed position to ensure the sample is retained in the internal bladder long enough 

to saturate the gas sensors.  

The alcohol, CO, and acetone gasses mimic the mixture of gasses present in an exhaled 

breath and are carried with the compressed oxygen carrier gas past a single MOS-based MQ-2 

sensor configured to detect both CO and alcohol, a single MOS-based MQ-135 sensor configured 

to detect acetone, and a BME280 sensor configured to detect temperature having a BMP280 piezo-

resistive pressure sensor. The flow control of the model A-5 In-Line Dual Scale Flowmeter is 

configured for a user to visually monitor the volume of oxygen flow via a round ball within the 

tapered tube of the flowmeter. The gas flows to the sensors which are mounted on an inner wall 

surface of the internal bladder near the inlet port of the electronic nose and the gas is then exhausted 

through the exhaust port of the electronic nose when the t-handle of the ball valve is oriented in an 

open position. After the gasses emitted from the simulated breath sample solution saturate the 

sensors within the internal bladder of the electronic nose, the analog signal from the MQ-2 and 

MQ-135 sensors are transmitted to a LM393 High Precision Comparator configured to digitize the 

signal. The comparator determines when the threshold values set by the potentiometer of the 

sensors have been met. The sensors of the electronic nose interface with a microcontroller Arduino 

Uno and the sensor values of CO, alcohol, acetone concentrations are displayed on a serial monitor 

within approximately 27 seconds from the initial sample introduction. The Arduino Uno code 

converts the digital signal from output response (V) into concentration (ppm) based on the 
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resistance ratio (RS/R0) of the resistance change when the sensor is exposed to a target gas (RS). 

in relation to the stable sensor resistance of the sensor in clean air (R0). Thus, a detected target gas 

of a sample may be detected and measured to indicate the approximate concentration in ppm. 

3.2.1  Flow Rate Impact 

Figure 3.11(a) shows the measured temperature detected from the BME280 temperature 

sensor and the baseline drift of the MQ-2 and MQ-135 sensors retained within the internal bladder 

of the electronic nose at the ambient working condition of temperature being approximately 66˚F 

and having approximately 61% humidity after preheating for 24 hours. The baseline of the sensors 

output for both the MQ-2 and MQ-135 sensor maintains a stable state at ambient working 

conditions for concentrations of CO, alcohol, and acetone. The flow rate of the carrier gas is 

regulated to dispense oxygen using the flow control of the flowmeter which may be rotated to 

adjust the flow of the carrier gas. Figure 3.11(b) illustrates the resulting output responses of the 

MQ-2 sensor as the sensor is exposed to gasses emitted from 300 ppm of the sample solution at 

different flow rates. Figure 3.11(c) illustrates the resulting output responses of the MQ-135 sensor 

as the sensor is exposed to gasses emitted from 300 ppm of the sample solution at different flow 

rates. For both the MQ-2 and MQ-125 sensors, as the flow rates increase, the characteristic peaks 

of alcohol, CO, and acetone, detected from the sample solution, occur more rapidly compared to 

when the flow rate is reduced. 

As the flow rate increases, the positions of the characteristic peaks of alcohol, CO, and 

acetone congregate in a closer proximity to each other compared to the peaks having a decreased 

flow rate. The peaks of the target gas have a closer proximity to each other during an increased 

flow rate result in an increased difficulty to differentiate between each target gas during an 
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Figure 3.11  (a) Temperature and flow control of baseline drift over the MQ-2 and MQ-135 MOS 
based sensors, (b) Output responses of the MQ-2 sensor at different flow rates of 300 ppm sample 
solution, (c) Output responses of the MQ-135 sensor at different flow rates of 300 ppm sample 
solution [124] © 2021 IEEE.  
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increased flow rate. However, the detection of these peaks having a decreased flow rate require an 

increase in detection time for each detection protocol. Thus, it would be more desirable for an 

electronic nose to have a medium flow rate resulting in a more rapid detection of a target gas with 

minimal sample time for the sensors to return to baseline. Thus, in light of the measured output 

response and the detection time, the electronic nose proceeded with the more desirable protocol 

using the sample solution having a flow rate of the oxygen carrier gas being approximately 25.00 

mL/min. 

Unlike GC-IMS techniques currently used to separate the plurality of compounds in an 

exhaled breath sample and then identification of each individual compound based on drift velocity, 

MOS based MQ gas sensors of this instant study detect a target gas based on a voltage divider 

network formed by the load resistance and the sensor. The MQ-2 and MQ-135 sensors are coded 

using Arduino software configured to calculate specific gas concentrations using fresh air 

calibration data and the resistance ratio provided by the manufacturer’s datasheet. In particular, 

the load resistance slope and intercept of the calibration line follow a linear scale that is converted 

into a log-log scale, as the MQ sensor data is nonlinear. The Arduino coding program utilized in 

this study calculates the resistance of the sensor from the analog voltage across the load resistor. 

For example, the MQ-2 sensor has sensitivity characteristics for a plurality of gasses 

including, but not limited to, CO and alcohol, whereby, a single MQ-2 sensor produces an analog 

output voltage. Thus, a single MQ-2 sensor will not differentiate between a concentration of 

detected CO and a concentration of detected alcohol with a high accuracy. As a result, it is expected 

that the accuracy of the sensors will improve if a gas detection system has a first gas sensor having 

a high sensitivity to CO and a second gas sensor having a high sensitivity to alcohol rather than a 

single gas sensor having a broad detecting scope encompassing both CO and alcohol. Further, the 
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Figure 3.12  Gas concentration gradient of simulated breath sample having a flow rate of 25.00 
mL/min (a) for the MQ-2 sensor, (b) for the MQ-135 sensor [124] © 2021 IEEE. 
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Figure 3.13  Output response voltages from of the MQ-2 sensor and the MQ-135 sensor with 
associated individual gas concentrations in ppm of acetone, alcohol, and CO from the 300 ppm 
sample solution at a flow rate of 25.00 mL/min for 30 s [124] © 2021 IEEE. 
 
characteristics of the output response of a single MQ-2 sensor to a diverse environment of target 

gasses emitted from the COVID-19 simulation solution is explored to determine the suitability of 

MQ sensors for the application of exhaled breath analysis in COVID-19.  

Referring again to Figure 3.11(b) and Figure 3.12(a), the MQ-2 sensor output voltage data 

starting at 0 s has a baseline drift of approximately 2.8 V, whereby, electrons from the heated tin 

dioxide semiconductor particles of the sensing element interact with ambient air, ionize the oxygen 

in the air causing the tin dioxide to adsorb the oxygen and obstruct the electrical current flow 

through the sensing element of the MQ-2 sensor. At 6 s of exposure to the simulated exhaled breath 

sample gas, an increase in the measured output voltage occurs at 3.7 V from the MQ-2 sensor. In 

particular, this voltage increase occurs when the adsorbed oxygen becomes saturated by the CO 
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and alcohol gas mixture and is cleaved from its communication with the tin dioxide semiconductor 

particles of the sensor, whereby, facilitating unobstructed current flow through the sensing element 

and an associated resistance change of an increased output voltage. As shown in Figure 3.13, 

during this voltage increase, the MQ-135 sensor detected peaks of  approximately 18 ppm acetone 

and the MQ-2 sensor detected peaks of  42 ppm CO and 15 ppm alcohol from the 300 ppm sample 

solution at a flow rate of 25.00 mL/min for 30 s.  

Most apparent after 10 s, the output response voltage of the MQ-2 sensor has a gradual 

decline as the CO and alcohol gas mixture begin to dissipate to a lower concentration level. This 

gradual decline in output response voltage is facilitated as newly available electrons from the 

heated tin dioxide semiconductor particles of the sensor ionize the oxygen in the air. The sensor 

adsorbs the ionized oxygen and obstructs the electrical current flow through the sensing element 

of the MQ-2 sensor until the baseline drift of approximately 2.8 V is achieved. In Figure 3.11(b) 

and Figure 3.12(a), the output response of the MQ-2 sensor has not declined to meet its baseline  

drift of approximately 2.8 V even at 90 s. The MQ-135 sensor reaches its approximate baseline 

drift of 1.8 V, at a faster rate for lower concentrations of 10 ppm and 50 ppm at approximately 50 

s as illustrated in Figure 3.11(c) and Figure 3.12(b), however, higher concentrations such as, 300 

ppm have not reached baseline drift at 90 seconds after exposure to the COVID-19 simulation 

solution. This time dependent characteristic is indicative that an MQ-2 sensor with a wide scope 

of detection for a plurality of gasses within a sample of diverse gasses will take a longer length of 

time to reach baseline drift compared to an MQ-135 sensor with a higher selectivity for a single 

gas within a sample of diverse gasses. This process may be expedited by purging the system with 

compressed oxygen to remove the gasses more quickly from the internal bladder of the electronic 

nose between sampling intervals. The design of the electronic nose platform has been constructed 
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to minimize the impact of crosstalk interference of gasses upon the gas sensors. In particular, as a 

result of the interactions of differing gasses within the simulated sample of exhaled breath and the 

crosstalk interference that occurs with these gasses at the sensing element of the MQ-2 sensor 

compared to the MQ-135 sensor, the accuracy of an electronic nose system for the application of 

exhaled breath analysis would be enhanced by having an array of gas sensors each having a high 

sensitivity and high selectivity to a single target gas rather than having a wide detection scope of 

gases. 

