
University of South Florida University of South Florida

Scholar Commons Scholar Commons

Mathematics and Statistics Faculty
Publications Mathematics and Statistics

1-2021

Dynamically Weighted Balanced Loss: Class Imbalanced Learning Dynamically Weighted Balanced Loss: Class Imbalanced Learning

and Confidence Calibration of Deep Neural Networks and Confidence Calibration of Deep Neural Networks

K. Ruwani M. Fernando
University of South Florida, kfernando@usf.edu

Chris P. Tsokos
University of South Florida, ctsokos@usf.edu

Follow this and additional works at: https://scholarcommons.usf.edu/mth_facpub

 Part of the Mathematics Commons

Scholar Commons Citation Scholar Commons Citation
Fernando, K. Ruwani M. and Tsokos, Chris P., "Dynamically Weighted Balanced Loss: Class Imbalanced
Learning and Confidence Calibration of Deep Neural Networks" (2021). Mathematics and Statistics
Faculty Publications. 29.
https://scholarcommons.usf.edu/mth_facpub/29

This Article is brought to you for free and open access by the Mathematics and Statistics at Scholar Commons. It
has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator
of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

are conducted on challenging real-world applications in cyber
intrusion detection and skin lesion diagnosis.

Contributions: The proposed approach is distinct in two
ways with respect to the previous work: (1) Instead of a fixed
weighting scheme, the assigned weights self-adapts its scale
based on the prediction difficulty of the data instance. (2) We
link class imbalance and reliability of confidence estimates. To
the best of our knowledge, prior research has not addressed
both these issues in a unified approach in the context of deep
learning. The paper therefore presents the following major
novelties: (1) A differentiable loss formulation based on a
class rebalancing strategy, where the weights are dynamically
changed during the course of training. (2) A framework that
allows to learn models that are already well calibrated, thus
simultaneously addressing both class imbalance and reliability
of class membership probabilities in deep neural networks.

The remainder of the paper is structured as follows: In
Section II, we briefly discuss related work. Section III is
comprised of deep neural network preliminaries. Section IV
formulates the problem and presents the proposed framework.
In Section V, we experimentally evaluate our approach. Section
VI concludes the paper.

II. RELATED WORK

A. Class Imbalance

Despite recent advances in deep learning, the research
on deep neural networks to address class imbalance remain
limited [15]. We briefly describe below the traditional methods
and prominent work in recent years on deep imbalanced
learning.

Most of the previous efforts to handle class imbalance can
be divided into two categories: data-level and algorithmic-
level methods. Data-level methods [16]–[23] alter the class
distribution in the original data by employing re-sampling
strategies to balance the dataset. The simplest forms of re-
sampling include random over-sampling and random under-
sampling. The former handles class imbalance by duplicating
the instances in the rare minority class and thus, augmenting
the minority class, whereas the latter randomly drops instances
from the majority class to match the cardinality of minor-
ity class. Experiments conducted in [24] suggest that data
sampling strategies have little effect on classification perfor-
mance, however, results in [25] demonstrate that random over-
sampling leads to performance improvements. While sampling
strategies are widely adopted, these methods manipulate the
original class representation of the given domain and introduce
drawbacks. Particularly, over-sampling can potentially lead
to overfitting and may aggravate the computational burden
while under-sampling may eliminate useful information that
could be vital for the induction process. Moreover, a classi-
fier developed by employing sampling methods to artificially
balance data may not be applicable to a population with a
much difference prevalence rate since the classifier is trained
to perform well on balanced data.

Algorithm-level approach involve adjusting the classifier,
and can further be categorized into ensemble methods and
cost-sensitive methods. The most widely used methods include

bagging [26] and boosting [27] ensemble-based methods.
Boosting algorithms such as AdaBoost work by placing more
emphasize on harder to train examples and using them to train
subsequent classifiers. Experiments in [28] suggests boosting
performs better than sampling methods. Alternatively, hybrid
ensemble methods which combine sampling and boosting
methods [29], [30] have also been proposed in past literature.
A thorough review on ensemble techniques for imbalanced
data with emphasis on two-class problems is presented in [31].
While ensemble-based algorithms are worthwhile, the use of
multiple classifiers makes them more complex which leads to
increased training times.

