
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

June 2021

Maximum Multiplicative Programming: Theory, Algorithms, and Maximum Multiplicative Programming: Theory, Algorithms, and

Applications Applications

Payman Ghasemi Saghand
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Operational Research Commons

Scholar Commons Citation Scholar Commons Citation
Ghasemi Saghand, Payman, "Maximum Multiplicative Programming: Theory, Algorithms, and
Applications" (2021). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9114

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usf.edu%2Fetd%2F9114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Maximum Multiplicative Programming: Theory, Algorithms, and Applications

by

Payman Ghasemi Saghand

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: Hadi Charkhgard, Ph.D.
Changhyun Kwon, Ph.D.
Susana Lai-Yuen, Ph.D.

Xiaopeng (Shaw) Li, Ph.D.
He Zhang, Ph.D.

Date of Approval:
June 20, 2021

Keywords: Geometric Mean Optimization, Optimization Over the Efficient Set,
Multi-objective Optimization, Nash Bargaining Solution, Nash Social Welfare

Copyright © 2021, Payman Ghasemi Saghand

Dedication

To my wonderful wife and my beloved family for their unconditional love and support.

Acknowledgments

I would like to start by extending my sincere appreciation to my advisor, Dr. Hadi

Charkhgard. He was the main reason that I chose the University of South Florida (USF)

for my Ph.D., and his permanent support, guidance, and motivation made my Ph.D. the

most fruitful portion of my academic journey. It has been indeed a pleasure to work and

study under his supervision, and to work with the members of his research team, the Multi-

objective Optimization Laboratory.

I would also like to thank all the brilliant people that I had the opportunity to work

with, specially Dr. Julien Martin, Dr. Changhyun Kwon, Dr. Susana Lai-Yuen, and Dr.

Fabian Rigterink. I also want to acknowledge the financial support by the National Science

Foundation under Grant No 1849627, and by the United States Geological Survey - Southeast

Ecological Science Center under the Award No 140G0119P0279.

I wish to express my deepest gratitude to my family, to whom I dedicated this disser-

tation. My parents, Heidar and Ozra, for all their sacrifice and unconditional love. I hope

that I can be a good son for you and make you proud. My parents-in-law, Mohammad Reza

and Parvin, for their heart-warming support and kindness. My sister, Esmat, whom I am

very lucky to have in my life. And finally, my gorgeous wife, Forouzandeh, who brought light

to my life with her love, support, and patience and made our life the happiest.

Table of Contents

List of Tables ... vi

List of Figures.. ix

Abstract .. xii

Chapter 1: Introduction .. 1
1.1 Motivation ... 2

1.1.1 Game Theory .. 3
1.1.2 Multi-objective Optimization .. 3
1.1.3 Conservation Planning.. 4
1.1.4 Other Applications ... 4

1.2 Contributions of the Thesis.. 5
1.3 Outline of the Thesis... 6

Chapter 2: A Branch-and-Bound Algorithm for a Class of Mixed Integer Linear
Maximum Multiplicative Programs: A Bi-objective Optimization Approach............ 9

2.1 Preliminaries .. 10
2.2 A Branch-and-Bound Algorithm... 14
2.3 Branching Strategies ... 17
2.4 Node Selecting Strategies .. 20
2.5 Enhancements .. 22
2.6 Computational Study.. 27

2.6.1 A Performance Comparison on Instance of Set I: Mixed
Binary Instances.. 29

2.6.2 A Performance Comparison on Instance of Set II: Mixed
General Integer Instances ... 34

Chapter 3: A Criterion Space Search Algorithm for Mixed Integer Linear
Maximum Multiplicative Programs: A Multi-objective Optimization Approach 37

3.1 Preliminaries .. 38
3.2 High-level Description ... 41

i

3.3 Detailed Description ... 43
3.3.1 No-good Constraints... 43
3.3.2 Computing Primal Bound ... 43
3.3.3 Computing Dual Bound.. 45
3.3.4 The Proposed Algorithm... 46

3.4 Computational Study.. 48
3.4.1 Two Objectives (p “ 2) ... 50
3.4.2 Three Objectives (p “ 3) .. 53
3.4.3 Four Objectives (p “ 4) .. 56
3.4.4 Linearization ... 59

Chapter 4: Exact Solution Approaches for Integer Linear Generalized Maximum
Multiplicative Programs Through the Lens of Multi-objective Optimization............ 61

4.1 Preliminaries .. 64
4.2 High-level Description and Key Operations ... 70

4.2.1 No-good Constraint .. 72
4.2.2 Weighted Sum Operation .. 74

4.3 Proposed Algorithms... 76
4.3.1 The Criterion Feasible Set Shrinking Algorithm I.......................... 76
4.3.2 The Criterion Feasible Set Shrinking Algorithm II......................... 78
4.3.3 The Criterion Feasible Set Shrinking Algorithm III 80

4.4 Computational Study.. 83
4.4.1 Two Objectives (p “ 2) ... 87
4.4.2 Three Objectives (p “ 3) .. 90
4.4.3 Four Objectives (p “ 4) .. 93
4.4.4 Linearization ... 94

Chapter 5: A Cooperative Game Solution Approach for Intensity Modulated
Radiation Therapy Design: Nash Social Welfare Optimization 97

5.1 Introduction ... 97
5.1.1 Literature Review .. 98
5.1.2 Motivation... 100
5.1.3 Contributions .. 101
5.1.4 Structure... 103

5.2 Preliminaries .. 103
5.2.1 Nash Social Welfare Optimization.. 104
5.2.2 Solution Approaches... 106

ii

5.3 Proposed Methodology .. 109
5.3.1 The Feasible Set of Actions ... 110
5.3.2 Utility Functions .. 111
5.3.3 Disagreement Point .. 112
5.3.4 Negotiation Powers... 115
5.3.5 Fluency Map Bargaining Game ... 115

5.4 Theoretical Discussion... 117
5.5 Numerical Results... 121

5.5.1 TG-119 Case ... 122
5.5.2 Liver Case ... 126

5.5.2.1 Overall Performance .. 127
5.5.2.2 Performance Comparison.. 129

Chapter 6: Solving Multiplicative Programs by Binary-encoding the
Multiplication Operation .. 134

6.1 Introduction ... 134
6.1.1 Applications .. 135
6.1.2 Contributions .. 137
6.1.3 Outline ... 140

6.2 High-level Methodology... 141
6.3 Detailed Methodology ... 147

6.3.1 Binary-encoded Reformulations ... 147
6.3.1.1 Products of Length Two: The Nested Reformulation......... 147
6.3.1.2 Products of Length p: the Altogether Reformulation 150

6.3.2 Search Mechanisms .. 154
6.3.2.1 One-shot Search Mechanism ... 154
6.3.2.2 Bitwise Search Mechanism.. 154

6.3.2.2.1 Bitwise + Full Index Set Cut (Bitwise +
F-cut) .. 156

6.3.2.2.2 Bitwise + Partial Index Set Cut (Bitwise +
P-cut) .. 157

6.3.3 Warm-start Enhancements for Minimum Multiplicative
Problems .. 158

6.3.3.1 Min-Min Appraoch .. 159
6.3.3.2 Indirect Min-Min Approach .. 160

6.3.4 Continuous Cases ... 160
6.4 Extreme Examples.. 161
6.5 Computational Study.. 163

iii

Chapter 7: Conclusions and Future Research Directions ... 168
7.1 Conclusions of Chapter 2... 168
7.2 Conclusions of Chapter 3... 168
7.3 Conclusions of Chapter 4... 169
7.4 Conclusions of Chapter 5... 172
7.5 Conclusions of Chapter 6... 175

References.. 177

Appendix A: Copyright Permissions ... 194
A1: Reprint Permission for Chapter 2 .. 194
A2: Reprint Permission for Chapter 3 .. 195
A3: Reprint Permission for Chapter 5 .. 198

Appendix B: Chapter 3 ... 199
B1: Detailed Comparison Between B&B and Algorithm 3 199
B2: Detailed Comparison Between Algorithm 3 and SOCP for p “ 3................. 201
B3: Detailed Comparison Between Algorithm 3 and SOCP for p “ 4................. 203

Appendix C: Chapter 4 ... 205
C1: A Detailed Comparison Between SOCP and CFSSA-I on Instances

with Unit Geometric Weights ... 205
C2: Case Study .. 206

C2.1: Fair Allocation of Indivisible Goods... 206
C2.2: Mobile Gateway Selection in Intelligent Transportation

Systems .. 208
C2.3: Primary Care Selection Problem for Older Adults......................... 209

Appendix D: Chapter 5... 211
D1: Implementing Lexico and 2pεc on the Liver Case 211

D1.1: Lexico .. 212
D1.2: 2pεc ... 212

Appendix E: Chapter 6 ... 215
E1: Proofs ... 215
E2: Extreme Examples ... 216
E3: Instance Generator ... 219
E4: Detailed Experimental Results... 221

E4.1: Experiment 1 Identifying the Best Search Mechanism 223

iv

E4.2: Experiment 2 Identifying the Best Enhancement Technique
for Minimization Instances ... 224

E4.3: Experiment 3 Comparing Different Solution Methods for
Binary Instances.. 224

E4.4: Experiment 4 Comparing Different Solution Methods for
Continuous Instances ... 226

E4.5: Report Average Solution Times ... 229

v

List of Tables

Table 2.1 Performance comparison between the best settings of the
branch-and-bound algorithm and CPLEX-MI-SOCP on the mixed
binary instances ... 33

Table 2.2 Performance comparison between the best settings of the
branch-and-bound algorithm and CPLEX-MI-SOCP on the mixed
integer instances... 36

Table 3.1 Performance comparison between Algorithm 3 and SOCP on pure
binary and mixed binary instances with p “ 2 52

Table 3.2 Performance comparison between Algorithm 3 and SOCP on pure
integer and mixed integer instances with p “ 2 52

Table 3.3 Performance comparison between Algorithm 3 and SOCP on
instances with p “ 2 for the convergence tolerance of 10´6...................... 54

Table 3.4 Performance comparison between Algorithm 3, SOCP, and
linearization method on pure binary instances with p “ 2....................... 60

Table 4.1 Different geometric weights for each value of p 84

Table 4.2 Performance comparison for instances with p “ 2 and π “ p1, 1q 88

Table 4.3 Performance comparison for instances with p “ 3 and π “ p1, 1, 1q 91

Table 4.4 Performance comparison for instances with p “ 4 and π “ p1, 1, 1, 1q 93

Table 4.5 Detailed performance of single-objective integer linear
programming solvers on linearized binary instances with p “ 2 and
unit geometric weights .. 96

Table 5.1 TG119 case: Feasible dose levels .. 123

vi

Table 5.2 Liver case: Feasible dose levels... 127

Table 5.3 Liver case: the wish-list used for the Lexico and 2pεc............................. 131

Table 6.1 Frequently used notations (subscripts and superscripts will be
added whenever needed).. 147

Table 6.2 Generalized FFT-based multiplication of the three integers
y1 “ y2 “ y3 “ 7 ... 151

Table 6.3 Results for the instance with p “ 15 ... 162

Table 6.4 Results for the instance with p “ 20 ... 162

Table 6.5 High-level summary of computational results .. 166

Table B1.1 Performance comparison between Algorithm 3 and B&B on pure
binary and mixed binary instances with p “ 2 199

Table B1.2 Performance comparison between Algorithm 3 and B&B on pure
integer and mixed integer instances with p “ 2 200

Table B2.1 Performance comparison between Algorithm 3 and SOCP on pure
binary and mixed binary instances with p “ 3 201

Table B2.2 Performance comparison between Algorithm 3 and SOCP on pure
integer and mixed integer instances with p “ 3 201

Table B2.3 Performance comparison between Algorithm 3 and SOCP on
instances with p “ 3 for the convergence tolerance of 10´6...................... 202

Table B3.1 Performance comparison between Algorithm 3 and SOCP on pure
binary and mixed binary instances with p “ 4 203

Table B3.2 Performance comparison between Algorithm 3 and SOCP on pure
integer and mixed integer instances with p “ 4 203

Table B3.3 Performance comparison between Algorithm 3 and SOCP on
instances with p “ 4 for the convergence tolerance of 10´6...................... 204

Table C1.1 Pure binary instances with unit geometric weights................................. 205

Table C1.2 Pure integer instances with unit geometric weights 206

vii

Table C2.1 Performance comparison for the fair allocation of indivisible goods
problem... 207

Table C2.2 Performance comparison of different solution approaches on the
mobile gateway selection problem... 209

Table C2.3 Performance comparison for the primary care selection problem.............. 210

Table E4.1 Average solution time (sec.) per subclass of pure binary instances........... 233

Table E4.2 Average solution time (sec.) per subclass of continuous
minimization instances .. 234

Table E4.3 Average solution time (sec.) per subclass of continuous
maximization instances ... 235

viii

List of Figures

Figure 2.1 An illustration of the workings of CSTpl, uq .. 13

Figure 2.2 An illustration of the nondominated frontier corresponding to
Problem (2.1)... 24

Figure 2.3 An illustration of the workings of the weighted sum method 24

Figure 2.4 The run time performance profile of the proposed
branch-and-bound algorithm for different settings on mixed binary
instances.. 31

Figure 2.5 The run time performance profile of CPLEX-MI-SOCP for
different settings on mixed binary instances .. 32

Figure 2.6 The run time performance profile of the proposed
branch-and-bound algorithm for different settings on mixed integer
instances.. 34

Figure 2.7 The run time performance profile of CPLEX-MI-SOCP for
different settings on mixed integer instances.. 35

Figure 3.1 A high-level description of the proposed algorithm when p “ 2 42

Figure 3.2 Performance profiles for instances with p “ 2 .. 51

Figure 3.3 Performance profile of instances with p “ 2 for the convergence
tolerance of 10´6 .. 54

Figure 3.4 Performance profile of instances with p “ 3 ... 55

Figure 3.5 Performance profile of instances with p “ 3 for the convergence
tolerance of 10´6 .. 56

Figure 3.6 Performance profile of instances with p “ 4 ... 57

ix

Figure 3.7 Performance profile of instances with p “ 4 and the convergence
tolerance of 10´6 .. 58

Figure 4.1 An illustration of Proposition 4.2 and its corollary when p “ 2 68

Figure 4.2 An illustration of the workings of the proposed algorithms in the
first iteration when p “ 2 .. 71

Figure 4.3 An illustration of a possible search strategy .. 72

Figure 4.4 Comparison between the algorithm proposed by [1], the so-called
B-and-B, and CFSSA-III on pure binary instances for unit
geometric weights ... 86

Figure 4.5 Performance comparison for instances with p “ 2 and π “ p1, 1q 89

Figure 4.6 Performance profile for instances with p “ 2 and π P tp2, 1q, p1, 2qu.......... 89