3.2.2  Gas Concentration Gradient 

Figure. 3.12(a) illustrates the output response of the MQ-2 sensor having a concentration 

of the simulated breath sample solution with ranges between 10 ppm – 300 ppm having a flow rate 

of 25.00 mL/min. Figure. 3.12(b) illustrates the output response of the MQ-135 sensor having a 

concentration of the simulated breath sample solution with ranges between 10 ppm-300 ppm 

having a flow rate of 25.00 mL/min. The detection range of concentrations of alcohol, acetone, 

and CO detected in the sample solution of the electronic nose was configured for a detection range 

of approximately 10 ppm-300 ppm according to the standard operating conditions of the sensors. 

As the flow rate increases, the detection time of both the MQ-2 and MQ-135 sensors decrease 

which is more desirable for rapid detection of target gasses. The output response of the MQ-2 

sensor demonstrates an elevated output response as a result of an increased flow for all tested 

concentrations of sample solution between 10 ppm – 300 ppm. The output response of the MQ-

135 sensor demonstrates an elevated output response as a result of an increased flow for tested 

concentrations of sample solution between 10 ppm – 200 ppm. The signal accuracy of the of the 

MQ-135 sensor may be compromised from noise as the sample solution exceeds 200 ppm. The  
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Figure 3.14  Correlation analysis of the concentration gradient between output response (V) versus 
the concentration (ppm) of COVID-19 simulation solution, (a) for the MQ-2 sensor, (b) for the 
MQ-135 sensor. 
 
concentrations in ppm of alcohol, CO, and acetone are calculated after the output of the MQ-2 and 

MQ-135 sensors are converted by the code of the Arduino Uno microcontroller.  

Regression analysis was performed to determine the linear model data between output 

response (V) versus the concentration (ppm) of COVID-19 simulation solution as illustrated in 

Figure 3.14(a) for the MQ-2 sensor and in Figure 3.14(b) for the MQ-135 sensor. Figures 3.14(a) 

y = 0.037x + 3.683

R² = 0.9695

3.7

3.75

3.8

3.85

3.9

10 50 100 200 300

O
u

tp
u

t 
R

e
sp

o
n

se
 (

V
)

Concentration (ppm)

(a)

y = 0.043x + 2.887

R² = 0.5904

2.85

2.9

2.95

3

3.05

3.1

3.15

10 50 100 200 300

O
u

tp
u

t 
R

e
sp

o
n

se
 (

V
)

Concentration (ppm)

(b)



66 

and (b) illustrate the horizontal x-axis representing an independent variable being the concentration 

(ppm) of COVID-19 simulation solution as there was a change in concentration during the 

experiment, the output response (V) was measured. Figure 3.14(a) best indicates the value of the 

output response increases as the concentration of COVID-19 breath simulation solution increases, 

resulting in the gradient of the graph being positive. In particular, the correlation between the 

values of the output response measurements and the concentration gradient of the sample solution 

have been determined and the fitting formula of Figure 3.14(a) has a measured relativity (R2) 

showing the linear regression model fits the data set of the MQ-2 sensor with a R2 > 0.9695. Thus, 

96.95% of the variation in the output responses of the MQ-2 sensor results from the changes in 

concentration values of sample solution. Figure 3.14(b) depicts the fitting formula having 

measured relativity (R2) indicating the linear regression model fits the data set of the MQ-135 

sensor with a R2 > 0.5904. 59.04% of the variation in the output responses of the MQ-135 sensor 

results from the concentration values of sample solution. 

As illustrated in the comparison of Figure 3.14(a) with 3.14(b), there is a substantial 

difference in the R2 value of the MQ-2 sensor and the MQ-135 sensor indicating that the MQ-135 

sensor may need to incorporate a method of signal correction to perform signal conditioning, 

digital signal processing, and pattern recognition to filter out the noise in an attempt to increase 

accuracy and efficiency of these sensors. In particular, section 3.3 and Chapter 4 of this 

Dissertation will discuss a signal processing approach involving the manipulation of the gas sensor 

output response baseline in light of orthogonal signal correction in an attempt to decrease the 

negative influence of gradual drifts associated with the output response of the MQ-2 and MQ-135 

sensors. 
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3.3  Gas Measurement Protocol and Results for OSC in a Stability Regression Model 

Gas data was acquired by the test bed prototype on a variety of COVID-19 breath 

simulation solution concentrations. Each measurement included the step of an MQ-2 and an MQ-

135 gas sensor being exposed to the COVID-19 breath simulation solution of acetone, CO, and 

methyl alcohol. The next step included purging the flow lines and internal bladder with compressed 

oxygen to reset the sensors to baseline. In particular, the MQ-2 and MQ-135 sensors are exposed 

to the COVID-19 breath simulation solution of acetone, CO, and methyl alcohol within the internal 

bladder for 90 seconds to adequately quantify the output response of the sensors. Next, the lines 

of the test bed prototype were purged, to clear away any gasses remaining within the lines and on 

the sensors, with compressed oxygen for 310 seconds to provide sufficient time for the sensors to 

return to their baseline drift. For example, the output response generated by the MQ-2 and MQ-

135 sensors during a sample cycle prior to the gas sensors being exposed to the COVID-19 breath 

simulation solution of acetone, CO, and methyl alcohol is illustrated in Figure 3.15(a). 

Figures 3.15(a) and 3.15(b) illustrate increased peaks in output response values when the 

sensors become saturated with the COVID-19 breath simulation solution of acetone, CO, and 

methyl alcohol during the initial 90 seconds. After 90 seconds of the sample cycle, a decline is 

shown in measured output response at the time of purging the flow lines and internal bladder of 

the test bed prototype with compressed oxygen for 310 seconds to reset the sensors to their 

respective baseline values. The flow rate of the carrier gas is regulated to dispense oxygen using 

the flow control of the flowmeter which may be rotated to adjust the flow of the carrier gas. Figure. 

3.15(a) indicates the resulting output responses of the MQ-2 sensor as the sensor is exposed to 

gasses emitted from 300 ppm of the sample solution at different flow rates ranging between 8.33-

41.67 mL/min. Fig. 3.15(b) illustrates the resulting output responses of the MQ-135 sensor as the 
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Figure 3.15 (a) Output responses of the MQ-2 sensor at different flow rates of 300 ppm sample 
solution, (b) Output responses of the MQ-135 sensor at different flow rates of 300 ppm sample 
solution.  
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sensor is exposed to gasses emitted from 300 ppm of the sample solution at different flow rates 

ranging between 8.33-41.67 mL/min. For both the MQ-2 and MQ-135 sensors, as the flow rates 

increase, the characteristic peaks of alcohol, CO, and acetone, detected from the sample solution 

occur more rapidly compared to when the flow rate is reduced. 

As the flow rate increases, the positions of the characteristic peaks of alcohol, CO, and 

acetone congregate in a closer proximity to each other compared to the peaks having a decreased 

flow rate. The peaks of the target gas have a closer proximity to each other during an increased 

flow rate resulting in an increased difficulty to differentiate between each target gas during an 

increased flow rate. However, the detection of these peaks having a decreased flow rate require an 

increase in detection time for each detection protocol. Thus, it would be more desirable for an 

electronic nose to have a medium flow rate resulting in a more rapid detection of a target gas with 

minimal sample time for the sensors to return to baseline. Furthermore, in light of the measured 

output response and the detection time, the electronic nose proceeded with the more desirable 

protocol using the sample solution having a flow rate of the oxygen carrier gas being 

approximately 25.00 mL/min. 