To reinforce the sensitivity of the classification algorithm
towards the under-represented class, cost sensitive learning
methods incorporate class-wise costs into the objective func-
tion of the classification algorithm during training process.
Cost parameters can be arranged in the form of a cost matrix
such that higher costs are associated with misclassification of
an observation from the minority class [32]. However, design
of the cost matrix which includes different misclassification
costs associated with each class sample may require expert
judgement. Another approach to cost-sensitive learning is
rescaling the data, performed by assigning training examples
of different classes with different weights (re-weighting), re-
sampling the training instances or shifting the decision thresh-
old based on their misclassification costs. These methods have
been reported to perform well on binary data [32]. In [10],
authors study techniques which are proven to be efficient in
handling class imbalance. They conclude that while almost all
methods are effective on binary classification, some methods
are only effective in binary case and that cost sensitive learning
can become highly complicated in multi-class setting.

Among recent contributions in deep imbalanced learning,
Khan et al. [33] proposed a cost sensitive approach where
they optimized both the model parameters and cost param-
eters synchronously. In the domain of computer vision, a
recently proposed loss function called Focal Loss [34] for
object detection attracted considerable attention in which they
promote harder samples by down-weighting the loss assigned
to well-classified instances. A meta-learning approach that
determines per-sample loss weights of the training data based
on their gradient directions is presented in [35], but requires
an additional validation set and takes approximately three
times the training time compared to regular training. Zhang
et al. [36] proposed an evolutionary cost-sensitive deep belief
network (ECS-DBN) to improve the imbalance classification
performance of Deep Belief Networks (DBN). However, their
approach is prohibitively expensive since the class-dependent
misclassification costs are first optimized by an adaptive
differential evolution algorithm (EA). A method that combines
hard sample mining with a newly introduced class rectification
loss (CRL) function is proposed in [37]. They adopt a batch-
wise hard sample mining approach on the minority class. In
[38], loss reweighting is performed by the inverse effective
number of samples. Based on the assumption that the samples
with too many similar gradient norms are the easy samples,
authors in [39] suggested a counting based approach called
Gradient Harmonizing Mechanism (GHM).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2020.3047335

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Current approaches for handling class imbalance in deep
learning contains drawbacks with respect to over-fitting, loss
of information, complexity and require changes to the network
architectures and optimization process. Furthermore, existing
methods for loss reweighting require careful tuning of hyper-
parameters which can be computationally expensive.

B. Confidence Calibration

Most of the previous studies have almost exclusively fo-
cused on either class imbalance or obtaining calibrated proba-
bility estimates, but handling both these issues concurrently
remains briefly addressed in literature [11], [12]. In [11],
authors show that probability estimates of the instances in
minority classes are unreliable and that the methods of han-
dling class imbalance do not automatically address calibration.
Moreover, experiments in [12] demonstrates that strategies
adopted to mitigate effects of class imbalance such as under-
sampling adversely affect probability calibration of minority
classes. In the context of neural networks, post-hoc calibration
methods including matrix scaling, vector scaling and temper-
ature scaling are widely adopted for probability calibration.
Temperature scaling, proposed more recently by Guo et al.
[40] gained significant attention. The method is applied to the
logits of the neural network and require a validation set to
tune a temperature parameter. However, the performance of
these approaches in the presence of class imbalance is not
adequately explored.

Differing from previous methods which require a hand-
crafted cost matrix, assign fixed weights, or involve algorith-
mic modifications, we propose a loss function incorporating a
dynamic weighting factor adjusted during the training process
to address training bias of imbalanced data which also result
in well-calibrated confidence estimations. It does not require
any additional hyper-parameter tuning and can be promptly
applied to any deep neural network architecture.

III. DEEP NEURAL NETWORK PRELIMINARIES

Through several underlying network blocks or layers, Deep
Neural Networks (DNNs) extract representative features and
hidden structural knowledge from data automatically. A brief
description on the training paradigm of DNNs is presented
below.

