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Abstract

Security of real-world cyber systems has drawn a lot of attention in recent years, espe-

cially when machine learning techniques are widely deployed into different layers of cyber

systems. With the technology of machine learning, especially adversarial machine learning

techniques, the attacks and defenses in cyber systems have shown a lot of new characteristics.

In this dissertation, two major works regarding the attacks and defenses in real world cy-

ber systems including dynamic spectrum sensing systems and High Performance Computing

(HPC) systems and software systems are discussed.

In the first work, we revisit this security vulnerability of cooperative spectrum sensing as

an adversarial machine learning problem and propose a novel learning-empowered framework

named Learning-Evaluation-Beating (LEB) to mislead fusion centers. Given the gap between

the new LEB attack and existing defenses, we introduced a non-invasive and parallel method

named influence-limiting defense sided with existing defenses to defend against LEB-based

or other similar attacks.

In the second work, we offer a novel perspective, treating the anomaly detection in HPC

systems based on log files as a sequential decision process, and further applying reinforcement

learning techniques to detect anomalies or malicious users. Start from there, we also provide a

binary code similarity detection-based method that can be applied to a more general scenario

in software systems through utilizing Recurrent Neural Network (RNN) and Siamese Neural

Network to detect malwares from the binaries generated by the processor that executing the

program.

vii



Chapter 1: Introduction

As cyber security becomes a more and more widely discussed topic in our daily life, the

attacks and defenses of real-world cyber systems come out as a real challenge for both the

industries and academia. Especially with the widely adoption of machine learning tech-

niques, new challenges are brought to the safely deployment of cyber infrastructures. In this

dissertation, we explored the attacks and defenses of cyber systems from a machine learn-

ing perspective such as dynamic spectrum sensing systems, High Performance Computing

(HPC) systems and software systems.

1.1 Security Attacks and Defenses in Dynamic Spectrum Sensing Systems

Cooperative spectrum sensing has been proposed as an effective mechanism to enhance

the spectrum sensing performance using cognitive radio devices (e.g., TV-band devices coded

in IEEE 802.22). It enables a data fusion-based decision framework, in which multiple nodes

report their sensing results to a fusion center that makes a centralized decision to enhance

the spectrum sensing accuracy. This, however, opens up opportunities for Byzantine attacks

(also widely referred to as spectrum sensing data falsification attacks) [9, 10, 11, 12, 13, 14,

15, 16], in which attackers aim to send malicious sensing results to mislead the fusion center

to make wrong decisions.

Defense mechanisms to combat Byzantine attacks have been widely studied and include:

(i) statistics-based mechanisms, i.e., building statistical models to detect or eliminate attacks

[12, 17, 18, 19]; (ii) machine learning-based mechanisms, i.e., using machine learning methods

as countermeasures[20, 14, 21, 10, 22]; (iii) trust (or reputation)-based mechanisms, i.e.,
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building trust metrics for nodes to be weighted in the decision process to identify or mitigate

attacks [11, 13].

Nevertheless, existing studies mainly make network or attack assumptions that often

biased towards defenses. For example, methods used in [12, 17, 19] assume that attacks

behave in a particular way or prior information of attack statistics is known such that a

statistical model of an attack can be built; and machine learning based methods [14, 21, 10,

22] assume that malicious data pattern deviates from normal data pattern under a given

classification rule. These assumptions give an advantage to the defenses over the attacks.

However, in practice, attackers can try to actively avoid pre-assumed behaviors or break

assumptions used in the defense. Moreover, the time-varying nature of wireless channels and

signals can deviate the data properties of the legitimate sensing results from time to time. In

this regard, training and prior statistical models used by the defenses face a model mismatch

phenomenon over time, which can also be exploited by attackers. All these motivate us to

rethink Byzantine attacks from a new perspective: is there a stronger attack model?

Sensing data

Decision

Observed in 
the network

Fusion 
Center

Input

Output

Figure 1.1. Abstract model of data processing in cooperative spectrum sensing.

Our new observations on cooperative spectrum sensing are twofold: (i) Sensing nodes

always report their sensing data as the input to the fusion center; and (ii) regardless of what

kinds of defense mechanisms it adopts, the fusion center always announces the final decision,

which is the output from the fusion center. If we treat the fusion center as a black box,

the defense and decision rules together in the fusion center can be considered as a black-box

function with known inputs and outputs, as illustrated in Figure. 1.1. Inspired by the no free

lunch theorem [23] and the transferability [24] property in machine learning, attackers can,

in fact, use the inputs and outputs shown in Figure. 1.1 to build a surrogate model of the
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targeted fusion center, and then launch effective attacks with minimum data manipulation

to mislead the fusion center. However, the model is essentially a partial model of the fusion

center.

To make the partial model to attack cooperative spectrum sensing process, we propose

a Learn-Evaluate-Beat (LEB) framework in this work. As its name indicates, LEB consists

of three steps: (i) the initial learning step, in which the attacker uses incremental learning

models to build its own surrogate model to approximate the fusion center’s decision model;

(ii) the evaluation step, in which the attacker evaluates whether its own model is accurate

enough or not to launch attacks; and (iii) the final beating step, in which the attacker falsifies

the sensing data with the minimum cost to change the fusion center’s decision if they pass the

evaluation step. To design LEB attacks to be effective, we also propose a learning algorithm

based on a set of sub-models and a generic data generation algorithm to generate adversarial

examples (i.e., falsified data with the minimum data manipulation to flip the fusion center’s

decision) in sub-models. We conduct comprehensive real-world experiments to measure the

performance of spectrum sensing under LEB attacks and their impacts against a wide range

of existing defense methods.

Towards the defense perspective, an effective defense mechanism to distinguish LEB-

based or similar malicious nodes out from normal nodes is quite challenging. The principal

reason that LEB attackers can succeed contributes to that the malicious nodes can build

up their influence or impact on the fusion center through taking advantage of the model

mismatch phenomenon. We introduce a new metric named as decision flipping influence to

measure the influence of a given subset of sensing nodes. Based on the decision flipping

influence, we further propose an influence-limiting policy to evaluate and limit the influence

any subset of nodes can have on the fusion center, thus decreasing or eliminating the attack

capability of the malicious nodes. The influence-limiting policy is a non-invasive, parallel

method sided with traditional/existing defenses. Our experimental results demonstrate that
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the proposed defense can effectively bridge the gap between traditional defenses in coopera-

tive spectrum sensing and the new LEB-based attacks.

Given the shortcomings of enforcing the influence-limiting policy in real-world, we offer

a solution to decrease the computational complexity of influence-limiting defense. We show

that this low-cost version of influence-limiting defense can reduce the computational signifi-

cantly. On the average, the low-cost version needs less than 20% of the time required by the

original influence-limiting defense while still maintaining roughly the same level of defense

performance as the original defense.

1.2 Security in High Performance Computing (HPC) and Software Systems

High performance computing, a widely used technology in fields such as aerospace, au-

tomotive, semiconductor design, energy explore, financial computing, weather forecast and

nuclear simulation etc., mainly focused on how to improve the performance of the comput-

ing from software development, parallel algorithms and computer architecture etc. It has

become an important way to do scientific research. Clusters and grids are the two domi-

nant and distinct methods of deploying HPC parallelism in both industrial and academia

nowadays [25].

As performances and capabilities of HPC infrastructures have continued to evolve, appli-

cations and software that are running on HPC infrastructures have also increased, especially

with software applications of open-source frameworks. However, they also become increas-

ingly desirable targets to attackers [26]. HPC security, which is one of the most concerned

problems for both users and HPC system maintainers, is not a significant problem in the

past. Because most of HPC systems were built for private use by some dedicated users at

the beginning. Now it has been the main worries and obstacles for the spreading of HPC

systems as now they are often shared by multiple users, especially with the emerging of the

idea of HPC-as-a-service.
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The security of HPC systems has long been a research focus to build reliable and account-

able systems [27, 28, 29, 30, 31], especially as log files being introduced to detect malicious

intruders and behaviors. Computing power, as a resource, is required to be used only by

those approved users, or further, to prevent approved users from performing unapproved

behaviors. On the other hand, legal users of computing resources want to protect com-

munications between users and resource owners to be safe and keep their data away from

malicious attackers due to most of jobs and resources run or stored in HPC systems usually

are sensitive and high-profit information. It might have serious consequences when hacked.

Other security problems like denial-of-service are also a concern for HPC systems that has

a lot of access requests from users.

Typically, HPC systems can be decoupled into 4 layers [32, 33]: application layer, mid-

dleware layer, operating system layer and network layer. In nowadays systems, each of the

4 layers has been well-instrumented for security evaluation. Information like percentage of

CPU time, memory utilization, I/O time, MPI operations, access information etc. are all

well-logged and can be used to analyze and evaluate the performance and security of HPC.

Log analytics in HPC has been a more straightforward and effective strategy to secure HPC

systems against malicious users [4, 31, 34].

There are many anomaly/intrusion detection methods based on log analytics in HPC

have been proposed [31, 3, 35], especially when machine learning techniques are involved

[4, 34]. Machine learning techniques such as deep learning, support vector machine (SVM)

have their unique advantages in dealing with large volumes of logs generated by HPC on

each computing node [5].

Nevertheless, anomaly/intrusion detection based on log analytics in HPC is not quite the

same as traditional classification problems. As the logs in HPC are generated continuously

when the system is running, thus the input of anomaly/intrusion detection mechanism is

also streaming data. We need to parse the streaming data into tokens, which is defined as a
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small group of log lines, based on which we can extract feature vectors. Further the feature

vectors can be used to perform anomaly/intrusion detection.

The decision of whether the evaluated user is malicious or not depends not only the pat-

tern of all feature vectors, but also the order. Therefore, we can treat detection process of

anomaly/intrusion detection in HPC as a sequential decision process, in which final decision

of the normality of a user depends on a set of small decisions based on all previous feature

vectors. When we think the problem from a sequential decision perspective, we can em-

ploy reinforcement learning techniques to model the anomaly/intrusion detection problem

in HPC.

In this work, we propose a framework, named as ReLog, based on reinforcement learning

techniques to perform log analytics in HPC for anomalous user detection. We observed that

MPI operations used by computing nodes are usually a subset of pre-defined operations [8].

Thus we construct feature vectors based on MPI logs and treat them as different states in

reinforcement learning. Feature vectors can be obtained from parsing of logs using sliding

windows. The ultimate reward comes from final classification decision. When malicious

users are detected, the reward will reach a maximum value.

From a more general perspective, identification of bugs or other security-related vulner-

abilities in software projects still remains to be a challenging problem in software security.

Even though intensive work has been conducted by both the research and industry commu-

nities[36, 37, 38], the security of software projects still poses great concerns given that many

software projects are used by millions or even billions of users. A small bug, such as the

failure of checking buffer boundaries could lead to disastrous consequences [39, 40].

These kinds of vulnerabilities in software projects could be resulted from mistakes of

trusted program developers, or from malicious attackers. Thanks to the intellectual property

or security concerns, many of those software providers will not disclose their source code to
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the public. Therefore, from the users’ perspective, analyzing the binary code when executing

the software becomes their practical option to evaluate the security of software projects.

Binary code similarity detection could be applied to different scenarios, while malware

detection is one of them, other applications include plagiarism detection[37] and vulnerability

detection [41]. Extensive efforts [2, 42, 36] have been given to detect similar functions from

binaries that generated from different platforms, such as x86, ARM and MIPS.

The general working flow of binary code similarity detection [2, 43, 42] focuses on ex-

tracting representative local feature vectors for each node in the control flow graphs (CFGs)

that disassembled from binary code. Various statistical features and block features are pro-

posed to represent the graph blocks [2, 43]. Then these local feature vectors are encoded into

embeddings such that further similarity comparison techniques could be applied to perform

the detection or comparison. One important type of the similarity comparison method is

the graph-based matching algorithms. For example, using bipartite matching algorithm to

calculate the similarity of two CFGs [2].

However, graph matching-based approaches have two shortcomings according to [1]: (i) It

is less flexible for the similarity functions approximated through graph matching techniques

to adapt to other applications; (ii) The graph matching algorithms suffer from low efficiency,

thus leads to the inefficiency of the similarity detection process. These two shortcomings

make the graph matching-based method challenging to be applied in a broader perspective.

There are also some deep neural network-based methods have been proposed to embed the

local features [36, 41, 44, 1]. However, most of them involves training a deep graph neural

network or sematic-aware neural network, which usually complicates the problem especially

in terms of computation cost.

In binary code similarity detection, the first step is to extract local features and encode

them into embeddings. Given the shortcomings of graph matching-based approaches and

deep neural network-based methods, in this work, we propose a new embedding method
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based on long short-term memory (LSTM) recurrent neural network (RNN), which is widely

applied to sequence classification [45] and pattern-based feature selection/classification [46].

The sequence of local block features can be fed into an LSTM recurrent neural network.

Through multiple rounds of training, the final cell state of the LSTM recurrent neural net-

work will learn much of the information from all the previous trained input and output pairs,

which could be utilized as the final embeddings for the binaries and be further analyzed using

classification techniques. As we found in our experimental results that LSTM network-based

methods often could achieve similar performance with less training and computation cost.

For the similarity comparison, the traditional methods including Euclidean distance com-

parison and classification methods focus on the statistical characteristics of two inputs. How-

ever, the embedding we extracted from graph-based embedding methods or neural network-

based methods often contain much information that traditional methods fall short of cap-

turing. To overcome this weakness and fully capture the information, we employ Siamese

neural network [47] to perform the similarity measurement. The main advantage of the

Siamese neural network is it employs a unique structure to learn the embedding such that

the semantic similarity could be learned thus placing the same classes of the input close

together.

1.3 Contributions of the Thesis

Our contributions are listed as follows.

• We rethink the traditional security of cooperative spectrum sensing and present a new

perspective to create a stronger attack model named as LEB attack. Our work has

shown that the traditional duel of attacks and defenses in cooperative spectrum sensing

has to be re-visited in the presence of new learning-based attack models.
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• For the LEB framework to be effective and practical, the framework is designed in

a flexible way to adopt a wide range of sub-models to build the surrogate model of

the fusion center. A generic generation algorithm is proposed to create adversarial

examples against cooperative spectrum sensing.

• Our experiments show that the LEB attack can achieve an up to 82% attack success

ratio while only manipulating a small number of malicious nodes. The proposed adver-

sarial data generation algorithm achieves similar performances as existing generation

methods while reducing by 65% of the computational cost on average.

• We introduce a generic non-invasive method, the influence-limiting policy, sided with

traditional/existing defenses to counter LEB attacks or other similar learning-based

attacks. Experimental results of influence-limiting policy-based defense demonstrate

an average overall disruption ratio reduction by 78% under LEB attacks compared

with traditional defenses while without the influence-limiting policy.

• We conduct a comprehensive review on the security of HPC systems, including vul-

nerabilities, consequences, and potential solution strategies. Well-known attacks and

defense methods, especially intrusion/anomaly detection methods, in HPC systems are

identified.

• We build a reinforcement learning-based framework named as ReLog to perform log

analytics in HPC. We provide a new perspective, treating the anomaly/intrusion de-

tection as a sequential decision problem, to detect anomalous/malicious users.

• Based on GAN, we give a solution to generating sufficient training data based on

available logs, such that deep neural network models can be fully trained.

• We collect real-world MPI logs and perform comprehensive experiments to validate

ReLog and compared it with existing other anomaly/intrusion detection mechanisms.
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The results show that ReLog can achieve 93% of the detection accuracy on our collected

dataset.

• We proposed an LSTM recurrent neural network-based model to embed local feature

vectors of CFGs disassembled from binaries, which captures the general information

of all the historical blocks and the dependence information, also makes the following

similarity detection process more efficient.

• We employed Siamese neural network to perform the similarity measurement in bi-

nary code similarity detection, which learns the embedding semantic information and

demonstrate multiple advantages compared with existing traditional similarity detec-

tion methods such as Euclidean distance.

• Comprehensive experiments are conducted based on real-world collected binary dataset

and the experimental results validated our mechanism has a slightly better performance

with existing methods such as graph matching-based methods in terms of detection

accuracy and less computation cost compared with existing deep neural network-based

methods.

1.4 Dissertation Overview

In Chapter 2, we presented the security attacks and defenses in dynamic spectrum sensing

systems, and we offered the proposed LEB attack framework based on adversarial machine

learning techniques, and we also gave the proposed defense strategy, influence-limiting de-

fense, to counter the learning-empowered attack. In Chapter 3, we offered the anomaly

detection method based on the log files of HPC systems and build a reinforcement learning

based framework to detect malwares. Also, we elaborated the binary code similarity detec-

tion method based on LSTM and Siamese Neural Networks in this chapter. In Chapter 4,

we conclude the dissertation.
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Chapter 2: Attacks and Defenses in Dynamic Spectrum Sensing

In this chapter, we explored the security attacks and defenses in dynamic spectrum

sensing systems. This chapter was published in IEEE Transactions on Mobile Computing and

the ACM workshop on Wireless Security and Machine Learning (WiseML 21). Permissions

are included in Apendix A.

2.1 Model and Preliminaries

In this section, we introduce the system model, overview existing studies, and identify

challenges.

2.1.1 System Model

We consider a cooperative spectrum sensing scenario with n sensing nodes and one fusion

center, as shown in Figure. 2.1. At each timeslot (i.e., each round of sensing), all nodes

perform spectrum sensing on a TV spectrum channel, then report their results to the fusion

center that makes the global channel usability decision based on all inputs. We assume that

energy detection [17, 12] is employed at each node. A sensing report contains the value of

the energy level sensed by the corresponding node.

The energy level vector at the ith timeslot from n sensing nodes is denoted by xi =

[xi,1, xi,2, ..., xi,n]
⊤,xi ∈ X ⊂ Rn×1, where [·]⊤ is the matrix transpose operator. X ⊂

Rn×1 is the value space for the sensed energy level, and Rn×1 is an n-dimensional Eu-

clidean space. Historical sensing results of all sensing nodes are denoted as {hk}k∈[1,n] =

[x1,k, x2,k, x3,k, ..., xi,k]
⊤.
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Figure 2.1. System model.

We denote the decision mapping function (implemented by the data fusion rule and

potential defenses) used at the fusion center as O : X → Y , where Y = {−1, 1} is the

decision output space with −1/1 denoting the channel being available/unavailable. The

fusion center makes the final channel status decision yi ∈ Y based on sensed results xi. We

assume the attacker has no information about the decision mapping function adopted by the

fusion center while it knows only the final decision yi at each timeslot i.

Cooperative spectrum sensing enables multiple nodes to report their sensing results to a

fusion center to enhance the spectrum sensing accuracy. In the meantime, Byzantine nodes

can send malicious sensing results to the fusion center and mislead the fusion center to make

wrong decisions about the channel status and further cause interference between primary

users of the spectrum with secondary users.