Figure 4.7 Performance profile for instances with p “ 2 and π P tp3, 1q, p1, 3qu.......... 90

Figure 4.8 Performance comparison for instances with p “ 3 and π “ p1, 1, 1q 91

Figure 4.9 Performance profiles for instances with p “ 3 and
π P tp2, 1, 1q, p1, 2, 1q, p1, 1, 2qu .. 92

Figure 4.10 Performance comparison for instances with p “ 4 and π “ p1, 1, 1, 1q 94

Figure 5.1 An illustration of the feasible set of a bargaining game with two
players (|S| “ 2) in the payoff space ... 113

Figure 5.2 TG-119 case: DVH of the ideal (solid curves) and worst (dashed
curves) utility/penalty values... 124

Figure 5.3 TG-119 case: DVH comparison between the Nash optimal solution
(solid curves) and the quadratic optimal solution (dashed curves) 125

Figure 5.4 Liver case: DVH of ideal (solid curves) and worst (dashed curves)
utility/penalty values .. 128

Figure 5.5 Liver case: DVH comparison between the Nash optimal solution
(solid curves) and the quadratic optimal solution (dashed curves) 129

Figure 5.6 Liver case: dose distribution map of the Nash optimal solution............... 130

x

Figure 5.7 Liver case: DVH comparison between the Nash optimal solution
(solid curves) and Lexicographic optimization or 2pεc approach
(dashed curves) .. 132

Figure 5.8 Liver case: dose distribution map of the treatment plans generated
by the Lexico and 2pεc.. 133

Figure 6.1 High-level summary of computational results as a tree
(recommended solution approaches) .. 139

Figure 6.2 Binary multiplication of two binary-encoded numbers
(numbering/indexing starts from zero and is done from right to
left, e.g., column j ´ 1 is to the right of column j and ẑ4 is to the
right of ẑ5)... 142

Figure 7.1 A general framework for extending our proposed methodology................ 173

Figure E4.1 Solution time comparison between the proposed search mechanisms
for pure binary instances with p “ 2... 222

Figure E4.2 Solution time comparison between different enhancement settings
for pure binary minimization instances ... 223

Figure E4.3 Solution time comparison between the proposed algorithms and
GRB SOCP for binary maximization instances...................................... 225

Figure E4.4 Solution time comparison between the proposed algorithms and
GRB Nonconvex for binary minimization instances................................ 226

Figure E4.5 Performance comparison between the proposed approach, GRB
SOCP, and GRB Nonconvex for pure continuous instances with
p “ 2 ... 228

Figure E4.6 Performance comparison between the proposed approach, GRB
SOCP, and GRB Nonconvex for pure continuous instances with
p “ 3 ... 230

Figure E4.7 Performance comparison between the proposed approach, GRB
SOCP, and GRB Nonconvex for pure continuous instances with
p “ 4 ... 231

xi

Abstract

This dissertation presents three different contributions to an important class of opti-

mization problems known as Multiplicative Programs (MPs). The first group of contributions

contains the development and analysis of several multi-objective optimization-based based

algorithms designed to find the optimal solution of Mixed Integer Linear MPs. As for the

second group, the application of a special class of MPs in radiotherapy planning is presented.

Finally, in the last group, a new technique for conducting the multiplication process in the

objectives of MPs is presented. Using this technique, we introduce a family of novel solution

methods that are capable of solving both maximum and minimum MPs.

Regarding the first group of contributions, we show that MPs can be viewed as special

cases of the problem of optimization over the efficient set in Multi-objective optimization.

Based on this observation, we develop several solution approaches with their own unique

properties. In the first solution approach, we embed an existing algorithm capable of solving

continuous MPs with two multiplying terms in a branch-and-bound framework to solve mixed

integer instances. In our second approach, we develop a criterion space search algorithm for

solving any mixed integer MPs with any number of multiplying terms. In our last solution

approach, we develop three different algorithms that, in addition to solving any mixed integer

MPs with any number of multiplying terms, are capable of handling the multiplying terms

with different powers. Specifically, the advantage of our last solution approach is that it

handles the powers with the minimal impact on the computational complexity in practice.

In the second group of contributions, we study the fluency map optimization problem

in Intensity Modulated Radiation Therapy (IMRT) from a cooperative game theory point

of view. We consider the cancerous and healthy organs in a patient’s body as players of a

xii

game, where cancerous organs seek to eliminate the cancerous cells and healthy organs seek

to receive no harm. We balance these trade-off by transforming the fluency map optimization

problem into a bargaining game. Then, using the concept of Nash Social Welfare, we find a

solution for our bargaining game by creating and optimizing an MP. The importance of our

solution is that it simultaneously satisfies efficiency and fairness in the trade-offs. Finally, we

demonstrate the advantages of our proposed approach by implementing it on two different

cancer cases.

In the third and last group of contributions, we present the novel idea of binary-

encoding the multiplication operation analogously to how a computer conducts it internally.

Based on this idea, we develop a new family of solution methods for MPs. One of our

methods is to solve the multiplicative programs bit-by-bit, i.e., iteratively computing the

optimal value of each bit of the objective function. In an extensive computational study, we

explore a number of solution methods that solve MPs faster and more accurately.

xiii

Chapter 1: Introduction

A Generalized Maximum Multiplicative Program (GMMP) is a problem of the form

max

" p
ź

i“1

yπii pxq : x P X , ypxq ě 0

*

, (1.1)

where X Ď Rn represents the set of feasible solutions which is assumed to be bounded. Also,

ypxq :“
`

y1pxq, . . . , yppxq
˘

is a vector of linear functions and π :“
`

π1, ¨ ¨ ¨ , πp
˘

is the vector

of so-called geometric weights where ypxq ě 0 and π ą 0, i.e., yipxq ě 0 and πi ą 0 for all

i P t1, . . . , pu. The objective function of a GMMP is sometimes referred to as the Nash social

welfare function in the literature [2]. As an aside, throughout this article, vectors are always

column-vectors and are denoted in bold fonts. It is assumed that the vector of geometric

weights is known and the optimal objective value of a GMMP is strictly positive. It is worth

mentioning that, in this study, the term ‘Generalized’ in GMMP refers to the fact that the

vector of geometric weights is not necessarily a unit vector, i.e. geometric weights are not

necessarily equal to one. We note that if X is defined by a set of linear constraints, the

problem is referred to as Linear GMMP (L-GMMP). If in a L-GMMP, all decision variables

are integer, the problem is referred to as Integer Linear GMMP (IL-GMMP). Finally, if in

a L-GMMP, some but not all decision variables are integer, the problem is referred to as

Mixed Integer Linear GMMP (MIL-GMMP).

The goal of this study is to develop new exact and fast algorithms that can solve

any IL-GMMP by just solving a finite number of single-objective integer linear programs. In

other words, we attempt to develop new algorithms that can exploit the power of commercial

single-objective integer linear programming solvers such as IBM ILOG CPLEX, Gurobi, and

FICO Xpress for solving an IL-GMMP which is a non-linear optimization problem. We will

1

also explain how our proposed algorithms can be easily modified to solve any MIL-GMMP by

customizing the technique developed by [1]. The reason that we do not focus on MIL-GMMPs

directly in this study is that when using the modification technique, some non-linear convex

optimization problems should be solved during the course of our algorithms and this is not

compatible with our goal in this paper, i.e. solving only (integer) linear programs. Such non-

linear convex optimization problems have some undesirable computational characteristics,

for instance they cannot directly handle fractional geometric weights.

The proposed exact algorithms in this study are developed based on a critical obser-

vation that an optimal solution of Problem (1.1) is an efficient or Pareto-optimal solution,

i.e. a solution in which it is impossible to improve the value of one objective without making

the value of at least one other objective worse, of the following multi-objective optimization

problem,

max

"

y1pxq, . . . , yppxq : x P X , ypxq ě 0

*

. (1.2)

Specifically, by maximizing the function
śp

i“1 y
πi
i pxq over the set of efficient solutions

of Problem (1.2), an optimal solution of Problem (1.1) can be obtained. We will prove this

observation in this thesis but similar proofs can be found in [3, 4, 1], and [5, 6]. Overall, this

critical observation indicates that Problem (1.1) can be viewed and solved as a special case

of the problem of optimization over the efficient set in multi-objective optimization. It is

worth noting that, in optimization over the efficient set, the goal is to compute an optimal

solution directly, i.e. without enumerating all efficient solutions (if possible) [7, 8, 9, 10].

1.1 Motivation

The main motivation of this study is based on the observation that GMMPs have

many applications in different fields of study. Consequently, developing faster and more

reliable algorithms for this class of optimization problems can have a significant impact on

problem solving in many fields. Next, we review some of the well-known applications.

2

1.1.1 Game Theory

The first field of study is game theory. One of the important applications of GMMPs is

finding the Nash solution to a symmetric/non-symmetric bargaining problem. A bargaining

problem is a cooperative game where all players agree to create a grand coalition, instead

of competing with each other, to get a higher payoff [11]. To be able to create a grand

coalition, the agreement of all players is necessary. Therefore, a critical question to be

answered is: what should the payoff of each player be in a grand coalition? One of the

solutions to the bargaining problem was proposed by Nash and is now known as the Nash

bargaining solution [5, 6]. Nash proved that, under certain conditions, an optimal solution

of the bargaining problem can be obtained by solving a GMMP in which yipxq represents the

utility function of player i P t1, . . . , pu for a feasible solution. The geometric weights in the

context of bargaining problems/games indicate the negotiation power of the players. Also,

integer decision variables arise in the context of discrete bargaining games, e.g. fair allocation

of indivisible goods (for example artworks and jewelry) among multiple players/agents1.1

[12, 13, 14]. It is worth mentioning that GMMPs have other applications in game theory

as well, e.g. computing a market equilibrium for a linear Fisher market or a Kelly capacity

allocation market. Interested readers can refer to [3, 15, 16, 17], and [18] for further details

about other applications.

1.1.2 Multi-objective Optimization

The second field is multi-objective optimization. As mentioned earlier, a natural

application of GMMPs is in multi-objective optimization based on the reason that they

can be viewed as special cases of the problem of optimization over the efficient set. Multi-

objective optimization is a critical tool in management, where competing goals must often be

considered and balanced when making decisions [19, 20, 21, 22, 23, 24, 25, 26]. For example,

in business settings, there may be trade-offs between long-term profits and short-term cash
1.1http://www.spliddit.org/apps/goods

3

flows or between cost and reliability, while in public good settings, there can be trade-

offs between providing benefits to different communities or between environmental impacts

and social good. Therefore, computing the set of efficient solutions in a multi-objective

optimization problem can be highly valuable. However, it is known that presenting too many

efficient solutions can confuse a decision maker and may make selecting a preferred solution

almost impossible [7, 8]. An approach that can resolve this issue is finding a preferred

solution among the set of efficient solutions directly [9, 7]. This approach is known as

optimization over the efficient set, which is a global optimization problem [10]. So, in order

to directly compute a Pareto-optimal solution that can balance the conflicting objectives, a

multi-objective optimization problem can be transformed into a GMMP [27, 28].

1.1.3 Conservation Planning

The third field is conservation planning. A typical conservation planning problem is

about deciding which sites to protect within a geographical region to preserve biodiversity

[29]. The feasible set of such a problem can be easily formulated using binary decision

variables and some constraints [30, 31]. For example, one can use a binary decision variable

for each site to indicate whether that site should be selected for protection or not. Also,

budget constraints, connectivity constraints (i.e. the selected sites should be connected),

and compactness constraints (i.e. the selected sites should form a compact shape) can be

considered. A typical approach for preserving biodiversity is to use GMMPs in which yipxq is

the survival probability of species i P t1, . . . , pu for a feasible solution x P X [32, 33, 34]. The

geometric weights represent the importance level of species from the view point of decision

maker(s).

1.1.4 Other Applications

Finally, it is worth mentioning that there are also other fields of study that give rise

to GMMPs such as system reliability and maximum likelihood estimation [35, 36, 37, 3].

4

For example, when using maximum likelihood estimation for nested logit models, binary

decision variables arise [38, 39]. However, geometric weights are not applicable to maximum

likelihood estimation to the best of our knowledge. Similarly, maximizing the reliability

of series-parallel systems can be done by using GMMPs in which yipxq is the reliability of

subsystem i P t1, . . . , pu for a feasible solution x P X . For system reliability, binary decision

variables are required for indicating whether a particular component should be selected for

a particular subsystem or not. Also, the geometric weights represent the importance level

of each subsystem. Interested readers may refer to Appendix C2, to see three specific case

studies from three different fields of study, i.e. game theory, health care, and transportation

that give rise to IL-GMMPs.

1.2 Contributions of the Thesis

Throughout the body of this thesis, we developed new solution approaches for L-

GMMP that could solve the problems faster and with higher precision. In addition, we

applied the concept of L-GMMP to a new field, i.e. radiotherapy planning. Our research

resulted in 5 major contributions: the publication of 3 journal articles and the submission

of 2 journal articles (at the time of writing this thesis). Our contributions are listed below:

• P1: Ghasemi Saghand, P., & Charkhgard, H., & Kwon, C. (2019). A Branch-and-

Bound Algorithm for a Class of Mixed Integer Linear Maximum Multiplicative Pro-

grams: A Bi-objective Optimization Approach. Computers & Operations Research.

Volume 101, Pages 263-274,

https://doi.org/10.1016/j.cor.2018.08.004.

• P2: Ghasemi Saghand, P., & Charkhgard, H.. (2021). A criterion space search al-

gorithm for mixed integer linear maximum multiplicative programs: a multiobjective

optimization approach. International Transactions in Operational Research,

https://doi.org/10.1111/itor.12964.

5

https://doi.org/10.1016/j.cor.2018.08.004
https://doi.org/10.1111/itor.12964

• P3: Ghasemi Saghand, P., & Charkhgard, H.. (2021). Exact Solution Approaches

for Integer Linear Generalized Maximum Multiplicative Programs Through the Lens

of Multi-objective Optimization, (Submitted and under review).

• P4: Ghasemi Saghand, P., & Charkhgard, H.. (2021). A cooperative game solution

approach for intensity modulated radiation therapy design: Nash Social Welfare op-

timization. Physics in Medicine & Biology. Volume 66, Number 7,

https://doi.org/10.1088/1361-6560/abed95.

• P5: Ghasemi Saghand, P., & Rigternik, F., & Charkhgard, H.. (2021). Solving Mul-

tiplicative Programs by Binary-encoding the Multiplication Operation, (Submitted

and under review).

1.3 Outline of the Thesis

The remaining content of this thesis is organized as follows:

• In Chapter 2, we present our paper P1. In this chapter, we focused on solving IL-

MMPs with only 2 multiplying terms by embedding the algorithm developed in [3]

in an effective branch-and-bound framework. We also develop several enhancement

techniques including preprocessing, cuts, branching strategies, and node selection

strategies to further improve the efficiency of our branch-and-bound. Through our

computational study, we demonstrate that the proposed branch-and-bound algorithm

outperforms a commercial mixed integer SOCP solver.