Five varying concentrations including 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm 

of COVID-19 breath simulation solution of acetone, CO, and methyl alcohol were formulated for 

the learning measurements. The MQ-2 and MQ-135 sensors were configured with an Arduino Uno 

microcontroller to digitize the sensor output responses every second. The output responses were 

recorded to CoolTerm serial port terminal software and transferred to Microsoft Excel Spreadsheet 

Software. This Dissertation focuses on MQ-2 and MQ-135 gas sensor responses in terms of sensor 

resistance, as this parameter is provided for in the specification sheet of the MQ-2 and MQ-135 

gas sensors in terms of the resistance ratio of the sensor in clean air to the resistance of the sensor 
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when exposed to a target gas. Ten measurements have been taken for each of the five 

concentrations of COVID-19 breath simulation solutions that were chosen by random during the 

experimental testing. Each sensor output is represented by 90 signal responses during gas exposure 

and by 310 signal responses during the purging process to yield a total of 400 signal response that 

were detected, filtered, and recorded for each sensor output. The acquired gas data was organized 

on an Excel dataset having 800 columns {400 data * 2 sensors} and 50 rows {10 measurements * 

5 concentrations}. 

3.3.1  Measurement Instability 

Figures 3.16(a) and 3.16(b) depict the temporal response instability from output response 

signals of the MQ-2 and MQ-135 sensors. These aggregated individual observations respond to 

concentrations of 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-19 breath 

simulation solution having a flow rate of 25.00 mL/min for the MQ-135 sensor illustrated in Figure 

3.16(a) and the MQ-2 sensor illustrated in Figure 3.16(b) and have been organized to display 

output responses on the y-axis. It can be deduced from Figures 3.16(a) and 3.16(b) that a significant 

difference of sensor responses between the MQ-2 and MQ-135 gas sensors are acquired for the 

same COVID-19 breath simulation solution concentration under the same sampling conditions.  

As a result of an incomplete recovery process, sensor drift contributes to unstable sensor 

response outputs. Referring now to Figure 3.17, temporal responses of the MQ-2 sensor were 

collected during ten consecutive measurements of the 5 concentrations of 10 ppm, 50 ppm, 100 

ppm, 200 ppm, and 300 ppm of COVID-19 breath simulation solution. The output responses 

observed at the start of the measurements indicate the base line value is contingent on the value of 

the gas concentration of the preceding measurement. In Figure 3.17, beginning with a 

measurement of 100 ppm of COVID-19 breath simulation solution, the baseline of the MQ-2 
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Figure 3.16  Temporal responses at 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-
19 breath simulation solution concentration at 25.00 mL/min (a) for the MQ-135 sensor, (b) for 
the MQ-2 sensor.  
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sensor is shown to be 3.148 V when following a measurement of 50 ppm of COVID-19 breath 

simulation solution and 3.7159 V if the previous measurement had 300 ppm of COVID-19 breath 

simulation solution. Further, Figure 3.17 emphasizes the drift characteristic of the MQ-2 gas sensor 

is seen to change both the baseline and the sensitivity of the sensor. This introductory comparison 

validates the inefficiency of the recovery process of MOS-based gas sensors as a result of 

pronounced drifts. Thus, it is expected that these drifts will be higher in real-time during the 

application of using electronic nose technology for breath analysis. 

 

Figure 3.17  Instability of the MQ-2 gas sensor depicted as output responses of initial resistance 
were collected during a plurality of consecutive measurements of the 5 concentrations of 10 ppm, 
50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-19 breath simulation solution. 
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3.4  Reporting Diagnostic Accuracy 

The reproducibility, completeness, and transparent reporting of this research was facilitated 

by the recommendations set forth by the Standards for Reporting Diagnostic Accuracy (STARD) 

statement [112]. Some of the STARD recommendations are directed to the study design, 

participants, test methods, analysis, test results. For example, a study design method 

recommendation includes, but is not limited to, identification as a study of diagnostic accuracy 

such as sensitivity, specificity, predictive values, or Area Under Curve (AUC) [112]. As it pertains 

to the diagnostic testing of individuals for SARS-CoV-2, an electronic nose device having gas 

sensors with a high selectivity to target gasses would be more desirable. Further, the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) 

statement sets forth reporting guidelines for the development and validation of prediction models 

in diagnostic applications [113]. Some of the TRIPOD recommendations are directed to the title, 

abstract, background and objective, source of data, participants, outcome, predictors, sample size, 

missing data, statistical analysis methods, risk groups, and development vs. validation. For 

example, a statistical analysis method recommendation includes, but is not limited to, specify the 

type of model, all model-building procedures, and methods for internal validation [113]. As it 

pertains to the diagnostic testing of individuals for SARS-CoV-2, an electronic nose device 

incorporated with OSC, PLS, and PCA to correct drift variations is most desirable. [154] 
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Chapter 4:  Drift Correction and Calibration 

 

 

A portion of this chapter was accepted for publication in [154] . Permission to reproduce 

the works in this Dissertation is included in Appendix A. 

The output responses for both the MQ-2 and MQ-135 gas sensors have been compiled in 

an Excel dataset and are expressed as /�0). A matrix of 50 rows coincide with the observations 

and 800 columns are associated with the corrected temporal response of the MQ-2 and MQ-135 

gas sensors. Concentrations of the differing experiments are arranged in vector 1 (50).  

4.1  Drift Correction 

When gas sensors, such as the MQ-2 and the MQ-135, are exposed to the same gas under 

the same sampling and environmental conditions, the output responses change and are related to 

drift. Reducing the variance of this drift can be accomplished with correction methods to improve 

efficiency and sensor performance [143].The accuracy of electronic nose devices for applications 

in breath analysis is influenced by the processing of the sensor output responses to reduce noise 

and effects of drift as described in Chapter 3. Thus, signal processing of the output responses of 

the MQ-2 and MQ-135 gas sensors is more desirable to achieve an increased accuracy in electronic 

nose detection for applications of breath analysis. When gas sensors are exposed to the same gas 

under the same sampling and environmental conditions, many changes in the sensor response are 

related to drift. Reducing the variance of this drift can be accomplished with correction methods 

to improve efficiency and sensor performance [143]. 
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It is assumed that drift can be separated from the analytical signal and modeled. The 

obtained model can be used for the correction of the sensor array response in new samples [143]. 

It is also assumed that the sensors of the array have similar correlated behavior in regards to drift, 

whereby, the drift sensor array has a certain direction associated with all measured samples and 

with the reference gas [143]. If this assumption is not maintained, the drift correction will be 

inefficient due to at least a portion of analytical data being eliminated with drift [143]. As a result, 

drift correction can be utilized by identifying and modeling drift direction of the reference samples 

and subtracting the obtained value from the new data [143]. Further, the formulation ingredients 

of equal parts of acetone, alcohol, and CO were assumed to be COVID-19 breath biomarkers as 

per [98] and were chosen because their corresponding gas sensor was commercially available at 

the time of the study. 

4.1.1  Baseline Manipulation 

Studies have described the method of baseline manipulations to overcome the drift effects 

on output responses of gas sensors in complex atmospheres [116], [117]. Although previous 

studies have indicated a preference of using the initial output response of a sensor for signal 

processing techniques, recent studies suggest acquiring measured resistance of the sensor output 

voltage �/23456) at the conclusion of the earlier cleaning step and fractional correction on temporal 

response /�0) [127], [128] that can be expressed as: 

/7�0) =  8�9)(8:;<=>
8:;<=>

. (8) 

The signal processing adjustment is applied to the temporal signals of both the MQ-2 and MQ-135 

gas sensors for the quantification of COVID-19 breath simulation solution released in an 

experimental internal bladder of a testbed prototype of an electronic nose device. A minor 

improvement is detected in the sensor response differences acquired at the same measurement 
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conditions and the same gas concentration values; thus, the concentration differentiation is not 

capable of being realized. After baseline manipulation, the corrected data is organized in dataset 

�?) and an Orthogonal Signal Correction (OSC) technique is applied to improve the drift 

correction.  

4.1.2  Orthogonal Signal Correction (OSC) 

Before regression modeling is used, the baseline manipulation of OSC was performed to 

decrease the drift effects from the MQ-2 and MQ-135 gas sensor signals and improving the 

stability and reliability of the calibration process. OSC is configured to eliminate the variance that 

is not correlated to the variation of concentration �1) by removing the acquired gas data that is not 

pertinent to the output response in matrix ?, such as the data that is orthogonal or statistically 

independent to 1, is separated from matrix ?. As a result of this separation, the acquired data 

organized in the matrix will be valuable during calibration of the electronic nose. Studies have 

described a method of performing an OSC algorithm [127], [128], [143] as described in the 

following 6 Steps: 

1. Decompose ? into scores of 0 using PCA. 

2. Make the first score 0�orthogonal to 1 in pursuance of acquiring a regenerated 

score 04 as depicted below: 

04 = �1 − 1�1A1)(�1), (9) 

where 0�is the first vector term associated with the data maximum and where 

1Ais the transpose of 1. 