Without loss of generality, we assume that the first m (out of n) nodes are malicious

nodes that are fully controlled by the attacker. The attacker can make malicious nodes to

report whatever sensing results needed but has no information about the reports of remaining

n−m innocuous nodes.

We denote the sensed data vector by malicious nodes at timeslot i as ai = [xi,1, xi,2, ...,

xi,m]
⊤, ai ∈ A ⊂ Rm×1, where A is the report space of malicious nodes. Obviously, ai is the

first part of xi that

xi = [xi,1, xi,2, ..., xi,m︸ ︷︷ ︸
ai

, xi,m+1, ..., xi,n]
⊤,xi ∈ X . (2.1)
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The objective of the attacker is to manipulate sensing data vector ai to mislead the fusion

center to yield a wrong sensing decision yi.

2.1.2 Defending against Byzantine Attacks

Defenses against Byzantine attacks in cooperative spectrum sensing can be essentially

viewed as an anomaly detection problem, in which anomalous (malicious) nodes need to be

distinguished from innocuous nodes. Many of defenses proposed in previous works corre-

spond to a combination of two or multiple aspects of node characteristics, such as transmit

pattern and statistical consistency. Here, we classify these defenses into three broad cate-

gories by the main node characteristic used by defenses:

• Statistics-based defense, which assumes that the attack has a particular behavior or

prior information of network or attack statistics are known [12, 17, 19]. As the most

widely used approach to detect malicious nodes, statistics-based schemes defend fusion

centers against attacks based on the statistical measures derived from the sensing report

history {hk}k∈[1,n], such as covariance and deviation [12, 17, 18].

• Machine learning-based defense, in which malicious nodes are assumed to have different

underlying data patterns, for example, historical sensing results {hk}k∈[1,m] of malicious

nodes and {hk}k∈[m+1,n] of innocous nodes can be classified into different categories

by machine learning techniques. Both supervised [14] and unsupervised [21, 10, 22]

methods have been proposed to identify or eliminate the effects malicious nodes.

• Trust (or reputation)-based defense, the essence of which is to compute a trust metric

based on {hk}k∈[1,n]. Those nodes with low trust metrics are detected as malicious

nodes and get eliminated or less weighted from the decision process. It is worth not-

ing that trust-based methods usually compute trust metrics based on mathematical

deviations obtained from statistics-based mechanisms [13, 11].
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These defense methods have been demonstrated to be effective and practical in countering

attacks. However, their common assumption is that attackers are passive, i.e., they follow

a fixed or pre-assumed attack strategy. New learning-empowered active attackers will have

the opportunity to take advantage of these defenses.

2.1.3 Model Mismatch in Realistic Network Scenarios

Given assumptions made by existing defenses against Byzantine attacks, the question is

whether there is any model mismatch phenomenon between the assumed and actual (real-

world) scenarios, i.e., whether the statistical properties and other measures like pattern and

reputation for each node will differ, or not. We explore the model mismatch phenomenon

both in spatial and temporal dimensions.

Two datasets are used in our exploration. The first one is a public dataset collected from

5282 different locations in Atlanta metropolitan area over 13 TV white space channels [48].

We use the dataset to explore the model mismatch phenomenon in spatial dimension. The

other one is collected from a time period of 100 hours over 22 channels, 5 different locations

were sensed over a 20 × 20 km2 urban region. We use USRP N210 [49] as the sensor. This

dataset is used to evaluate the model mismatch phenomenon in temporal dimension.

The model mismatch phenomenon in spatial dimension is illustrated in Figure. 2.2(a) and

Figure. 2.2(b). Figure. 2.2(a) shows the signal strengths for one TV channel (randomly cho-

sen from 13 channels) over 5282 different locations. The signal strength varies from -45dBm

to -100dBm. Fig. 2.2(b) shows the probability distribution in terms of signal strengths of 5

locations from our collected dataset. It is obvious that locations C and E have the lowest

signal strength while location B has the highest signal strength for the given channel.

The model mismatch phenomenon in temporal dimension is shown in Figure. 2.2(c). The

100-hour dataset is divided into 5 sub-datasets, each of which includes 20 hours of the data.

The probability distributions of the signal strengths for each sub-dataset (averaged over 22
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Figure 2.2. Signal strengths viration at different time and locations.

channels) are plotted in Figure. 2.2(c), which shows that the probability distribution changes

over different sub-datasets. This observation indicates that a statistical or data model built

for one time period changes for another time period.

Our data analysis on existing datasets and collected datasets demonstrate that the sta-

tistical/data model mismatch phenomenon over space and time is a real-world problem.

In another words, it can be difficult for signal strengths of both malicious and innocuous

nodes to follow exact models/behaviors assumed in a defense strategy. The existence of

such phenomenon is also reasonable because of (i) environmental factors, such as weather

and buildings, and (ii) network factors, such as co-channel interference and adjacent-channel

leakages from other broadcasting activities.

The model mismatch phenomenon further leads to two consequences: (i) uncertainty of

sensing results occur among multiple nodes (even among innocuous nodes) simultaneously,

and (ii) it will be challenging to find values of parameters for the optimal decision to decide

the channel status over time. Thus, an intelligent attacker can try to learn decision models,

then takes advantage of the learned model and generates malicious sensing data to mislead

the fusion center.
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2.2 LEB Attack Framework: Motivation and Design

In this section, we first present the motivation behind the adversarial learning-based

attack design and then propose the LEB attack framework against cooperative spectrum

sensing.

2.2.1 Attack Motivation

As we can observe from the model mismatch phenomenon, it is often impractical for the

fusion center to have perfect models about real-world signal data statistics or patterns due

to the spatially and temporally varying nature of the wireless environment. Moreover, if

we turn the table around and think from an intelligent attacker’s perspective, the attacker

should avoid any known behavior as assumed in traditional defenses and make its attack

stealthy.

Our key observations for designing a new attack model are threefold: (i) network nodes

always report their sensing data to the fusion center; (ii) as spectrum sensing applications are

built upon the wireless scenario and the goal of sensing is to let nodes know the availability

of a spectrum band (e.g., for them to access the channel opportunistically), it is reasonable

to assume that the final decision is broadcast by the fusion center to all nodes to inform

them of the decision to use (or not use) the band (iii) many of cooperative spectrum sensing

methods [17, 12, 11, 10] are based on the fact that each node performs the channel sensing

task independently and the fusion center tries to make a better decision given independent

decisions from all nodes.

Based on the above three observations, we treat the fusion center as a black box such that

the decision model (including both fusion rules and potential defenses) can be considered as

a black-box function with known inputs and outputs. As a result, the attacker uses inputs

and outputs of this back box to build a surrogate model of the decision model used at the
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targeted fusion center. The third observation opens the door to use a small number of nodes

(m < n) to build a surrogate model. If m = n, then the attacker has full control of the

fusion center and the attack success ratio will be 100%. When m < n, it will be difficult for

the attacker to achieve 100% of the attack success ratio, but there is still a probability to

succeed. The design of the LEB attacker is based on this point. After stealing the decision

model, the attacker can launch attacks with minimum data perturbation to mislead the

fusion center with a high probability.

Our idea of the surrogate model is partially based on [50, 51, 52]. Provided that the

learning capacity of the surrogate model is equivalent to or stronger than the decision model

at the fusion center, it will be easier to gradually learn an approximation of the decision model

and is also practically feasible as it does not require the prior knowledge of the decision model

or training data.

2.2.2 LEB Attack Architecture

By leveraging the three observations in Section 2.2.1, we propose the Learning-Evaluation-

Beating (LEB) attack framework based on adversarial machine learning to launch attacks

against cooperative spectrum sensing. As the name indicates, the LEB attack consists of

three steps: (i) learning, in which the attacker uses incremental learning models to build

its own surrogate model to approximate the fusion center’s decision model; (ii) evaluation,

in which the attacker evaluates whether the selected surrogate model is accurate enough to

launch attacks, and (iii) beating, in which adversarial sensing results are generated to fool

the decision model. The flow chart of the LEB attack framework is shown in Figure. 2.3,

in which the red-colored components are controlled by the attacker. It is worth noting that

the attacker is defined as a malicious controller that can access all the reports of controlled

and compromised nodes, and modify the information that each device reports to the fusion

center.
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Figure 2.3. The LEB attack framework.

2.2.2.1 Learning

The learning step aims to build the surrogate model Si at timeslot i to approximate the

decision model O at the fusion center given malicious nodes’ reporting vector {aj}j∈[0,i] and

the fusion center’s decision {yj}j∈[0,i]. As the LEB attacker has no initial knowledge of the

decision model O, the learning step of the LEB attack should be generic and flexible. Our

learning idea is inspired by no free lunch theorems and transferability.

The basic idea of all versions of no free lunch theorems presented in [53] is that for both

deterministic and stochastic algorithms, “the average performance of any pair of learning

algorithms across all possible problems is identical”, or more explicitly, it demonstrates that

“what an algorithm gains in performance on one class of problems is necessarily offset by its

performance on the remaining problems”.

No free lunch theorems imply that learning algorithms perform well on one problem

does not mean it can always perform well when the problem changes, and that it is not a

good idea to use a fixed learning model given different real-world scenarios. Therefore, we

adopt a “horses for courses” strategy rather than a “once for all” strategy when choosing

the surrogate model. We employ a set of learning algorithms as sub-models to comprehend
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varieties at the fusion center. At each timeslot, we choose the learning algorithm that has

the best performance as the final surrogate model.

Transferability shows that as long as models are trained to perform the same task, the

influence of adversarial samples for one model can often be transferred to other models, even

if they have different architectures or are trained on different training parameters or datasets

[24]. Transferability property offers the justification of using adversarial samples generated

from one sub-model to cheat other sub-models.

As a result, we are motivated to use a set of different machine learning models together

to approximate the decision model O. Specifically, the surrogate model Si consists of L

machine learning models, called sub-models. Each sub-model is denoted as

Sl,i : A → Y ,A ⊂ Rm×1,Y = {−1, 1}, l = 1, 2, · · · , L, (2.2)

where m is the number of malicious nodes controlled by the attacker. The number of sub-

models L depends on the attacker’s resource and strength. When L is large, the attacker will

have more options in choosing the best surrogate model. Each sub-model is a particular rep-

resentative machine learning model (e.g., Support Vector Machine (SVM), linear regression,

multi-layer neural network (MLP), etc.) and is trained on the same set {< aj, yj >j∈[0,i]}.

2.2.2.2 Evaluation

As shown in Figure. 2.3, even we use all of the malicious nodes together to build a

surrogate model, the model is only a partial one because the fusion center will also use

sensing data from other innocuous nodes, which is unknown to the attacker. Thus, the goal

of the evaluation procedure is to (i) evaluate whether the partial model (sub-models in the

surrogate model) is accurate enough and (ii) use model selection to select the best sub-model

to launch the attack.
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At timeslot i, the attacker uses each of the sub-model Sl,i to classify the current data

vector ai and obtains its local decision zi = Sl,i(ai). Then the attacker compares zi with the

fusion center’s decision yi, and maintains a metric called internal accuracy for each sub-model

Sl,i, which is defined as Al,i =
1
i

∑i
j=0 1{zj=yj} ∈ [0, 1], where 1{zj=yj} denotes the indicator

function that has value of 1, if zj = yj, and value of 0 otherwise. The internal accuracy

measures how accurate a sub-model can track the fusion center’s decision model.

At the evaluation step, if the highest internal accuracy in all sub-models is greater than

a given threshold α, the attacker will select the sub-model that has the highest internal

accuracy as its final surrogate model for timeslot i and enters the beating procedure for the

ith timeslot. Otherwise, the attacker will not attack, but simply send the real sensing data

to the fusion center. This evaluation procedure ensures that the attacker will not attack

with low confidence, which is also designed to improve the attack success probability under

trust-based defenses.

We denote by Sl∗,i the best sub-model with the highest internal accuracy selected at

timeslot i, where l∗ = arg maxl∈[1,L] Al,i. Then we formulate the surrogate model as

Si = Sl∗,i = Sarg maxl∈[1,L] Al,i,i. (2.3)

2.2.2.3 Beating

In the learning and evaluation steps, the attacker passively listens and builds its model,

and does not enter the beating step and launch any active attack unless it passes the threshold

test in the evaluation step. The goal of the beating step is for the attacker to craft adversarial

sensing results based on the selected sub-model to beat the decision model at the fusion center

and get a desired output. Attacker’s adversarial sensing results are denoted as a∗
i . We write

a∗
i = ai + δi, where ai is the real sensing data and δi is the adversarial perturbation.
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The beating step finds the best δi with the minimum data perturbation satisfying

Objective: arg min
δi∈D

∥δi∥2,

Subject to: Sl∗,i(a∗
i ) = Sl∗,i(ai + δi) ̸= Sl∗,i(ai),

(2.4)

where ∥ · ∥2 is the L2-norm and D is the feasible solution space of δi, which is a constraint

put onto a∗ to limit the maximum report amax and minimum report amin, which could

alleviate the risk of being detected by defenses like outlier-based malicious detection [12].

As the objective is to minimize the perturbation of given inputs, we found from real-world

experiments that it can also alleviate much of other Byzantine detection methods [10, 19].

We note that the above optimization objective does not always guarantee a solution as a

result of restriction from feasible solution space D. More information about how to generate

δ under restriction D is detailed in Section 2.2.3.

After the beating process, all sub-models in the LEB attack framework need to be updated

continuously over time and will be retrained by adding new input and output data in each

round of spectrum sensing, which is the new learning step of the next episode. The nature of

such a retraining process is to incrementally add training data to its already trained model,

such that a more accurate model can be found over time. Therefore, the LEB attack is

designed to employ online/incremental sub-models to efficiently update the surrogate model,

such that it can be updated with new sensing data in a dynamic network environment.

2.2.3 Generic Adversarial Sensing Data Generation

As discussed in the beating step, we must find the best δi with the minimum data

perturbation to satisfy Eq. (2.4). When the best sub-model is chosen as the surrogate

model Si = Sl∗,i, δi can be found via solving a method-specific optimization problem. For

example, we can use the fast gradient sign methods (FGSM) [54] or the Jacobian-based
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saliency map approach (JBSM) [55] to find the best δi if the selected sub-model is a deep

neural network. However, this complicates the solution to Eq. (2.4) in the beating step,

makes it dependent on a specific type of sub-model, and makes it less flexible and generic

as the surrogate model contains L sub-models, which is extendable by design in the LEB

attack framework.

We aim to provide a generic adversarial sensing data generation algorithm to solve Eq.

(2.4). Our design intuition has two main components: (i) Unlike complicated data repre-

sentation (e.g., image and voice data), signal strength data provides straightforward infor-

mation: a larger value more likely indicates that a channel is occupied and a smaller value

indicates otherwise. Therefore, searching is biased towards one direction in Eq. (2.4). (ii)

Transferability in machine learning indicates that if we can find adversarial examples of one

sub-model, we can transfer it to other sub-models.

However, in the LEB attack framework, different final surrogate models will be selected

over time. Inspired from that, we propose a pilot model-based method for adversarial sensing

result generation. This method is specifically designed for the cooperative spectrum sensing

scenario, which consists of two steps: Step 1, estimating the decision hyper-plane of training

sensing results {< aj, yj >j∈[0,i]} from malicious nodes, which is determined by w · a+ b = 0

for a small set of sensing results (a comes from {aj}j∈[0,i], also known as support vectors in

SVM [56]) from the training data of the surrogate model. w is the trained weight vector and

b is the bias (or intercept) (as shown in Figure. 2.4, in which we consider a two-dimension

situation, denoted as x1 and x2); Step 2, using a binary search structure along the direction

defined by w to find the final δi to form the adversarial report a∗.

The procedure of the proposed method is shown in Algorithm 1. We can use SVM as

the pilot model due to its strong transferability performance [24] in practice. However, it is

not necessary to train an extra pilot model; instead, we can choose the sub-model that has

the best consistency in terms of internal accuracy with the fusion center as the pilot model
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Figure 2.4. Pilot model-based adversarial sensing result generation.

Algorithm 1 Adversarial Sensing Result Generation
Input: Sensing result ai, feasible solution space D, selected sub-model Si, algorithm termi-
nation threshold ϵ, trained pilot model parameters: w, b;
Output: Adversarial perturbation δi;

Set two boundary vectors amin and amax according to D;
Set sgn = −sign(w · ai + b);
Set initial value: δi ← sgn× dmarginw;
if Si(ai + δi) ̸= Si(ai), then

l← 0; r ← dmargin;
repeat

if Si(ai + (sgn(l + r)/2)w) ̸= Si(ai), then
r ← l + (r − l)/2;

else
l← l + (r − l)/2;

end if
until ∥r − l∥ ≤ ϵ;
if Si(ai + sgn× rw) ̸= Si(ai), then

Return the adversarial perturbation:
δi ← sgn× rw.

else
terminate without any feasible solution.

end if
else

terminate without any feasible solution.
end if

among models that involve learning a hyper-plane (such as Passive Aggressive algorithm [57]

and other classifiers). Because of the logarithmic complexity (O(logN) with searching size

N) of the binary search structure, the proposed algorithm is expected to yield a fast and

efficient solution to Eq. (2.4) in cooperative spectrum sensing scenarios.
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2.3 Influence-Limiting Defense

The LEB attack poses a new security threat to cooperative spectrum sensing. In this

section, we propose a countermeasure policy named influence-limiting defense to combat

LEB attacks. We design the influence-limiting defense as a non-invasive policy such that it

can coexist with traditional defenses [10, 11, 12, 14, 19].

2.3.1 Defense Motivation

Many traditional defenses such as statistics-based defenses [12, 17, 19], machine learning-

based defenses [14, 21, 10, 22] and trust value-based methods [13, 11, 58] have been designed

by making assumptions about attackers. In a scenario where learning-empowered attackers

are present, there exist following concerns:

• The identified model mismatch phenomenon that results from spatial and temporal

unevenness will lead to dynamic changes of the statistical property at each sensing

node.

• When the attacker decides not to launch the attack, it can make controlled nodes

behave “normal” by correcting random mistakes and combining all the sensing results

of manipulated nodes to make the channel status decision, which improves the statis-

tical consistency of those controlled nodes with the fusion center at timeslots without

attacks, such that they can maintain a competitive attack budget at timeslots with

attacks.

• When the manipulated nodes decide to launch the attack, they can learn an efficient

way through the LEB attack framework, which minimizes the pattern deviations.

Although many traditional methods have been proposed to counter uncertainties of sens-

ing results from each node (e.g., metrics of “weight”, “trust value”, and “reputation” are
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widely used to balance the individual decision of each node and the fusion center decision

[59, 9, 10, 11, 12, 13, 14, 15, 16]), most of these metrics are directly or indirectly based on

the statistical consistencies of individual decisions with global decisions. Nevertheless, high

consistencies do not guarantee high worthiness of trust. As we have detailed in the LEB at-

tack strategy, malicious nodes can be controlled to purposely maintaining a high consistency

with the fusion center to avoid being detected.