• In Chapter 3, we present our paper P2. In this chapter, we developed a new solution

approach capable of solving IL-MMP with any number of multiplying terms. Our pro-

posed algorithm is a criterion space search algorithm as it finds the optimal solution

by considering the MIL-MMP as a multi-objective optimization problem and working

on the space of objective functions. Finally, by means of our computational study, we

depict that our proposed algorithm significantly outperforms CPLEX SOCP solver.

6

https://doi.org/10.1088/1361-6560/abed95

• In Chapter 4, we present our paper P3. In this chapter, we show that IL-GMMPs can

be viewed as special cases of the problem of optimization over the efficient (or Pareto-

optimal) set in multi-objective integer linear programming. Based on this observation,

we develop three exact solution approaches with a desirable property: they only solve

a finite number of single-objective integer linear programs to compute an optimal

solution of an IL-GMMP (which is nonlinear). Through an extensive computational

study with 57600 experiments, we compare the performance of all three algorithms

using the three main commercial single-objective integer linear programming solvers

in the market: CPLEX, Gurobi, and Xpress.

• In Chapter 5, we present our paper P4 where we study the fluency map optimization

problem in Intensity Modulated Radiation Therapy (IMRT) from a cooperative game

theory point of view. We consider the cancerous and healthy organs in a patient’s

body as players of a game, where cancerous organs seek to eliminate the cancerous

cells and healthy organs seek to receive no harm. We balance these trade-off by

transforming the fluency map optimization problem into a bargaining game. Then,

using the concept of Nash Social Welfare (NSW), we find a solution for our bargaining

game that satisfies efficiency and fairness. Finally, we demonstrate the advantages of

our our proposed approach by implementing it on two different cancer cases.

• In Chapter 6, we present our paper P5. In this chapter, we try to solve maximum

and minimum multiplicative programs from a new approach. The main idea is to

binary-encode the multiplication operation analogously to how a computer conducts

it internally. Based on this idea, we develop a new family of solution methods for

multiplicative programs. One of our methods is to solve the multiplicative programs

bit-by-bit, i.e., iteratively computing the optimal value of each bit of the objective

function. In an extensive computational study, we explore a number of solution

methods that solve multiplicative programs faster and more accurately.

7

• Finally, in Chapter 7, we present the summary of the chapters discussed in this

thesis, provide their concluding remarks, and establish some guidelines for the future

research.

8

Chapter 2: A Branch-and-Bound Algorithm for a Class of Mixed Integer

Linear Maximum Multiplicative Programs: A Bi-objective Optimization

Approach

The copyright permissions for reuse previously published material in this chapter can

be found in Appendix A1.

The main contribution of this chapter is extending the algorithm proposed by [3] to

solve any mixed integer linear maximum multiplicative program with p “ 2, i.e., those for

which some of the decision variables have to take integer values. We propose an effective

branch-and-bound algorithm which employs the power the algorithm developed by [3] for

solving mixed integer instances. We also develop several preprocessing and cut generating

techniques to improve the solution time of the proposed algorithm. Moreover, the effects

of several branching and node selecting strategies are explored. A computational study

shows that, for large-sized mixed binary instances, our proposed approach outperforms a

commercial solver, i.e., CPLEX Mixed Integer SOCP solver, by a factor of around two on

average. Also, for general mixed integer instances, our proposed algorithm outperforms

CPLEX Mixed Integer SOCP solver not only on large-sized instances but also on small-sized

instances by a factor of two on average.

The structure of this chapter is organized as follows. In Section 2.1, we provide

some preliminaries and explain a high-level description of the algorithm proposed by [3]. In

Section 2.2, we explain our proposed branch-and-bound algorithm in detail. In Section 2.3,

some branching strategies are introduced. In Section 2.4, some node selecting strategies are

presented. In Section 2.5, we explain some potential enhancement techniques. In Section 2.6,

9

we conduct an extensive computational study. The concluding remarks of this chapter are

provided in Section 7.1.

2.1 Preliminaries

A Mixed Integer Linear Maximum Multiplicative Program with p “ 2 can be stated

as follows:
max

2

Π
i“1
yi

s.t. y “ Dx` d

Ax ď b

x,y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P R2,

(2.1)

where nc, nb, and ni represent the number of continuous, binary, and integer decision vari-

ables, respectively. Also, D is a 2 ˆ n matrix where n :“ nc ` nb ` ni, d is a 2-vector, A is

an mˆ n matrix, and b is an m-vector.

The focus of this study is on solving Problem (2.1). We refer to the set X :“ tx P

Rn : Ax ď b, x ě 0u as the feasible set in the decision space and to the set Y :“ ty P R2 :

x P X , y “ Dx` d, y ě 0u as the feasible set in the criterion space. We assume that X is

bounded (which implies that Y is compact) and the optimal objective value of the problem

is strictly positive, i.e., there exists a y P Y such that y ą 0. We usually refer to x P X as a

feasible solution and to y P Y as a feasible point (y is the image of x in the criterion space).

Definition 2.1. A feasible solution x P X is called efficient, if there is no other x1 P X such

that y1 ď y11 and y2 ă y12 or y1 ă y11 and y2 ď y12 where y :“ Dx ` d and y1 :“ Dx1 ` d.

If x is efficient, then y is called a nondominated point. The set of all efficient solutions is

denoted by XE. The set of all nondominated points is denoted by YN and referred to as the

nondominated frontier.

10

Proposition 2.1. An optimal solution of Problem (2.1), denoted by x˚, is an efficient

solution and therefore its corresponding image in the criterion space, denoted by y˚ where

y˚ :“ Dx˚ ` d, is a nondominated point.

Proof. Suppose that x˚ is an optimal solution of Problem (2.1) but it is not an efficient

solution. By definition, this implies that there must exist a feasible solution denoted by

x P X that dominates x˚. In other words, we must have that either y˚1 ď y1 and y˚2 ă y2 or

y˚1 ă y1 and y˚2 ď y2 (where y :“ Dx` d). Also, by assumptions of Problem (2.1) we know

that y˚ ą 0. Therefore, we must have that 0 ă y˚1y
˚
2 ă y1y2. Consequently, x˚ cannot be

an optimal solution (a contradiction).

Proposition 2.1 implies that Problem (2.1) is equivalent to maxyPYN y1y2 and this is

precisely optimization over the efficient set. [3] used this observation and developed an algo-

rithm, which we refer to as CST (which comes from the names of its authors Charkhgard,

Savelsbergh, and Talebian) in this study, to solve a relaxation of Problem (2.1). The relax-

ation can be obtained by dropping the integrality condition of binary and integer decision

variables of Problem (2.1).

By definition, the optimal objective value of such a relaxation should provide a dual

bound, i.e, an upper bound, for the optimal objective value of Problem (2.1). Therefore, by

this observation, in this paper, we frequently use CST to compute dual bounds. However,

whenever we use CST, we provide a lower bound vector, denoted by l P Rn, and an upper

bound vector, denoted by u P Rn, for x. As an aside, we note that l and u will be

provided/updated automatically during the course of the branch-and-bound algorithm that

we will introduce in the next section. So, we introduce the operation CSTpl,uq which is

11

equivalent to solving the following problem:

max
2

Π
i“1
yi

s.t. y “ Dx` d

Ax ď b

l ď x ď u

x,y ě 0, x P Rn, y P R2,

(2.2)

by calling CST algorithm. This operation simply returns an optimal solution and an optimal

point of Problem (2.2) denoted by px̃, ỹq. Note that if x̃ “null (or equivalently ỹ=null) then

Problem (2.2) is infeasible. Next, we provide a high-level description of the CST algorithm.

Interested readers can refer to [3] for further details.

Suppose that CSTpl,uq is called. An illustration of the feasible set of Problem (2.2)

in the criterion space can be found in Figure 2.1a. In each iteration, CST computes a

global upper bound point, denoted by yu, and a global lower bound point, denoted by yl,

in the criterion space. This implies that yu1yu2 and yl1yl2 provide a global upper bound and

a global lower bound for the optimal objective value of Problem (2.2), respectively. The

algorithm terminates whenever the (relative and/or absolute) optimality gap falls below

a given threshold. In the first iteration, the algorithm computes an upper bound point

by solving two single-objective linear programs. The first maximizes y1 and the second

maximizes y2 over the feasible set in the criterion space. An illustration of the upper bound

point in the criterion space can be found in Figure 2.1b. Next, the algorithm searches over

the imaginary line that passes through the upper bound point and the origin to compute

the so-called intersection point which is denoted by yI . The intersection point is the closest

feasible point in the criterion space to the upper bound point and can be computed by

solving a single-objective linear program. Therefore, yI1yI2 provides a global lower bound for

the optimal objective value of Problem (2.2). An illustration of the intersection point found

12

y1

y2

(a) The feasible set in the
criterion space

yu

y1

y2

(b) The first upper bound
point

yu

yI

y1

y2

(c) The first intersection point

yI

y1

y2

(d) The first cut

yu

y1

y2

(e) The second upper bound
point

Figure 2.1: An illustration of the workings of CSTpl,uq

13

in the first iteration can be found in Figure 2.1c. Note that the algorithm keeps the best

global lower bound found during the course of the algorithm in yl. In other words, after

computing an intersection point, yl should be updated. Next, the algorithm adds a cut to

the criterion space based on the position of the intersection point to remove the parts of

the criterion space that cannot contain a better lower bound point. An illustration of the

cut added in the first iteration can be found in Figure 2.1d. After adding the cut, the next

iteration starts and the same process repeats but this time over the reduced feasible set in

the criterion space. For example, an illustration of the upper bound point produced in the

second iteration can be found in Figure 2.1e.

Remark 2.1. For instances with p ą 2, [3] have shown that CST can provide good feasible

solutions with provable quality guarantee but the algorithm cannot necessarily converge to

an optimal solution. So, further research is required about customizing CST for solving

instances with p ą 2.

2.2 A Branch-and-Bound Algorithm

Our proposed algorithm is similar to the traditional branch-and-bound algorithm for

single-objective mixed integer linear programs. The main difference is that instead of using

a linear programming solver to compute dual bounds, we employ the CST algorithm. Next,

we provide a detailed explanation of our proposed branch-and-bound algorithm.

The algorithm maintains a queue of nodes, denoted by Tree. The algorithm also

maintains a global upper bound, denoted by GUB, and global lower bound, denoted by GLB.

At the beginning, the algorithm sets GUB “ `8 and GLB “ ´8. Moreover, the algorithm

initializes pl,uq with p0,`8q. To initialize the queue, the algorithm first calls CSTpl,uq to

compute px̃, ỹq. If the integrality conditions hold, i.e., x̃ P Rnc ˆBnb ˆZni , then an optimal

solution is found. So, in that case, the algorithm terminates after setting px˚,y˚q “ px̃, ỹq.

Otherwise, CSTpl,uq has computed a dual bound, and so the algorithm sets GUB “ ỹ1ỹ2

and initializes the queue by px̃, ỹ, l,uq. The algorithm then explores the queue as long as it

14

is nonempty and GUB ´GLB ě ε1 and GUB´GLB
GUB

ě ε2, where ε1 ą 0 and ε2 P p0, 1q are the

user-defined absolute and relative optimality gap tolerances, respectively. Next, we explain

how each element of the queue is explored.

In each iteration, the algorithm pops out an element of the queue and denotes it by

px,y, l,uq. Note that when an element is popped out from the queue then that element

does not exist in the queue anymore. We will explain in detail in which order the elements

of the queue should be popped out in Section 2.4. The algorithm next selects an index of a

decision variable that was supposed to take an integer (or binary) value but it currently has

fractional value in solution x. This operation is denoted by Branching-Indexpxq and its

output is denoted by j. In Section 2.3, we will introduce several rules for this operation.

Next, the algorithm generates two new lower bound and upper bound vectors, denoted

by pl1,u1q and pl2,u2q. The algorithm sets l1i “ li for all i P t1, . . . , nuztju, l1j “ rxjs, and

u1 “ u. Similarly, the algorithm sets u2
i “ ui for all i P t1, . . . , nuztju, u2

j “ txju, and l2 “ l.

The algorithm first explores pl1,u1q. This implies that the algorithm calls CSTpl1,u1q to

compute px1,y1q. Again we note that if CST fails to find a feasible solution then we have that

x1 “null and y1 “null. Therefore, in that case, the algorithm will skip the following steps

and proceed to explore pl2,u2q. Otherwise, the algorithm first checks whether the integrality

conditions hold, i.e., x1 P Rnc ˆ Bnb ˆ Zni , and GLB ă y1
1y

1
2. If that is the case then a new

and better global lower bound is found and so the algorithm will set px˚,y˚q “ px̃1, ỹ1q and

GLB “ y1
1y

1
2. Otherwise, the algorithm checks whether y1

1y
1
2 ´GLB ě ε1 and y1

1y
1
2´GLB
y1
1y

1
2

ě ε2.

If that is the case then the algorithm will add px1,y1, l1,u1q to be explored further in the

future because it is possible to find better feasible solutions by exploring that element.

After exploring pl1,u1q, pl2,u2q should be explored similarly. Therefore, the algorithm

will explore it and then before starting the next iteration it will update GUB. The maximum

value of y1y2 among all nodes in the queue defines the new global upper bound. A detailed

description of the proposed branch-and-bound algorithm can be found in Algorithm 1.

15

Input: A feasible instance of Problem (2.1)
Queue.createpTreeq
pl,uq Ð p0,`8q
GLB Ð ´8; GUB Ð `8

px̃, ỹq Ð CSTpl,uq
if x̃ P Rnc ˆ Bnb ˆ Zni then
px˚,y˚q Ð px̃, ỹq
GLB Ð ỹ1ỹ2

end
else

Tree.add
`

px̃, ỹ, l,uq
˘

GUB Ð ỹ1ỹ2

end
while not Queue.emptypTreeq & GUB ´GLB ě ε1 & GUB´GLB

GUB
ě ε2 do

Tree.PopOut
`

px,y, l,uq
˘

j Ð Branching-Indexpxq
pl1,u1q Ð pl,uq; l1j Ð rxjs

pl2,u2q Ð pl,uq; u2
j Ð txju

px1,y1q Ð CSTpl1,u1q

if px1,y1q ‰(null,null) then
if x1 P Rnc ˆ Bnb ˆ Zni & y1

1y
1
2 ą GLB then

px˚,y˚q Ð px1,y1q

GLB Ð y1
1y

1
2

end
else if y1

1y
1
2 ´GLB ě ε1 & y1

1y
1
2´GLB
y1
1y

1
2

ě ε2 then
Tree.add

`

px1,y1, l1,u1q
˘

end
end
px2,y2q Ð CSTpl2,u2q

if px2,y2q ‰(null,null) then
if x2 P Rnc ˆ Bnb ˆ Zni & y2

1y
2
2 ą GLB then

px˚,y˚q Ð px2,y2q

GLB Ð y2
1y

2
2

end
else if y2

2y
2
2 ´GLB ě ε1 & y2

1y
2
2´GLB
y2
1y

2
2

ě ε2 then
Tree.add

`

px2,y2, l2,u2q
˘

end
end
Update GUB

end
return x˚,y˚

Algorithm 1: A Branch-and-Bound Algorithm

16

2.3 Branching Strategies

Selecting a branching variable is a crucial task in any branch-and-bound algorithm

since it can impact the solution time of the algorithm significantly. Ideally, we would like to

select a variable for branching that helps us to explore the minimum number of nodes in total.