A. Deep Neural Network (DNN)

In the supervised setting, in a training set with n training
examples {xi, yi}ni=1 , each input vector xi ∈ Rn is asso-
ciated with a corresponding class label (classification target)
yi ∈ {1, . . . , c}. Given a feature vector x = (x1, . . . , xd) ∈ Rd
with d individual features xi , a deep neural network with
H hidden layers can be represented by a non-linear function
fθ : X → Y with model parameters θ = {θ1, . . . , θH}. Here,
θi = {Wi, bi}, where Wi is the weight matrix and bi is the bias
vector for layer i. Then the DNN presents a complex feature
transformation through a(x) = g(WH .g(. . . g(W2.g(W1.x +
b1) + b2) . . .) + bH). Typically, the mapping function g(·)
consists of an affine transformation (either matrix multiplica-
tion or convolution) and a non-linear transformation (activation

function). The general activation formula for the hth layer in
the jth node can then be represented by:

a
[h]
j = g[h](

∑
k

w
[h]
jk a

[h−1]
k + b

[h]
j) (1)

where a[h]j is the activation of the jth neuron in the hth layer,
g[h] is the activation function in the hth layer, w[h]

jk is the
weight connection in the hth layer from neuron j in (h−1)th

layer to neuron k in hth layer and b[h]j is the bias term of the
jth node in hth layer.

The feature vector in the last hidden layer is mapped to
the output space Y to obtain the network output which is
passed through a softmax function to convert into normalized
(pseudo) probabilities for different possible output classes. In
a softmax layer with c neurons, the probability of class j given
the feature vector x is computed as:

P (y = j|x) =
exp(a(x)TW s

j + bsj)∑c
j=1 exp(a(x)TW s

j + bsj)
(2)

where a(x) is the output of penultimate layer, and W s
j and

bsj are weights and bias terms in the jth node connecting
penultimate layer to the softmax layer, s.

To find the optimal model parameters, the network
is then updated iteratively with respect to a loss func-
tion L(f(xi; θ), yi) using an optimizer (traditionally, back-
propagation algorithm):

arg min
θ

1

n

n∑
i=1

L(f(xi; θ), yi) (3)

where θ represents model parameters, n is the sample size and
L is the loss function.

The predicted class label ŷ for any input instance x̃, is
the index of the maximum predicted score among all classes,
arg maxj [P (y = j|x̃)]. The loss function for multi-class
classification is usually the categorical Cross Entropy (CE)
which is defined as:

LCE(ŷ, y) = −
c∑
j=1

yj log (ŷj) (4)

where yj = 1 if training instance xi belongs to class cj and
0, otherwise. Particularly, the objective function CE tries to
maximize the likelihood of the target class for each training
instance.

B. Convolutional Neural Network (CNN)

Deep learning models with different model architectures
lend themselves to solve a large variety of problems. While
2D-CNN models have become the de facto standard for image
processing applications, 1D-CNN models have shown to be
effective in various applications in sequence processing such as
anomaly detection [41], speech processing [42] and biomedical
data classification [43].

The key attribute of neural networks is their ability to
derive complex feature representations as linear combinations
of the inputs which are then used to model the target as a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2020.3047335

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

non-linear function of the derived features. As in traditional
machine learning, deep neural network based solutions do not
require application of feature engineering techniques since the
feature learning process is completed automatically. Through
convolutional learning and spatial pooling operations, CNNs
aggregate local features to extract complex hierarchical feature
representations from feature sequence.

CNNs are composed of two distinct alternating layer types:
convolutional and sub-sampling layers. The first convolutional
layer in a CNN extract primitive features of network traffic
while the subsequent convolutional layers can deduce more
sophisticated features. The activation unit in a CNN represents
the results of the convolution operation of the input data
with a kernel. The convolution layer is followed by a max-
pooling layer for dimensionality reduction of data. Finally, the
dense layer classifies the output classes combining all complex
features identified by convolutional layers. More formally,
feature map extraction using a one-dimensional convolution
operation can be expressed as:

al+1
j (τ) = σ

 F l∑
f=1

Kl
jf (τ) ∗ alf (τ) + blj

 (5)

where the feature map j in layer l is denoted by alj(τ), non-
linear function by (σ), the number of feature maps in layer l
by F l, convolution kernels by Kl

jf and bias vector by bj .

IV. DYNAMICALLY WEIGHTED BALANCED (DWB) LOSS

A. Loss Function Formulation

Revisiting Categorical Cross Entropy: Let the training set
with n samples be denoted by D = {(xi, yi)}ni=1 ⊂ Rdx ×
Rdy , where X ⊂ Rdx is the feature space and Y ⊂ Rdy is
the label space. For each data instance i, xi ⊂ X is the input
feature vector and yi ⊂ Y = {1, 2, . . . , c} is the ground-truth
class label. Consider a hypothesis (classifier) from a parametric
family F := {fθ : Rdx×Rdy |θ ∈ Θ} which maps input feature
space to the label space f : X → Y and learns by minimizing
the loss L(f(x; θ), y). Given a loss function L : R×Y → R+

and a classifier f , the (empirical) risk is defined as RL(f) =
ED[f(x; θ), y], where the expectation is with respect to the
the empirical distribution, D.