To our best knowledge, robust and generic strategies to combat these challenges in coop-

erative spectrum sensing are largely missing. We focus on finding the reason why a limited

number of malicious nodes can succeed after learning the fusion center’s model. Our key

observation is that malicious nodes can take advantage of the model mismatch phenomenon

to build up their dominant roles in the decision inference process, i.e., malicious nodes can

accumulate their influence on the fusion center, thus the influence of normal nodes are com-

paratively decreased. From the defense perspective, although we may not know identities

of attackers in the network, we can limit the influence of any subset of nodes on the fusion

center’s global decision.

Our objective is to design a robust and generic countermeasure named influence-limiting

defense specifically for the spectrum sensing domain. The method aims to bridge the gap be-

tween traditional defense methods and new challenges posed by LEB attacks by introducing

the decision-flipping influence.

2.3.2 Defense Framework

We detail the influence-limiting defense framework in the following subsections.
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2.3.2.1 Defense Objective

To measure the influence of any given subset of nodes Xsub, we propose a new metric

called decision-flipping influence, denoted as I(Xsub),

I(Xsub) =
# of a∗

# of a ,

s.t. O(x∗) ̸= O(x),
(2.5)

in which a∗ is from Xsub, and is part of x∗. Intuitively, (2.5) indicates the probability of finding

a malicious input x∗ that flips the decision output given x by changing a. Apparently, the

influence of all nodes is 1, i.e., I(X ) = 1. Unlike “weight”, “trust value” or “reputation”

based measures and the influence-based measure proposed in [60, 61], the decision-flipping

influence I(Xsub) is a direct probabilistic measure of the role Xsub played in the final decision

process.

Starting from the decision-flipping influence I(Xsub), we can mitigate the severe impact

of potential LEB attacks by enforcing an influence-limiting policy, in which the decision-

flipping influence of any subset Xsub ⊂ X should satisfy I(Xsub) ≤ δ(|Xsub|), where |Xsub|

denotes the number of nodes in Xsub, and δ(|Xsub|) is the threshold function of |Xsub|, i.e., the

influence-limiting policy is triggered only when I(Xsub) goes beyond δ(|Xsub|). For example,

δ(1) denotes the threshold to limit the influence of each individual node.

From the LEB attack framework, we know that as malicious nodes keep succeeding to

flip the decision of the fusion center, their corresponding decision-flipping influence I(Xsub)

will also increase, thus influence-limiting policy will be triggered. We can write the influence-

limiting policy as follows:

Objective: minimize (y − ŷ)2,

Subject to: I(Xsub) ≤ δ(|Xsub|), ∀Xsub ⊂ X ,
(2.6)
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in which y is the true channel status and ŷ denotes the predicted decision output. This is

a non-invasive method that can coexist with traditional/existing defenses as mentioned in

Section 2.2.

2.3.2.2 Finding Threshold Function δ(|Xsub|)

The threshold function of δ(|Xsub|) with regard to |Xsub| is the core component of the

influence-limiting defense. To choose the threshold function, we first discuss simple cases,

then extend them to generic cases:

(i) In a well-balanced cooperative spectrum sensing scenario without malicious nodes,

the value of δ(|Xsub|) in terms of |Xsub| intuitively needs to satisfy the following three basic

requirements: (a) δ(|Xsub|) → 0 when |Xsub| → 0; (b) δ(|Xsub|) is monotonically increasing

with regard to |Xsub|; (c) I(Xsub)→ 1
2

when |Xsub| → n
2
, which is to ensure that the influence

over the fusion center is dominated by the majority rather than a small group of sensing

nodes.

Based on the requirements mentioned above, a sigmoid style function comes out to be a

feasible choice to interpolate the function of δ(|Xsub|) with regard to |Xsub|,

δ(|Xsub|) =
1

1 + e−c1(|Xsub|−n
2
)
, 0 ≤ |Xsub| ≤

n

2
, (2.7)

where c1 is the control parameter used to adjust the function to better interpolate various

practical scenarios. We assume that the number of malicious nodes is less than the number

of normal nodes, which is the typical attack model [9, 10, 12, 15, 16].

(ii) In a generic scenario where malicious nodes may present, the function δ(|Xsub|) de-

fined in (i) has no mechanism to counter malicious nodes. It is intuitive that when malicious

nodes are present in Xsub, δ(|Xsub|) should be limited to a smaller threshold value such that
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the decision-flipping influence can be restrained. The next question is how one can know

which node is malicious.

Note that due to the temporal or spatial unevenness, it is difficult to accurately identify

which node is indeed malicious by checking the statistical property of the signal strengths.

Therefore, instead of offering a hard decision rule to clearly classify a node into either in-

nocuous or malicious, we design a soft rule to discriminate certain nodes in the final decision

by the fusion center.

In particular, we still leverage a node’s signal strength, but only checking changes of

its statistical property. Suppose when a node’s signal strengths exhibit different properties

during the training and testing (or decision) phases, there exist following indications:

• The node may be malicious and its signal strengths are manipulated for an effective

attack. If this is the case, the node should be at least less weighted (if not eliminated)

in the fusion center’s decision.

• The node may be legitimate but its signal property changes due to the temporal or

spatial unevenness, which further means that the original training data for this node

does not reflect its current signal property and thus becomes less useful for the current

decision.

In both cases, we should at least weight those nodes less in the final decision. Therefore,

we adopt the Kolmogorov-Smirnov (K-S) statistic to quantify such a change for a node. For

node j, the K-S statistic djks is

djks = sup
x
|F j

T (x)− F j
C(x)|, (2.8)

28



where F j
T (x) is the training data distribution for node j, F j

C(x) is the empirical distribution

of node j’s signal strength in the test period, representing its current signal property, and

sup(·) denotes the maximum value or upper bound.

F j
T (x) and F j

C(x) can be estimated from the sensed data. We can employ kernel density

estimation method to obtain the distribution due to its flexibility in choosing kernel functions.

Based on Eq. (2.8), we present our generalized influence-limiting policy as

δ(|Xsub|) =
1

1 + e−c1(|Xsub|−n
2
)
− c2

∑
j∈Xsub

djks,

0 ≤ |Xsub| ≤
n

2
, 0 < δ(|Xsub|) < 1,

(2.9)

where c1 is a cost control parameter and c2 is an influence control parameter.

The policy ensures that if there are more abnormal nodes in Xsub, then
∑

j∈Xsub
djks will

be larger and thus the threshold δ(|Xsub|) will be smaller. When all the nodes in Xsub are

normal nodes,
∑

j∈Xsub
djks is expected to be small.

2.3.2.3 Enforcing Influence-limiting Policy

At the fusion center, the objective of the defense is to mitigate the impact posed by

potentially malicious nodes through enforcing the influence-limiting policy, i.e., limiting the

decision-flipping influence of any given Xsub within the range of [0, δ(|Xsub|)].

There are multiple ways to enforce the policy. One way is to re-weight the sensing results

of Xsub. Specifically, when the measured decision-flipping influence I(Xsub) goes beyond

δ(|Xsub|) in a traditional defense method, the influence-limiting policy will limit the weight

of Xsub to the threshold. In other words, the weight w(Xsub) can be written as

w(Xsub) =

 δ(|Xsub|), I(Xsub) ≥ δ(|Xsub|),

Original weight, otherwise.
(2.10)
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Algorithm 2 Influence-limiting defense
Input: Historical sensing results X and the corresponding decision outputs in Y ; parameters
c1, c2, η.

for each Xsub according to the value of η:
Calculate the decision-flipping influence I(Xsub);
Compute the threshold δ(|Xsub|);
Enforce influence through limiting the weight w(Xsub);

end for
Feedback w(Xsub) to traditional/existing defenses.

Another way to enforce this policy is to work with an existing defense such as the incentive

method proposed in [62] to re-weight the corresponding nodes, thus the suspicious nodes can

be discouraged and suppressed.

2.3.2.4 Balancing Effectiveness and Complexity

It is worth noting that in order to achieve the objective defined in Eq. (2.6), we have

to consider all possible subsets in X . However, it will be computationally cumbersome to

enforce the full influence-limiting policy on a cooperative spectrum sensing network with a

large number of nodes, as the total number of subsets in X with n nodes is
∑n

k=1

(
n
k

)
.

We provide a practical strategy to reduce the complexity of the influence-limiting policy.

We introduce a parameter η, 0 < η ≤ n, in the influence-limiting policy and consider limiting

the influence of any subset which has no more than η nodes. For example, η = 1 means that

we perform the influence-limiting policy only on each individual node inside the network and

η = n means a full scale influence-limiting policy evaluated on all possible combinations of

Xsub. By adjusting the value of η, we can balance the complexity of the influence-limiting

policy and the effectiveness against potential attacks.

The step-by-step process of the influence-limiting defense can be seen in Algorithm 3.

The advantage of using influence-limiting policy is that we can add this enforcement as

a parallel, non-invasive constraint to the primary/traditional decision method at the fusion
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center. The influence-limiting policy is applied to bridge the gap between traditional defenses

and the new adversarial machine learning-based attacks, such as LEB attacks.

2.4 Low-cost Influence-Limiting Defense

In this section, given the high computation cost of the original influence-limiting defense,

we provide a low-cost version of the influence-limiting defense method.

In the influence-limiting defense, the core idea is to contain or limit the decision-flipping

influence of Xsub towards the decision process in the fusion center. However, in practice, to

fully limit the attack power of all malicious nodes, it is necessary to enforce the influence-

limiting defense at different levels in terms of the size of Xsub. The defender does not usually

know how many nodes in its cooperative spectrum sensing network are controlled by the

attacker. Note that the total number of subsets in X with n nodes is
∑n

k=1

(
n
k

)
, which means

the computational complexity in terms of subset will be at the level of O(2n). This might

make it difficult for the fusion center to enforce a full version of influence-limiting defense.

Therefore, another parameter η was introduced in [63] to control the complexity.

From a practical point of view, we do not need to evaluate all the combinations of Xsub

from X . For example, if we find that the decision-flipping influence for a specified subset

Xsub is below the value defined by the cap function, then we actually do not need to further

examine all the subsets within Xsub, which will reduce the computational cost of enforcing

influence-limiting defense significantly. Therefore, the problem turns out to be a challenge to

find the most suspicious subset of Xsub to enforce the full version of influence-limiting policy

within that subset. Inspired from the “divide and conquer” scheme in traditional algorithm

design, we propose a low-cost version of influence-limiting defense.

We employ the strategy of a top-down style, in which we first divide all the sensing nodes

into two subsets randomly and then evaluate the decision-flipping influence I(Xsub) of each

subset. In a normal scenario where no malicious nodes are present and each innocuous node

31



is also well-behaving, the decision-flipping influence for each subset should be very similar

with each other and well-balanced. However, if there exist malicious nodes in either subset

or in both subsets, the decision-flipping influence for the subset that has the larger number

of malicious nodes will have a higher decision-flipping influence if the attacker is successful.

If our cost control parameter c1 and influence control parameter c2 are chosen appropriately,

the proposed influence-limiting defense should be triggered on that subset. Then, in the

next round of search, we focus on the subset that triggers the influence-limiting defense. We

perform the second round of “divide” operation on the subset, divide it into two smaller

subsets and evaluate the decision-flipping influence of each subset again. We will continue

the search iteratively by dividing the chosen subset.

At the end of “divide and conquer” search process, we will reach a point where both

the two subsets trigger the influence-limiting defense, or at least one subset is non-divisible

if there exist malicious nodes like LEB attackers. There is a possibility that both of the

subsets include enough malicious nodes to make their decision-flipping influence larger than

the value defined by the cap function δ(|Xsub|). If there is no malicious node, it will be very

difficult to trigger the defense based on the definition of δ(|Xsub|).

The key point of this “divide and conquer” strategy is that we do not need to enforce

the influence-limiting defense until we reach the point where both the subsets trigger the

defense. Before that point, all we need to do is to evaluate the decision-flipping influence

I(Xsub), which will decrease the computational cost of enforcing influence-limiting defense

significantly. The detailed process of our low-cost version of influence-limiting defense is

shown in Algorithm 3. The advantage of the proposed low-cost version of influence-limiting

defense is that it divides the set of the sensing nodes evenly (or roughly evenly if the number

of nodes is an odd number) into two subsets. Thus, it will be very efficient to locate the

subset that reaches the cap function if there are malicious nodes.
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2.5 Experimental Results and Analysis

In this section, we present our real-world dataset collected from practical TV white space

signal strengths. Based on this dataset, we conducted experiments to measure the impact

of LEB attacks under various conditions.

2.5.1 LEB Attack Experimental Setup

We present measurement details, configurations of the fusion center, the LEB attack

framework, and performance metrics in this subsection.

2.5.1.1 Measurement Configurations

We collected realistic TV white space signal strengths using RTL-SDR TV dongles, which

have been validated to have adequate signal detection capabilities [48]. We deployed 20 RTL-

SDR TV dongles as sensing nodes on a campus area to collect signal strengths simultaneously

on TV channels based on configurations used in [48]. We used GNURadio v3.7.9 to imple-

ment the sensing process for each dongle that uses the averaged signal power over a time

period of 30 seconds (required by Federal Communications Commission [64]) as the sensing

result for one timeslot.

To make the collected signal data comprehend the realistic spectrum sensing scenarios

as much as possible, we deployed sensing devices in various surrounding environments. Fig-

ure. 2.5 shows how 20 RTL-SDR TV dongles were deployed throughout a 379 × 232 ft2

building: 8 TV dongles were placed outside of the building and 12 were distributed within

the building on different floors and indoor environments. We distributed TV dongles at

these various places and environments to represent different spectrum sensing scenarios in

practice, which is similar with the deployment style of CORNET testbed [65]. We collected
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Figure 2.5. The deployment environment of 20 RTL-SDRs.

signal strengths on 22 different channels for 100 continuous hours on each sensing node, such

that the dynamic model mismatch phenomenon can be recorded in the dataset.

2.5.1.2 Fusion Center Configurations

To show the attack performance of the LEB attack framework, we implemented eight

existing representative intrusion detection defenses at the fusion center. Specifically, four

statistics-based defenses: Outlier factors based defense (Outlier) [12], Local Outlier Factor

based defense (LOF) [66], Empirical Covariance based (EmpCov) and Robust Covariance

based (RobCov)) detections [67]; three machine learning based defenses: fuzzy kNN based

defense (fzKNN) [21], Double-Sided Neighbor Distance based defense (DSND) [10] and One-

class SVM based detection (OCSVM) [22]; and one trust-based detection method (Trust)

[11].
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(a) Outlier (b) LOF (c)  EmpCov (d) RobCov

(e)  fzKNN (f) DSDN (g)  OCSVM (h) Trust

Figure 2.6. Internal accuracy transitions of the LEB attacker under different defenses.

There are various data fusion rules such as SVM, Logistic Regression (LR), AND, OR

and Majority rule[61, 66, 14, 68]. Due to the LEB attack design and the property of trans-

ferability in machine learning, the fusion rule does not generally affect the design of the

LEB attack architecture, but may affect its attack result. For example, the majority rule

may perform better than SVM against the LEB attack (as the attack is likely to fail when

malicious nodes are not the majority) but it does not generate good performance as pointed

out in the literature [14, 69]. We choose the SVM rule as the representative rule in our ex-

perimental evaluation because (i) it is one of the most widely used fusion rules for efficiency

and performance [14, 68], and (ii) our main goal is to show that how a machine learning

powered attacker can take advantage of the open nature of cooperative dynamic spectrum

sensing to launch a new type of attack.

We used the sensed data of the first five hours collected from 22 nodes and the cor-

responding ground truths of the TV channel status in the local area to build statistical

models and as training data for the defense methods implemented at the fusion center. The

remaining data was used as test data.
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2.5.1.3 LEB Attack Framework Configurations

We implemented the surrogate model based on manipulated nodes, which consists of

six incremental learning based sub-models: Naive Bayes classifier for multinomial models

(MulNB), Perceptron classifier (Per), Linear SVM classifier with stochastic gradient de-

scent training (SGD), Passive Aggressive-I classifier (PA-I), Passive Aggressive-II classifier

(AP-II) and Multi-layer Perceptron classifier (MLP). These six models are well-known and

representative techniques in incremental learning. In practice, we can add other incremen-

tal learning-based algorithms or exclude models based on security requirements of specific

scenarios.

Without loss of generality, we let the interaction of cooperative spectrum sensing and the

LEB attacker that controls the malicious nodes start at timeslot 0 corresponding to the 6th

hour of the collected data. We assume that the defense mechanism has already been trained

using the first five hours of the collected data. At each timeslot that takes 30 seconds, the

LEB attacker learns and evaluates the surrogate models to launch a potential attack.

In the evaluation step, the internal accuracy threshold α is 0.85 unless otherwise specified.

In the beating step, the LEB attacker generates adversarial sensing data based on the generic

generation algorithm proposed in Section 2.2.3.

2.5.1.4 Performance Metrics

We evaluated the performance of the LEB attacker through two metrics: attack success

ratio and overall disruption ratio. We define the attack success ratio as the ratio of the

number of attacks that successfully mislead the fusion center to make wrong decisions to the

number of attack attempts. We define the overall disruption ratio as the ratio of the number
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of successful attacks to the number of elapsed timeslots, i.e.

attack success ratio =
#of successful attacks
#of attack attempts ,

overall disruption ratio =
#of successful attacks
#of elapsed timeslots .

(2.11)

Note that a higher attack success ratio does not necessarily mean a higher overall disruption

ratio. The reason is that when the LEB attacker does not pass the evaluation step (e.g., it

may have a large threshold α to make an attack attempt succeed with high probability), it will

not launch the attack and thus will not cause a disruption to the network. In comparison,

the attack success ratio measures the learning and evaluation quality of the LEB attack

framework, and the overall disruption ratio quantifies the performance impact that the LEB

attacker brings to the entire cooperative sensing network.

2.5.2 LEB Attack Results and Analysis

We show experimental results of the LEB attack in terms of attack success ratio and

overall disruption ratio measurements in this subsection.

2.5.2.1 Attack Impacts on Defense Strategies

We first evaluated the impact of the LEB attacker on each of the 8 defense strategies

used by the fusion center. We randomly selected 8 nodes as malicious nodes to be controlled

by the LEB attacker. The LEB attacker updates its internal accuracies for each sub-model

to evaluate and beat the fusion center. As we do not assume any specific statistical/station-

ary model for the behavior of the attacker and nodes, sensing reports, or wireless spectrum

properties, it can be mathematically infeasible to accurately formulate the interactions be-

tween the attacker and the fusion center or perform analytical convergence analysis. Our

experimental evaluation results in Figure. 2.6 shows the attacker’s internal accuracies and
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Figure 2.7. The performance of the LEB attacker with different defense strategies.

the convergence trends of sub-models with regard to the timeslot against defense strategies

(a) Outlier, (b) LOF, (c) EmpCov, (d) RobCov, (e) fzKNN, (f) DSDN, (g) OCSVM and (h)

Trust.