In light of this observation, in this study, we explore some variants of several well-known

branching strategies that will define the operation Branching-Indexpxq in Algorithm 1.

Let I be the index sets of all binary and integer decision variables in Problem (2.1). For a

given node of the queue px,y, l,uq, let V pxq Ď I be the index set of all variables in solution

x that were supposed to take integer (or binary) values but they have taken fractional values.

We have explored the following five branching strategies in this study (interested readers can

refer to 40 for further details):

• Random branching : This is the easiest and the least-memory consuming branching rule.

In this rule, for a given node of the queue px,y, l,uq, all the elements of V pxq have an

equal chance of being selected, and so the algorithm selects one of them randomly.

• Most infeasible branching : For a given node of the queue px,y, l,uq, another simple

branching strategy is to randomly select an element of V pxq with the largest integer

violation for branching. For each i P V pxq, the integer violation is defined as minpxi´

txiu, rxis´ xiq.

In the traditional branch-and-bound algorithm for single-objective mixed integer lin-

ear programming, it is known that this branching rule does not outperform random

branching [41]. In fact, this rule normally has a poor performance. However, surpris-

ingly, we will computationally show (in Section 2.6) that this rule performs the best

for our proposed branch-and-bound algorithm for solving Problem (2.1).

• Pseudo-costs branching : This strategy was initially introduced by [42] and then ex-

plored further by [43]. This strategy maintains a history of the results of past branch-

17

ings for each i P I. For a given node of the queue px,y, l,uq, the algorithm selects an

index i P V pxq with the largest expected change in the dual bound, i.e., upper bound.

Next, we explain how pseudo-costs can be computed for each iteration.

Let ρ1
i and ρ2

i be the pseudo-costs for i P I at any time during the course of the

algorithm. For each i P I, at the beginning, the algorithm sets ρ1
i “ 0 and ρ2

i “ 0. In

any iteration of the algorithm, if the algorithm branches on i P I and calls CSTpl1,u1q,

the algorithm updates ρ1
i as follows:

ρ1
i Ð ρ1

i `
y1y2 ´ y

1
1y

1
2

rxis´ xi
,

where y1y2 is the optimal objective value associated with the node that the algorithm

is exploring at that iteration, i.e., px,y, l,uq. We denote the number of times that ρ1
i

has been updated by n1
i at any time during the course of the algorithm. Note that

if after calling CSTpl1,u1q it turns out that px1,y1q “(null,null), i.e., meaning the

problem is infeasible, then ρ1
i and n1

i should not be updated. Similarly, whenever the

algorithm branches on i P I and calls CSTpl2,u2q, the algorithm updates ρ2
i as follows:

ρ2
i Ð ρ2

i `
y1y2 ´ y

2
1y

2
2

xi ´ txiu
.

We denote the number of times that ρ2
i has been updated by n2

i at any time during

the course of the algorithm. Note that if after calling CSTpl2,u2q it turns out that

px2,y2q “(null,null), i.e., meaning the problem is infeasible, then ρ2
i and n2

i should not

be updated.

In light of the above, suppose that at a particular iteration of the algorithm, we are

exploring the node px,y, l,uq and we want to decide on which variable we should

branch. Based on the pseudo-costs, one can estimate the change that can occur in the

18

dual bound by calling CSTpl1,u1q after branching on i P V pxq as follows:

δ1
i :“ prxis´ xiq

ρ1
i

n1
i

.

In other words, we estimate that y1y2 ´ y1
1y

1
2 « δ1

i . Similarly, one can estimate the

change that can occur in the dual bound by calling CSTpl2,u2q after branching on

i P V pxq as follows:

δ2
i :“ pxi ´ txiuq

ρ2
i

n2
i

In other words, we estimate that y1y2 ´ y2
1y

2
2 « δ2

i . Therefore, the algorithm can

compute a score for each i P V pxq as follows:

si :“ µminpδ1
i , δ

2
i q ` p1´ µqmaxpδ1

i , δ
2
i q

where µ P r0, 1s is a user-defined parameter which is typically close to 1. During

the course of this study, we examined different values for µ, i.e., t0, 0.1, 0.2, . . . , 1u.

However, we set µ “ 0.9 in this paper because this value performs the best. The index

with the highest score is the one that the algorithm selects for branching. In order to

employ this sophisticated rule, an initial estimation is required. In this paper, we use

the following strategies to obtain an initial estimation.

1. Initialization using the random branching: In this strategy, we employ random

branching for a number of iterations (which is 10 in this paper) and then the

algorithm switches to pseudo-costs branching. It is worth mentioning that if at

a particular iteration the pseudo-costs branching fails to select an index, i.e.,

si “ 0 for all i P V pxq, then we employ the random branching for that particular

iteration.

19

2. Initialization using the most infeasible branching: This is similar to the previ-

ous case, we only employ the most infeasible branching instead of the random

branching.

• Reliability branching: This branching is mostly based on the strong branching [44].

Suppose that at a particular iteration of the algorithm, we are exploring the node

px,y, l,uq and we want to decide on which variable we should branch using the strong

branching. In strong branching, the algorithm will actually call both CSTpl1,u1q and

CSTpl2,u2q to compute the exact change in the dual bound, i.e., ∆1
i :“ y1y2 ´ y1

1y
1
2

and ∆2
i :“ y1y2 ´ y2

1y
2
2. So, for each i P V pxq, the algorithm computes si but using

∆1
i and ∆2

i instead of δ1
i and δ2

i . Similar to the pseudo-costs branching, the index

with the highest score is the one that the algorithm selects for branching. Since strong

branching imposes a high computational burden, [41] suggest that we should combine

the strong branching with the pseudocosts branching. This is known as the reliability

branching. If n1
i ď τ then we use ∆1

i in computing si, and otherwise we use δ1
i . Also,

if n2
i ď τ then we use ∆2

i in computing si, and otherwise we use δ2
i . During the course

of this study, we examined different values for τ , i.e., t1, 2, 4, 8, 16, 32u. However, we

set τ “ 2 in this paper because this value performs the best.

2.4 Node Selecting Strategies

Selecting which node should be popped out in each iteration is another crucial task

in any branch-and-bound algorithm since it can impact the solution time of the algorithm

significantly. The aim of node selecting strategies is pruning open nodes and ending the

queue as quickly as possible. This can be done by either finding a good feasible solution, in

order to increase the global lower bound (or primal bound), or decreasing the global upper

bound (or dual bound). We implemented five different node selecting strategies, two of which

are solely based on pseudocosts branching [45, 46]:

20

• Depth-first search: In this strategy, the node most recently added to the tree is chosen

for branching [47]. The two advantages of this strategy are that, if there is no primary

feasible solution on hand, this strategy finds one quickly, and by doing so, it increases

GLB quickly. The other advantage is that it keeps the list of open nodes minimal, and

therefore, the memory-usage is small. However, on the negative side, this strategy is

slow in improving the global dual bound and so it takes a lot of time to prove the

optimality of a solution.

• Best-bound search: This strategy selects the node with the best upper/dual bound

[48]. Although this strategy needs more memory in comparison to other strategies,

if an optimal solution is available, this strategy is the fastest to prove its optimality.

Another important characteristic of this strategy is that, in practice, the first feasible

solution that the algorithm finds under this strategy is usually an optimal solution of

the problem.

• Two-phase method : The idea of this strategy is to combine depth-first search and

best-bound search strategies to use the benefits of both. In this paper, our proposed

algorithm employs the depth-first search strategy for at most minp1000, 3nq number of

iterations. As soon as a feasible solution is found which is better than the current GLB

or the algorithm reaches to the maximum number of iterations then it switches to the

best-bound search. The algorithm operates on the best-bound search for minp1000, 3nq

number of iterations. As soon as the algorithm reaches to its maximum number of

iterations then the algorithm checks how much the global upper bound has improved

during operating on the best-bound search strategy. If the improvement is greater

than or equal to 5% then the algorithm starts to operate on the best-bound search for

minp1000, 3nq number of iterations again. Otherwise, it will return to the depth-first

search strategy and similar procedures discussed above will be repeated.

21

• Best expected bound : This strategy is based on the pseudo-costs and selects the node

with the best expected dual bound after branching. For any given nodeN :“ px,y, l,uq

of the queue, let δ1pNq and δ2pNq be the change estimate in the dual bound computed

by the pseudo-costs branching if we branch on the variable that pseudo-costs branching

suggests for that particular node. So, in that case, the estimated dual bounds will be

for node N P Tree:

ē1
N :“ y1y2 ´ δ

1
pNq,

and

ē2
N :“ y1y2 ´ δ

2
pNq.

In light of the above, in this strategy, the algorithm selects a node N P Tree that has

the largest value of maxtē1
N , ē

2
Nu.

• Best estimate: This strategy is also based on the pseudo-costs. This strategy selects

a node that is expected to result in the best integer solution (or best primal bound).

The best expected primal bound for a given node N :“ px,y, l,uq of the queue can be

computed as follows:

eN :“ y1y2 ´
ÿ

iPV pxq

mintδ1
i , δ

2
i u

In light of the above, in this strategy, the algorithm selects a node N P Tree that has

the largest value of eN .

2.5 Enhancements

In this section, we explain a preprocessing technique which is developed for the aim

of producing good global lower bounds and cuts for Problem (2.1). The preprocessing tech-

nique can be called before running Algorithm 1 to possibly improve the performance of this

algorithm. Obviously, generating a good global lower/primal bound can be helpful since

the nodes of the branch-and-bound tree can be pruned faster. Also, by generating cuts and

22

adding them to the formulation, better global upper/dual bounds can be computed during

the course of Algorithm 1.

The proposed preprocessing technique is developed based on Proposition 2.1. By

this proposition, any efficient solution is expected to be a high-quality feasible solution and

hence it can be considered as a (good) global lower bound for the problem. Therefore, in the

proposed preprocessing technique, we attempt to enumerate some of the efficient solutions of

the problem. In order to do so, we use the weighted sum operation, denoted by WSOpλ1, λ2q:

px̄, ȳq P arg max tλ1y1 ` λ2y2 :

y “ Dx` d, Ax ď b, x ě 0, y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P R2
u,

where λ1, λ2 ą 0 are user-defined weights. In multi-objective optimization, it is known

that this operation always returns an efficient solution (if there exists any) for a multi-

objective optimization problem. However, for non-convex optimization problems such as

Problem (2.1), not all efficient solutions can be computed using this operation by considering

even all possible weights [49]. In addition to the fact that ȳ1ȳ2 provides a global lower bound,

the weighted sum operation can naturally produce the following cut for Problem (2.1), due

to optimality:

λ1y1 ` λ2y2 ď λ1ȳ1 ` λ2ȳ2.

In light of the above, in the proposed preprocessing technique, we employ the weighted

sum operation to generate a feasible solution (i.e., global primal bound) and a cut for the

problem. In order to use the weighted sum operation effectively, we employ the Weighted

Sum Method (WSM) [50]. This is because the WSM can compute all nondominated points

that are extreme points of the convex hull of Y . Next, we explain a high-level description of

the WSM.

23

yT

yB

y1

y 2

Figure 2.2: An illustration of the nondominated frontier corresponding to Problem (2.1)

yT

yB

y1

y 2

(a) RpyT ,yBq and the new function

yT

ȳ

yB

y1

y 2

(b) The new imaginary rectangles

Figure 2.3: An illustration of the workings of the weighted sum method

24

In the WSM, we first compute the endpoints of the nondominated frontier. The top

endpoint, denoted by yT , can be computed by first solving,

px̃, ỹq P arg max ty2 :

y “ Dx` d, Ax ď b, x ě 0, y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P R2
u,

and if it is feasible, it needs to be followed by solving

pxT ,yT q P arg max ty1 : y2 ě ỹ2

y “ Dx` d, Ax ď b, x ě 0, y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P R2
u,

We denote the operation of computing pxT ,yT q by arg lex maxpy2, y1q. Similarly, the bot-

tom endpoint can be computed by using arg lex maxpy1, y2q and its outcome is denoted by

pxB,yBq. An illustration of the nondominated frontier corresponding to Problem (2.1) can

be found in Figure 2.2. It is evident that if pxT ,yT q “(null,null), i.e., Problem (2.1) is infea-

sible, then we must have that pxB,yBq “(null,null). Therefore, there is no need to compute

pxB,yBq in that case. Also, if yT “ yB then the Problem (2.1) has an ideal point, i.e.,

|YN | “ 1. In the remaining, we assume that yT ‰ yB.

At the beginning of the WSM, we set GLB “ ´8. After computing the endpoints of

the nondominated frontier, both yT1 yT2 and yB1 yB2 are global lower bounds for Problem (2.1).

So, we set GLB to the best/highest lower bound found and update px˚,y˚q accordingly.

Moreover, we know that y1 ď yB1 and y2 ď yT2 are two valid cuts that can be added to the

formulation and so we add them to the list of cuts which is denoted by Cuts. Note that after

computing the endpoints, all other nondominated points must be in the imaginary rectangle

defined by yT and yB, denoted by RpyT ,yBq (See Figure 2.3a). Hence, the WSM explores

this rectangle and may change it into smaller rectangles, and repeat this process in each one

until it finds all extreme nondominated points.