Consider a DNN with the softmax output layer with loss
as the categorical cross entropy. Then the parameters of DNN
can be optimized with empirical risk minimization where risk
is defined as:

RL(f) = ED[f(x; θ), yx] = − 1

n

n∑
i=1

c∑
j=1

yij log (fj(xi; θ))

(6)
where θ is the set of parameters of the classifier, yij is the
jth element of one-hot encoded label of the instance xi with
yi = eyi ∈ {0, 1}c such that 1T yi = 1,∀i, and fj(x; θ) ∈ Rc
is the model output with fj denoting the jth element of f .
Since the output layer is a softmax,

∑n
j=1 fj(xi; θ) = 1 and

fj(xi; θ) ≥ 0,∀j, i, θ.

Dynamic Weighting of Loss Function: The backpropagation
of error algorithm which is typically used to train neural
networks updates the weights of the model in proportion
to the errors made during training. As the misclassification
errors of data instances from each class are given the same
importance, for severely skewed class distributions this results
in adapting the classifier in favor of majority class. While
class imbalance does not hinder model performance in simple
classification tasks with clear class separation, it affects classes
that are inherently more difficult to classify. Training samples
from classes with fewer observations producing lower class
probabilities are expected to be the harder instances. Moreover,
correct classifications tend to have greater softmax probabili-
ties than those misclassified and out-of-distribution instances
[44]. In this context, we introduce a dynamic weighting based
classifier objective function based on the prediction probability
of ground truth class to assign higher weights to hard to train
instances, which we term the Dynamically Weighted Balanced
(DWB) Loss. Let fj(xi; θ) be indicated by pij for convenience.
Thus, pij is the predicted probability of the class j of instance
xi. We define Dynamically Weighted Balanced (DWB) Loss
as:

LDWB = − 1

n

n∑
i=1

c∑
j=1

w
(1−pij)
j yij log (pij)− pij(1− pij)

(7)
where wj is the class weight of class j, yij is the jth element
of one-hot encoded label of instance xi and pij is the predicted
probability of the class j of instance xi.

The proposed loss function is composed of two terms:
dynamically weighted cross entropy and a regularization com-
ponent equal to the entropy of brier score which can be
considered as a reliability component that leads to better
calibration (more on calibration is in section IV-B).

The class weights wj can be handled as a hyper-parameter
that is learned from data by cross validation or set proportional
to inverse class frequency. We set wj equal to the log ratio
of the class frequency of the majority class and the class
frequency nj (computed over the training dataset) as follows:

wj = log

(
max(nj |j ∈ c)

nj

)
+ 1 (8)

As such, misclassification errors for a class j with class-wise
cost of wj will have wj-times more penalty than misclassifi-
cation errors for the majority class with weight equals to 1.
For extremely imbalance classes, log smooths the weights and
to avoid major class weight being less than 1, we add 1 to the
log weights.

While a fixed-weighting approach based on class frequency
balances the contribution from majority and minority classes,
it does not discriminate between the easy and hard sample
instances. Instead, we apply class-wise weights of various
magnitudes from the same class depending on the prediction
output and adjust the relative contribution of mispredictions.
The loss function defined in equation (7) optimizes a dynami-
cally weighted training loss which reflects labels’ importance
level based on class frequency while promoting hard positives
which are predictions with low confidence scores.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2020.3047335

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ground truth class (p)

0

2

4

6

8
Lo

ss
Standard CE Loss
CE Loss with Fixed Weights
(proposed) DWB Loss
Focal Loss

Fig. 1. Comparisons among proposed Dynamically Weighted Balanced
(DWB) Loss and other commonly used losses for classification: the standard
Cross Entropy (CE) loss, cross entropy with fixed weights assigned and the
Focal Loss (FL) with hyper-parameter(γ) set to 2 (recommended). DWB Loss
put more focus on hard to train, misclassified examples through a dynamic
weighting factor.