We observe from Figure. 2.6 that when the attacker starts to learn, internal accuracies of

each sub-model change drastically; but with more timeslots elapsed, they gradually become

stable. For example, in Figure. 2.6 (c), accuracies start to stabilize at around 0.85 after

500 timeslots, which is the approximated convergence time in the training process of the

surrogate model.

Figure. 2.7 illustrates the attack success ratio and overall disruption ratio of the LEB

attacker against each defense method individually. From Figure. 2.7, we note that the LEB

attacker achieves 71%–90% attack success ratios against different methods, which means that

the learning and evaluation design in the LEB attack framework is effective for the attacker to

assess its potential capability to launch successful attacks. We also observe from Figure. 2.7

that the overall disruption ratio is 45%–80% due to the attack, which indicates that the

LEB attacker is able to successfully fool the fusion center into making wrong decisions for

45%–80% of the time, thereby resulting in severe performance disruption.
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(a) (b) 

Figure 2.8. The relationship between α and the attack success ratio of the LEB attacker.

2.5.2.2 Impacts of Threshold α

A key factor in the LEB attack framework is the internal accuracy threshold α. The

attacker can only launch attacks if the internal accuracy of a sub-model exceeds α. A

larger α should lead to a higher attack success ratio but should also decrease the overall

disruption ratio, which is because a larger α will decrease attack attempts but result in a

better estimation about the decision rule.

Figure. 2.8 depicts (a) the attack success ratio and (b) the overall disruption ratio for

different values of α (the rest of the setting is the same as that in Figure. 2.7 and results are

averaged over eight defense strategies). We observe from Figure. 2.8(a) that when α is 0.7

or less, the attack success ratio is around 0.5. As α increases, the attack success ratio also

increases. The reason is that an increased α requirement indicates a higher consistency or

better estimation of the fusion center for the selected sub-model.

However, in terms of the overall disruption ratio, although a smaller α will lead to more

attack attempts, it will also increase the risk for the attacker to activate defense mechanisms

at the fusion center, further decreasing the overall disruption ratio. The overall disruption

ratio increases when α is small and then decreases as the threshold α approaches to 1, as
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Table 2.1. Overall disruption ratios (%) under different scenarios.

Defenses The number of malicious nodes m
2 3 4 5 6 7 8 9 10

Outlier 8 20 23 24 34 38 65 68 72
LOF 6 15 23 25 35 36 58 60 65

EmpCov 9 22 27 35 37 39 52 59 66
RobCov 7 15 22 30 39 41 53 56 64
fzKNN 10 21 27 45 45 49 78 80 82
DSND 11 23 31 44 46 47 80 85 86

OCSVM 9 21 31 39 48 51 76 79 80
Trust 6 16 21 29 34 38 45 56 60

Average 8 19 28 34 40 42 63 69 72

shown in Figure. 2.8(b). The reason is that as the threshold α approaches to 1, the number

of attack attempts decreases significantly. Thus, although the attack success ratio increases,

the overall number of attacks decreases. We observe from our experiments that the optimal

threshold can be achieved at around α = 0.85 to maximize the overall disruption ratio.

2.5.2.3 Impacts of the Number of Malicious Nodes

The number of malicious nodes controlled by the LEB attacker is a fundamental factor

that affects the attack impact, which answers the question of how many nodes an attacker

needs to achieve a promising attack performance. Table 2.1 shows the overall disruption ratio

against different defenses when the number of randomly selected malicious nodes increases

from 2 to 10 (i.e., 10% to 50% of all nodes). Table 2.1 shows that as the number of malicious

nodes approaches 10, which is half of the total sensing nodes, the overall disruption ratio

(averaged over all defenses) reaches 72%, which means that the spectrum sensing is disrupted

by the attacker at 72% of the elapsed timeslots. The attack impact can still be observed

even when the number of malicious nodes is small. For example, three malicious nodes (15%

of all nodes) can lead to a nearly 20% overall disruption ratio.
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It can be concluded from Table 2.1 that the LEB attack framework provides an effective

attack strategy even when the number of malicious nodes is small. The attack performance

also improves as the number of malicious nodes increases.

2.5.2.4 Impacts of Locations of Malicious Nodes

In previous experiments, we always randomly selected nodes as malicious ones. We are

also interested in whether malicious nodes can bring more impact to the network if they

choose to be at “better” locations. We divide the dongles into four groups with five in each

group. The experiments are conducted by using one group as malicious nodes while the rest

being innocuous.

The results are depicted in Figure. 2.9, from which we observe that when controlling

nodes 16–20 (distributed in outside environment) as malicious ones, the overall disruption

ratio is 43% averaged over all eight defenses. However, if nodes 6–10 (distributed in indoor

environment) are controlled as malicious ones, the averaged overall disruption ratio is only

17%. Hence, we can conclude that it is critical for malicious nodes controlled by the LEB

attacker to be at “right” locations that have a higher influence on the decision process in

order to launch more effective attacks.

2.5.2.5 Efficiency of Adversarial Sensing Data Generation

We also compare the performance of the proposed method for adversarial sensing result

generation with other adversarial sample generation methods: Fast gradient sign method

(FGSM) [54], Jacobian-based saliency map approach (JBSM) [55], DeepFool method (DF)

[70], Basic iterative method (BaIter) [71], SPSA attack method (SPSA) [72] and Elastic-Net

method (EN) [73] in Deep Neural Network, which are implemented based on CleverHans

V2.1.0 [74].
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Figure 2.9. Overall disruption ratios when manipulating different sets of nodes.

In these experiments, 8 nodes are randomly selected as malicious nodes and they use

different adversarial data generation methods in the LEB attack framework to generate

malicious data inputs to the fusion center. Figure. 2.10 shows (a) the attack success ratio

and overall disruption ratio under different generation methods and (b) the normalized costs

of the generation methods (the normalized cost of a generation method is defined as its

computational time to generate the adversarial data vector divided by the computational

time of our proposed method to generate the adversarial data; thus our proposed method

has a normalized cost of 1).

Figure. 2.10(a) shows that our proposed method has the similar attack success ratio and

overall disruption ratio as other methods. Figure. 2.10(b) further shows that our method is

much more computationally efficient than the other methods. For example, SPSA has a nor-

malized cost of around 4.5, and the overall average computation cost reduction compared to

other methods is around 65%, which is mainly contributed by the simplicity and logarithmic

complexity of binary search method in our proposed method.
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(a)

(b)

Figure 2.10. Comparison of the adversarial sensing result generation methods.

2.5.2.6 Performance Comparison with Existing Attacks

The LEB attack is a new type of attack against spectrum sensing. There are many

other proposed Byzantine attacks against the fusion center. They can be roughly classified

into two categories: Independent Malicious Byzantine Attacks (IMBA) and Cooperative

Malicious Byzantine Attacks (CMBA) [75, 10, 76]. In IMBA, each Byzantine node makes

the decision to attack the fusion center independently, while Byzantine nodes collaborate

with each other in CMBA.
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IMBA is a comparatively simple attack strategy. It requires no cooperation between the

nodes and each individual node makes the decision by itself. It is proved in [75] that unless

the number of Byzantines is larger than or equal to 50% of the total nodes, the fusion center

cannot be made blind by attackers. More information of the IMBA strategy can be found

in [10, 76].

In the CMBA scenario, Byzantine nodes cooperate with each other and make the decision

collaboratively to attack the fusion center, which is a much stronger attack model than

IMBA. Therefore, the number of malicious nodes required to make the fusion center blind

is also less than 50% [75]. LEB attacks belong to the CMBA category, but the attack model

is much weaker than the CMBA model in [10]. The LEB attack requires no information of

other normal nodes, including the total number of sensing nodes and the sensing results.

In this group of experiments, we compare attack performance of LEB attacks with both

IMBA and CMBA methods. Rather than using simple data fusion methods like “AND”

[77], “OR” [78], or “Weighted” [79], we employ a more comprehensive machine learning

based method, namely SVM as the decision rule [48].

Existing attack methods that we choose for comparison include an independent malicious

attack model identified in [10], in which each malicious node launches the attack according

to a preset probability; an adaptive probabilistic independent attack model that considers

attack costs proposed in [80]; and a cooperative dependent malicious attack model proposed

in [81], in which an attacker injects malicious sensing data simultaneously and the falsified

data is self-consistent.

Attack success ratios and overall disruption ratios are used to quantify the attack perfor-

mance. The detailed experimental results are shown in Table 2.2, in which 8 out of 20 nodes

are malicious. We can observe that cooperative attacks ([81] and LEB attacks) generally

have better performance than independent attacks ([10, 80]), on average more than 10% of

improved performance in terms of both attack success ratio and overall disruption ratio.
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Table 2.2. Performance comparison under different attack methods.
Attack methods Attack success Overall disruption

Li et al.[10] 0.76 0.76
Ahmadfard et al. [80] 0.73 0.73

Qin et al. [81] 0.84 0.84
LEB attacks 0.95 0.85

Note that unlike the trust-based fusion, the fusion center is trained using SVM. LEB

attacks cannot change the values of parameters in the decision model. LEB attacks still

have slightly better overall disruption ratio than [81] but they have better attack success

ratio (around 10% of the advantage) due to the learning characteristics of LEB attacks.

We conducted comprehensive experiments based on real-world collected spectrum data

to validate the LEB attack framework and compared the attack performance with existing

defenses and attacks. The principal benefit of the LEB attack framework is due to learning,

which supports the attacker to adapt and take advantage of the model mismatch phenomenon

in practice.

2.5.3 Influence-limiting Defense Experimental Validation

We evaluated the performance of the proposed influence-limiting defense using the col-

lected dataset. Experimental configuration is remained the same. In this part of experiments,

we adopted the trust value-based method as the existing fusion center defense mechanism

due to its popularity in cooperative spectrum sensing [13].

2.5.3.1 Impact of c1 and c2 for δ(|Xsub|)

We first measured the impact of parameters c1 and c2 with regard to the threshold

δ(|Xsub|) in Eq. (2.9) on the defense performance of the influence-limiting defense.
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(a)

(b)

Figure 2.11. The performance when (a) no malicious node exists, (b) LEB attackers exists.

It is obvious that the limitation caused by δ(|Xsub|) will lead to a performance cost for the

fusion center, especially when there is no malicious node. The cost essentially depends on c1

in Eq. (2.9). According to the mathematical property of Sigmoid function, less limitation

will be enforced when c1 is smaller; i.e., the cost when no malicious nodes are present will

be smaller.

On the other hand, a smaller c1 hurts the system more when malicious nodes are indeed

present. Similarly, a larger value of c2 makes sure that a potentially malicious node will

be penalized more but may also penalize legitimate nodes more when there is no attack.

Therefore, we evaluated a wide range of choices of c1 and c2 to observe the balance between

the performance without the attack and the defense effectiveness in the presence of attacks.
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• Case 1: When no malicious node exists, all the 20 sensing nodes report the true

sensed values to the fusion center. We illustrate the overall disruption ratio in 1000

timeslots with regard to influence-limiting defense of different values for c1 and c2 in

Figure. 2.11(a). When evaluating one parameter, we fixed the other parameter as the

two parameters are independent from each other. We observe from Figure. 2.11(a) that

when no malicious node is present, the overall disruption ratio increases as both c1 and

c2 increase, which corresponds to the slight cost of the influence-limiting defense.

• Case 2: When LEB attacks are present, we evaluated the scenario where 8 out of

20 nodes are malicious (i.e., m = 8 and n = 20). The relationship between different

values of c1 and c2 and the overall disruption ratio is shown in Figure. 2.11(b). When

c1 or c2 is very small, the influence limitation is negligible. The defense performance

is demonstrated when c1 and c2 increase beyond 0.05 and 0.5, respectively.

To make the influence-limiting defense achieve the full potential of defense capability, we

choose c1 and c2 to decrease the overall disruption ratio when malicious nodes exist, while

still maintaining a slight cost when no malicious node is present. Combining the experimental

results of the above two cases, we can observe that c1 and c2 can be set as 0.05 and 0.5,

respectively, in our example.

2.5.3.2 Impact of η on Defense

We also evaluated the defense performance under different values of η that balances

the complexity and the defense performance of the influence-limiting policy. We assume

c1 = 0.5, c2 = 0.05 for these experiments. The overall disruption ratio with LEB attacks is

shown in Figure. 2.12 when we vary the number of malicious nodes. The results demonstrate

that when η is equal or larger than 4, the performance improvement is almost negligible for

different cases of m = 2, 4, 6 and 8.
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Figure 2.12. The overall disruption ratios given different value of η with different m.

2.5.3.3 Varying the Number of Malicious Nodes

Given the parameters c1, c2 and η, we compared the influence-limiting defense with

existing defenses in cooperative spectrum sensing.

We first compared the defense performance of four cases in cooperative spectrum sensing:

(i) no LEB attack and no influence-limiting defense at the fusion center; (ii) LEB attacks are

present without the influence-limiting defense; (iii) No LEB attack while influence-limiting

defense is present; (iv) both LEB attacks and influence-limiting defense are present.

We compared the performance in terms of the overall disruption ratio for m = 2, 4, 6, 8

in Table 2.5, which demonstrates that the cost of influence-limiting defense is slight when no

malicious node is present (with an overall disruption ratio of 0.008 compared to 0.002 when

influence-limiting defense is absent). Compared with the case when no influence-limiting

defense is applied, the average defense performance improvement of influence-limiting defense

in terms of overall disruption ratio is around 78% when LEB attacks exist, which shows the

effectiveness of the defense.
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Table 2.3. The overall disruption ratios with different numbers of malicious nodes m.

LEB attacks Influence- m
limiting defense 2 4 6 8

absent absent 0.002
present absent 0.06 0.21 0.34 0.45
absent present 0.008
present present 0.013 0.05 0.082 0.095
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Figure 2.13. The overall disruption ratio comparison of influence-limiting policy for different
defenses.

2.5.3.4 Performance Comparison with Existing Defenses

Next, we compare the performance of influence-limiting defense with other existing de-

fenses in terms of overall disruption ratio. We employed the same configurations for pa-

rameters of influence-limiting defense and other defenses, and set m = 8. The performance

illustrated in Figure. 2.14 validates our proposed defense by dramatically decreasing the

overall disruption ratio by around 80% on average.

The above defenses are general intrusion detection methods used to detect outliers. We

also compared influence-limiting defense with specialized defense methods designed specifi-

cally for cooperative spectrum sensing. Double-Sided Neighbor Distance (DSND) [10] is a

malicious nodes detection method based on the assumption that if a sensing node’s history
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Table 2.4. Overall disruption ratio comparison under different defense methods.
Defense methods Without defense With defense

Li et al.[10] 0.85 0.36
Chen et al. [17] 0.85 0.33
Qin et al. [81] 0.85 0.31

Hyder et al. [82] 0.85 0.38
Influence-limiting defense 0.85 0.27

is too far away or too close to other’s histories, then it might be abnormal and is probably a

malicious node. A malicious node identification method and an adaptive linear combination

rule were provided in [17]. Besides defenses of IMBA, a modified Combinatorial Optimiza-

tion Identification (COI) algorithm was proposed in [81] to deal with cooperative attacks.

An adaptive reputation-based clustering algorithm was presented in [82] to defend against

both IBMA and CMBA.

We quantified defense performance in terms of overall disruption ratio to compare influ-

ence-limiting defense with existing defenses in cooperative spectrum sensing. LEB attacks

are deployed as the attack method and the malicious nodes are set as m = 8. The fusion

center is configured with SVM as the decision rule. Unlike previous experiments where we

run the influence-limiting defense with other defenses, here we run the influence-limiting

defense as the only defense mechanism at the fusion center. The detailed performance is

shown in Table 2.4.

The performance of influence-limiting defense is slightly better than existing methods

even run independently. LEB attacks have better attack performance on reputation-based

defenses like method in [82], which ends up with 38% overall disruption ratio, than other

methods.

The experiment results above demonstrate the robust performance of the proposed influ-

ence-limiting defense. Influence-limiting defense can defend against both independent Byzan-

tine attacks and cooperative Byzantine attacks. Similar to many security mechanisms, there
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will be a performance cost especially when no malicious nodes are present. How to better

balance the security and performance is identified as potential future work.

2.5.4 Low-cost Influence-limiting Defense Experimental Analysis

2.5.4.1 Experimental Configurations

To fully compare the performance of the original influence-limiting defense and our low-

cost version of influence-limiting defense, we employ the same experimental configuration

in [63], in which we have 20 sensing nodes in the cooperative spectrum sensing network,

and vary the number of malicious nodes to fully demonstrate the defense performance under

attacks of different powers. We also focus on defending against the LEB attack using the

same dataset as collected in [63]. In the configuration of the fusion center, we consider

eight existing representative intrusion detection defenses and using Support Vector Machine

(SVM) algorithm as the fusion rule. The configuration for the LEB attacker is also the

same as that in [63]. The performance metric that we use in our comparison is the overall

disruption ratio, which is defined as the ratio of successful attacks over the total elapsed

timeslots (in each timeslot, a sensing node will report a sensing result to the fusion center):

Overall disruption ratio =
number of successful attacks
number of elapsed timeslots . (2.12)

2.5.4.2 Results and Analysis

In our experiments, we first provide the results of our low-cost influence-limiting defense

against the LEB attack with different number of nodes controlled. We adopt the same

parameter configuration as that in [63], in which the cost control parameter c1 is set as 0.05

and the influence control parameter c2 is set as 0.5. We measure the performance of our low-

cost influence-limiting defense and compare it to the original version under different number
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Table 2.5. Performance comparison under different number of malicious nodes m.
m

0 2 4 6 8
Originial version[63] 0.008 0.013 0.050 0.082 0.095

Proposed low-cost version 0.007 0.014 0.043 0.085 0.105

of malicious nodes. The results are shown in Table 2.5, from which we observe that when

there is no LEB attack, the performance cost of our low-cost version is slightly better than

the original version of influence-limiting defense. However, as the number of malicious nodes

increases, our proposed defense version performs slightly worse than the original version.

It is reasonable since when there are malicious nodes in different subsets, there is a small

chance of not limiting the attack power of those malicious nodes that exist in the subset

where they do not reach the threshold defined by the cap function δ.

In the second group of experiments, we evaluate the overall disruption ratio of the low-

cost influence-limiting defense together with different existing defense mechanisms in the

fusion center. The number of malicious nodes is set as m = 8 for the LEB attack. The

results are shown in Figure 2.14, from which we observe that the low-cost version performs

slightly worse than the original version of the influence-limiting defense. The reason is similar

to that observed in the first group of experiments. As we set m = 8, some malicious nodes

do not get their weights limited by the defense.

In the third group of experiments, we compare the complexity cost of the low-cost version

of the influence-limiting defense with the original version. In Table 2.6, we compare the

averaged decision time needed when deploying the two versions of influence-limiting defenses.

We use a normalized time cost to compare the two methods and set the time cost for the

original version of influence-limiting defense as 1 when the number of malicious nodes is 0.