3. The weight vectors B are mathematically determined using PLS as shown: 

B = ?(�04 . (10) 

4. The regenerated score 0 is calculated as expressed below: 
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0 = ?B. (11) 

5. The loading vector C is determined using the following: 

CA = 9DE
99<

. (12) 

6. Drift correction is represented by regenerated matrix of the new measurements 

?7FGG being established by subtracting the drift component from the new 

measurement matrix as shown in the below equation [143]: 

?7FGG = ? − 0CA . (13) 

In regards to PCA applications, if the sensor responses of the reference sample indicate a 

substantial drift, the first components in a PCA model may be determined by the use of 

measurements obtained from the reference sample and indicate the direction of the drift [143]. In 

particular, the PCA application to drift compensation focuses on the direction of the maximum 

variance of the output responses of the MOS sensors of the reference samples as a drift [143]. 

Thus, the loading vector C, of equation 13, obtained from the reference sample contributes to the 

noise and is utilized to determine regenerated score 0 of the new measurements ?7FGG. In contrast, 

PLS modeling for drift compensation utilizes changes in the output response of the gas sensors of 

the reference samples as a function of time [143]. In particular, PLS modeling may be determined 

from observing output responses of the gas sensors of the reference samples represented by an ?H 

matrix and time as the 1 matrix. Loading vector C and weights B are utilized to determine the 

projection of the new measurements in the below equation [143]: 

0H = ?4BH�CB)(�, (14) 

wherein, 0H represents the projection. The new measurements ?47FGG are corrected for drift by 

removing the drift component using the below equation [143]: 

?47FGG =  ?4 − 0HC. (15) 
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Although at least one latent variable could be incorporated into the PCA and PLS model 

for drift correction, both reference sample and analyzed sample are required to have the same 

scaling and transformation [143]. It is also known that outliers should be removed from datasets 

used for the drift model calculations so that the drift direction is not adversely affected. The 

procedure was implemented to measure the reliability of the OSC method, whereby the 

regenerated dataset �?7FGG) consisted of 50 observations and machine learning algorithms are 

shown to quantify these observations in Microsoft Excel. These 50 observations were separated 

into an initial set of machine learning training data comprising 75% observations, to serve as a 

baseline for subsequent analysis, and 25% of the observations being evaluated on a test set. The 

machine learning algorithm was constructed to contain training and testing data from the 5 

concentrations of COVID-19 breath simulation solution.  

The previously mentioned Steps 1-6 of the OSC method are performed for the acquired 

data of the MQ-2 and the MQ-135 gas sensors to result in increasing the resemblance of the output 

responses of the same respective concentration of COVID-19 breath simulation solution. Figures 

4.1 (a) and (b) illustrate the test set of observations following OSC for the 5 concentrations 

including 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-19 breath simulation 

solution. The distribution of temporal responses of corresponding concentrations of COVID-19 

breath simulation solution of Figures 4.1 (a) and (b) are shown to be substantially reduced 

compared to the temporal responses illustrated in Figures 3.16 (a) and (b). As a result of the 

attenuated temporal responses observed in Figures 4.1 (a) and (b), a distinction can be more  clearly 

recognized between the differing concentrations of COVID-19 breath simulation solution 

following temporal signal correction using the OSC method. Gas quantification is influenced by 

OSC as illustrated in Figure 4.2 showing the PCA scores of the acquired data after temporal signal  
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Figure 4.1  Temporal responses of concentrations of 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 
ppm of COVID-19 breath simulation solution concentration at 25.00 mL/min following OSC for 
(a) for the MQ-135 sensor, (b) for the MQ-2 sensor.  
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Figure 4.2  PCA plot after OSC correction for concentrations of 10 ppm, 50 ppm, 100 ppm, 200 
ppm, and 300 ppm of COVID-19 breath simulation. 
 
correction using the OSC method. In particular, without OSC application, the PCA score plot 

would demonstrate substantial overlap of concentration points resulting in poor differentiation 

between concentrations prior to signal processing using the OSC method [127]. As expected, 

Figure 4.2 illustrates a more desirable dataset plot in which discrimination between concentrations 

including 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-19 breath simulation 

solution points are more observable as a result of OSC. 
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4.1.3  Calibration 

Studies have indicated that due to multicollinearity resulting from highly correlated 

predictors in the dataset as well as the considerable quantity of the columns of corrected temporal 

responses of the sensors compared to the rows of observations, it is not appropriate to utilize a 

multiple linear regression (MLR) [128]. Alternatively, partial least square (PLS) analysis is carried 

out on independent variables in an attempt to understand the covariance between ? and 1. Some 

studies have indicated that although regression modeling using independent components result in 

a suitable prediction, overfitting and underfitting is a common problem with regression methods, 

so it is necessary to optimize the number of components [129]. For example, underfitting a 

regression model occurs when a small sample is used to estimate a large number of parameters, 

which results in reduced precision. In another example, overfit data is more complex and less 

flexible in that it cannot recognize new data because a large number of parameters are used, 

including noise and outliers. 

Calibration of the testbed prototype was achieved with PLS regression, as the dataset was 

separated into 10 segments with 30 observations each using Analyse-It, a statistical analysis add-

in software for Microsoft Excel. Of the 10 segments, two segments served as the data set to assess 

the functionality of the calibration model while the other 8 segments were utilized as learning data. 

Cross validation was carried out 10 times in succession to result in each of the 50 observations 

turning into a predicted observation. Next, the ten root mean square errors (RMSEs) were averaged 

to determine the RMSE to assess the fit of the regression model with the dataset. Referring now to 

Figure 4.3, the RMSE data is plotted on the y-axis and the x-axis shows the number of components 

for raw data with PLS and for OSC corrected data with PLS. Although a high accuracy is achieved 

with PLS and PLS with OSC, when measuring the error of the model in predicting quantitative  
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Figure 4.3  Plot illustrating RMSE values on the y-axis and number of PLS and PLS with OSC 
components on the x-axis. 
 
data, it is more desirable to have a lower RMSE value because the average distance from the 

predicted values of the model and the dataset values are in closer proximity. The method 

comprising both PLS with OSC corrected data achieves a RMSE value of approximately 0.12 

using 1 component compared to PLS alone achieving a RMSE value of approximately 0.15 using  

5 components. It is clearly shown in Figure 4.3 that the RMSE values are similar within the range 

of about 0.12-0.15, which enables a visual comparison of independent stability regression 

coefficients. [154] 

The RMSE values indicate the vector distance between predicted values and observed 

values. Random variables may be equated as the errors. Some errors include, but are not limited 

to, miscalibration of the gas sensors and measurement noise from environmental contamination. 
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from the acquired raw gas sensor data. The standard deviation of the unknown errors can be 

estimated for a single observation rather than the total error. The RMSE provides an indication of 

the model’s subsequent prediction. If the model indicates that the model does not become more 

accurate with more observations, then the model is not configured for the inclusion of noise that 

is influencing the data. Although Figure 4.3 shows that the model fit improves by adding in 1 

component and worsens when 3 components are added, the model is capable of predicting 

observed data because the noise is small, within the range 0.12-0.15. For breath analysis 

applications, this error is considered small. The combination of advanced mathematical principles 

with underlying error assumptions applied to the acquired data, the parameters of the model may 

be adjusted for a highly probable RMSE range between 0.12-0.15. Thus, any RMSE values below 

0.12 would not provide a meaningful predictive interpretation from the model. 

4.1.4  Selected Characteristic Features 

In order to determine the stability of the model, the variability of regression coefficients 

derived by PLS or PLS with OSC are compared. As previously mentioned in Chapter 3.2, the 

output responses of the MQ-2 and MQ-135 gas sensors have 400 points. A stability comparison is 

difficult because the regression coefficient is determined by using the average of the 400 points 

from the output response of the gas sensor and is associated with the following equation, 

�400 × 5 + 1). Studies have indicated that the average value obtained from the points of acquired 

gas sensor data result in a decrease in dimensionality, leaving (5+1) coefficients for comparison 

[130]. 