25

Input: An instance of Problem (2.1)
List.createpCutsq
Queue.createpQq
GLB “ ´8

pxT ,yT q Ð arg lex maxpy2, y1q

if pxT ,yT q ‰ pnull, nullq then
yB Ð arg lex maxpy1, y2q

GLB Ð yT1 y
T
2 , px˚,y˚q Ð pxT ,yT q

Cuts .addpy2 ď yT2 q
if yT ‰ yB then

Q.addpRpyT ,yBqq
if GLB ă yB1 y

B
2 then

GLB Ð yB1 y
B
2 , px˚,y˚q Ð pxB,yBq

end
Cuts .addpy1 ď yB1 q

end
end
while not Queue.emptypTreeq do

Q.PopOutpRpy1,y2qq

λ1 Ð y1
2 ´ y

2
2

λ2 Ð y2
1 ´ y

1
1

px̄, ȳq ÐWSOpλ1, λ2q

if GLB ă ȳ1ȳ2 then
GLB Ð ȳ1ȳ2, px˚,y˚q Ð px̄, ȳq

end
Cuts .addpλ1y1 ` λ2y2 ď λ1ȳ1 ` λ2ȳ2q

if λ1ȳ1 ` λ2ȳ2 ą λ1y
1
1 ` λ2y

1
2 then

Q.addpRpy1, ȳqq
Q.addpRpȳ,y2qq

end
end
return x˚,y˚,GLB,Cuts

Algorithm 2: Preprocessing

26

More precisely, to explore a given rectangle Rpy1,y2q with y1
1 ă y2

1 and y1
2 ą y2

2, the

WSM calls WSOpλ1, λ2q after setting λ1 “ y1
2 ´ y2

2 and λ2 “ y2
1 ´ y1

1 to compute px̄, ȳq.

Note that in this way, λ1y1 ` λ2y2 is a function which is parallel to the line that connects

y1 and y2 in the criterion space. Figure 2.3a shows an example with y1 “ yT and y2 “ yB.

As discussed before since ȳ is a nondominated point, if GLB ă ȳ1ȳ2 then we set GLB “ ȳ1ȳ2

and px˚,y˚q “ px̄, ȳq. Also, the WSM adds λ1y1 ` λ2y2 ď λ1ȳ1 ` λ2ȳ2 to the list of cuts.

Finally, it is evident that if λ1ȳ1`λ2ȳ2 ą λ1y
1
1 `λ2y

1
2 then ȳ is not a convex combination of

y1 and y2. So, in that case, a similar procedure is applied recursively to search Rpy1, ȳq and

Rpȳ,y2q for additional nondominated points (see Figure 2.3b). Algorithm 2 shows a precise

description of the proposed preprocessing technique.

2.6 Computational Study

As we will explain later in this section, based on the study of [51], Problem (2.1) can

be reformulated as a mixed integer SOCP. So, in this section, we compare the performance

of our proposed branch-and-bound algorithm with the performance of the mixed integer

SOCP solver of CPLEX 12.7 (CPLEX-MI-SOCP). We implement our algorithm in C++

and use CPLEX 12.7 to solve linear programs and mixed integer programs arising during

the course of Algorithm 1 and Algorithm 2. The computational experiments are conducted

on a Dell PowerEdge R360 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB),

128GB RAM, the RedHat Enterprise Linux 6.8 operating system, and using a single thread.

Both the absolute, ε1, and the relative optimality gap, ε2, are set to 10´6 in both solution

methods, i.e., our branch-and-bound algorithm and CPLEX-MI-SOCP. Also, a time limit of

7,200 seconds is imposed for each instance in both solution methods. Furthermore, if the

preprocessing is active then a time limit of 0.1n seconds is imposed for it. Note that the

preprocessing can be used both in our proposed branch-and-bound algorithm and CPLEX-

MI-SOCP. Consequently, if the preprocessing is active then a time limit of 7200´ t seconds

is imposed for a solution method where t is the time (in seconds) used by the preprocess-

27

ing (note that t ď 0.1n). The code and instances used in this study can all be found at

https://github.com/paymanghasemi, respectively. Next, we explain how the instances are

generated.

Since pure integer instances can be linearized easily by introducing additional sets of

variables and constraints, they can be solved as pure integer linear programs by commercial

solvers. Consequently, in this computational study, all instances involve continuous decision

variables, i.e., nc ą 0 for all instances. In particular, this computational study is conducted

over two sets of instances each with 80 randomly generated instances. In both sets, nc “ 0.5n

for all instances. However, in the first set, there are no general integer variables, i.e, ni “ 0

and nb “ 0.5n, and in the second set, there is no binary decision variable, i.e., i.e, nb “ 0

and ni “ 0.5n. Each set contains 16 subclasses of instances based on the dimensions of

the matrix Amˆn, and each subclass contains 5 instances. Specifically, we assume that

m P t200, 400, 800, 1600u and n “ αm where α P t0.5, 1, 1.5, 2u. For example, the subclass

200 ˆ 100 implies that m “ 200 and n “ 100, i.e., α “ 0.5. The sparsity of matrix A is set

to 50%. The components of vector b and the entries of matrix A are randomly drawn from

discrete uniform distributions r50, 200s and r10, 30s, respectively. We set the components

of vector d to zero. The sparsity of each row of the matrix D was also set to 50% and its

components were drawn randomly from a discrete uniform distribution r1, 10s. Note that,

since all constraints of the set X are inequality constraints and all coefficients of matrix A are

nonnegative, the set X is bounded. Next, we explain how Problem (2.1) can be reformulated

as mixed integer SOCP.

By introducing a new non-negative variable γ and introducing a geometric mean

constraint, Problem (2.1) can be reformulated as follows:

max γ

s.t. 0 ď γ ď
´ p

Π
i“1
yi

¯
1
p

y “ Dx` d

28

https://github.com/paymanghasemi

Ax ď b

x,y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P Rp, .

If γ̄ is the optimal objective value of the reformulated problem, then γ̄p is the optimal

objective value of the original formulation. [51] show how an optimization problem of this

form can be written as a mixed integer SOCP. Let k be the smallest integer value such that

2k ě p. By introducing a set of non-negative variables and constraints, the geometric mean

constraint can be replaced as follows:

max γ

s.t. 0 ď γ ď Γ

0 ď Γ ď

b

τ k´1
1 τ k´1

2

0 ď τ lj ď
b

τ l´1
2j´1τ

l´1
2j for j “ 1, . . . , 2k´l and l “ 1, . . . , k ´ 1

0 ď τ 0
j “ yj for j “ 1, . . . , p

0 ď τ 0
j “ Γ for j “ p` 1, . . . , 2k

y “ Dx` d

Ax ď b

x,y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P Rp.

The above formulation is a mixed integer SOCP since any constraint of the form

tu, v, w ě 0 : u ď
?
vwu is equivalent to tu, v, w ě 0 :

b

u2 ` pv´w
2
q2 ď v`w

2
u.

2.6.1 A Performance Comparison on Instance of Set I: Mixed Binary Instances

In this section, we first compare the performance of the proposed branch-and-bound

algorithm under different settings obtained by employing the proposed branching strategies,

node selecting strategies, and the preprocessing technique on the instances of set I, i.e.,

29

those with no general integer variables. After computing a good setting for the proposed

algorithm, we then try to find a good setting for the CPLEX-MI-SOCP by exploring whether

the proposed preprocessing technique is useful or not. Finally, we compare the performance

of both solution methods under their best obtained settings.

It is worth mentioning that in this computational study, we frequently use perfor-

mance profiles [52] to compare different algorithms in term of their solution times. A per-

formance profile presents cumulative distribution functions for a set of algorithms being

compared with respect to a specific performance metric. The run time performance profile

for a set of algorithms is constructed by computing for each algorithm and for each instance

the ratio of the run time of the algorithm on the instance and the minimum of the run times

of all algorithms on the instance. The run time performance profile then shows the ratios on

the horizontal axis and, on the vertical axis, for each algorithm, the percentage of instances

with a ratio that is greater than or equal to the ratio on the horizontal axis. This implies

that values in the upper left-hand corner of the graph indicate the best performance.

The run time performance profile of the proposed branch-and-bound algorithm for

different branching settings is shown in Figure 2.4a. The node selection strategy is set

to the best-bound search strategy in this figure. It is evident that the most infeasible

branching strategy performs the best for the set I of instances, and it outperforms the

reliability branching by a factor of up to 10. So, in the remaining, we set the branching

strategy to the most infeasible unless pseudo-costs are required; In that case, we set the

branching strategy to pseudo-costs branching initialized with the most infeasible branching

because based on Figure 2.4a, it has the second best performance. The run time performance

profile of the proposed branch-and-bound algorithm for different node selecting settings is

shown in Figure 2.4b. Observe that the best-bound search strategy performs the best, and

it outperforms the depth-first search strategy by a factor of up to 6.2. So, in the remaining,

we set the node selecting strategy to the best-bound search strategy.

30

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

Random
Strong

MostInf
Pseudo(Random)
Pseudo(MostInf)

(a) Branching strategies

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

MostInf+BestBound
MostInf+DepthFirst
MostInf+TwoPhase

Pseudo(MostInf)+BestExpected
Pseudo(MostInf)+BestEstimate

(b) Node selecting strategies

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

MostInf+ BestBound
MostInf+ BestBound+Primal

MostInf+ BestBound+Primal+Cuts

(c) Enhancements

Figure 2.4: The run time performance profile of the proposed branch-and-bound algorithm
for different settings on mixed binary instances

31

The run time performance profile of the proposed branch-and-bound algorithm for

different enhancements including producing an initial primal bound and producing cuts are

shown in Figure 2.4c. Observe that the performance of the algorithm with no enhancement

seems to be similar to the performance of the algorithm when both generating cuts and

providing an initial primal bound are used. Consequently, there are two best settings for the

proposed branch-and-bound algorithm. It is worth noting that the preprocessing operation

is a time-consuming operation. So, we observe that if we only use the preprocessing for

providing an initial primal bound then the performance of the algorithm decreases.

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

SOCP
SOCP+Primal

SOCP+Primal+Cuts

Figure 2.5: The run time performance profile of CPLEX-MI-SOCP for different settings on
mixed binary instances

The run time performance profile of CPLEX-MI-SOCP for different enhancements

including producing an initial primal bound and producing cuts are shown in Figure 2.5.

We observe that the performance of CPLEX-MI-SOCP with no enhancement seems to be

far better than the case where the cuts and/or an initial primal bound are provided to

CPLEX-MI-SOCP. So, the best setting for CPLEX-MI-SOCP is to make the preprocessing

inactive.

A detailed comparison between the performance of the best obtained settings for the

proposed branch-and-bound algorithm and the CPLEX-MI-SOCP are shown Table 2.1 where

‘#N’ is the number of nodes, ‘#LPs’ is the number of (single-objective) linear programs

solved, ‘T(sec.)’ shows the solution time in seconds, and finally ‘%G’ shows the optimality

32

gap percentage. Note that in this table averages over 5 instances are reported. Note too

that, as discussed earlier, there are two best settings for the proposed branch-and-bound

algorithm. So, in Table 2.1, ‘B&B’ is used for the case with no preprocessing and ‘B&B+

Preprocessing’ is used for the case that providing cuts and an initial primal bound is active.

From Table 2.1, we observe that for small-sized instances, i.e., the classes with 200 and

400 constraints, CPLEX-MI-SOCP seems to perform the best on average. However, as the

number of constraints increases, the performance of CPLEX-MI-SOCP decreases dramati-

cally. For classes with 800 and 1,600 constraints, the solution time of the B&B+Preprocessing

is better by a factor of around 2 on average. It is worth mentioning that both B&B and

CPLEX-MI-SOCP fail to solve some of the instances with 2,400 variables and all of the in-

stances with 3,600 variables to optimality within the imposed time limit, i.e., 7,200 seconds.

In the table, when an algorithm is not able to even find a feasible solution for some of the

instances of a subclass, no optimality gap is reported. Overall, the only algorithm that is

able to solve all of instances to optimality is B&B+preprocessing.

Table 2.1: Performance comparison between the best settings of the branch-and-bound al-
gorithm and CPLEX-MI-SOCP on the mixed binary instances

mˆ n
B&B B&B+Preprocessing CPLEX-MI- SOCP

#N #LPs T(sec.) %G #N LPs T(sec.) %G #N T(sec.) %G
200ˆ 100 31.8 1,019.2 2.2 0 5.0 272.2 10.3 0 30.0 2.7 0
200ˆ 200 28.6 884.4 4.1 0 8.6 370.6 21.0 0 27.0 4.5 0
200ˆ 300 107.0 3,180.4 24.4 0 40.6 1,460.6 37.3 0 86.2 13.9 0
200ˆ 400 59.4 1,704.8 20.1 0 52.2 1,637.0 51.1 0 50.6 13.9 0
Avg 56.7 1,697.2 12.7 0.0 26.6 935.1 29.9 0.0 48.4 8.8 0.0
400ˆ 200 75.8 2,137.2 20.5 0 67.0 1,861.8 32.5 0 47.4 18.9 0
400ˆ 400 70.6 1,943.6 45.9 0 73.4 2,455.0 72.0 0 57.8 36.1 0
400ˆ 600 66.2 1,826.4 85.5 0 50.6 1,597.8 92.0 0 63.8 61.8 0
400ˆ 800 81.4 2,208.8 174.7 0 70.6 2,151.0 140 0 73.8 93.6 0
Avg 73.5 2,029.0 81.6 0.0 65.4 2,016.4 84.1 0.0 60.7 52.6 0.0
800ˆ 400 64.2 1,764.4 90.1 0 36.6 1,133.0 70.0 0 62.6 137.4 0
800ˆ 800 101.8 2,493.6 457.7 0 105.8 2,993.8 258.0 0 104.4 473.5 0
800ˆ 1200 81.4 2,153.6 898.5 0 83.4 2,329.8 358.8 0 100.4 792.2 0
800ˆ 1600 76.2 1,983.6 1,496.9 0 79.4 2,328.2 488.7 0 96.4 1,068.6 0
Avg 80.9 2,098.8 735.8 0.0 76.3 2,196.2 293.9 0.0 90.95 617.9 0.0
1600ˆ 800 65.8 1,652.8 698.2 0 67.0 2,060.2 373.6 0 62.2 1,118.1 0
1600ˆ 1600 64.2 1,602.0 2,875.0 0 56.2 1,503.4 681.9 0 86.6 3,189.2 0
1600ˆ 2400 64.2 1,758.8 6,793.2 - 85.0 2,571.8 1,851.6 0 113.6 6,903.8 0.04
1600ˆ 3200 38.2 976.4 7,200.0 - 93.4 2,784.6 2,944.1 0 86.0 7,200.0 0.09
Avg 58.1 1,497.5 4,391.7 - 75.4 2,230.0 1,462.8 0.0 87.1 4,602.9 0.0

33

2.6.2 A Performance Comparison on Instance of Set II: Mixed General Integer Instances

Similar to the previous section, in this section, we first compare the performance of

the proposed branch-and-bound algorithm under different settings obtained by employing

the proposed branching strategies, node selecting strategies, and the preprocessing technique

on the instances of set II, i.e., those with no binary variables. After computing a good setting

for the proposed algorithm, we then try to find a good setting for the CPLEX-MI-SOCP by

exploring whether the proposed preprocessing technique is useful or not. Finally, we compare

the performance of both solution methods under their best obtained settings.