The results show that the time cost for our proposed low-cost version of influence-limiting

defense is less than 20% of the time cost when running the original version of the defense,
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Figure 2.14. The overall disruption ratio comparison.

Table 2.6. The normalized average decision time cost comparison.
m Original version [63] Proposed low-cost version
0 1.00 0.10
2 1.06 0.11
4 1.08 0.15
6 1.09 0.16
8 1.11 0.18
10 1.12 0.19

which demonstrates the great advantage regarding low complexity of the proposed low-cost

version of influence-limiting defense.

In the fourth group of experiments, we examine the normalized time cost regarding

different numbers of malicious nodes. We set the time cost when there exists only one single

malicious node as 1. The results are shown in Figure 2.15, from which we can observe that

when malicious nodes cover the half of all the sensing nodes, the time cost is only around

20% compared to the scenario when the number of malicious nodes is 1. The reason is that in

the low-cost influence-limiting defense, when the number of malicious nodes increases, their

attack capabilities accumulate more quickly under the same configuration. Thus, it becomes

53



m=1
m=2

m=3
m=4

m=5
m=6

m=7
m=8

m=9
m=10

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 ti
m

e 
co

st

Figure 2.15. The normalized time cost under different number of malicious nodes.

easier to reach the threshold defined by the cap function δ(|Xsub|). Further, it becomes easier

to trigger the influence-limiting defense, enforcing the weight limitation of Xsub. When the

number of malicious nodes is small, it is necessary to examine more rounds of “divide” and

evaluate the decision-flipping influence of the corresponding subsets, which requires more

time.

The proposed low-cost influence-limiting defense has comparable performance and has

much lower complexity. It only incurs a very modest defense performance loss while achieving

much better run time efficiency. However, there is still a room to improve. For example, is

there any better solution to do the “divide”? Can we achieve even better defense performance

while decreasing the run time cost significantly? These aspects are identified as future

research direction.

2.5.5 Related Work

Cooperative spectrum sensing is an efficient way to detect spectrum usages of TV white

space channels. Defenses like statistics-based, machine learning-based, and trust-based meth-
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Algorithm 3 Low-cost influence-limiting defense
Input: Historical sensing results and the corresponding decision outputs in Y ; parameters
c1, c2.

Divide X evenly into two subsets X 1
sub,X 2

sub;
do :

If any of the two subsets is an empty set:
Compute I(Xsub) of the non-empty subet and enforce influence if it is larger than

δ(Xsub); otherwise terminate the defense process.
else:

Compute I(X 1
sub), I(X 2

sub);
If I(X 1

sub) < δ(|X 1
sub|) and I(X 2

sub) < δ(|X 2
sub|):

terminate, no malicious subset is detected;
If I(X 1

sub) ≥ δ(|X 1
sub|) and I(X 2

sub) < δ(|X 2
sub|):

Update the two subsets X 1
sub,X 2

sub with two new
evenly divided subsets from I(X 1

sub);
If I(X 1

sub) < δ(|X 1
sub|) and I(X 2

sub) ≥ δ(|X 2
sub|):

Update the two subsets X 1
sub,X 2

sub with two new
evenly divided subsets from I(X 2

sub);
If I(X 1

sub) ≥ δ(|X 1
sub|) and I(X 2

sub) ≥ δ(|X 2
sub|):

Enforce influence through limiting the weight
w(X 1

sub), w(X 2
sub);

until X 1
sub,X 2

sub are both are empty sets:

ods have been widely studied. Statistics-based defenses assign different statistics to sensing

nodes. For example, an outlier is computed for each node in [12]; [17] obtains weighted

coefficients of each node; and [18] proposes a method through majority vote of neighboring

nodes, a Bayesian method is discussed in [19]. Machine learning-based methods leverage

machine learning techniques to classify legitimate and malicious data. For example, [14, 22]

utilize supervised learning based on SVM to distinguish malicious nodes; [10] uses differ-

ent KNN-based algorithms in an unsupervised way to detect malicious nodes; and [20, 21]

discuss both supervised and unsupervised ways to defend the fusion center. A trust-based

method [11, 13, 58] maintains a trust value for each node, which will be used as a weight in

the global decision process.
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Taking into account such a wide range of defenses, we present a powerful attack mech-

anism based on the LEB attack framework, which aims to learn the defense at the fusion

center and then launch effective attacks. Based on the proposed attack strategy, we intro-

duce an influence-limiting defense, which is a non-invasive method that can coexist with

existing defenses to bridge the gap between traditional defenses and new LEB attacks.

There are some existing studies that deal with smart/intelligent attackers in cooperative

spectrum sensing. In [83], a smart attack framework that can maximize the expected ag-

gregated reward of the attacker was proposed. In [83, 69], smart defense mechanisms were

proposed to discourage attackers. Our work differs from these studies in that the LEB attack

framework focuses on using a black-box strategy to minimize the attacker’s trace (via LEB)

and the malicious perturbation when the attacker decides to launch the attack.

Adversarial machine learning focuses on learning under the existence of active adversaries

[84]. The transferability [24] in machine learning models gives adversaries the opportunity

to learn and compromise targeted models. Adversarial example generation methods, such as

iterative methods [71, 70] and gradient-based methods [54], are well-known ways to create

malicious data targeting a machine learning classifier under specific scenarios. Our proposed

adversarial sensing data generation algorithm achieves similar performance as other existing

methods, while reducing by 65% the computational cost on average.

There is a growing interest in applying adversarial machine learning to wireless commu-

nications [85]. Exploratory (inference) attacks were studied in [86, 87] to build a surrogate

model (to mimic wireless transmission patterns) that is used to develop a smart jamming

scheme. Causative (poisoning) attacks were developed to manipulate the training data input

to machine learning classifiers [88, 89, 90] with applications in wireless access and IoT. A

similar approach was followed in [91] to design a Trojan attack, where the adversary adds

Trojans (triggers) to the training data and activate them later in test time against a wireless

signal classifier. On the other hand, membership inference attacks were considered in [92]
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to learn whether a particular data sample has been used to train a wireless signal classifier.

Finally, evasion attacks were studied in [93], where an adversary jams the sensing period to

change the inputs to a machine learning classifier and force a target transmitter into making

wrong transmit decisions. Evasion attacks were also considered to fool modulation classifiers

[94, 95, 96, 97, 98, 99, 100]. Compared to previous works, this work considers adversarial

machine learning attacks against cooperative spectrum sensing in wireless communications

and presents corresponding defenses.

2.5.6 Limitations and Discussion

Although our proposed LEB attack framework and influence-limiting defense achieved

promising attack and defense performance, it is important to note the cost of the fusion cen-

ter. We conducted experiments from different aspects to validate the LEB attack framework.

However, it can not guarantee attack performance. The LEB attack framework is based on

machine learning techniques, which still have many unanswered questions [23, 55, 51]. We

list limitations of the LEB attack framework as follows:

• How to choose the minimum number of and optimal sub-models in the surrogate model

depends on specific scenarios. In the design, we make the sub-model as a flexible

algorithm set such that new models can be added and current sub-models can be

removed. But how to decide the number and types of sub-models in the surrogate

model in practice is left as a design choice, which we identify as potential future work.

• We need to train and update all the sub-models concurrently in the training and testing

process. In our experiments, the average convergence time for most sub-models is

approximately 500 timeslots. Although we have employed incremental/online learning

techniques to minimize the update cost, a better solution still lies ahead as potential

future exploration.
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• Experimental results of the LEB attack framework are data-dependent. i.e., the at-

tack performance is empirical and might change for different datasets. How to prove

the effectiveness of the LEB attack framework from a theoretical perspective is also

identified as potential future work.

From a broader AI perspective, our proposed LEB attack framework can be applied to

many other scenarios that require data fusion process such as in Internet of Things (IoT)

[101]. Another important application is in machine learning itself. Machine learning-based

attack framework does not necessarily provide explainability. For example, machine learning

models like deep neural networks are treated more like a black box without giving much

transparency and accountability to the users. Machine learning models are usually data-

driven [23, 55], thus the performance is usually empirical and highly dependent on the given

datasets. In our proposed LEB attack framework, we employ an algorithm set to counter the

uncertainty such that the attack utility has higher probability to achieve its goal. Besides,

we employ the algorithm set to mutually validate the malicious inputs (malicious samples

will be taken as inputs for each sub-model).

From the defense perspective, the influence-limiting defense is effective in limiting the

damage caused by attacks. It can be also applied to a broader machine learning scenario.

However, as shown in experimental results, it will also lead to performance cost when there is

no attack. Besides, to enforce a full version of the influence-limiting defense, the computation

cost still needs to be addressed. In this work, we explored the defense from a direct way,

which is to limit the influence of sensing nodes. Our design of δ(|Xsub|) provides a feasible

and effective trade off between performance and complexity, and we found that in practice

it is not necessary to enforce a full-version of the influence-limiting defence to achieve a

satisfactory performance.

As machine learning provides IoT systems with powerful means of learning from data and

solving complex tasks, it also raises security concerns due to its vulnerability to adversarial
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manipulation. Our proposed adversarial machine learning based partial-model attack model

focuses on the IoT data fusion process and equips the adversary with the capability to

launch successful attacks even when the adversary controls a small part of the IoT devices

by exploiting the performance uncertainty of the IoT devices or the communication channel.

How to counter the proposed attack is our future work. Below, we provide several potential

mechanisms for defense: Deploying robust anomaly detection mechanism in the IoT fusion

center. This is a direct method to defend the IoT systems against the partial-model attack.

However, in this attack, all the manipulated devices cooperate with each other to launch

the attack. Thus, how to design an anomaly detection method to detect a set of devices

is a challenge. Improving privacy protection in every level of the IoT infrastructure. In

the partial-model attack, the key to learn a partial model to mimic the fusion center is the

availability of the output of the fusion center. Thus, the decision information can be kept

as private and secure by deploying a privacy protection mechanism.

Using machine learning to attack the IoT systems is detrimental to the IoT security. On

the other hand, machine learning can be also employed as a defense method [102]. Therefore,

it is important to understand the interaction of machine learning techniques used for attack

and defense, and game theory can be used as mathematical means to study the conflict of

interest driven by machine learning.
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Chapter 3: Security of HPC Systems and Software Systems

In this chapter, we explored the security attacks and defenses in HPC systems and

software systems. Especially explored how the machine learning techniques could be deployed

to detect the anomalies or malicious programs. This chapter was published in EAI Endorsed

Transactions on Security and Safety, IEEE INFOCOM 2020-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). Permissions are included in Apendix

A.

3.1 Background and Related Work

In this section, we give the detailed background of log-based anomaly/intrusion detec-

tion in HPC systems and the mathematical model of reinforcement learning, which is the

foundation of our ReLog framework.

3.1.1 Machine Learning and HPC Security

Besides the aforementioned intrusion detection methods, there proposed various ad-

vanced frameworks in recent years to mitigate security risks, especially as machine learning

techniques are widely used in HPC systems.

For data centers like NERSC, there are hundreds, or thousands of jobs running con-

currently on each of their four computing systems, i.e., Cori, Edison, PDSF and Genepool

every day. Inspecting and analyzing each job manually is practically infeasible given the vast

amount of log files generated simultaneously by each of the systems and the corresponding

file systems. Given the huge volumes of log files, a mechanism named as Priolog is designed
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in [103] to narrow down the volume to comparatively small volumes of most related logs,

thus increases the process efficiency.

Besides reducing the volumes of logs, another idea is to design scalable HPC system data

analytics framework. [34] designed a scalable mechanism to analyze system logs, further, to

distinguish unwanted or malicious jobs running on HPC systems. Based on the framework,

users are able to navigate spatial-temporal event space that overlaps with specific system

resource allocation, events, errors and identify persistent user behavior patterns etc. Further,

users can distinguish performance anomalies and gain valuable insights about the impact

brought up by various system jobs. Ultimately all above methods lead to machine learning

techniques. Given the often-huge amount of log files generated during the running stage

(we say it ”huge” because log files are usually generated continuously from various layers

of the systems) [104], traditional data analysis tools and techniques often fall short of the

capability of processing them efficiently and effectively. Machine learning techniques, such

as deep neural networks, can offer exactly what traditional data analysis techniques fall

short of. It can process large dataset of log files in a batch-processing style and can extract

valuable information from them.

In log analysis, machine learning techniques have their unique advantages in dealing

with large volumes of streaming data. Processing streaming data generated from HPC

systems is challenging as a result of the large volumes and generating speed. An online

supervised learning method is proposed in [105] to operate with live streamed data; Another

online anomaly detection method using autoencoder is provided in [106]. To better support

streaming logs analysis, a visual analytic framework is proposed in [107], which consists

of data management, analysis and interactive visualization. It can automatically identify

pattern changes and provide a coherent view of the changes and patterns of the performance

data. [108] also builds a scalable visualization tool named as MELA to study event log data.
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Other applications of machine learning in log file analysis can be found in [109, 110, 111,

112, 113]. The application of machine learning techniques in log file analysis brings revolu-

tionary to the intrusion/anomaly detection in HPC systems. Anomaly user detection is an

important application of deep learning techniques for user behavior analysis. A comprehen-

sive review of how the machine learning techniques are used in detecting anomaly users is

given in [5].

3.1.2 Reinforcement Learning

Reinforcement learning process is usually modeled as a Markov decision process (MDP)

with a state space S, an action space A and the Markov property in terms of station-

ary transition dynamics as p(st+1|s1, a1, ..., st, at) = p(st+1|st, at) of any sample trajectory

s1, a1, s2, a2, ..., sT , aT , s ∈ S, a ∈ A with initial state distribution p(s1). The reward/cost

function is termed as S×A → R. The reward rγt =
∑∞

k=t γ
k−tr(sk, ak) is the total discounted

reward starting from time t, 0 < γ < 1 is the discount factor.

The rule of selecting an action given a state in MDP is named as policy functions, which

have the form of πθ : S → P (A), P (A) is the probability distribution over the actions.

θ ∈ Rn is a vector of parameters of the policy function. Value functions are the expected

total discounted reward. For a given state s, the value V π(s) = E[rγ1 |s; πθ] and for a given

action a over state s, the value Qπ(s, a) = E[rγ1 |s; a; πθ]. Therefore, we can write the general

objective of the reinforcement learning as an expectation J(πθ) = Eak∼πθ
[r(s, a)] [114].

There are three main different perspectives to solve J(πθ):

• Value function algorithms [115] update value functions after each sample trajectory.

The optimal action at each state is the action that can achieve optimal value functions

V∗ or Qπθ
∗ according to Bellman optimality equations, in which V∗(s) = max

a
E[Rt+1 +

γV∗(St+1)|St = s, At = a] and Qπθ
∗ (s, a) = E[Rt+1 + γmax

a′
Qπθ

∗ (St+1, a
′)|St = s, At = a].
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Rt+1 is the transition reward from state St = s to St+1. St, St+1 ∈ S, At ∈ A. a′ is the

action at state St+1.

• Policy gradients [116] update policy parameter vector θ directly through θ ← θ +

α∇θJ(θ), in which ∇θJ(θ) ≈
∑

i(
∑

t∇θlogπθ(a
i
t|sit))(

∑
t r(s

i
t, a

i
t)) if the commonly

known REINFORCE algorithm is used. α is an adjustable parameter to control the

step size. ait, s
i
t denote the action and state at time t from sample trajectory {τ i}.

• Actor-critic algorithms [117] combine both the value functions and policy gradient up-

date methods. Using value functions, e.g., advantage functions, to estimate
∑

t r(s
i
t, a

i
t)

of ∇θJ(θ) and following the same update strategy in (ii).

We model our anomaly/intrusion detection in HPC as a sequential decision problem.

Each feature vector is modeled as a state, and we employ value function algorithms to

update the transition reward. Based on the cumulative reward metric, we make the decision

of whether the evaluated user is anomalous or not.

3.1.3 Attacks in HPC Systems

Attacks in HPC systems can lead to unauthorized accesses to the high-performance sys-

tem infrastructure with malicious intents to steal, compromise or vandalize HPC resources,

e.g., hackers might vandalize the system on purpose if they failed to extract any useful

information or exploit the system to launch a denial-of-service attack [118].

The security in HPC facilities is similar with those in typical IT context. They are

connected to networks just like other computer systems, and often run on the Linux-based

systems. Thus, many of the attack styles in typical IT context can also be applied in HPC

facilities [119]. However, HPC systems also have their own vulnerabilities, because they

usually run exotic hardware and software systems, and have highly different purposes and

modes of use compared with typical IT systems.
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Probes, scans, brute-force login attempts, and buffer overflow vulnerabilities are the

common issues that trouble HPC facilities. Common vulnerabilities of HPC facilities can be

listed as follows[26]:

• Intrusion attacks, which can lead to data leakage or other consequences. It is because

HPC facilities are extremely ”open” to users around the world, thus make them an

easy target for attackers.

• Alteration of code or data.

• Misuse of computing cycles, i.e., using the HPC facilities to perform activities other

than granted behaviors such as crypto-currency mining.

• Availability related threats, including disruption or denial-of-service attacks against

HPC facilities.

Threats confronted by HPC systems can be classified into three well-known types: con-

fidentiality (e.g., data leakages), integrity (e.g., alteration of data or code) and availability

(e.g., disruption/denial-of-service attacks against HPC systems or networks that connect

them) [120]. The cause of these attacks can be insiders or outsiders of the HPC system.

There are two kinds of attacks that are most favored by the outsiders: the brute-force attack

against the password system and man-in-the-middle attacks [121].

“Insiders” often have special advantages in terms of HPC security because they can

access HPC infrastructure. Thus, it is much easier for insiders to launch attacks than others

[119, 122], e.g., malicious users can change or modify the data stored in the system, or it

can manipulate the system to do some illegal things such as spreading the rumors or viruses

on the Internet. Even more, they can manipulate the system to run harmful programs to

consuming the system resources.
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Given the vulnerabilities and characteristics of HPC facilities, we list four representative

attacks in Linux cluster-based HPC facilities, which can be launched against an HPC cluster

architecture:

3.1.3.1 Daemon Process-based Attack

A daemon process is an application that does not need interaction with a terminal and

running in background. It can be launched by any other process, and it can be applied to

take over system resources even when the parent process has terminated execution. This

sort of attack can be very powerful in MPI environment since when a daemon process is

created, the MPI scheduler will lose track of it [118]. The daemon process can take over any

kind of CPU usage or other computing resources.