4.1.5  Stability Test 

For the five cycles of the PLS application and the PLS application with OSC, the regression 

coefficients have an associated coefficient variation that is determined. Initially, the model was 
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established using a single component and then another component was subsequently added to the 

second cycle so that the final cycle has 5 components. 6 times the regression coefficients and the 

RMSE are obtained from the dataset being divided on 6 subsets. Upon completion of the first and 

second cycle, the ratio of the standard deviation over the mean of each of the two coefficients and 

the average of the 6 RMSE values, the coefficient of variation is determined. PCA plots of the 

datasets using the Microsoft Excel Analyse-It PCA Analysis tool were utilized for illustrating 

Figure 4.2. The coefficient of variation of the regression coefficient from using PLS with OSC are 

about ten times less than the use of PLS alone. The most ideal RMSE results are observed with 1 

component during the incorporation of the OSC method and with 5 components with PLS alone 

sharing an RMSE of about 0.15%. As a result of the implementation of these methods, the 

comparison of each independent stability regression coefficient may be achieved.  
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Chapter 5:  Conclusions 

 

 

The design and assembly of an electronic nose with an array of selective gas sensors with 

distinct output responses to alcohol, CO, and acetone was described. The electronic nose device 

had electrical components including Arduino Uno microcontrollers, MOS based MQ-2 and MQ-

135 gas sensors connected to an internal bladder, and a Bosch BME280 sensor. An experimental 

evaluation of the electronic nose device indicated that the process of exposing gases from a 

formulated COVID-19 breath sample solution across the sensing element of the gas sensors 

produced a baseline drift phenomenon. Signal processing of the MQ-2 and MQ-135 gas sensors 

are a critical signal correction step in addressing the drift effects of these sensors. Ability of the 

internal bladder-attached MQ-2 and MQ-135 gas sensor in real-time gas identification was 

investigated. Chosen sections of the output response were applied to generate diverse features for 

gas classification. A reference measurement associated with the output resistance of the gas sensor 

is obtained at the conclusion of purging the chamber with pressurized oxygen during the cleaning 

process (/23456). PLS with OSC was performed to enhance the gas quantification performance in 

regression models and to distinguish between five differing concentrations of COVID-19 breath 

simulation solution was demonstrated.  

In this Dissertation, an experimental set-up was designed and implemented to acquire gas 

sensor output responses in a dataset from the MQ-2 and MQ-135 gas sensors exposed to 

concentrations of 10 ppm, 50 ppm, 100 ppm, 200 ppm, and 300 ppm of COVID-19 breath 

simulation solution. It was shown during PCA of the datasheet that PLS with OSC is ideal for 
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concentration discrimination of the COVID-19 breath simulation solution. A comparison of the 

stability and accuracy of the regression model with the application of PLS and PLS with OSC 

resulted in an increased accuracy with both methods, however, the PLS with OSC method required 

less components than with PLS alone to achieve the same performance [127]. Regression model 

stability based on the differing of regression coefficients of the PLS and PLS with OSC models 

have been observed and results indicate that in light of the PLS and PLS with OSC models having 

similar accuracy, the PLS with OSC model is more robust due to its reliance on less variables than 

the PLS model counterpart [143]. The results that were obtained in this Dissertation indicate 

increased classification rates are contingent on the extracted features from the output response for 

real-time gas identification. Result measurements of this electronic nose configuration can 

contribute to the design of a real-time single sensor or a sensor array for rapid gas identification 

and decrease the drift phenomenon due to prolonged exposition of the sensing element in MOS 

based gas sensors. 

The sampling and analysis of exhaled breath to determine a variety of biomarkers in disease 

has been explored. These investigations are implemented to gain a noninvasive insight to the 

diagnosis and the monitoring of progression of diseases such as lung disease, airway inflammatory 

disease, liver disease, and viral induced diseases such as COVID-19. Structural configuration and 

sensor array materials of the electronic nose devices have been shown to impact the gas sensor 

accuracy and selectivity for a target gas as it relates to a desired signature of disease in simulated 

COVID-19 breath sample analysis. Further, the sensor type, the concentration of sample solution, 

and flow of the electronic nose system have been shown to influence the amount of CO, alcohol, 

and acetone gas detected. The measured quantity of a plurality of detected gasses within breath 

ultimately defines a unique signature over time.  
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To date, the direct link between SARS-CoV-2 gaining access to the nervous system 

through the olfactory nerve to invoke reversible anosmia and COVID-19 induced inflammatory 

multisystem syndrome remains unexplored and represents a major gap in knowledge about SARS-

CoV-2 cellular entry and associated detectable biomarkers of COVID-19. Thus, research was 

conducted to elucidate the olfactory nerve’s role in viral entry of SARS-CoV-2 to the nervous 

system and to determine further quantitative biomarkers associated its immune response in an 

effort to gain insights in expanding the scope of the breath pattern signature of detecting COVID-

19. A highly specified sensor array detection system may be capable of identifying inflammatory 

biomarkers of COVID-19 from the breath of an individual. Accordingly, the role of 

electrochemical and semiconductor-based detection sensors as well as canine detection of these 

viral components and/or inflammatory biomarkers under ambient and pathological conditions have 

been researched. Although there are ongoing efforts in breath analysis research addressing the 

standardization sampling, analytic, and reporting to correlate the data of the studies so that the data 

may be better interpreted, modifications to existing electronic nose devices are required to address 

the drift problem as for example, the MQ-135 sensor may have demonstrated. 

The magnitude of how rapidly the COVID-19 virus could spread and infect others 

facilitated the need for a rapid COVID-19 test, accessible and affordable for both children and 

adults worldwide. As a result, an infected patient can quickly quarantine and isolate to slow the 

spread. Our research group has determined VOCs associated with COVID-19 and has built a 

prototype gas analysis system similar to a breathalyzer for detecting gasses of  COVID-19. Some 

of the symptoms like headaches, coughing, and diarrhea result in an inflammatory response to 

create a unique variety of gasses like acetone, hydrogen, and carbon monoxide that can be detected 

when they are exhaled through a person’s breath. A sample of a person’s breath is first collected 
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in a chamber when a patient breaths into the valve, the gas sensors then detect a voltage change 

when they contact a COVID-19 target gas. The concentration in parts-per-million is calculated 

based on the non-linear resistance ratio of the target gas and clean air. Log-based scale calculations 

and post-data processing calibrate the sensors to increase the accuracy and selectivity. Finally, the 

voltages and PPM of the target gas concentration data is stored in a computer database and sensor 

coding reveals the resulting breath pattern signature of COVID-19. Although, this system may also 

be modified to sniff out other pathogens of disease, spoiled meats, and ripened fruit, we are 

dedicated to build a gas sensor platform for low cost, noninvasive, and rapid detection of the breath 

pattern signature of COVID-19, in an attempt to slow the spread of the global health threat of 

infection and in turn to help save lives. 
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Chapter 6:  Recommended Applications 

 

 
The use of real-time electronic nose technologies and scent trained canines have been used 

for detection of various molds, viruses, and bacterial agents that may impact, for example, the 

quality of an indoor space. A biodetection canine can be trained to successfully pinpoint a 

particular volatile organic compound (VOC) associated with a metabolic byproduct of infection 

[138]. For example, a trained scent dog experimental study indicated canine capabilities for the 

detection of SARS-CoV-2 having a measured sensitivity of 82.63% and a specificity of 96.35% 

when the trained dog sniffed saliva and bodily secretions during the sampling method [138]. 

Within the coronavirus family, seven viruses are currently known to infect humans, including, 

NL63 and 229E from the alpha genus and OC43, HKU1, SARS-CoV, MERS-CoV, and SARS-

CoV-2 from the beta genus [139]. Of these seven viruses, studies have indicated infected SARS-

CoV-2 individuals have significant exhaled breath concentrations of ethanal, octanal, acetone, 

butanone, and methanol capable of distinguishing between non-SARS-CoV-2 infected individuals 

and SARS-CoV-2 infected individuals as shown in Table 6.1. Although the VOCs of the remaining 

six viruses of the coronavirus family have not been made available, breath analysis studies 

investigating the exhaled breath VOCs of individuals infected with other pathogens of disease such 

as, viruses and bacteria may provide clues to specific metabolic byproducts of infection within the 

coronavirus family. Although dogs have been cited as having a history of identifying medical 

diseases, they can be trained to detect a variety of other compounds such as those found in indoor 

emissions emitted from contamination sources such as, building materials, cleaning products, 
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Table 6.1  Volatile organic compounds (VOCs) of indoor pathogens including, bacteria, viruses, 
and different genera of molds capable of impacting a healthy indoor space. 
 