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

Random
Strong

MostInf
Pseudo(Random)
Pseudo(MostInf)

(a) Branching strategies

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

MostInf+BestBound
MostInf+DepthFirst
MostInf+TwoPhase

Pseudo(MostInf)+BestExpected
Pseudo(MostInf)+BestEstimate

(b) Node selecting strategies

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

MostInf+BestBound
MostInf+BestBound+Primal

MostInf+BestBound+Primal+Cuts

(c) Enhancements

Figure 2.6: The run time performance profile of the proposed branch-and-bound algorithm
for different settings on mixed integer instances

34

The run time performance profile of the proposed branch-and-bound algorithm for

different branching settings is shown in Figure 2.6a. We note that, similar to the set I of

instances, we have implemented the best-bound node selection strategy to compare different

branching strategies. Again, it is evident that the most infeasible branching strategy per-

forms the best for the set II of instances. So, in the remaining, we set the branching strategy

to the most infeasible unless pseudo-costs are required; In that case, we set the branching

strategy to pseudo-costs branching initialized with the most infeasible branching because

based on Figure 2.6a, it has the second best performance. The run time performance profile

of the proposed branch-and-bound algorithm for different node selecting settings is shown

in Figure 2.6b. Based on Figure 2.6b, in the remaining, we set the node selecting strategy

to the best-bound search strategy because it performs the best. The run time performance

profile of the proposed branch-and-bound algorithm for different enhancements including

producing an initial primal bound and cuts are shown in Figure 2.6c. Observe that the

performance of the algorithm with no enhancement performs the best. So, in the remaining,

the preprocessing is inactive for the proposed branch-and-bound algorithm.

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

Ratio

SOCP
SOCP+Primal

SOCP+Primal+Cuts

Figure 2.7: The run time performance profile of CPLEX-MI-SOCP for different settings on
mixed integer instances

The run time performance profile of CPLEX-MI-SOCP for different enhancements

including producing an initial primal bound and producing cuts are shown in Figure 2.7.

We again observe that the performance of CPLEX-MI-SOCP with no enhancement seems

35

to be far better than the case where the cuts and/or an initial primal bound are provided to

CPLEX-MI-SOCP. So, the best setting for CPLEX-MI-SOCP is to make the preprocessing

inactive.

A detailed comparison between the performance of the best obtained settings for

the proposed branch-and-bound algorithm and the CPLEX-MI-SOCP are shown Table 2.2.

Observe that B&B performs the best across all classes. In fact, B&B outperforms CPLEX-

MI-SOCP by a factor of around 2 for all instances on average. Also, we again observe

that CPLEX-MI-SOCP fails to solve some of the instances with 2,400 variables and all of

the instances with 3,600 variables to optimality within the imposed time limit, i.e., 7,200

seconds.

Table 2.2: Performance comparison between the best settings of the branch-and-bound al-
gorithm and CPLEX-MI-SOCP on the mixed integer instances

mˆ n
B&B CPLEX-MI-SCOP

#N #LPs T(sec.) %G #N T(sec.) %G
200ˆ 100 39.0 1,169.2 2.1 0 28.2 2.3 0
200ˆ 200 52.2 1,586.8 5.3 0 41.4 6.4 0
200ˆ 300 38.2 1,165.2 6.0 0 34.0 8.2 0
200ˆ 400 77.4 2,190.0 14.7 0 68.0 17.0 0
Avg 51.7 1,527.8 7.0 0.0 42.9 8.5 0.0
400ˆ 200 46.6 1,457.2 10.1 0 40.4 17.9 0
400ˆ 400 74.6 2,101.2 28.7 0 59.8 38.9 0
400ˆ 600 90.6 2,601.6 54.4 0 85.6 88.5 0
400ˆ 800 115.4 3,252.0 93.7 0 119.2 157.0 0
Avg 81.8 2,353.0 46.7 0.0 76.2 75.6 0.0
800ˆ 400 96.6 2,592.4 74.4 0 77.6 185.8 0
800ˆ 800 89.4 2,498.0 154.3 0 110.4 524.0 0
800ˆ 1200 73.4 2,029.6 206.7 0 94.6 680.5 0
800ˆ 1600 86.2 2,155.2 315.9 0 95.8 914.3 0
Avg 86.4 2,318.8 187.8 0.0 94.6 576.2 0.0
1600ˆ 800 73.4 1,956.4 285.2 0 79.6 1,410.1 0
1600ˆ 1600 82.2 2,144.0 772.5 0 94.6 3,493.7 0
1600ˆ 2400 95.4 2,388.8 1,491.5 0 95.8 6,202.1 0.02
1600ˆ 3200 104.2 2,484.8 2,223.0 0 75.2 7,200.0 0.11
Avg 88.8 2,243.5 1,193.6 0.0 86.3 4,576.7 0.0

36

Chapter 3: A Criterion Space Search Algorithm for Mixed Integer Linear

Maximum Multiplicative Programs: A Multi-objective Optimization Approach

The copyright permissions for reuse previously published material in this chapter can

be found in Appendix A2.

The main contribution of this chapter is to develop the first criterion space search

algorithm for solving MIL-MMPs for any p ě 2. In the literature of multi-objective optimiza-

tion, an algorithm is called a criterion space search algorithm if it solves a multi-objective

optimization problem by working on the space of objective functions. Such algorithms trans-

form a multi-objective optimization problem into a sequence of single-objective optimization

problems that have to be solved. So, our proposed algorithm is a criterion space search algo-

rithm because it attempts to solve a MIL-MMP by working on the space of y1pxq, . . . , yppxq

and solving a set of single-objective mixed integer linear programs using CPLEX. We conduct

an extensive computational study and show the following results:

• The proposed algorithm outperforms (mixed integer) CPLEX SOCP solver (for in-

stances with p ě 2) and the branch-and-bound algorithm proposed by [4] (for instances

with p “ 2) by a factor of more than 10 on many instances.

• Even if we linearize the multiplicative objective function and solve the linearized prob-

lem by CPLEX, the proposed algorithm still performs significantly better, by a factor

of more than 30 on many instances. In order to show this, we will conduct numerical

experiments on instances of MIL-MMPs with only binary variables and p “ 2, which

are easiest cases to linearize compared to other variants of MIL-MMPs.

This chapter is organized as follows. In Section 3.2, a high-level description of the

algorithm is provided. In Section 3.3, a detailed description of the proposed algorithm is

37

given. In Section 3.4, we conduct an extensive computational study. Finally, in Section 7.3,

some concluding remarks are explained.

3.1 Preliminaries

A MIL-MMP can be stated as follows,

max
p

Π
i“1
yi

s.t. y “ Dx` d

Ax ď b

x,y ě 0, x P Rnc ˆ Bnb ˆ Zni , y P Rp,

(3.1)

where nc, nb, and ni represent the number of continuous, binary, and integer decision vari-

ables, respectively. Also, D is a p ˆ n matrix where n :“ nc ` nb ` ni, d is a p-vector, A is

a mˆ n matrix, and b is a m-vector. For notational convenience, we partition the index set

of variables N :“ t1, 2, ..., nu into continuous C, binary B, and integer I.

In this paper, we refer to the sets X :“ tx P Rnc ˆ Bnb ˆ Zni : Ax ď b, x ě 0u and

Y :“ ty P Rp : x P X , y “ Dx` d, y ě 0u as the feasible set in the decision space and the

feasible set in the criterion space, respectively. We assume that X is bounded (which implies

that Y is compact) and the optimal objective value of the problem is strictly positive, i.e.,

there exists a y P Y such that y ą 0. We usually refer to x P X as a feasible solution and

to y P Y as a feasible point (y is the image of x in the criterion space).

A MIL-MMP can be reformulated as a mixed integer SOCP. This procedure is ex-

plained in [3] based on the study of [51]. In this section, we first briefly review how this

reformulation can be done. Observe that by introducing a new non-negative variable, γ, and

38

a geometric mean constraint, Problem (3.1) can be reformulated as follows:

max γ

s.t. 0 ď γ ď
´ p

Π
i“1
yi

¯
1
p

y P Y .

It is evident that if γ̄ is the optimal objective value of the reformulated problem, then

γ̄p is the optimal objective value of Problem (3.1). Now, in order to transform the problem

into a mixed integer SOCP, the above-mentioned geometric mean constraint with p terms

should be replaced with an equivalent set of geometric mean constraints with exactly two

terms. In order to do so, some new auxiliary variables and constraints should be introduced

based on the procedure explained in [51]. The proof of transformation procedure is beyond

the scope of this paper. However, interested readers can easily check/see its correctness for

p “ 2 and p “ 3. To apply the transformation, let k be the smallest integer value such that

2k ě p. By introducing a set of non-negative variables and constraints, the geometric mean

constraint can be replaced as follows:

max γ

s.t. 0 ď γ ď

b

τ k´1
1 τ k´1

2

0 ď τ lj ď
b

τ l´1
2j´1τ

l´1
2j for j “ 1, . . . , 2k´l and l “ 1, . . . , k ´ 1

0 ď τ 0
j “ yj for j “ 1, . . . , p

0 ď τ 0
j “ γ for j “ p` 1, . . . , 2k

y P Y .

The above formulation is a mixed integer SOCP since any constraint of the form

tu, v, w ě 0 : u ď
?
vwu is equivalent to tu, v, w ě 0 :

b

u2 ` pv´w
2
q2 ď v`w

2
u. Now, one

can use a commercial mixed integer second-order cone programming solver such as CPLEX

39

to solve any MIL-MMP. However, the goal of this paper is to develop an effective and

different solution approach based on multi-objective optimization. Hence, we provide the

following critical definition and proposition adapted from [4]. Note that a similar definition

and proposition can also be found in [53] and [54, 55].

Definition 3.1. A feasible solution x P X is called efficient, if there is no other x1 P X such

that

yi ď y1i @i P t1, 2, ..., pu

yi ă y1i for at least one i P t1, 2, ..., pu

where y :“ Dx ` d and y1 :“ Dx1 ` d. If x is efficient, then y is called a nondominated

point. The set of all efficient solutions is denoted by XE. The set of all nondominated points

is denoted by YN and referred to as the nondominated frontier.

Proposition 3.1. An optimal solution of Problem (3.1), denoted by x˚, is an efficient

solution and therefore its corresponding image in the criterion space, denoted by y˚ where

y˚ :“ Dx˚ ` d, is a nondominated point.

Proposition 3.1 implies that Problem (3.1) is equivalent to maxyPYN
p

Π
i“1
yi. Therefore,

this problem is precisely optimization over the efficient set. Hence, instead of searching the

entire feasible set, we propose an algorithm which looks for an optimal solution by searching

over the set of nondominated points.

As we will explain in Section 3.3.1, the proposed algorithm sometimes adds the so-

called no-good constraints to the problem to exclude a previously found solution from the

future search region [56]. It is known that no-good constraints for problems with general

integer decision variables are naturally non-linear [57]. Although it is possible to linearize

such constraints, it is more convenient to add no-good constraints to problems involving

only binary decision variables because they will be naturally linear. So, in the rest of this

study, whenever we want to solve a MIL-MMP by the proposed algorithm, we assume that

40

all integer variables are transformed into binary decision variables using the standard binary

transformation procedure. Specifically, because we have assumed that X is bounded then

for any integer decision variable x a global upper bound should be computable, i.e., x ď u.

Hence, the variable x can be replaced by introducing v :“ tlog2uu ` 1 new binary variables

as follows,

x :“ 20z1 ` 21z2 ` ...` 2v´1zv.

Also, we assume that the following constraint is also added when using the transformation,

20z1 ` 21z2 ` ...` 2b´1zb ď u.

3.2 High-level Description

In this section, we provide a high-level description of our algorithm. In each iteration,

the algorithm starts by computing a locally nondominated point, denoted by ȳ. Note that

the term “locally" is used because in each iteration the algorithm removes a set of feasible

solutions from the problem by adding some constraints. So, the point ȳ will be certainly a

nondominated point for the restricted feasible set but not necessarily for the entire feasible

set. An illustration of the nondominated frontier of Problem (3.1) when p “ 2 and also

ȳ (obtained in the first iteration) can be found in Figure 3.1a. As an aside, note that

the nondominated frontier of a multi-objective mixed integer linear program can be a very

complicated shape. For example, when p “ 2, it may contain some continuous segments,

points, open or half-open line segments [58].

Considering that ȳ is a feasible point,
śp

i“1 ȳi provides a global lower bound for

Problem (3.1). However, a better lower bound can be (possibly) computable based on a

solution corresponding to ȳ, denoted by x̄. In order to find a better lower bound, we fix

the value of the binary variables in Problem (3.1) to their corresponding values in solution

41

ȳ

y1

y2

(a) The nondominated frontier

ȳȳ1

y1

y2

(b) The lower bound point

ȳȳ1

y1

y2

(c) The decomposition

Figure 3.1: A high-level description of the proposed algorithm when p “ 2

x̄, and by so doing, the resulted problem will be a L-MMP. So, one can optimize such a

problem to obtain a (possibly) better feasible point in the criterion space, denoted by ȳ1,

where
śp

i“1 ȳi ď
śp

i“1 ȳ
1
i. An illustration of ȳ1 can be found in Figure 3.1b when p “ 2.

Note that ȳ1 is not necessarily a nondominated point for the original problem. How-

ever, by construction, it will provide the best possible lower bound when binary decision

variables are fixed to their corresponding values in x̄. So, the key idea of the algorithm is to

add the so-called no-good constraint to the formulation for ensuring that the binary support

vector, i.e., the vector of the values of binary decision variables, associated with x̄ will be

excluded from the search (in the future iterations). Another key component of the algorithm

is that it will decompose the criterion space in each iteration based on ȳ. Since ȳ is a

nondominated point for the restricted problem, one can immediately remove the dominated

part of the criterion space associated with ȳ and continue the search in the remaining areas.

The new areas will be p new boxes, an illustration of which are shown in Figure 3.1c when

p “ 2, i.e., the box with y1 ě ȳ1 and the box with y2 ě ȳ2.

It is evident that one can just simply repeat the process explained above in new boxes

to be able to find an optimal solution of Problem (3.1). However, in order to speed up the

searching process, we employ a procedure to calculate a global upper/dual bound for the

problem. In other words, in each iteration, when exploring a box, we first compute an upper

42

bound. If the upper bound is not strictly better than the best lower/primal bound found,

then there is no need to search the box anymore. In order to obtain an upper bound, we can

simply drop the integrality conditions in Problem (3.1). Note that, since our problem is in

maximization form, we use the terms “primal bound" and “lower bound", and similarly the

terms “dual bound" and “upper bound" interchangeably in this research.

3.3 Detailed Description

In this section, we explain a detailed description of the proposed algorithm.