For illustration purposes, we consider a case where class
weight or class imbalance ratio, wj = 2. Fig. 1 provides an
intuitive comparison of different losses: standard binary Cross
Entropy (CE), cross entropy with fixed class weights set to
imbalance ratio, Focal Loss (FL) and proposed Dynamically
Weighted Balanced (DWB) Loss. It depicts how the proposed
DWB loss reshapes the loss function based on the predic-
tion probability of the target by dynamically assigning the
importance weights. Note that the Focal Loss always produces
a lower loss value when compared with the standard cross
entropy loss. This results in FL still down-weighting correct
predictions with low prediction scores (p < 0.6). On the
contrary, the proposed DWB loss penalizes more than the cross
entropy if the predictions defined from the network outputs are
confident and wrong.

We note two properties of the DWB Loss: (1) When a
training instance is misclassified and pij is small, the loss is
up-weighted. (2) As pij goes close to 1, the weighting factor
for well classified instance is close to 1, hence the loss is
unaffected and equivalent to Cross Entropy. Differing from
FL which down-weights the contribution of easy samples,
proposed DWB Loss focus more on hard examples by up-
weighting the misclassified examples while taking into account
both sample difficulty and the class frequency. Experiments
suggest that the performance of the proposed loss function is
superior to the previous class balancing approaches, implying
that it is a more effective alternative to the existing methods.

We visualize dynamic class weights (dash lines) in Fig. 2 for
each class in imbalanced CICIDS2017 dataset assigning differ-
ent predicted probabilities for ground truth. Note that pij = 1
corresponds to no re-weighting and pij = 0 corresponds to
re-weighting by imbalance ratio (wj) which is proportional
to inverse class frequency (logarithm was not taken when
computing the weighting factor in Fig. 2 for better illustration).
Thus, the introduced self-adapting weighting scheme enables
smooth adjustment of the class-balanced term between re-
weighting and no re-weighting of objective function.

0 1 2 3 4 5 6 7 8 9 10
CICIDS2017 class index

100

101

102

103

104

Cl
as

s-
ba

la
nc

ed
 te

rm

Class Frequency
p = 0
p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1

100

101

102

103

104

nu
m

be
r o

f s
am

pl
es

Fig. 2. Visualization of the weight term based on predicted probability of
ground truth class (p) on long-tailed CICIDS2017 data. Y-axis is in log scale.
Solid blue line represents the number of samples in each class while the dash
line represents how the assigned weight changes w.r.t prediction probability
of ground truth class. Note that here we have not taken logarithm when
computing the weighting factor for better visualization.

B. Improving Calibration using DWB loss

Biased training data with a skewed class distribution typ-
ically under-estimates the class probability estimates of mi-
nority class instances [11], and therefore, the predicted class
probabilities are unreliable in class imbalance scenarios. The
parameter estimation bias under class imbalance also ap-
plies to models which typically produce calibrated probability
estimates, such as logistic regression [45]. Obtaining well-
calibrated probability estimates which are reflective of the
true likelihood of events [46] is highly desirable in real-
world applications. The calibrated prediction probabilities are
in concordance with the true occurrence of the event of interest
and perfect calibration is formally defined as:

P(Y = y|p̂ = p) = p ;∀p ∈ [0, 1] (9)

where Y is a class prediction and p̂ is its associated confidence.
The regularizing component of the DWB loss is equal to

the entropy of conditional distribution p = pθ(y|x) in Brier
Score. Recall that entropy of a probability assignment is a
measure of inherent uncertainty [47]. Below we show that
the DWB Loss minimizes a regularized upper bound on the
weighted Kullback-Leibler (KL) Divergence [48] between the
true distribution q and the predicted distribution p.

Considering a data instance with class label y, ground truth
probability qy and class membership probability estimate py ,
we proceed to obtain the following:

LDWB = −w(1−py)
y qy log (py)− py (1− py)

≥ −wy (1− py) qy log (py)− py (1− py)

;∀y, wy ≥ 1 and py ∈ [0, 1]

= −wy qy log (py)− wy | py qy log (py) | −py (1− py)

;∀y, log (py) ≤ 0

≥ −wy qy log (py)−max(qy) wy | py log (py) |
− py (1− py)

≥ −wy qy log (py) + wy py log (py)− py (1− py)

;∀y, qy ∈ [0, 1]

≥ w (CE(q,p)−H(p))− p (1− p) (10)

where CE(q,p) is the cross entropy between true distribution
q and predicted distribution p, and H(p) is the entropy of p.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2020.3047335

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Since, CE(q,p) = KL(q||p)+H(q), the above inequality
can be represented as:

LDWB ≥ w (KL(q||p) + H(q)︸ ︷︷ ︸
constant

−H(p))− p (1− p)

≥ w (KL(q||p)−H(p))− p (1− p) (11)

where KL(q||p) represents the KL divergence between target
q and predicted p distributions.