Pathogen VOC Source Reference 

Staphylococcus 

aureus 
Isovaleric acid, 2-methyl-methylbutanol Bacteria [136] 

Pseudomonas 

aeruginosa 
1-undecane, 2, 4-dimethyl-1-heptane, 2-
butanone, 2-propanol, Ammonia, 2-
acetophenone, Hydrogen cyanide, Methyl 
thiocyanide 

Bacteria [136] 

Escherichia coli Methanol, Pentanol, Ethyl acetate, Indole, 1-
octanol, hexanol 

Bacterial [136] 

Klebsiella 

pneumoniae 
2,2,4,4,tetramethyloxolane, 3-Z-octenyl 
acetate, 
3-methylcyclohexene 

Bacteria [136] 

Mycobacterium 

tuberculosis 
Cymol 
4-methyldodecane 
methyl nicotinate 
4-methyldodecane 

Bacteria [136] 

Haemophilus 

influenzae 
L-butyrolactone Bacteria [136] 

Helicobacter 

pylori 
CO Bacteria [138] 

Clostridium 

difficile 
4-methylpentanoate, 4-methylpentanoic acid 
1-methyl-2-(1-methylethyl)-benzene 

Bacteria [136] 

Respiratory 

Syncytial Virus 

(RSV) 

Styrene Virus [137] 

SARS-CoV-2 Ethanal, Octanal, Acetone, Butanone, 
Methanol 

Virus [98] 

Influenza A Acetaldehyde, Acetone, Isoprene, Virus [12], [137], 
[140] 

Influenza virus 
H1N1 

2-methoxy-ethanol Virus [140] 

Human 

rhinovirus 
Acetone Virus [140] 

Penicillium 

pinophilum 
Alcohols Mold [131], 

[133] 

Aspergillus niger Alcohols and Isoprene, Mold [131], 
[133], 
[134] 
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furniture, human activities, and different genera of molds, contributing to toxicity and adverse 

respiratory problems such as, asthma and rhinitis [131]. Studies have indicated that microbial 

activity of common household mold, Aspergillus niger, is associated with VOCs emitted based on 

indoor environmental factors such as temperature, humidity, and lighting [134], [135]. Further, 

VOC emissions of molds are heavily influenced by the cultivation growth time and the type of 

substrate such as drywall, wallpaper, or wood that the mold is growing on [134].  

The successful biodetection of canines is attributed to their enhanced olfactory system 

being densely packed with neurons, functional genes, and gene encoding receptors. Further, 

canines have an enlarge olfactory epithelium and bublus olfactorious. Electronic nose technologies 

are developed to mimic the highly accurate perception of bioeffluents that scent dogs possess. 

Bioeffluents are best detected indoors, as they are emitted from exhaled breath and dermal 

emissions, to reflect the metabolic state of an individual as it pertains to infectious disease VOC 

expression [132], [138]. As our understanding of infectious diseases such as COVID-19 improves, 

we expect these diagnostic devices to include a diversity of other MOS-based gas sensors and 

electrochemical sensors, including but not limited to, an SGX-4NO-250 Nitric Oxide sensor or a 

P-NUCLEO-IKA02A1 electrochemical toxic gas sensor board with a CO sensor, that can detect 

changes associated with the pathogenesis of the disease. In addition, the research results provide 

for the advancement of electronic nose technology. In particular, this testbed prototype continues 

its ongoing developmental progress of incorporating mucus-based electrochemical transistors at 

the Dept. of Electrical Engineering, USF, Tampa, campus led by Dr. Arash Takshi. 

There are at least four directions for the application of this Dissertation research of eNose 

technology. The first direction is for the detection of VOC biomarkers of a chronic disease such 

as asthma, multiple sclerosis, or cancer. This noninvasive eNose prototype may be implemented 
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for both the diagnosis and progression of these types of disease. Secondly, the differentiation 

between disease variants such as those in the coronavirus family may be accomplished with this 

eNose prototype. Each disease variant may have a unique VOC breath pattern signature differing 

from subsequent variants. For this application, once the VOCs are established, there would be 

minimal hardware updates to the eNose. For example, gas sensors would be added or removed to 

correspond to the desired VOC biomarker of interest. The flexibility of an eNose device to be 

configured for detection of a plurality of variants of disease is a feature that currently overcomes 

limitations of PCR COVID-19 testing only the RNA only. In a third direction for extending this 

research, the eNose prototype could be easily configured to acquire gas data to show differentiation 

between a first subject and a second subject. For example, healthy individuals may emit varying 

amounts of VOC concentrations based on their health, environmental exposure to contaminants, 

and diet. Two individuals will not have the same exact breath pattern signature and eNose data 

may be analyzed to determine the presence of certain breath patterns and potential influences of 

the biological and/or environmental source of these biomarkers. Finally, the fourth direction in 

which this Dissertation research may be extended is for the application of advanced mathematical 

signal correction techniques to control variation of variables and to eliminate noise.  
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Appendix A: Copyright Permissions 

 
 

The following notice is for the use of Figures 3.2, 3.11 (a), (b), and (c), 3.12 (a) and (b), 

3.13 and Table 3.1, and material in Chapter 3 referring to reference [124]. 
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The following notice is for material in Chapter 2 referring to reference [125]. 
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The following notice is for material in Chapters 4 and 5 referring to reference [127]. 

 
 

The following notice is for the use of Table 6.1 and material referring to reference [136]. 

 

The following notice is for material presented in Chapters 4 and 5 referring to reference 

[143]. 
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The following notice is for material in Chapters 4 and 5 referring to reference [154]. 
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Appendix B:  MQ and LED Arduino Uno Source Code 

 
 

The following source code is for material presented in Chapter 3.1.2.2. 
 

   // Modified on May 09, 2020 by Tiffany C. Miller// 
   //this code is based on source code from sandboxelectronics.com, sunfounder.com, and 
lastminuteengineers.com//                    
 
/************************Hardware Related 
Macros************************************/ 
#define         MQ2_PIN                      (0)      //define which analog input channel you are going to 
use, A0 for Alcohol and CO 
#define         MQ135_PIN                    (1)      //A1 for acetone 
#define         SGX4N0250_PIN                (3)      //define A3 input channel for NO 
#define         RL_VALUE                     (10)     //define the load resistance on the board, in kilo 
ohms 
#define         RO_CLEAN_AIR_FACTOR          (9.83)  //RO_CLEAR_AIR_FACTOR=(Sensor 
resistance in clean air)/RO, 
                                                     //which is derived from the chart in datasheet    
                                                                                     
 
#define         GAS_H2                       (1) 
#define         GAS_CO                       (2) 
#define         GAS_Alcohol                  (3) 
#define         GAS_Acetone                  (4) 
#define         GAS_NO                       (5) 
 
/*****************************Globals******************************************
*****/ 
float           H2Curve[3]  =  {2.300,0.040,-0.300};    //two points are taken from the curve.  
                                                    //with these two points, a line is formed which is "approximately 
equivalent" 
                                                    //to the original curve. Take log of each point 1: (lg200, lg 
1.1)=(2.3,0.04) and point 2:  (lg10000,lg .34)=(4,-0.47) 
                                                    //find the slope using these points. take point1 as reference 
                                                    //data format:{ x, y, slope}; point1: (lg200, 0.04), point2: 
(lg10000, -0.47)  
float           COCurve[3]  =  {2.300,0.720,-0.340};    //two reference points of smaller reference 
point are taken from the curve.  
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                                                    //with these two points, a line is formed which is "approximately 
equivalent"  
                                                    //to the original curve. 
                                                    //data format:{ x, y, slope}; point1: (lg200, lg5.1)= (2.3, .708), 
point2: (lg10000, lg 1.6)= (4, 0.204) 
float           AlcoholCurve[3] ={2.300,0.710,-0.373};  //two points are taken from the curve.  
                                                    //with these two points, a line is formed which is "approximately 
equivalent"  
                                                    //to the original curve. 
                                                    //data format:{ x, y, slope}; point1: (lg200, lg 2.8)= (2.3, 0.447), 
point2: (lg10000,lg 0.65)= (4, -.187)   
float           AcetoneCurve[3] ={1.6989, -0.481,-1.345};  //two points are taken from the curve.  
                                                    //with these two points, a line is formed which is "approximately 
equivalent"  
                                                    //to the original curve. 
                                                    //data format:{ x, y, slope}; point1: (lg50, lg 0.33)= (1.6989, -
0.481), point2: (lg100,lg 0.13) = (2, -0.886)                                                    
float           Ro           =  10;                 //Ro is initialized to 10 kilo ohms 
 
void setup() 
{ 
  Serial.begin(9600);                               //UART setup, baudrate = 9600bps 
  while (!Serial);   // time to get serial running 
  Serial.println(F("BME280 test")); 
   
 
  unsigned status; 
 
  status = bme.begin(0X76); 
   Serial.println("-- Default Test --"); 
  delayTime = 2000; 
 
  Serial.println(); 
 