3.3.1 No-good Constraints

As mentioned in Section 3.2, no-good constraints, also known as tabu constraints

[56, 59, 60], play an important role in the proposed algorithm by excluding the studied

feasible binary support vectors from the future searches. In the proposed algorithm, we

maintain a list of the so-called tabu feasible solutions, denoted by Tabu. Note that we

assume that all general integer decision variables of Problem (3.1) are transformed to binary

decision variables. Therefore, solution x1 P Tabu consists of two support vectors: continuous

and binary. For each x1 P Tabu, the algorithm will add the following no-good constraint to

ensure that the binary support vector associated with x1 will be excluded from the search,

ÿ

jPS0px1q

xj `
ÿ

jPS1px1q

p1´ xjq ě 1,

where S0 :“ tj P B : x1j “ 0u and S1 :“ tj P B : x1j “ 1u.

3.3.2 Computing Primal Bound

By Proposition 3.1, any efficient solution is expected to provide a good (global) low-

er/primal bound for Problem (3.1). Therefore, the algorithm attempts to compute a locally

efficient solution in each iteration. In multi-objective optimization, it is well-known (see for

43

instance [49]) that optimizing any positive weighted summation of the objective functions

over the feasible set must return an efficient solution (if any exists). So, in this research,

we simply assume that the weights are equal to one, and therefore, we optimize/maximize

the corresponding objective function, i.e.,
řp
i“1 yi, over the feasible set, i.e., y P Y , but with

some additional constraints.

The additional constraints include some no-good constraints as well as imposing a

lower bound for each objective function. Note that additional constraints (in particular the

no-good constraints) do not guarantee that the solution found by solving the weighted sum

optimization problem returns a true efficient solution for the corresponding multi-objective

problem (with no additional constraints). However, an optimal solution (if any exists) must

be obviously efficient for the restricted problem, i.e., the multi-objective optimization prob-

lem with the additional constraints. That is the reason that we call such an optimal solution

a locally efficient solution.

In light of the above, the proposed algorithm solves the following (weighted sum)

optimization problem, denoted by WSOpl,Tabuq, in each iteration to find a locally efficient

solution (meaning a good lower/primal bound):

px̄, ȳq P arg max

" p
ÿ

i“1

yi : y P Y , y ě l,
ÿ

jPS0px1q

xj `
ÿ

jPS1px1q

p1´ xjq ě 1 @x1 P Tabu
*

,

where Tabu is the list of tabu solutions whose corresponding binary support vectors should

be excluded from the search. Also, l P Rp
` is the vector of lower bound values for objective

functions y1, . . . , yp. Note that as explained in Section 3.2, in each iteration, the algorithm

needs to search a box defined by ty P Rp : l ď y ď `8u. So, the vector l is basically

restricting the search to a box in the above optimization problem.

After calling WSOpl,Tabuq and computing px̄, ȳq, if it is feasible, then the algorithm

will fix the value of binary decision variables by setting them equal to values of the binary

44

support vector of x̄ in Problem (3.1),

px̄1, ȳ1q P arg max

"

p

Π
i“1
yi : y P Y , xi “ x̄i @i P B

*

.

Note that in this continuous optimization problem there exist no additional con-

straints (other than fixing constraints). This is important because it guarantees that by

solving this continuous optimization problem we can compute the best possible solution for

a fixed binary support vector. In order to solve this continuous optimization problem, we

first transform it to a continuous SOCP (using the same procedure explained in Section 3.1)

and then solve it by a suitable solver, e.g., CPLEX. We denote the operation of computing

px̄1, ȳ1q by SOCP-LBpx̄q.

3.3.3 Computing Dual Bound

We first make an important observation that can result in a (good) cut when com-

puting a dual bound in each iteration. Employing such a cut is important because it can

improve the dual bound value in practice.

Observation 3.1. Let px̄, ȳq be an optimal solution of WSOpl,Tabuq at a particular iteration.

Due to optimality, the following cut can be used when searching the box associated with l

in the subsequent iterations,
p
ÿ

i“1

yi ď
p
ÿ

i“1

ȳi.

We now explain how to compute a dual bound. In each iteration, before finding a

primal bound the algorithm first attempts to compute a dual bound (for its associated box

l) by solving the following continuous optimization problem,

px̃, ỹq P arg max

"

p

Π
i“1
yi : y P YR, y ě l,

ÿ

jPS0px1q

xj `
ÿ

jPS1px1q

p1´ xjq ě 1 @x1 P Tabu,

p
ÿ

i“1

yi ď
p
ÿ

i“1

ȳParenti

*

,

45

where YR is a relaxation of Y obtained by dropping the integrality condition on binary

decision variables, i.e., xi P r0, 1s for i P B. Note that, as explained in Section 3.2, the

current box (in each iteration) is obtained as a result of decomposing a larger box, referred

to as Parent box, in one of the previous iterations. By this explanation, ȳParenti is the

feasible point found by solving the weighted sum optimization problem for the parent box.

So,
řp
i“1 yi ď

řp
i“1 ȳ

Parent
i is the cut derived based on Observation 3.1.

In order to solve this continuous optimization problem, we again first transform it

to a continuous SOCP solver (using the same procedure explained in Section 3.1) and then

solve it by a suitable solver, e.g., CPLEX. We denote the operation of computing px̃, ỹq by

SOCP-UBpl, ȳParent,Tabuq.

Input: A feasible instance of Problem (3.1)
Queue.createpTreeq
List.createpTabuq
lÐ ´8; ȳParent Ð `8

GLB Ð ´8; GUB Ð `8

Tree.add
`

pl, ȳParentq
˘

while not Queue.emptypTreeq & GUB ´GLB ě ε1 & GUB´GLB
GUB

ě ε2 do
Tree.PopOut

`

pl, ȳParentq
˘

px̃, ỹq Ð SOCP-UBpl, ȳParent,Tabuq
Update GUB
if px̃, ỹq ‰(null,null) &

śp
i“1 ỹi ą GLB then

px̄, ȳq ÐWSOpl,Tabuq
if px̄, ȳq ‰(null,null) then

px̄1, ȳ1q Ð SOCP-LBpx̄q
if

śp
i“1 ȳ

1
i ą GLB then

GLB Ð
śp
i“1 ȳ

1
i

px˚,y˚q Ð px̄1, ȳ1q

end
Tabu.addpx̄q
foreach i P t1, 2, .., pu do

li Ð l

lii Ð ȳi
Tree.add

`

li, ȳq

end
end

end
end
return px˚,y˚q

Algorithm 3: The proposed algorithm

3.3.4 The Proposed Algorithm

In Sections 3.3.1-3.3.3, we explained the key components of the algorithm. So, we

can now present a precise description of the proposed algorithm which can also be found in

46

Algorithm 3. The algorithm maintains a queue of nodes, denoted by Tree. Each node in

the queue contains two vectors denoted by l and ȳParent. As mentioned before, l is a lower

bound point in the criterion space that defines a box. Also, ȳParent is the feasible point

obtained by solving the weighted sum optimization problem for the parent of each node. We

initialize the queue (of nodes) by l “ ´8 and ȳParent “ `8. The algorithm also maintains

three other pieces of information including a tabu list which is denoted by Tabu, a global

upper/dual bound denoted by GUB, and a global lower/primal bound denoted by GLB. At

the beginning, Tabu is empty and we set GUB “ `8 and GLB “ ´8. The algorithm

explores the queue as long as it is nonempty and GUB ´ GLB ě ε1 and GUB´GLB
GUB

ě ε2,

where ε1, ε2 P p0, 1q are the user-defined absolute and relative optimality gap tolerances,

respectively. At the end, the algorithm returns the best solution found and its image in

the criterion space, denoted by px˚,y˚q. Next, we explain how each node of the queue is

explored.

In each iteration, the algorithm pops out a node from the queue and denotes it by

pȳ, lq. Note that when a node is popped out from the queue then that node does not exist in

the queue anymore. Also, note that, in this study, we use the best-bound strategy to select

a node for being popped out since we have numerically observed that this strategy performs

the best. The algorithm next calls SOCP-UBpl, ȳParent,Tabuq to compute a dual/upper

bound of the node. The output of this operation is denoted by px̃, ỹq. Next, the algorithm

updates the GUB accordingly. Afterwards, if px̃, ỹq ‰ pnull, nullq, i.e., the relaxation is

feasible, and
śp

i“1 ỹi ą GLB then the algorithm attempts to find a primal bound and create

new nodes (if possible) as follows.

The algorithm first calls WSOpl,Tabuq to compute px̄, ȳq. If px̄, ȳq “ pnull, nullq,

i.e., no feasible solution exists, then no further exploration is required and so a new iteration

should be started (if possible). Otherwise, the algorithm calls SOCP-LBpx̄q to compute

px̄1, ȳ1q, i.e., the best possible primal bound for the binary support vector associated with x̄.

If the obtained solution is better than the best global solution then the algorithm updates

47

GLB and px˚,y˚q accordingly. Next, x̄ will be added to the tabu list, and p new nodes will be

created. The difference between the new nodes are simply their associated boxes. Specifically,

for each i P t1, . . . , pu, the node pli, ȳq will be added where li defines the associated box such

that lij “ lj for each j P t1, . . . , puztiu and lii “ ȳi.

Observation 3.2. The proposed algorithm is finite. This observation is true due to the

following two reasons: (1) In each iteration a new binary support vector will be added to the

tabu list by construction; and (2) The number of binary support vectors is finite because X

is bounded by assumption.

3.4 Computational Study

In this section, we compare the performance of our proposed algorithm (referred to

as Algorithm 3) with the performance of the mixed integer SOCP solver of CPLEX (referred

to as SOCP) and the algorithm proposed in our recent study [4] for instances with p “ 2

(referred to as B&B). We implement our algorithm in C++ and use CPLEX 12.7 through

this computational study. The instances and the C++ implementation of our algorithm

used in this computational study can be found in https://github.com/paymanghasemi. The

computational experiments are conducted on a Dell PowerEdge R360 with two Intel Xeon

E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, the RedHat Enterprise Linux

6.8 operating system, and using a single thread. Both the absolute and relative optimality

gap tolerances, ε1 and ε2, are set to 10´6 in this computational study. Also, a time limit of

7200 seconds is imposed for solving each instance for all algorithms. Next, we explain how

the instances are generated.

In our computational study, we test the performance of our algorithm on instances

with p P t2, 3, 4u objective functions. We note that, theoretically, all solution methods

discussed in the paper should handle instances with any arbitrary value of p. However,

in practice, as p increases, the optimal objective value of a MIL-MMP tends to grow dra-

matically which directly/indirectly result in numerical instabilities in all existing solution

48

https://github.com/paymanghasemi

methods/solvers. Therefore, to avoid numerical instabilities, we did not generate instances

with p ą 4 in this computational study. With this in mind, for any p P t2, 3, 4u, we generate

four classes of instances including pure integer instances (ni “ n), pure binary instances

(nb “ n), mixed integer instances (ni “ 0.5n and nc “ 0.5n), and mixed binary instance

(nb “ 0.5n and nc “ 0.5n). Each class contains 16 subclasses of instances based on the

dimensions of the matrix Amˆn, and each subclass contains 10 instances. So, each class has

a total of 160 instances and the total number of instances used in this computational study

is 3ˆ 4ˆ 160 “ 1920.

We assume that m P t200, 400, 800, 1600u and n “ αm where α P t0.5, 1, 1.5, 2u. For

example, the subclass 200 ˆ 100 implies that m “ 200 and n “ 100, i.e., α “ 0.5. The

sparsity of matrix A is set to 50%. The components of vector b and the entries of matrix A

are randomly drawn from discrete uniform distributions r50, 150s and r10, 30s, respectively.

We set the components of vector d equal to zero. The sparsity of each row of the matrix

D was also set to 50%, and its components were drawn randomly from a discrete uniform

distribution r1, 10s. Note that, since all constraints of the set X are inequality constraints

and all coefficients of matrix A are nonnegative, the set X is bounded.

As mentioned in Section 3.1, each integer decision variable should be converted to (a

set of) binary decision variables when using our proposed algorithm, i.e., Algorithm 3. Note

that when solving an instance with other methods, no transformation is required. Since the

maximum value for components of vector b is 150 and the minimum value for entries of

matrix A is 10, each decision variable can get a maximum value of 15. Therefore, in the

process of converting integer variables to binary variables, the integer variable xi is converted

to four binary variables as follows,

xi :“ zi1 ` 2zi2 ` 4zi3 ` 8zi4 ,

zi1 ` 2zi2 ` 4zi3 ` 8zi4 ď 15.

49

Note that the additional constraints are redundant and there is no need to add them to

the model. Hence, for pure integer instances studied in this paper, the number of decision

variables increases by a factor of 4 when using Algorithm 3.

It is worth mentioning that in this computational study, we frequently use perfor-

mance profiles [52] to compare different algorithms in terms of their solution times. A

performance profile presents cumulative distribution functions for a set of algorithms being

compared with respect to a specific performance metric. The run-time performance profile

for a set of algorithms is constructed by computing for each algorithm and for each instance

the ratio of the run-time of the algorithm on the instance and the minimum of the run-times

of all algorithms on the instance. The run-time performance profile then shows the ratios on

the horizontal axis and, on the vertical axis, for each algorithm, the percentage of instances

with a ratio that is smaller than or equal to the ratio on the horizontal axis. This implies

that values in the upper left-hand corner of the graph indicate the best performance.

3.4.1 Two Objectives (p “ 2)

In this section, we compare the performance of Algorithm 3, SOCP, and B&B. Note

that because B&B is developed for instances with p “ 2, we use B&B only in this section.

Figure 3.2 shows the run-time performance profiles of all three approaches for different

classes of instances when p “ 2. From Figure 3.2, we observe that our proposed algorithm

significantly outperforms the other algorithms. For example, for pure binary instances,

Algorithm 3 outperforms SOCP and B&B by a factor of at least 10 on more than 45% and

75% of instances, respectively. Observe that, for instances involving general integer decision

variables, the performance of Algorithm 3 decreases because of the need to transform integer

variables to binary variables which increases the size of the instance. However, Algorithm 3

is still significantly better than other approaches. For example, for mixed integer instances,

Algorithm 3 outperforms B&B and SOCP by a factor of at least 2.5 on more than 40% and

60% of instances, respectively.

50

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP
B&B

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP
B&B

(b) Mixed binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP
B&B

(c) Pure integer

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP
B&B

(d) Mixed integer

Figure 3.2: Performance profiles for instances with p “ 2

Tables 3.1-3.2 provide a detailed comparison between SOCP and Algorithm 3. For

the detailed comparison between the B&B and Algorithm 3, interested readers may refer

to Appendix B1. In these tables, ‘#N’ is the number of nodes explored, ‘T(sec.)’ shows the

solution time in seconds, ‘#S’ is the number of instances for which at least a feasible solution

(other than zero) is found, and finally, ‘%G’ shows the (relative) optimality gap percentage.