To emulate this type of attacks, one need to insert a Trojan into a trusted application

appropriately to avoid being found by the HPC administrator. Example of Daemon process-

based attacks include daemon memory allocation attack (running a daemon process to take

over the memory resources) and daemon file attack (running a daemon process to take over

the storage, memory, and computational resources of HPC facilities). An example of the

daemon process-based attack template is shown as in Listing 3.1:

Listing 3.1. Daemon process-based attack example [118].
void main(){
int pid;
void *pointerMemory;
pid = fork();
if(pid < 0)
exit(EXIT_FAILURE);
if(pid > 0)
exit(EXIT_SUCCESS);
setsid();
signal(SIGHUP,SIG_IGN);
umask(0);
chdir("/");
pid = fork();
if(pid < 0)
exit(EXIT_FAILURE);
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if(pid > 0)
exit(EXIT_SUCCESS);
signal(SIGPIPE,SIG_IGN);
openlog("helloworld daemon",LOG_PID,LOG_DAEMON);
int i = 1;
while(i < 100000000){
/*the attack method is put here*/
pointerMemory = (char*)malloc(SIZE);
syslog(LOG_NOTICE,"memory is allocated!");
i++;
sleep(DURATION_SEC);
}
syslog(LOG_NOTICE, "Terminated!");
closelog();
}

We run the code on Linux systems, the comparison of CPU and memory utilization

between running the attack method in the example and without running the attack is shown

in Figure. 3.10, from which we can observe that when the system keeps allocating memory

pointer, the CPU time increased from 14.1 µs to 17.2 µs, while CPU time proportion for the

user increased from 14.7% to 27.3% and memory usage increased from 0.0% to 34.4%. It

demonstrates the attack power of a daemon process-based attack.

(a) Daemon process based attack

(b) Normal daemon process

Figure 3.1. Resource usage of daemon-process attacks.

3.1.3.2 Interposition Library Attack

It is an attack by intercepting function calls that an application makes to the stack of

share libraries, and then modify the called function to add malicious functionality to it. In

Linux systems, interposition is ”the process of placing a new or different library function
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between the application and its reference to a library function” [123]. Example interposition

library attacks include attacking the libc library and attacking the MPI library. An example

of the interposition library attack is shown in listing 3.2.

Listing 3.2. Interposition library-based attack example [118].
static int DoProfile = TRUE;
FILE *fopen(const char *filename,const char *mode){
typedef FILE*(*function_type)(const char *filename, const char *mode);
static function_type function = NULL;
static char *function_name = "fopen";
FILE *retval;
if(!function){
function = (function_type)dlsym(RTLD_NEXT, function_name);
}
if(DoProfile){
DoProfile = FALSE;
retval = (*function)(filename,mode);
DoProfile = TRUE;
}
else
retval = ((*function)(filename,mode));
sys_call_table[SYS_open] = orig_open;
}

3.1.3.3 Probe-based Login Attack

It is similar with brute-force login attack[124, 125]. When the username of the HPC

facilities is known to the attacker, they can create a dictionary of all potential passwords

to launch the password guessing campaign as HPC facilities usually are ”open” to users all

around the network.

3.1.3.4 Intrusion Attack

Given all the security issues in HPC systems, we found that intrusion attack is probably

one of the most discussed attacks[31, 35, 7, 126, 4]. Because for any malicious user to launch

an effective attack, the primary obstacle is how to access the targeted system. Thus, many

problems of security for HPC systems are centered around intrusion attacks and detection.
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Some commonly known intrusion attacks include attempts to copy the password file

frequently, a lot of unreliable remote procedure call requests in a very short time and attempts

to connect to non-exist ”bait” hosts frequently [126].

Besides attack examples listed above, there are many other attack methods in HPC

systems [119, 26, 4]. Based on all these various attacks, how to guard the HPC system

against these attacks becomes a challenging task. To the best of our knowledge, different

defenses have been proposed to defend against a set of attacks, while there are no universal

solutions.

When a server or cluster comes under attacks or once the attacker lands on the system,

owners of user accounts often have no idea of the reality that they have been hacked. Most

of the time, it is the activities of attackers expose or alert security officers of the HPC

infrastructure. Behaviors of hackers tend to fall into some modes that are obviously different

from the true owner of the account and can be easily identified. For example, the sudden

burst of network activities, high CPU utilization, longer network latency or unauthorized

jobs bypassing the job scheduler etc. Hence monitoring is an important part of the HPC

system management, which is a main task for many defense mechanisms.

3.1.4 Defense Mechanisms in HPC Systems

In this section, we give the background and defense strategies in HPC systems. We

especially reviewed intrusion detection methods due to the importance in HPC security.

Early studies on the security of HPC systems focused on the programming level. A soft-

ware infrastructure is designed in [27] to ensure the integrity and confidentiality of commu-

nications and to authenticate approved users and resource owners. The developed security-

enhanced communication library, named as Nexus, can be used to provide secure versions

of popular communication libraries, such as Message Passing Interface (MPI), and offered a
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fine degree of control over what, when and where security mechanisms can be employed in

HPC systems.

Traditionally, many physical measures and human-oriented rules have been suggested to

ensure the security of HPC systems. For example, Korambath et al. in [119] listed strategies

of protecting passwords and how to safeguard computing resources in an HPC environment.

Common methods of preventing passwords from hacking include encrypting information

exchange between users and resource owners, urging users to employ complicated passwords

and changing the passwords routinely, monitoring activities of each user to identify possible

attackers and limiting the access rights of each user according to their priority and so on.

Protocols like telnet and ftp are widely used in the 1990s in which clear text format

information is transferred between remote computers. Anybody with reasonable expertise

of the domain knowledge can launch such an attack, intercepting and reading the content.

Now none of HPC sites will run these kinds of protocols. Besides that, a lot of solutions

to malicious user detection and security risk reduction have been proposed. The approach

used by most of nowadays HPC systems can be summarized as divide-and-conquer. i.e., the

security techniques are deployed separately and independently to address the HPC security

vulnerabilities [119].

What to look for and where to identify the malicious attacker are a complicated cyber-

security problem. Not a single HPC suit, especially within the field of open science, has

any solution to identifying and reducing all risks associated with attacks against the system

infrastructure. Given the sophistication of attackers and the rapidly changing pace in com-

putational systems and networking, how to develop defense mechanisms becomes a difficult

obstacle to tackle with.

When HPC systems are under attacks, the attack activities often have two parts: the

initial attack and the follow-up behaviors taken if local access is obtained. The initial attack

can come from almost anytime and anyplace. Although we have firewalls in place, there is

69



nothing the firewall can do once the attacker has already landed on the system. However,

as of the attack property, the attacker’s behavior tends to be somehow well-defined and

can be identified easily. From the system administrators’ perspective, what to look for and

where to identify the malicious attackers are probably one of the most complex cybersecurity

problems in nowadays HPC environment [31].

One the other hand, security issues in HPC systems differ from those in traditional plat-

forms due to their distinctive program structures, computing environments and performance

requirements. Unlike widely used client-server structure in traditional distributed systems,

the communications in HPC systems mainly depend on two-sided message passing, streaming

protocols, multicast and so on [27].

Existing technologies used to secure HPC infrastructures can be broadly categorized into

four classes, i.e., they try to defend HPC systems from the following four aspects[3]: (i)

basic OS hardening, (ii) authentication, (iii) network and host security and (iv) patching

and auditing, in which OS hardening techniques can go deeper to be classified into different

sub-classes. The detailed category information is shown in Figure.3.2. From which, password

complexity enforcement can be done through enforcing strict well-defined security policies,

for example, requiring users to change password periodically; Monitoring HPC facilities for

abnormal status [5] can be one example of defenses under authentication category; As HPC

facilities are usually used for distinctive purposes such as mathematical computations, they

tend to have a much more regular and predictable mode of operations, which can be utilized

to detect irregular and potential malicious attacks [4].

Intrusion detection is a well-known defense in HPC systems to counter malicious attacks

[35]. To address the problem of where, when, what and how to identify the suspicious

intruders, National Energy Research Scientific Computing Center (NERSC) [31] follows a

methodology of data gathering and measurements, repeatable testing and careful analysis
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Figure 3.2. Strategies to secure HPC systems [3].

in designing the intrusion detection mechanism. The detailed steps of the method can be

summarized as follows:

• Collecting as much raw data as possible, especially those data in high yield areas,

and designing patterns that can be based on to evaluate the suspiciousness of user

behaviors. The raw data can be accessed through accounting data or SSHD data from

each host, batch scheduler logs from inter-systems or network data and DNS logs from

cross-site.

• Cleaning, organizing and normalizing the collected data for the following analysis,

which aim to process and reduce the volume of the collected data. The abstracted

data can be further canonicalized to transform it into a normal form such that it can

be suitable for machine processing use techniques such as machine learning algorithms.

• Employing appropriate tools or methods to analyze data processed in step 2 and com-

paring with expected or normal data. In this step, local site security policies can be

used to evaluate the standardized data.

Based on the above methodology, NERSC introduced the Bro intrusion detection system

[31]. To address the invisibility problem of activities happened on the multi-user HPC
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infrastructure, NERSC introduced an instrumentation layer into the OpenSSH application

and then connected the resulted dataset into a real time analysis using Bro IDS.

To address various security issues at different layers of the cluster architecture, from

threats of network to vulnerabilities of applications, another intrusion detection mechanism

is proposed in [33]. In the mechanism, there exists an instrumented node to help gathering

raw data and understanding the communications between clustering nodes in HPC infras-

tructure at various layers (i.e., applications layer, middleware layer, operating system layer

and network layer). The collected data will be audited and analyzed to identify suspicious

communications or behaviors.

Unlike the intrusion detection techniques listed above, which focus on detecting anomalies

from behaviors or running statistics after the intruder has succeed partially in compromising

the targeted system. User authentication is another effective method to prevent intruders

or malicious attackers from landing the system at the beginning, which is an intuitive and

straightforward method to stop intruders. However, this method usually has limited capa-

bilities in keeping safe of HPC systems as many attackers can find paths to walk around the

authentication gate [127, 128]. More existing literature of user authentication techniques

and mechanisms used in distributed HPC systems can be found in [129, 28, 122].

As machine learning has been widely spread into different domains, a more direct and

effective strategy has come into people’s mind to defend HPC systems, log file-based defense

[109, 130, 4], which is a behavior detection method based on log files generated from running

jobs. Using log files has many advantages than previous methods, as log files are a detailed

record of the running process of the applications. Log files generated at different layers of

the HPC systems often contains the fully operation and resource balance process. We give

more information on log file-based intrusion detection in the following section.
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3.2 Log-based Security Analysis in HPC Systems

Log files can be found on almost all computer systems universally, which are text files

recording behaviors, system status and other running statistics of the jobs active in HPC

systems such that administrators can look back to debug system problems or track the

running process to find vulnerabilities [131, 132]. Therefore, it can be used as the first and

direct information source to monitor and detect intruders in HPC systems [133, 4].

Based on the collected information, the intrusiveness can be downgraded at each level

of HPC systems and can even stop monitoring for the sake of efficiency and performance.

For example, we can employ two phases in the instrumentation [133, 4]: fully monitoring

and adaptive monitoring. Fully monitoring is usually employed at the beginning, in which

everything is monitored to build the profile of an application or a user. It is costly in

terms of computing resources; thus, it usually only runs a short of time. While adaptive

monitoring can adaptively monitor the resources or variables according to the load of the

instrumentation node. It can focus on some critical areas while have little impact on the

overall system performance.

HPC systems usually can be decoupled into 4 layers [32, 33]: application layer, mid-

dleware layer (MPI and PVM, etc.), operating system layer and network layer. The high

performance is achieved through the cooperation of each layer. Many of HPC systems are

based on Linux-like systems. In Linux systems, user behaviors and operating system’s ac-

tivities are logged such that it can be processed and analyzed by administrators to monitor

the system.

When the related raw data are collected by the dedicated instrumented node, all layers of

HPC systems are instrumented heavily to evaluate the possibility of existence of intruders[8]:
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• Application layer: Collect general variables of monitored processes, e.g., percentage of

CPU time, memory used, I/O time and so on, to analyze statistics of applications run

on HPC systems.

• Middleware layer: Audit the calls of messaging passing information, such as MPI

calling statements and other middleware related communications.

• Operating system and network layer: Audit and monitor access to the file system and

related network interfaces, such that the global communications or the local resource

access information can be utilized and evaluated.

The general workflow of using log files to detect intruders in existing literature can

be summarized and shown in Figure.3.3. Usually we have four steps: log collection, log

parsing, filtering/feature extraction and anomaly/intrusion detection, to conduct log file-

based analysis in defending HPC systems against intrusions or other malicious behaviors

[4, 5, 6, 7, 8].

Log collection Log parsing

Filtering/Feature 

extraction

Anomaly/Intrusion 

detection

System logs Event logsMessage logs

Unstructured data

Structured Data

Feature vectors

Figure 3.3. Workflow of using logs to detect intruders [4, 5, 6, 7, 8].

74



3.2.1 Log Collection

Logs record the history of everything happened in HPC systems. In Linux systems, log

files are stored in text form and usually under the directory of /var/log and its subdirectories.

They include various information such as system, kernel, access control, package managers

and many others. These log files can be roughly classified into four categories: application

logs, event logs, service logs and system logs.

Large scale HPC systems generate various types of log files during running procedure of

the jobs. For instance, the history of application run on the platform, resources allocated

for them, sizes of each job, user information of each application and exit statuses are all

logged in log files. Reliability, availability and serviceability (RAS) system logs are capable

of extracting and logging data from various sensors both hardware and software, such as pro-

cessor utilization, temperature sensors and memory errors [34]. Other log files like network

system logs, input/output and storage system procedure logs can collect and record network

bandwidth, congestion, and resource consuming information of jobs. The performance and

running information inspection can rely on different log file (s) with respect to requirements

of monitoring.

These log files provide a direct way for system managers to evaluate the system status.

In HPC systems, log files can also be collected and analyzed to detect malicious jobs or

users. For example, message log files in Linux systems show general messages and infor-

mation regarding the system. It logs all activities throughout the global system. Secure

logs keep authentication information of both successful and failed logins, and the authen-

tication processes. Other logs can also be used to detect attacks and evaluate the system

vulnerability.

Log collection is the first step in log analysis-based intrusion or anomaly detection of

HPC systems. Distributed systems can continuously generate all kinds of log files to record
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system states and runtime statistics. This information is vital in examining system condition

or debug especially when failures are encountered [134]. In log collection stage, it is important

to collect right logs from the system as much as possible to pave way for the following analysis.

When machine learning techniques are used to analyze the logs, the volume of the data is

critical in learning the patterns of both normal behaviors and abnormal behaviors.

3.2.2 Log Parsing

Log files are usually unstructured data, and their format and semantics might be different

from each other, Thus, it is a difficult and complicated problem to design a mechanism that

can diagnose abnormal or malicious intruders, especially when log files generated is in huge

amount [135, 136, 137]. On the other hand, each log file might contain a lot of information

that is not related to the security of HPC systems; thus how to filter valuable information

from raw log files is also a challenging problem. It usually requires a lot of domain knowledge

to design rule-based detectors [138, 139, 140]. For example, using the CPU time as a resource

utilization measure, using IP address to parse a log into different entities and so on.

Log parsing is the second step of log analysis, which aims to get the unstructured, free-

format and semantics text file into a structured representation. There have a substantial

research and literature on the parsing of log files, in which representative methods can be

listed as follows:

• Du et al. [141] provided an online streaming method to parse log files, which utilizes

the longest common subsequence method, i.e., the longest common subsequence in

logs are used as the sign to parse log files into structured files. The proposed method

achieves linear time complexity for each log entry.

• Beschastnikh et al. [29] gave a method using regular expressions to determine which

log lines will be parsed and which log lines will be ignored. It is a set of channel
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definitions that corresponds each line of the log files into a vector timestamp, or other

channels.

• Xu et al. [142] offered a method leveraging the source code to parse log files, in which

we need to first get all possible log message template strings from the source code and

then match it to log files to parse them into structured files.

• Methods in [143, 144] provided solutions to parse log files purely based on log charac-

teristics using data mining approaches. They usually do not rely on other information

except log files, which is usually more straightforward but might not be as precise as

those rule-based log parse methods, and they usually require machine learning algo-

rithms to learn patterns.

After parsing log files obtained from HPC systems, intrusion/anomaly detection methods

can be applied to distinguish out suspicious activities or users.

3.2.3 Log-based Intrusion/Anomaly Detection

There are various methods and mechanisms have been proposed to address the intru-

sion/anomaly detection problem utilizing log files form HPC systems. In this subsection, we

first overview two representative types of log file-based defenses used in HPC systems. They

both offered an experiment-proved mechanism to detect intrusions or anomalies:

The first perspective is to take log files as a language model, and then build relationships

between log files and normal/abnormal behaviors. Log files, in essence, are existed in text

format. Therefore, it can intuitively be modeled as a natural language sequence model,

further it can employ techniques from natural language processing to analyze log files.

Inspired by the observation that log file entries are a sequence of events extracted from the

structed source code execution process, Du et al. [4] proposed a deep neural network model

employing Long Short-Term Memory (LSTM) to detect anomaly behaviors and potential
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malicious users through taking log files as structured language sequence. Based on the

proposed model, which is named as DeepLog, log patterns of normal execution can be learned

continuously from the historical data. Abnormal patterns resulted from intrusions, which

are often deviates from patterns of log files from normal execution, can be distinguished by

the learned model in monitoring process. DeepLog was designed in an incremental learning

style, thus it can adapt to different patterns in the running process.

From a mathematical perspective, DeepLog builds a non-linear and high dimensional

relationship between log entries and normal/abnormal execution applications. It categorizes

log files into various sequences, thus a workflow model can be constructed for each separate

task, and also offers a feedback mechanism, such that a wrongly classified log file can be used

to adjust weights of the trained model to make it adaptively fit into its dynamic changing

environment.

The second perspective is to build relationships between log files and source codes. Many

works proposed to address security problems based on log files cannot identify code’s behav-

iors. Inspired by the puzzle of whether the source code of an application or job are unique

enough, such that it can be identified from the performance logs generated by the system,

DeMasi et al. [8] employed and modified the rule ensemble method to predict what source

code was running based on the generated performance log files. The Integrated Performance

Monitoring (IPM) logs used in the work are collected from a broad set of applications at the

NERSC facilities.

Extensive works have shown various structured patterns in performance logs of HPC

systems. Orianna et al. [8] proposed a method using the Rule Ensemble method to identify a

code by its performance logs based on supervised machine learning. Through interpreting the

resulting rule model, it can tell users which components of a code are the most distinctive and

useful for identification. The proposed method can monitor the performance of applications
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running on HPC resources. Thus, the unapproved code or jobs or unintended usages of HPC

systems can be detected.

3.3 ReLog: A log-based Intrusion Detection Framework

We name the proposed anomaly/intrusion detection framework in HPC systems through

LOG analytics based on REinforcement learning techniques as ReLog. Motivation and design

details are articulated in this section. We first give the overall architecture of ReLog as shown

in Figure.3.4. Details about the ReLog will be elaborated in following subsections.
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Figure 3.4. Overall architecture of ReLog.

3.3.1 Motivation

The Message Passing Interface (MPI) is a communication protocol that specifies how

HPC passes information among computing nodes and clusters. There are various imple-

mentations of MPI, including MPICH, Open MPI etc., and SKaMPI is a benchmark that

measures the performance of an MPI implementation on a specific hardware. It is an ad-

vanced methods for measurements, especially for collective operations of MPI [145].