  Serial.print("Calibrating...\n");                 
  Ro = MQCalibration(MQ2_PIN);                       //Calibrating the sensor. Please make sure the 
sensor is in clean air  
                                                    //  
  Serial.print("Calibration is done...\n");  
  Serial.print("Ro="); 
  Serial.print(Ro); 
  Serial.print("kohm"); 
  Serial.print("\n"); 
  pinMode(2,OUTPUT); //GREEN LED FOR ALCOHOL 
  pinMode(3,OUTPUT); //YELLOW LED FOR ACETONE 
  pinMode(4,OUTPUT); //RED LED FOR CO 
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  pinMode(5,OUTPUT); //BLUE LED FOR H2 
  pinMode(6,OUTPUT); //WHITE LED FOR NO 
 
  } 
void loop() 
{ 
   
      
   Serial.print("CO:");  
   Serial.print(MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_CO)); 
   Serial.print( "ppm" ); 
   Serial.print("     "); 
   if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_CO) > 100) 
     Serial.print(" | COVID-19!"); 
   if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_CO) > 100) 
     digitalWrite(4, HIGH); 
     Serial.print("     "); 
    if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_CO) < 100) 
     Serial.print(" | HEALTHY"); 
    if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_CO) < 100) 
     digitalWrite(4, LOW); 
      Serial.print("     "); 
       
   Serial.print("Alcohol:");  
   Serial.print(MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_Alcohol) ); 
   Serial.print( "ppm" ); 
   Serial.print("     "); 
   if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_Alcohol) < 0.4) 
     Serial.print(" | COVID-19!"); 
      if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_Alcohol) < 0.4) 
      digitalWrite(2, LOW); 
     Serial.print("     "); 
    if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_Alcohol) > 0.4) 
     Serial.print(" | HEALTHY"); 
       if (MQGetGasPercentage(MQRead(MQ2_PIN)/Ro,GAS_Alcohol) > 0.4) 
      digitalWrite(2, HIGH); 
      Serial.print("     "); 
       
   Serial.print("Acetone:");  
   Serial.print(MQGetGasPercentage(MQRead(MQ135_PIN)/Ro,GAS_Acetone) ); 
   Serial.print("ppm" ); 
   Serial.print("     "); 
   if (MQGetGasPercentage(MQRead(MQ135_PIN)/Ro,GAS_Acetone) > 1.69) 
     Serial.print(" | COVID-19!"); 
  if (MQGetGasPercentage(MQRead(MQ135_PIN)/Ro,GAS_Acetone) >1.69) 
     digitalWrite(3, HIGH); 
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     Serial.print("     "); 
    if (MQGetGasPercentage(MQRead(MQ135_PIN)/Ro,GAS_Acetone) < 1.69) 
     Serial.print(" | HEALTHY"); 
    if (MQGetGasPercentage(MQRead(MQ135_PIN)/Ro,GAS_Acetone) < 1.69) 
    digitalWrite(3, LOW); 
      Serial.print("     "); 
    
     Serial.print("\n"); 
   delay(200); 
 
    Serial.print("Temperature = "); 
    Serial.print(((bme.readTemperature() * 1.8) + 32)); 
    if ((((bme.readTemperature() * 1.8) + 32)) > 101) 
    digitalWrite(5, HIGH); 
     Serial.print("     "); 
    if ((((bme.readTemperature() * 1.8) + 32)) < 101) 
    digitalWrite(5, LOW); 
     Serial.print("     "); 
    Serial.println("°F"); 
 
    Serial.print("Pressure = "); 
 
    Serial.print(bme.readPressure() / 100.0F); 
    Serial.println(" hPa"); 
 
 
    Serial.print("Humidity = "); 
    Serial.print(bme.readHumidity()); 
    Serial.println(" %"); 
    Serial.println(); 
 
float sensorMQ2_volt; 
    float sensorMQ2Value; 
  
    sensorMQ2Value = analogRead(A0); 
    sensorMQ2_volt = sensorMQ2Value/1024*5.0; 
  
    Serial.print("sensorMQ2_volt = "); 
    Serial.print(sensorMQ2_volt); 
    Serial.println("V"); 
    delay(1000); 
 
    float sensorSGX4NO250_volt; 
    float sensorSGX4NO250Value; 
  
    sensorSGX4NO250Value = analogRead(A3); 
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    sensorSGX4NO250_volt = sensorSGX4NO250Value/1024*5.0; 
  
    Serial.print("sensorSGX4NO250_volt = "); 
    Serial.print(sensorSGX4NO250_volt); 
    Serial.println("V"); 
    if (sensorSGX4NO250_volt > 0.37) 
     Serial.println("| COVID-19!"); 
    if (sensorSGX4NO250_volt > 0.37) 
    digitalWrite(6, HIGH); 
    if (sensorSGX4NO250_volt < 0.37) 
    Serial.print(" | HEALTHY"); 
    if (sensorSGX4NO250_volt < 0.37) 
    digitalWrite(6, LOW); 
    delay(1000); 
 
    float sensorMQ135_volt; 
    float sensorMQ135Value; 
  
    sensorMQ135Value = analogRead(A1); 
    sensorMQ135_volt = sensorMQ2Value/1024*5.0; 
  
    Serial.print("sensorMQ135_volt = "); 
    Serial.print(sensorMQ135_volt); 
    Serial.println("V"); 
    delay(1000); 
 
 
} 
 
float MQResistanceCalculation(int raw_adc) 
{ 
  return ( ((float)RL_VALUE*(1023-raw_adc)/raw_adc)); 
} 
float MQCalibration(int mq_pin) 
{ 
  int i; 
  float val=0; 
 
  for (i=0;i<CALIBARAION_SAMPLE_TIMES;i++) {            //take multiple samples 
    val += MQResistanceCalculation(analogRead(mq_pin)); 
    delay(CALIBRATION_SAMPLE_INTERVAL); 
  } 
  val = val/CALIBARAION_SAMPLE_TIMES;                   //calculate the average value 
 
  val = val/RO_CLEAN_AIR_FACTOR;                        //divided by 
RO_CLEAN_AIR_FACTOR yields the Ro  
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                                                        //according to the chart in the datasheet  
 
  return val;  
} 
Input:   mq_pin - analog channel 
float MQRead(int mq_pin) 
{ 
  int i; 
  float rs=0; 
 
  for (i=0;i<READ_SAMPLE_TIMES;i++) { 
    rs += MQResistanceCalculation(analogRead(mq_pin)); 
    delay(READ_SAMPLE_INTERVAL); 
  } 
 
  rs = rs/READ_SAMPLE_TIMES; 
 
  return rs;   
} 
int MQGetGasPercentage(float rs_ro_ratio, int gas_id) 
{ 
  if ( gas_id == GAS_H2 ) { 
     return MQGetPercentage(rs_ro_ratio,H2Curve); 
  } else if ( gas_id == GAS_CO ) { 
     return MQGetPercentage(rs_ro_ratio,COCurve); 
  } else if ( gas_id == GAS_Alcohol ) { 
     return MQGetPercentage(rs_ro_ratio,AlcoholCurve); 
  } else if ( gas_id == GAS_Acetone ) { 
     return MQGetPercentage(rs_ro_ratio,AcetoneCurve); 
  }     
 
  return 0; 
QGetPercentage(float rs_ro_ratio, float *pcurve) 
{ 
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0]))); 
} 
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Appendix C:  BMW280 Arduino Uno Source Code 

 
 

The following source code is for material presented in Chapter 3.1.2.2. 

/*************************************************************************** 
    // Modified on  Nov. 21, 2020 by Tiffany C. Miller// 
   //this code is based on source code for the BME280 humidity, temperature & pressure sensor 
designed specifically to work with the Adafruit BME280 Breakout at 
http://www.adafruit.com/products/2650 
 
  These sensors use I2C or SPI to communicate, 2 or 4 pins are required 
  to interface. The device's I2C address is either 0x76 or 0x77. 
 
  Adafruit invests time and resources providing this open source code, 
  please support Adafruit and open-source hardware by purchasing products 
  from Adafruit! 
 