The proposed loss constructs an upper bound on the
weighted KL divergence with an additional regularization
equal to the sum of wH(p) and p(1 − p). While it seeks
to minimize the deviation of the predicted distribution from
the true label distribution through KL divergence, it aims to
maximize the entropy terms, thereby penalizing over-confident
predictions on the target as a form of regularization which
leads to better calibration. While FL has shown to have
calibration properties in [49], we did not observe significantly
improved results with it in our experiments.

C. DWB Loss Function Gradients

Let the predicted (unnormalized) output from the model be
denoted by zi, where i ∈ {1, ..., c}. The softmax function
Rc → Rc, maps a vector z ∈ Rc to a vector p ∈ Rc which
can be expressed as:

pi(z) =
ezi∑

j∈{1,...,c} e
zj

;∀i ∈ {1, ..., c} (12)

where z is a real vector.
Given that for a data instance with class label y, the only

non-zero element of the one-hot encoded vector y is at the y
index, the DWB loss is simplified as:

LDWB = −w(1−py)
y log (py)− py (1− py) (13)

To check the impact of weighting factor on gradient updates,
consider the first component of the DWB loss, L1DWB =

−w(1−py)
y log(py). It is equivalent to cross entropy loss when

w = 1, for which the loss function gradients are as follows:

LCE = − log (py) = − log

(
ezy∑
j e
zj

)
(14)

∇ziLCE = ∇zi

−zy + log
∑
j

ezj

=

1∑
j e
zj
∇zi

∑
j

ezj −∇zizy

= pi −∇zizy
= pi − 1(y = i) (15)

where

1(y = i) =

{
1 ; y = i

0 ; otherwise

When wy 6= 1, the gradients of the dynamic weighting
factor w(1−py) reduces to:

∇ziw(1−py)
y = ∇ziw

(
1− e

zy∑
j e

zj

)
y

= −w

(
1− e

zy∑
j e

zj

)
y log (wy)∇zi

(
1− ezy∑

j e
zj

)
= w(1−py)

y log (wy) [py 1(y = i)− py pi] (16)

Using the product rule, we obtain the gradients of L1DWB

as follows:

∇ziL1DWB = w(1−py)
y [1+py log (py) log (wy)][pi−1(y = i)]

(17)
Thus, when compared with cross entropy loss, the DWB

loss weights each data instance by an additional weighting
factor. Consequently, the predictions that are less congruent
with the provided ground-truth labels are weighed more in
the gradient update, which in turn provides more emphasis on
neural network training of difficult samples.

V. EXPERIMENTS

A. Experimental set-up and Evaluation

Experiments: We evaluate the proposed approach on two
challenging real-world tasks: Cyber-Intrusion Detection and
Skin Lesion Diagnosis, and a detailed description of each is
provided in subsequent sections. The following loss functions
are compared in terms of classification and calibration perfor-
mance: 1) Cross entropy is set as the baseline, 2) Weighted
Cross Entropy weights each data instance by the inverse
frequency, 3) Focal Loss down-weighs the easy samples, 4)
(Proposed) DWB Loss dynamically weights loss contribution
of each data instance focusing on hard to train instances.

Classification Evaluation: In an extreme class imbalanced
setting, a classifier that simply predicts any instance as be-
longing to the majority class could achieve a deceptively high
accuracy. We evaluate the model classification performance
subject to four different metrics: Precision, Recall/Sensitivity
(Detection rate), F-measure and AUROC Score. Let us define
a particular class j as a positive instance and all other classes
as negatives. The performance metrics for a particular class
label (j) are defined as follows:

Precisionj(Pr) = TPj/(TPj + FPj)

Recallj(Re) = TPj/(TPj + FNj)

F1− scorej = (2× Pr ×Re)/(Pr +Re)

(18)

where TP are True positives, TN are True Negatives, FP
are False Positives and FN are False Negatives.

Precision reflects the proportion of a specific label classified
correctly with respect to instances which were predicted to
belong in that class. Recall is defined as the proportion of
instances that are predicted to belong to a class and truly
belong in the class. F1-Score is the weighted harmonic mean
of precision and recall. The average of the recall of each
class is equivalent to balanced multi-class accuracy. In addition
to aforementioned classification metrics, we utilized Area

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2020.3047335

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