Unlike traditional classification problem in which they have fixed input format, log ana-

lytics in HPC systems is a streaming process as the generation of logs from a running system
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is continuous. The streaming logs can be parsed into tokens, which is a small group of lines

from logs, further using the tokens to extract feature vectors. As we are detecting anoma-

lous users from their behavior history, i.e., whether an evaluated user is anomalous or not

depends not only the pattern of all feature vectors, but also the order. We can treat the de-

tection process as a sequential decision process, the final decision depends on the cumulative

decisions from each feature vector and from each transition of two feature vectors.

Reinforcement learning in essence is a sequential decision process. The ultimate goal of

reinforcement learning is to achieve the maximum reward at the end of all decisions. In log

analytics of HPC systems, what we are interested in is also the final decision after analyzing

all of the feature vectors. The similarity of these two problems inspires us to find a solution

to detecting anomalous users through log analytics in HPC systems through reinforcement

learning techniques.

3.3.2 Design of ReLog

The basic idea of ReLog is to treat the anomaly/intrusion detection based on logs of

HPC systems as a reinforcement learning problem. As we observed that in MPI logs, the

MPI operations used by computing nodes are usually a subset of pre-defined operations [8],

thus we can build feature matrix and treat the feature vectors as states in reinforcement

learning. Using the idea of sliding window, we can parse log files of MPI logs into a series of

states. Therefore feature vectors extracted from logs can be employed as a state transition

process in reinforcement learning. Thus value function algorithms [115] can be employed to

obtain the ultimate reward, and further to classify the evaluated users.

ReLog framework has two steps: training and test. We first train the reinforcement

learning model based on feature vectors and then test the new logs on the trained model to

classify normal and anomalous users.
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In the training process, we first build the state space S from logs through counting

frequencies of each operation. Each dimension of feature vector denotes one type of MPI

operation. The type information of MPI operation is pre-defined [8]. To reduce complexity

or dimensions of feature vectors, we can only include information of the top n most occurred

operations rather than all. Because jobs running on HPC systems usually are data-intensive

jobs, which requires frequent information exchange between computing nodes, and no ex-

ception for malicious attackers. Therefore it opens the feasibility of using on the top n most

occurred MPI commands to diagnose the running status.

Besides the feature vector dimension, we also need to assign appropriate size of sliding

windows, such that the frequency information can be counted within that window. The size

of sliding window should reflect dynamics of the job running on HPC systems; thus a too

large or too small size of the window will make the training and test steps too sensitive or

too insensitive.

When the examined feature vectors are detected as behaviors from an anomalous user, we

set this scenario has the maximum reward. Contrarily, when the feature vectors are classified

as behaviors from a normal user, we set the reward as 0, i.e., the minimum reward. Thus the

training process can be treated as a procedure learning the reward of each state transition.

In the testing process, we’ll get a cumulative final reward from the state transitions of the

testing feature vectors. Based on the reward we can classify the feature vectors of the

evaluated logs into normal or abnormal user.

3.3.3 Synthetic Data Generation

In real world log analytics of HPC, usually it is not easy to obtain sufficient training

data, especially malicious training data for ReLog. Other cases that require synthetic data

generation include (i) when the training data is poorly sampled, i.e., it focuses only on some

specific regions, while samples from other regions are necessary to train an efficient and
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general model; and (ii) when required training data cannot represent what we are looking

for, or worse, it is twisted or noised by some unknown reasons.

Synthetic data generation is a critical step in the training of ReLog, there are many ways

have been proposed to address data generation problem [146, 147]. In ReLog, we need to

generate two kinds of data, both normal data and abnormal data when the training data is

limited. Generating synthetic data based on existing available data is comparatively easier

than when there is no available data at all.

In case where no malicious data is available, we adopt a Gaussian-based sampling method

to generate malicious data based on available normal data. The two parameters needed are

the mean value and the standard deviation. The probability density distribution of the

Gaussian distribution is denoted as:

p(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , (3.1)

in which x is the feature vector data. Through changing the mean value and the variance

of normal data, we can generate anomalous feature vectors that are required in the ReLog

through sampling from the modified Gaussian distribution.

Given the available feature vectors, both normal and abnormal, we plan to construct

a Generative Adversarial Network (GAN) [147] based synthetic data generator to generate

more normal and abnormal feature vectors to feed the training step in reinforcement learning.

In GAN, there are two players: a generator G and a discriminator D. Let pdata denotes the

distribution that feature vectors are drawn from. The generative model G aims to generate a

probability distribution pg over feature vector data x, which is an estimate of pdata. Typically,

the generator and discriminator are represented by two deep neural networks. The objective
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of the GAN framework can be shown as

min
G

max
D

V (D,G) =Ex∼pdata [log D(x)]

+ Ez∼pz(z) [log (1−D(G(z)))],
(3.2)

in which pz(z) is a prior on input noise variables.

The GAN let two players (G and D) play against each other in a game. In ReLog, the

feature vector data can also be generated through the generative model. We train two deep

neural network models, generative model G and discriminator model D. The two models

will play the game to optimize their own objective function. However, to avoid the problem

of finding an exact Nash equilibrium, which is challenging in real world, here we use the

accuracy of the generated data in discriminator D as a stop requirement, which means after

the training process, when the generated data from G can have a higher probability than

the pre-set threshold to be misclassified by D, the game stops. The probability is estimated

by the percentage of the generated data that are misclassified by D into the real dataset

samples in all the generated data.

3.3.4 Experimental Results and Analysis

We collect real-world MPI dataset from HPC systems and validate ReLog framework in

this section. Detailed experimental results are given and analysis are specified.

In our work, we use SKaMPI to collect the traces of basic collective operations, such as

MPI_Bcast, MPI_Reduce, and so on. According to the communication process of whether

to consider the number of processors, we divide the collective operations into two parts,

processors-associating (MPI_Scatter, MPI_Gather, etc.) and non-processors-associating

(M-PI_Bcast, MPI_Redu, etc.). Thus, we collect different processors and counts about dif-
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ferent collective operations, such as MPI_Allreduce, MPI_Allgather, MPI_Alltoall, MPI_Bcast,

MPI_Gather, MPI_Reduce, MPI_Scam, MPI_Scatter etc.

In our experimental validation, we mainly focused on four types of logs from directories

of Isend_Rev, Send_Irecv, Send_Recv and Ssend_Recv. Each of the directory has 24 log

files, 96 log files in total are used in our experiments.

We first analyze statistical properties of the collected dataset, which is the foundation to

construct feature vectors. We chose 6 logs from the dataset and show frequency information

of MPI operations in Figure. 3.5. The overall frequency information of all logs are shown

in Figure. 3.6. From the frequency information depicted in the two figures, we can observe

that only a small number of MPI operations (around 30%) are frequently executed, which

paves the path for the application of reinforcement learning frameworks.
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Figure 3.5. The frequency information of the training logs

We divide the collected dataset, which has 4 × 24 log files, into two categories. Each

category has 4 × 12 log files. One category of logs is used for training, while the other

for testing. Initial anomalous data are generated using Gaussian-based sampling method,

we generate sufficient anomalous training and testing feature vectors based on the normal

training and testing data through changing the mean value of each dimension of the feature

vectors while maintain the same variance of training and testing data. We set the sliding

84



0
M
PI
_I
ni
t 

M
PI
_C

om
m
_r
an
k 

M
PI
_C

om
m
_s
iz
e 

M
PI
_C

om
m
_d

up
 

M
PI
_C

om
m
_g

et
_a
ttr
 

M
PI
_B

ca
st
 

M
PI
_G

et
_a
dd

re
ss
 

M
PI
_A

llg
at
he
r 

M
PI
_W

tim
e 

M
PI
_B

ar
rie

r 
M
PI
_S

en
d 

M
PI
_R

ec
v 

M
PI
_G

at
he
r 

M
PI
_C

om
m
_s
pl
it 

M
PI
_T

yp
e_
ge
t_
ex
te
nt
 

M
PI
_A

llr
ed
uc
e 

M
PI
_I
re
cv
 

M
PI
_W

ai
t 

M
PI
_G

at
he
rv
 

M
PI
_W

ai
ta
ny

 
M
PI
_G

et
_c
ou

nt
 

M
PI
_F

in
al
iz
e 

M
PI
_S

se
nd

 
M
PI
_I
se
nd

 0

25

50

75

100

125

O
cc
ur
in
g 
fr
eq
ue
nc
y

Figure 3.6. The overall frequency information of all the training logs

window size as 150 to form feature vectors in this group of experiments. In Figure. 3.7, we

give the relationship between the mean square error (MSE) and the training iterations of

GAN-based generation framework. The experimental results show that at least 800 iterations

are needed in order to stabilize the MSE.
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Figure 3.7. Relationship of MSE and training iterations.
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Table 3.1. Relationship between sliding window size and detection accuracy.
Window size 100 120 140 160 180 200 220

Detection accuracy 0.36 0.42 0.54 0.78 0.93 0.93 0.93

To train an effective ReLog model, we need to choose an appropriate sliding window

size to form feature vectors. In this group of experiments, we compare the performance

of ReLog under different size of the sliding window. The relationship between the sliding

window size and detection accuracy is illustrated in Table 3.1. It demonstrates that when the

window size is too small, the performance of ReLog in detecting malicious users will suffer.

However, as the sliding window size increases to a point (size of 180 in our experiments),

the performance of overall detection accuracy tends to be stable, that’s because when the

sliding window reaches that point, the information contained in each feature vector already

can encode most of the classification information.

To demonstrate the performance of ReLog and show the advantage of using reinforcement

learning techniques to detect anomaly/intrusion attackers. We compared ReLog with exist-

ing other anomaly/intrusion detection methods in terms of detection accuracy and the time

complexity. The methods we compared include: DeepLog [4], which is a deep neural net-

work model employing Long Short-Term Memory (LSTM) to treat logs as natural language

sequences; Support Vector Machine (SVN) method, an well-known supervised classification

method, which is used in [5] to detect anomaly patterns of logs.

Detailed experimental results on our collected dataset is shown in Table 3.2. We can ob-

serve from the results that SVM based detection method has the smallest time cost, that’s

because the training process involves only finding support vectors, which has been well-

solved and the complexity is already optimized. DeepLog and ReLog has similar time cost

as a result of training deep learning models in both frameworks. ReLog is especially time-

consuming due to the training of multiple deep neural networks in reinforcement learning
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Table 3.2. Comparison of ReLog with other existing methods
Detection methods Time cost (seconds) Detection accuracy

DeepLog [4] 56 0.91
SVM [5] 13 0.86
ReLog 107 0.93

frameworks. However, ReLog has the best detection performance than both DeepLog and

SVM, which we believe also contributed to the reinforcement learning models, which refines

the detection process into a sequential decision process. The experimental results demon-

strate the promising future of reinforcement learning techniques in detecting anomalous users

in HPC systems.

3.3.5 Future Work

The security of HPC systems will experience more challenges in the future especially as

the widely applications of machine learning techniques, both in terms of attacks and defenses.

Here we give several potential research topics as future work:

• There are various methodologies proposed to defend intrusion attacks in HPC systems

based on log files. Through reviewing many of these methods, we found that most of

the methods are focused on a small part of the log files, i.e., there still lacks a strategy

that can utilize all the available logs that employing state-of-the-art machine learn-

ing techniques to study the security problem. We believe this would be a promising

research frontier.

• Deep learning techniques are widely used in log file analytics to classify different types

of users by their application behaviors. It is worth noting that different platforms will

have different user behaviors and data types, thus lead to different feature extraction
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methods. The efficient and effective feature vector extraction methods are at the core

of applying deep learning techniques in future work.

• If we look beyond security problems in HPC systems, we observed that the problem

faced by other distributed systems, such as cloud computing, cluster computing and

grid computing, are similar with the problems we faced in HPC systems. This is

because they all have similar architectures and utilities. Security solutions in cloud

computing, cluster computing, grid computing and many other distributed computing

models [120, 128] can be transferred to the HPC systems due to their inner similarities

and this will be a promising future research topic.

The security of HPC systems has drawn emerging attention from both academia and

industry. With the rapid growing of HPC systems in terms of both scale and complexity,

machine learning based security inspection, evaluation and malicious behavior detection will

play a more practical role in improving the usability and security of HPC systems.

3.4 Binary Code Similarity Detection

We elaborate the binary code similarity detection based on machine learning techniques,

more specifically LSTM and Siamese Neural Networks in this section.

3.4.1 Background

We give the background information of the LSTM networks, Siamese neural networks

and the related works of binary code similarity detection.

3.4.1.1 LSTM Recurrent Neural Networks

One of the main advantages of recurrent neural networks is they have loops within their

structure that allowing information to persist. However, ordinary RNN models have van-
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Figure 3.8. The repeated module in a standard LSTM networks

ishing gradients and exploding gradients problems[148], LSTM offers a decent solution to

these two problems through using constant error carousels, which could protect and control

the cell state. As a special kind of RNN, LSTM has the capability of learning long-term

dependencies. The basic form of LSTM consists of a chain of repeated neural networks. The

structure of the repeated module is shown as in Figure. 3.8. In the module, xt is the input at

time t and ht denotes the corresponding output value. Ct−1 represents the cell state, which

runs straight down the entire LSTM model.

At the first part of the LSTM modules, it aims to decide what kind of information in the

cell state from previous time will be deleted through a Sigmoid layer, mathematically it is

shown as:

ft = σ(Wf · [ht−1, xt] + bf ), (3.3)

in which Wf , bf is the parameters of the corresponding neural network layer (consists of a

bunch of Sigmoid functions) and ht−1 is the previous output.

The following part of LSTM module is to decide what kind of new information we need

to add to the cell state. The operations within the repeated model could be shown mathe-
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matically as:

it = σ(Wi · [ht−1, xt] + bi),

gt = tanh(Wg · [ht−1, xt] + bg).

(3.4)

Similarly, Wi,Wg, bi, bg are the corresponding neural network layer parameters.

After the two operations on the cell state, the new cell state is updated through a

pointwise operation from ft, it and gt through:

Ct = ft ∗ Ct−1 + it ∗ gt, (3.5)

which includes both the added information from current time and also compromised some

historical information. The output of the LSTM is denoted as:

ht = σ(Wo · [ht−1, xt] + bo) ∗ tanh(Ct), (3.6)

in which tanh(Ct) is used to push the cell cell state values to be between -1 and 1.

LSTM networks have been widely applied to various real-world applications and achieved

state-of-the-art performances such as speech recognition [149], handwriting recognition [150].

In [151], LSTM networks are used to process localized features and perform the classification

to detect stealthy malware. In this work, we employed LSTM to extract general information

from local features of each block in disassembled CFGs of binaries and further use the

information for similarity detection.

3.4.1.2 Siamese Neural Networks

Siamese neural networks were first introduced by Bromley and LeCun in the early 1990s,

in which Siamese neural networks are designed for verification of signatures written on a pen-
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input tablet [152]. It has been successfully applied in image recognition [47], gait recognition

[153].

Siamese neural networks consist of a class of neural network architectures, in which they

have two or more identical sub-networks, each of them has the same configuration in terms of

the parameters and weights. In the training process, the parameter is updated concurrently

across all sub-networks. Their values will be mirrored thus all the parameter values across

different sub-networks will still be the same. This kind of architecture can be used to compare

the similarity of different inputs.

Siamese neural networks have some impressing advantages compared to tradition neu-

ral networks [154, 155]. For example, Siamese neural networks are more robust to class

imbalance as new classes of data can be added to the network without training the whole

model again. Siamese networks focus on learning embedding (in the deeper layer), further

the same classes/categories of the inputs are placed close together, which we denote it as

semantic similarity. Another important advantage is that Siamese networks can be easily

trained using standard machine learning techniques on pairs sampled from source data and

provide a competitive approach that does not rely upon domain-specific knowledge.

The training process of Siamese Neural Networks involves training a pairwise model, thus

traditional entropy loss cannot be used in this case. Triplet loss is a usual loss function used

in Siamese neural networks, in which a baseline (anchor) input is compared to a positive

(truthy) input and a negative (false) input. The optimization objective of the training is to

minimize the distance between the baseline input and the positive input while maximizing

the distance between the baseline input and the negative input, as shown in Figure.3.9.

Mathematically the triplet loss can be formulated as:

L(a, p, n) =
1

2
{max(0,m+D2(a, p)−D2(a, n))}, (3.7)
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Figure 3.9. The triplet loss of Siamese Neural Networks.

in which D(u, v) = |u− v|2, and m is the desirable distance for dissimilar pair (p,n).

Another typical type of loss function is the contrastive loss. The logic behind contrastive

loss is similar to the triplet loss. Contrastive loss is used to learn embedding in which two

similar points have a smaller Euclidean distance while two dissimilar points have a large

Euclidean distance. Given an input training pair (x1, x2), we have the label: y = 0 if

(x1, x2) is similar and 1 if (x1, x2) is dissimilar pair. The optimization objective in terms of

contrastive loss can be written as:

min L(x1, x2) =
1

2
(1− y)D2 +

1

2
y max{0,m−D}2, (3.8)

in which D is the Euclidean distance of the outputs from the two networks given inputs

x1, x2.

Given the advantages of Siamese Neural Networks, the embeddings we obtained through

LSTM neural networks could be fed into the Siamese Neural Network to perform similarity

measurement such that the embedding information could be fully considered.

3.4.1.3 Binary Code Similarity Detection

Binary code similarity detection is quite challenging while also rewarding. It is challenging

because the binaries generated from software projects could vary enormously due to the

diversity of processors, compilers, optimization level options, and platforms. It is rewarding
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because we could evaluate the security of the software without the source code, which often

is unavailable.

Many of existing works regarding to binary code similarity detection follows a similar

logic [2, 1]. It first recovers CFGs from the binaries and then based on the statistical and

structural information of the CFGs to perform graph matching. To achieve scalability and

high accuracy concurrently, graph-embedding based methods such as [43] focused on learning

an indexable feature representation from the CFGs. Based on the embeddings of test binaries

and the embeddings of known bugs or benchmarks, a similarity score could be measured,

further paves the way for evaluating the security vulnerabilities.

A basic block distance-based method, named as discovRE, is proposed in [2]. The general

idea behind discovRE is to calculate similarity between functions based on CFGs disassem-

bled from binaries. However, this process is computationally expensive if not being processed

appropriately. To minimize the computation cost, discovRE employs an efficient pre-filter to

identify a small set of candidate functions and then use them to search for similar functions

in the binaries that need to be evaluated.

Another type of methods is the Neural network-based methods [43, 1, 44], which focuses

on using neural networks to embed CFGs. The main advantage of this type of methods is they

could alleviate the limitations of graph matching-based approaches, such as high computation

cost. Further the embeddings can be used for malware detection or classification.