  Written by Limor Fried & Kevin Townsend for Adafruit Industries. 
  BSD license, all text above must be included in any redistribution 
  See the LICENSE file for details. 
 ***************************************************************************/ 
 
#include <Wire.h> 
#include <SPI.h> 
#include <Adafruit_Sensor.h> 
#include <Adafruit_BME280.h> 
 
#define BME_SCL 13 
#define BME_MISO 12 
#define BME_MOSI 11 
#define BME_CS 10 
 
#define SEALEVELPRESSURE_HPA (1013.25) 
 
Adafruit_BME280 bme; // I2C 
//Adafruit_BME280 bme(BME_CS); // hardware SPI 
//Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK); // software SPI 
 
unsigned long delayTime; 
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void setup() { 
  Serial.begin(9600); 
  while (!Serial);   // time to get serial running 
  Serial.println(F("BME280 test")); 
 
  unsigned status; 
 
  // default settings 
  status = bme.begin(0X76); 
  // You can also pass in a Wire library object like &Wire2 
  // status = bme.begin(0x77, &Wire2) 
  if (!status) { 
    Serial.println("Could not find a valid BME280 sensor, check wiring, address, sensor ID!"); 
    Serial.print("SensorID was: 0x"); Serial.println(bme.sensorID(), 16); 
    Serial.print("        ID of 0xFF probably means a bad address, a BMP 180 or BMP 085\n"); 
    Serial.print("   ID of 0x56-0x58 represents a BMP 280,\n"); 
    Serial.print("        ID of 0x60 represents a BME 280.\n"); 
    Serial.print("        ID of 0x61 represents a BME 680.\n"); 
    while (1) delay(10); 
  } 
 
  Serial.println("-- Default Test --"); 
  delayTime = 2000; 
  Serial.println(); 
} 
 
 
void loop() { 
  printValues(); 
  delay(delayTime); 
} 
 
 
void printValues() { 
   Serial.print("Temperature = "); 
    Serial.print(((bme.readTemperature() * 1.8) + 32)); 
   if ((((bme.readTemperature() * 1.8) + 32)) > 90) 
    digitalWrite(5, HIGH); 
     Serial.print("     "); 
    if ((((bme.readTemperature() * 1.8) + 32)) < 90) 
    digitalWrite(5, LOW); 
    Serial.print("     "); 
    Serial.println("°F"); 
 
  Serial.print("Pressure = "); 
  Serial.print(bme.readPressure() / 100.0F); 
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  Serial.println(" hPa"); 
 
  Serial.print("Humidity = "); 
  Serial.print((bme.readHumidity())+10); 
  Serial.println(" %"); 
  Serial.println();} 
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Appendix D:  HRP-310 – Worksheet for Human Subjects Research Determination 

 
 

The following HRP-310 – WORKSHEET for Human Subjects Research Determination 

shows that Institutional Review Board (IRB) approval was not required for this Dissertation 

research. 
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Appendix E:  Glossary of Terms 

 
 

Acute Demyelinating Encephalomyelitis (ADEM) 
 
Acute Respiratory Distress Syndrome (ARDS) 
 
Acute Lung Injury (ALI) 
 
Amperometric Electrochemical (AEC) 
 
Analog to Digital Conversion (ADC) 
 
Angiotensin-Converting Enzyme 2 (ACE2) 
 
Area Under Curve (AUC) 
 
Artificial Neural Network (ANN) 
 
Blood-Brain Barrier (BBB) 
 
Biosafety Level (BSL) 
 
Central Nervous System (CNS) 
 
Chronic Obstructive Pulmonary Disease (COPD) 
 
Computerized Tomography (CT) 
 
Corona Virus Disease 2019 (COVID-19) 
 
Cross-Validation Value (CVV) 
 
Chronic Rhinosinusitis (CRS) 
 
Cyclic Adenosine Monophosphate (cAMP)  
 
Cyclic Nucleotide-Gated (CNG) 
 
Dexamethasone (dex) 
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Discrete Wavelet Transform (DWT) 
 
Electrobulbogram (EBG) 
 
Electronic Nose (eNose) 
 
Emergency Use Authorization (EUA) 
 
Envelope (E) 
 
Exhaled Breath Condensate (EBD) 
 
False-Negative (FN) 
 
False Negative Rates (FNRs) 
 
Femtogram Per Milliliter (fg/mL) 
 
Field Effect Transistor (FET) 
 
First C-Terminal Domain (CTD1) 
 
Fluid-Attenuated Inversion Recovery (FLAIR) 
 
Fourier Bandpass Filter (FBF) 
 
Gas Chromatography (GC)  
 
Guillain-Barre Syndrome (GBS) 
 
Interleukin (IL) 
 
Internal Control Reagent (ICR) 
 
Ion Mobility Spectrometry (IMS) 
 
Jet Propulsion Laboratory (JPL) 
 
Lateral Olfactory Tract (LOT) 
 
Light Emitting Diode (LED) 
 
Membrane (M), 
  
Metal Oxide Semiconductor (MOS) 
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Monocyte Chemoattractant Protein‐1 (MCP‐1) 
 
Moving Median Filter (MMF) 
 
Multiple Linear Regression (MLR) 
 
Multiple Sclerosis (MS) 
 
Nitric Oxide (NO) 
 
Non-Small Cell Lung Cancer (NSCLC) 
 
N-terminal domain (NTD) 
 
Nucleocapsid (N) 
 
Odorant Binding Protein (OBP) 
 
Optical Coherence Tomography (OCT) 
 
Orthogonal Signal Correction (OSC) 
 
Part Per Million (ppm) 
 
Parts-Per Trillion (ppt) 
 
Partial Least Square (PLS) 
 
Polymerase Chain Reaction (PCR) 
 
Principal Component Analysis (PCA) 
 
Pro‐Inflammatory Cytokines (PICs) 
 
Quartz Crystal Microbalance (QCM) 
 
Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) 
 
reduced Graphene Oxide (rGO) 
 
Relativity (R2) 
 
Root Mean Square Errors (RMSEs) 
 
Royal Infirmary of Edinburgh (RIE) 
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Second C-Terminal Domain (CTD2) 
 
Self-Organizing Maps (SOMs) 
 
Serial Clock Pin (SCL) 
 
Serial Data Pin (SDA) 
 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
 
Spike (S) 
 
Surface Plasmon Resonance (SPR) 
 
Standards for Reporting Diagnostic Accuracy (STARD) 
 
Surface Acoustic Wave (SAW) 
 
Third C-Terminal Domain (CTD3) 
 
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) 
 
Tumor Necrosis Factor-Alpha (TNF-α) 
 
Ultraviolet-C (UVC) 
 
University of South Florida (USF) 
 
Volatile Organic Compounds (VOCs) 
 
Volts (V) 
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Appendix F:  Publications 

 

 

The manuscript format has been used in the preparation of this Dissertation. This 

Dissertation is a compilation of one published conference paper and two published journal papers.  

The first published conference paper entitled “Brain-Computer Interface Based on 

Magnetic Particle Imaging for Diagnostic and Neurological Rehabilitation in Multiple Sclerosis” 

comprises a portion of Chapter 3.1.1 of this Dissertation and provides information on energy 

failure of a neuron as it pertains to inflammatory injury within the brain. It was published as a 

Conference Paper for 2020 8th IEEE International Winter Conference on Brain-Computer 

Interface (BCI), published. Apr. 09, 2020. by publisher IEEE. [125] 

The second published journal paper entitled “Electronic Nose with Detection Method for 

Alcohol, Acetone, and Carbon Monoxide in Coronavirus Disease 2019 Breath Simulation 

Model” was submitted to IEEE Sensors Journal on Jan. 24, 2021 and was accepted Mar. 25, 

2021. © [2021] IEEE. Reprinted, Electronic Nose with Detection Method for Alcohol, Acetone, 

and Carbon Monoxide in Coronavirus Disease 2019 Breath Simulation Model, IEEE Sensors 

Journal On page(s): 1-9, 2021, Print ISSN: 1530-437X Online ISSN: 1558-1748 Digital Object 

Identifier: 10.1109/JSEN.2021.3076102] This manuscript comprises at least a portion of 

Chapters 3, 4, 7, and 8 in this Dissertation and discusses the design, assembly, and 

implementation of the electronic nose test bed prototype having an array of gas sensors being 

exposed to a formulated COVID-19 breath simulation mixture. [124]. 
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The third, published manuscript entitled “Neurological Connections and Endogenous 

Biochemistry – Potentially Useful in Electronic-Nose Diagnostics for Coronavirus Diseases” was 

submitted to the Journal of Neuroimmunology and Neuroinflammation on Feb. 23, 2021 and was 

accepted June 29, 2021. Miller TC, Morgera SD, Saddow SE, Takshi A, Mullarkey M, Palm M. 

Neurological connections and endogenous biochemistry - potentially useful in electronic-nose 

diagnostics for coronavirus diseases. Neuroimmunol Neuroinflammation 2021;8:[Accept]. 

http://dx.doi.org/10.20517/2347-8659.2021.05. [154] This manuscript comprises at least a 

portion of Chapters 1-4 of this Dissertation, which introduces COVID-19 symptoms, 

neurological manifestations of SARS-CoV-2, electronic nose signal processing correction 

methods, and reporting diagnostic accuracy recommendations 
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