Grieco et al [41]. proposed a vulnerability discovery tool, named VDiscover. They

combined static and dynamic analysis with machine learning techniques to predict the vul-

nerabilities among binaries. The basic idea of the approach is that it applies both static and

dynamic analysis to extract features from a large-scale of binary programs. These features

are further studied and used to predict vulnerabilities by machine learning techniques.

In this work, we propose a new embedding method based on LSTM networks, which

has the advantage of containing the general information of all the previous inputs and the
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dependency information. Thus, the feature vectors of each block within the CFGs could

be processed and embedded into an indexable representation. Our experimental results

show that this method is computationally efficient compared with the existing graph neural

network-based methods[1].

In addition, our method of using Siamese Neural Network to measure the similarity based

on the cell state of the LSTM network is different from existing studies [152, 47, 153]. To

the best of our knowledge, we are the first to use the cell state of LSTM in CFG embedding

and use Siamese Neural Network to measure the similarity of such embedding, which has

the advantage of measuring the semantic similarity of the overall local feature information

of CFGs.

3.4.2 Our Proposed Binary Code Similarity Detection Framework

We elaborate the motivation and the proposed binary code similarity detection framework

using LSTM and Siamese neural network in this section.

3.4.2.1 Motivation

Existing methods of performing binary code similarity detection mainly focused on two

perspectives: graph matching-based methods and deep neural network-based methods. Al-

though graph matching-based methods is widely discussed in binary code similarity detection

[2, 43]. The shortcomings are also obvious [1]: (i) It is less flexible for the similarity functions

approximated through graph matching techniques to adapt to other applications; (ii) The

graph matching algorithms suffer from low efficiency, thus leads to the inefficiency of the

similarity detection process.

Another perspective is the deep neural network-based methods [36, 41, 44, 1], which often

involves training a deep graph neural network or semantic-aware neural network. This could
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complicate the problem especially in terms of computation cost when the input dimensions

increase.

In the similarity measurement stage, the traditional methods including Euclidean dis-

tance comparison and classification methods focus on the statistical characteristics of two

inputs. However, the embedding we extracted from graph-based embedding methods and

neural network-based methods contain much information that traditional methods fall short

of capturing. The embedding information of the binaries requires a more effective method

to perform the similarity comparison.

Based on the above points identified, we propose an LSTM network-based embedding

methods in this work to improve the information representation in the embedding process,

and we employ Siamese Neural Networks to compare the similarity between different binaries.

This strategy does not require graphs, which avoids the computation cost concerns from

graph computation.

The detailed architecture design using LSTM networks to perform embedding and Siamese

neural networks to conduct similarity comparison is described in the following subsection.

3.4.2.2 Our Proposed Framework

Our proposed method includes three steps: local block feature extraction, LSTM network-

based embedding and Siamese neural network-based similarity detection.

To perform binary code similarity detection, we need to first extract corresponding char-

acters from binary files and transform these characters into a matrix or vector representation.

In this work, we use angr [156], a multi-architecture binary analysis toolkit, to disassemble

the binaries and get the desired CFGs. Further we could perform embedding based on the

CFGs.

angr is capable of analyzing binaries in both static and dynamic disassembling styles.

Therefore there are two types of CFGs that can be disassembled: static CFGs (CFGFast)
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and dynamic CFGs (CFGEmulated). CFGFast uses static analysis to generate the CFGs

of binaries. It is faster but might lose a small number of control-flow transitions which

can only be resolved at execution time. CFGEmulated generates CFGs through symbolic

execution, which is usually slower, especially for large binaries. In our experiment, we found

that usually CFGFast achieves better performance in terms of computation cost.

The disassembled files recovered through the CFGFast operation of an example binary

is shown as in the following, we disassembled the binary file in a depth-first order, as shown

in Listing 3.3:

Listing 3.3. The disassembled files recovered from binary files.
<CFGNode _init [11]>
0x80489c4: push ebp
0x80489c5: mov ebp, esp
0x80489c7: sub esp, 8
0x80489ca: call 0x8048c90
offsprings: 1
betweenness: 2.0495163141498604e-05
<CFGNode call_gmon_start [27]>
0x8048c90: push ebp
0x8048c91: mov ebp, esp
0x8048c93: push ebx
0x8048c94: push eax
0x8048c95: call 0x8048c9a
0x8048c9a: pop ebx
0x8048c9b: add ebx, 0x404a
0x8048ca1: mov eax, dword ptr [ebx + 0xac]
0x8048ca7: test eax, eax
0x8048ca9: je 0x8048cad
offsprings: 2
betweenness: 3.415860523583101e-05

From the above disassembled information, we can observe the detailed graph node, or

block information including the operations, offspring and betweenness information, which

can be used to describe the characteristics of the binaries. As the results show, we obtain

the disassembled information of each CFG basic block (in a depth-first order), including the

opcode and the statistic results of offspring number and betweenness count, which combined

can be used to comprehensively describe the characteristics of the binaries.
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Given a binary function, the disassembled blocks contain multiple attributes that could

be utilized to characterize the corresponding binary function. The basic block attributes can

be divided into two types according to their level[2, 1]: block-level attributes and inter-block

level attributes. Block-level attributes includes No. of String Constants, No. of Numeric

Constants, No. of Calls, No. of Transfer Instructions, No. of Data Transfer Instructions,

No. of Logic Instructions, No. of Arithmetic Instructions, etc. Inter-block level attributes

include No. of offsprings, betweenness, etc.

Here we employ an intuitive statistical property, i.e., the total number of times a type of

operation occurred, together with two inter-block attributes, to describe the block.

Given above statistical and structural attributes of the block, we form them into a 9-

dimension feature vector for each block (a.k.a., graph node). In the following part we’ll

explain how to transform the local features of all blocks from a binary file into an indexable

embedding.

There are dozens, if not hundreds or thousands, of blocks could be disassembled given a

binary file. Correspondingly we could obtain the same number of localized feature vectors.

However, how to learn an indexable embedding that has the capability of reflecting the

overall characteristics of the binary based on all these local features?

Existing methods include graph-embedding methods [2, 43] focused on transform the

CFGs into a graph, and then using graph matching-based method such as bipartite matching

algorithm to calculate the similarity of two CFGs. Deep graph neural network-based methods

[43, 1, 44] perform the embedding through deep neural networks. However, LSTM networks

offers a practical mechanism to potentially store the related information of all historical

inputs. Given a sequence of inputs, the input xt at each time slot t will update the cell state

Ct based on the learned parameters of the neural network layer.

The update process at each time slot t will includes two steps: the first step is to decrease

or delete some unrelated information from the previous cell state through a ”forget gate
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layer”. Mathematically it is denoted as:

Ct = σ(Wf · [ht−1, xt] + bf ) ∗ Ct−1 (3.9)

In our local feature embedding scenario, this operation could be utilized to compromise the

influence of some extreme blocks, and also, we have the capability of getting rid of redundant

information through the training of the neural network layers.

The second step of the update process is to add information from each input to the cell

state Ct, also known as the ”input gate layer”, which is shown as:

Ct = Ct + σ(Wi · [ht−1, xt] + bi) ∗ tanh(Wg · [ht−1, xt] + bg). (3.10)

After the two steps stated above, the information of interest with regard to the binary

embedded in the features extracted at each local block will be able to get filtered and

reflected by the cell state if trained appropriately. Therefore, after training the parameters

within the LSTM network with the training dataset, a final cell state will be learned on each

type of binaries. This cell state is learned over the entire training blocks. We use this cell

state as the final indexable feature embedding of the corresponding binary file.

Given the obtained indexable feature embeddings of binaries, we could apply various

traditional methods such as Euclidean distance, neural networks to do similarity measure or

classification. However, most of these traditional methods focus on the numeric features the

embeddings presented while falling short of denoting the semantic information.

Provided with the multiple advantages of Siamese neural network [47] including: a) More

robust to class imbalance; b) learning from semantic similarity of the embeddings; c) easily

to be trained using standard optimization techniques. We design a Siamese neural network-
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Figure 3.10. The architecture of binary code similarity detection.

based similarity detection mechanism to compare the embeddings from the test binaries with

embeddings of existing known malwares or other trained binaries.

Our designed Siamese neural network-based binary analysis framework is shown in

Figure.3.10. The architecture includes a sequence of convolutional layers, max pool layers,

fully connected layers. Each of the neural network layer uses a single channel with filters of

varying size and the stride is fixed to 1. We employ rectified linear Unit (ReLu) activation

functions in each layer. The max pooling operation is assigned with a filter size of stride 2.

We have two inputs for the model, each of which is an embedding we learned through

LSTM networks. We aim to minimize the distance of the outputs of each sub-model in the

training process if the two inputs are from the same category, while maximizing the distance

of the outputs of each sub-model if the two inputs are from different categories.

The units in the last convolutional layer are flattened into a single vector. A fully

connected layer is followed after this convolutional layer. Then the induced distance is

computed based on the output (h1, h2) of the previous fully connected layer, further it

is given to a single sigmoid activation function layer for prediction. Mathematically, the
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prediction vector is shown as:

P(x1, x2) = σ(
∑
j

αj|h(j)
1 − h

(j)
2 |), (3.11)

in which x1, x2 are the two input embeddings. σ denotes the sigmoidal activation function.

αj are parameters learned by the model during the training process, which is used to weight

the importance of the component-wise distance. The final layer induces a measure on the

learned feature space of the previous hidden layer and scores the similarity between the two

feature vectors.

Start from this architecture, we can first train the model on our known training dataset,

then when new test binaries come in, we only need to compare the test input with the

reference input (which comes from the trained dataset). Another big advantage of this

architecture is that when we have new samples, we only require a very small number of

samples to be stored in the dataset, using it as a reference, we can calculate the similarity

for any new test instance with this type of samples [47].

In the learning process, we use M to denote the minibatch size and i is used to index

the ith minibatch. Let y(x(i)
1 , x

(i)
2 ) be a vector of length M that contains the labels for the

minibatch. We set y(x
(i)
1 , x

(i)
2 ) = 1 whenever x1 and x2 are from the same category and

y(x
(i)
1 , x

(i)
2 ) = 0 if they are from different categories. Then the regularized cross-entropy

objective on the binary classifier scenario takes the following form:

L(x(i)
1 , x

(i)
2 ) = y(x(i)

1 , x
(i)
2 ) log P(x

(i)
1 , x

(i)
2 ) +

(1 − y(x(i)
1 , x

(i)
2 )) log (1 − P(x

(i)
1 , x

(i)
2 ) ) +

λT |w|2,

(3.12)

in which λT |w|2 is the regularization term.
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In terms of the update policy, we employ the standard backpropagation algorithm to

optimize the parameter values. Let ηj denotes the learning rate and µj the momentum. The

update rule at epoch T can be formularized as:

W(T )
kj (x

(i)
1 , x

(i)
1 ) = W(T )

kj + ∆W(T )
kj (x

(i)
1 , x

(i)
1 ) + 2λj|Wkj|,

∆W(T )
kj (x

(i)
1 , x

(i)
1 ) = −ηj∇w(T )

kj + µj∆w(T−1)
kj .

(3.13)

In which ∇w(T )
kj denotes the partial derivative in terms of the weight between the jth neuron

in one layer and kth neuron in the following layer.

In our following experiments, all the values of parameters within the convolutional neural

network is assigned with a normal distribution of zero-mean and a standard deviation of 0.01.

Bias is initialized with also a normal distribution of mean 0.5 and standard deviation 0.01.

The initialization configuration is similar with those in [47] due to their similarity in terms

of objective.

3.4.3 Experimental Results and Analysis

To validate the performance of our proposed framework, which using LSTM networks

to embed the general features of binary files based on the local features of disassembled

CFGs, and employing the Siamese neural network to perform the similarity detection, we

experimented the framework on a dataset we collected from real-world scenarios. The dataset

includes 4000+ ELF malware executables. It contains 560 categories of the binaries, and

each category contains multiple binary files.

In the experiments, we implemented the framework based on TensorFlow v2.4.1 and

Keras 2.4.3. The experiments are run on a Ubuntu 18.04 version. The framework is imple-

mented using Python 3.6.9.
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3.4.3.1 Local Feature Vector Extraction

We first perform the disassembling operations on the binaries to obtain the corresponding

CFGs. Then based on the graphs, we could extract the local block feature vectors, in our

experiments, we build the local feature vectors as shown in Equation 3.14:

[ No. of string constants,

No. of numeric constants,

No. of arithmetic instructions,

No. of logic instructions,

No. of transfer instructions,

No. of calls,

No. of data transfer instructions,

No. of offspring,

the value of betweenness ]⊺.

(3.14)

This is intuitive and easy to obtain from the disassembled CFGs, and also is widely used in

existing methods[2, 43].

Based on the assigned rule, we could easily obtain the numerical forms of the local feature

vectors for each block in a binary file. An examplified numerical features of a sequence of

local blocks is shown as in Listing 3.4:

Listing 3.4. An examplified numerical features of a sequence of local blocks.
......

4 0 0 0 1 1 1 2.0495163141498604e-05
1 10 1 0 0 1 2 2 3.415860523583101e-05
1 3 0 0 0 0 1 1 6.968355468109526e-05
0 1 0 0 0 1 0 1 0.00012570366726785811
1 6 0 0 0 0 2 2 6.0119145215062575e-05
0 2 0 0 0 0 0 1 4.9188391539596654e-05
0 1 0 0 0 1 0 1 0.00018172377985462097
1 8 0 0 0 0 3 2 6.968355468109526e-05
0 4 0 0 0 0 0 1 2.4594195769798327e-05
0 2 0 0 0 0 0 1 0.00011750560201125867
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The local feature vectors extracted above represent both the block-level attributes infor-

mation and inter-block level attributes information. As we can observe from local feature

vectors, they are changing at each block. To obtain an indexable representation of the binary

that contains multiple blocks, we feed this sequence of local feature vectors into the LSTM

networks.

3.4.3.2 LSTM Network-based Embedding

To embed the obtained local feature vectors, we first need to truncate the blocks we have

as we want to train each of the binary files on the same number of local features. However,

the real-world binaries we collected are vary each other in terms of the length. We adopt

a strategy that choose a fixed number of the blocks from each type of the binary file in a

random way but without disrupting the order of the chosen sequence.

We form the embedding problem as a regression problem, in which the input is the

feature vector at time t, while the output is the feature vector at time t + 1. However, to

make the prediction process could take more of the past time slots into consideration, we

employ multiple previous time slots as the input to predict the following feature vector of

the block. We found that if too many previous time slots are considered, then the prediction

output will be less reflective regarding the variation and the number of training samples will

decrease dramatically. There is a tradeoff balance between the flexibility and accuracy.

In the experiment, we employ 5 previous feature vectors as the input to train the model,

and we set the dropout value as 0.1, and the training epoch is set as 100. At each prediction.

The LSTM blocks or neurons we adopt is set as 16. In Figure. 3.11, we show the relationship

of the averaged Mean Squared Error (MSE) with the training epochs of three representative

binaries, from which we can observe that when the training epochs approaching 70, the
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averaged MSEs for all three binaries are become stable. Thus, we could output the hidden

cell state vectors as the embeddings for those binary files.
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Figure 3.11. The relationship of the training epochs with the averaged MSE.

3.4.3.3 Siamese Neural Network-based Similarity Detection

Table 3.3. The comparison of our proposed framework with existing works [1, 2].
Methods Accuracy Training time cost Testing time cost

Our proposed method 0.85 1.00 1.00
Xu et al.[1] 0.85 1.24 1.15

Eschweiler et al.[2] 0.83 0.78 0.67

After we obtained the embeddings of the binaries, we have the indexable representation

of each binary file. Thus, the remaining work is to feed them into a Siamese neural network

and perform the similarity detection.

In this group of experiments, we focused on classifying a test binary to the pre-trained

binary categories. We chose 10 categories of the binaries from our collected dataset as the

training categories. As some categories include only a very small number of binaries, thus

we exclude them in our experiment such that we have enough binaries under each category

that could be divided into a training set and a testing set. For the testing binaries, we’ll

include both the binaries from the training categories and from those categories that are not

included in the training process except specially specified.
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Since in a Siamese neural network, the weights from both sub-networks are supposed to

be identical with each other, thus we use only one model and feed two inputs in succession.

The optimization process or the backpropagation is conducted after we calculate the loss for

two inputs. We build the Siamese neural network includes 3 fully connected convolutional

layers with a structure of 16× 32× 16, and the dropout value of 0.1.

We first show the experimental results of the training performance using only test data

from the categories that we have trained on. We define a measure named as detection

accuracy to describe the performance, which is defined mathematically as:

Detection Accuracy =
No. of test binaries rightly classified

No. of total test binaries (3.15)

We use half of the binaries within each category as the training data and the other half as the

testing data, the relationship of the detection accuracy with the training epochs is shown in

Figure.3.12. From the results we know that after training the Siamese neural network with

at least 60 epochs, we can achieve the detection accuracy of around 90%, which validates

the performance of the framework.
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Figure 3.12. The relationship of detection accuracy with training epochs
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We also compared our proposed framework with existing methods as shown in [1, 2],

which are representative methods to detect malware. [1] focuses on a graph embedding

network to convert the graph into embeddings for binary functions, while [2] focuses on the

maximum common subgraph isomorphism to measure the structural similarity between two

different binaries.

We compared the performance and relative time cost of the three methods and the results

are shown in the Table 3.3. Both the time cost for training and testing are compared with our

proposed method in a relative way, which means our proposed method is set as a benchmark

with the value of 1. From the comparison results we know that our method shows a higher

training efficiency while still maintains similar detection accuracy performance with method

[1]. Compared with [2], our method showed a slightly better performance though suffering

from the training of two neural networks which cost a little bit more time. Compared with

our proposed LSTM + Siamese neural network combination, the methods in [1] require

training a deep graph embedding neural network, while the methods in [2] require a graph

similarity algorithm based on the maximum common subgraph isomorphism.
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Chapter 4: Conclusion

In the dissertation, we first explored the partial model problem in cooperative spectrum

sensing systems. We proposed a powerful attack mechanism named the LEB attack against

cooperative spectrum sensing. Given the gap between existing defenses and new adversar-

ial learning-based attacks, such as LEB attacks, we designed an influence-limiting defense,

sided with existing defenses to counter LEB attacks and other similar attacks. Further we

presented a low-cost version of the influence-limiting defense by employing the “divide and

conquer” strategy to decrease the computation cost dramatically.

Besides, we offered a new perspective through employing reinforcement learning tech-

niques to detect anomalies based on MPI logs in HPC. Extended from this project, we found

that binary code similarity detection plays an important role in evaluating the security of a

software project that are closed source. Therefore, we proposed an LSTM neural network-

based method to obtain an indexable embedding from the dissembled control flow graphs of

binary files, and we employed Siamese Neural Networks to conduct the similarity comparison

of two embeddings due to that Siamese Neural Networks have the capability of learning the

semantic information embedded in the inputs.

In the future work, we will focus on improving the security defense capability of spectrum

sensing and also focus on extracting more representative local features from the disassembled

blocks of the binaries.
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