Note that, in the tables, the numbers are the averages over 10 instances. In cases that an

algorithm was not able to find a feasible solution for all 10 instances (in a subclass), the

numbers are the averages over #S. If column #S is not reported for a method then the

method was able to find at least one feasible solution (other than zero) for all instances.

51

Similarly, if column %G is not reported for a method then the method was able to solve all

instances to optimality.

Table 3.1: Performance comparison between Algorithm 3 and SOCP on pure binary and
mixed binary instances with p “ 2

mˆ n

Pure binary Mixed binary
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 6.80 1.02 9 0 7.96 5.20 0.67 0 1.98
200ˆ 200 6.40 2.16 10 0 23.26 4.40 1.04 0 5.11
200ˆ 300 6.20 4.90 10 0 60.88 5.20 1.74 0 8.37
200ˆ 400 8 10.88 10 0 100.76 5.20 2.32 0 11.31
Avg 6.85 4.74 9.75 0 49.24 5 1.44 0 6.69
400ˆ 200 6.60 5.58 8 0 60.63 4.40 3.03 0 14.79
400ˆ 400 7.20 21.76 8 0 273.84 4.40 5.53 0 29.46
400ˆ 600 6.40 35.83 10 0 568.04 4.80 8.75 0 47.47
400ˆ 800 6.20 73.57 9 0 1,124.32 4.40 10.88 0 76.51
Avg 6.60 34.19 8.75 0 527.85 4.50 7.05 0 42.06
600ˆ 300 8.20 22.37 7 0 343.48 4.60 6.82 0 35.01
600ˆ 600 8.20 116.95 8 0 1,845.93 4.80 14.21 0 107.03
600ˆ 900 6.60 187.37 6 0 3,560.81 4.60 22.41 0 178.79
600ˆ 1200 5.60 228.34 9 30 6,458.21 4.80 31.61 0 314.88
Avg 7.15 138.76 7.50 9 3,222.02 4.70 18.76 0 158.93
800ˆ 400 6.40 31.45 6 0 649.27 4.60 15.72 0 94.90
800ˆ 800 8.60 227.91 7 6 4,347.04 4.80 31.75 0 281.16
800ˆ 1200 9.80 752.30 10 53 7,200 4.40 48.53 0 504.64
800ˆ 1600 7.40 997.99 10 66 7,200 4.60 72.14 0 807.48
Avg 8.05 502.41 8.25 37.33 5,403.78 4.60 42.04 0 422.04

Table 3.2: Performance comparison between Algorithm 3 and SOCP on pure integer and
mixed integer instances with p “ 2

mˆ n

Pure integer Mixed integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 7.20 2.45 9 0 8.61 5 1.09 0 2.61
200ˆ 200 7 7.42 9 0 32.63 5.20 2.51 0 5.79
200ˆ 300 6.40 10.29 10 0 57.54 4.60 3.49 0 9.10
200ˆ 400 6.80 17.36 10 0 99.85 4.60 4.77 0 12.79
Avg 6.85 9.38 9.50 0 51.19 4.85 2.97 0 7.57
400ˆ 200 5.80 11.83 10 0 67.18 4.60 5.51 0 14.46
400ˆ 400 7.20 51.10 10 0 270.70 4.80 12.59 0 26.43
400ˆ 600 6.80 80.70 8 0 498.25 4.60 20.07 0 38.32
400ˆ 800 7.40 145.43 10 0 1,183.91 4.20 25.87 0 64.15
Avg 6.80 72.27 9.50 0 505.36 4.55 16.01 0 35.84
600ˆ 300 8.40 50.96 7 0 315.68 4.20 13.02 0 30.04
600ˆ 600 5.80 145.57 9 0 1,531.51 4.60 34.46 0 116.49
600ˆ 900 6.80 283.66 7 5 3,595.14 4.80 63.91 0 177.41
600ˆ 1200 8 641.92 8 42 7,078.90 4.60 84.89 0 306.37
Avg 7.25 280.53 7.75 12.11 3,154.53 4.55 49.07 0 157.58
800ˆ 400 6.80 90.88 7 0 892.74 4.20 29.66 0 125.80
800ˆ 800 11.40 684.77 7 26 6,239.71 4.60 76.56 0 301.19
800ˆ 1200 10.20 1,071.83 10 51 7,180.49 4.40 133.84 0 513.50
800ˆ 1600 9.20 1,764.42 10 65 7,200 4.40 195.79 0 659.47
Avg 9.40 902.97 8.50 39.47 5,698 4.40 108.96 0 399.99

From Tables 3.1-3.2, we observe that, in pure binary and pure integer instances,

there are some cases in which SOCP fails to find even a feasible solution (other than zero).

52

According to [61], there is a parameter to change the convergence tolerance. Changing this

tolerance to a smaller value may result in greater numerical precision of the solution, but also

increases the chance of a convergence failure in the algorithm and consequently may result

in no solution at all. According to the manual, the smallest value for this tolerance is 10´12

and its proposed value is 10´7. In order to overcome the convergence problem, we examined

different values for this parameter, i.e., t10´6, 10´7, 10´8, ¨ ¨ ¨ , 10´12u, during the course of this

study. However, we employed 10´6 and 10´12 in this paper because these values performed

the best. Specifically, in this computational study, the default value is 10´12. However,

SOCP fails when solving pure binary and pure integer instances. Consequently, for those

instances, we also provide results when the parameter is set to 10´6. Note that, since SOCP

fails (especially when the convergence parameter is 10´12) to solve some of the instances, for

any performance profile in this computational study, the graphs are drawn only based on

the instances that are solved by all algorithms.

In light of the above, Figure 3.3 and Table 3.3 show the results on pure binary and

pure integer instances when the parameter is set to 10´6. From Figure 3.3, we observe that

our proposed algorithm solves almost 65% of the pure binary instances and almost 25% of

the pure integer instances 10 times faster than SOCP. Also, Table 3.3 shows that SOCP

was able to find a feasible solution (other than zero) for all pure binary and pure integer

instances when the parameter is set to 10´6.

3.4.2 Three Objectives (p “ 3)

The run-time performance profiles of Algorithm 3 and SOCP for pure binary and

mixed binary instances with p “ 3 are shown in Figures 3.4a and 3.4b, respectively, and

the table containing the detailed comparison can be found in Appendix B2. We observe

from Figure 3.4a that our proposed algorithm has solved almost 50% of the pure binary

instances at least 10 times faster than SOCP. Also, it was able to solve 20% of the mixed

binary instances at least 5 times faster than SOCP. We note that, among 160 instances with

53

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(b) Pure integer

Figure 3.3: Performance profile of instances with p “ 2 for the convergence tolerance of
10´6

Table 3.3: Performance comparison between Algorithm 3 and SOCP on instances with p “ 2
for the convergence tolerance of 10´6

mˆ n

Pure binary Pure integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) #S %G T(sec.)
200ˆ 100 6.80 1.02 10 0 6.47 7.20 2.45 10 0 6.03
200ˆ 200 6.40 2.16 10 0 19.99 7 7.42 10 0 28.12
200ˆ 300 6.20 4.90 10 0 49.93 6.40 10.29 10 0 50.21
200ˆ 400 8 10.88 10 0 86.83 6.80 17.36 10 0 84.33
Avg 6.85 4.74 10 0 40.80 6.85 9.38 10 0 42.17
400ˆ 200 6.60 5.58 10 0 60.82 5.80 11.83 10 0 59.17
400ˆ 400 7.20 21.76 10 0 224.39 7.20 51.10 10 0 254.79
400ˆ 600 6.40 35.83 10 0 460.68 6.80 80.70 10 0 504.09
400ˆ 800 6.20 73.57 10 0 1,079.14 7.40 145.43 10 0 1,129.98
Avg 6.60 34.19 10 0 456.26 6.80 72.27 10 0 487.01
600ˆ 300 8.20 22.37 10 0 352.47 8.40 50.96 10 0 273.73
600ˆ 600 8.20 116.95 10 0 1,699.75 5.80 145.57 10 0 1,581.25
600ˆ 900 6.60 187.37 10 0 3,968.30 6.80 283.66 10 6 4,196.68
600ˆ 1200 5.60 228.34 10 28 6,446.24 8 641.92 10 36 7,006.16
Avg 7.15 138.76 10 7 3,116.69 7.25 280.53 10 10.5 3,264.45
800ˆ 400 6.40 31.45 10 0 638.13 6.80 90.88 10 0 746.86
800ˆ 800 8.60 227.91 10 0 3,957.99 11.40 684.77 10 10 5,505.12
800ˆ 1200 9.80 752.30 10 54 7,200 10.20 1,071.83 10 51 7,055.02
800ˆ 1600 7.40 997.99 10 65 7,200 9.20 1,764.42 10 64 7,200
Avg 8.05 502.41 10 29.75 4,749.03 9.40 902.97 10 31.25 5,126.75

pure binary variables, SOCP was able to find a feasible solution (other than zero) for only

54 instances and only solved 40 (out of 54) instances to optimality.

Figures 3.4c and 3.4d illustrate the run-time performance profiles for instances with

pure integer and mixed integer variables, respectively, and the table containing the detailed

comparison can be found in Appendix B2. Observe that although our proposed algorithm

54

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(b) Mixed binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(c) Pure integer

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(d) Mixed integer

Figure 3.4: Performance profile of instances with p “ 3

requires to solve larger-sized instances (because of the transformation), it has solved 20% of

the pure integer instances and 20% of the mixed integer instances 6 times and 2 times faster

than SOCP, respectively. Also, it is worth mentioning that SOCP was able to find a feasible

solution (other than zero) for only 41 out of 160 instances.

Figure 3.5 shows the run-time performance profiles of the two algorithms for pure

binary and pure integer instances when convergence tolerance is set to 10´6, and the table

containing the detailed comparison can be found in Appendix B2. Again, we observe that in

both cases, our proposed algorithm outperforms SOCP. As shown in Figure 3.5a, Algorithm 3

has solved almost 45% of the pure binary instances 10 times faster than SOCP. Similarly,

55

from Figure 3.5b, we observe that our algorithm solved 20% of the instances 5 times faster

than SOCP.

0

20

40

60

80

100
1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(b) Pure integer

Figure 3.5: Performance profile of instances with p “ 3 for the convergence tolerance of
10´6

3.4.3 Four Objectives (p “ 4)

In this section, we study the performance of Algorithm 3 and SOCP for instances

with p “ 4. As an aside, we note that during the course of this study, we realized that as

p increases, SOCP fails on more instances, i.e., it cannot find even a feasible solution (other

than zero), when the convergence tolerance parameter is set to 10´12. Specifically, for pure

binary instances, SOCP was able to find a feasible solution (other than zero) for only 137,

54, and 15 instances (out of 160 instances) when p “ 2, p “ 3, and p “ 4, respectively. For

pure integer instances, SOCP was able to find a feasible solution (other than zero) for only

141, 41, and 12 instances (out of 160 instances) when p “ 2, p “ 3, and p “ 4, respectively.

However, Algorithm 3 has been always successful in finding a feasible solution (other than

zero). In fact, Algorithm 3 was not able to solve only 4 out of 1920 instances (in this study)

to optimality within the allotted time limit. Those 4 instances are pure integer with p “ 4

and even for them the reported optimality gap is less than 15%.

56

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(b) Mixed binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(c) Pure integer

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(d) Mixed integer

Figure 3.6: Performance profile of instances with p “ 4

Figures 3.6a and 3.6b show the run-time performance profiles of Algorithm 3 and

SOCP on instances with pure binary and mixed binary variables, respectively. The table

containing the detailed comparison can be found in Appendix B3. As shown in Figure 3.6a,

our proposed algorithm has solved 20% of the instances with pure binary variables at least

7.5 times faster than SOCP. Similarly, Figure 3.6b shows that our algorithm has solved 20%

of the instances with mixed binary instances at least 3 times faster than SOCP.

Figures 3.6c and 3.6d provide the run-time performance profiles of the two solution

methods on instances with pure integer and mixed integer variables, respectively. The table

containing the detailed comparison can be found in Appendix B3. From Figure 3.6c, we

57

observe that our proposed algorithm solves almost 20% of the instances with pure integer

variables at least 4 times faster. However, from Figure 3.6d, we observe that for the instances

with mixed integer variables, SOCP outperforms Algorithm 3 by solving almost 20% of the

instances at least 2 times faster than our algorithm. But, there is an important point that

should be considered for this observation. Based on the detailed comparison of the two

algorithms, given in Appendix B3 (Table B3.2), we can observe that SOCP performs better

for only small-sized instances, and as the size of the instances increases, our algorithm tends

to solve instances faster. As an example, for the instances with 200 constraints, the average

times are 9.43 seconds and 13.41 seconds for SOCP and Algorithm 3, respectively. However,

for the instances with 800 constraints, the average times are 545.91 seconds and 478.69

seconds for SOCP and Algorithm 3, respectively.

Figures 3.7a and 3.7b show the run-time performance profiles for pure binary and

pure integer instances, respectively, when the convergence tolerance parameter is set to 10´6

for SOCP. The table containing the detailed comparison can also be found in Appendix B3.

From Figure 3.7, we observe that our algorithm solves 20% of the pure binary instances and

20% of the pure integer instances at least 9.5 and 3.5 times faster than SOCP, respectively.

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(a) Pure binary

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
er

ce
nt

ag
e

of
In

st
an

ce
s

Run-time Ratio

Algorithm 3
SOCP

(b) Pure integer

Figure 3.7: Performance profile of instances with p “ 4 and the convergence tolerance of
10´6

58

3.4.4 Linearization

Note that pure binary and pure integer instances can be linearized and be solved by

integer programming solvers such as CPLEX. However, the focus of this section will be only

on pure binary instances with p “ 2 as their linearization is easier and less complicated

compared to other variants of MIL-MMPs, i.e. instances with integer variables or p ą 2. As

an example, consider the following objective function,

max px1 ` x2qpx2 ` x3q “ x1x2 ` x1x3 ` x
2
2 ` x2x3

where x1, x2, and x3 are binary variables. First, it is obvious that x2
i “ xi. Second, any

bi-linear term xixj where both xi and xj are binary variables can be linearized by adding

the following two constraints and introducing a new binary variable q,

q ď xi

q ď xj

xi ` xj ´ 1 ď q

Note that, since the problem is in maximization form, the second constraint is redundant

and can be eliminated. In light of this observation, the linearized objective function is as

follows,

max x2 ` q1 ` q2 ` q3

s.t. q1 ď x1, q1 ď x2 px1x2q

q2 ď x1, q2 ď x3 px1x3q

q3 ď x2, q3 ď x3 px2x3q

qi P t1, 0u @i P t1, 2, 3u

59

Following this approach, we linearized all pure binary instances with p “ 2, and Ta-

ble 3.4 provides the detailed comparison between the performance of Algorithm 3, SOCP,

and linearization approach for the pure binary instances with p “ 2. Observe that the per-

formance of the linearization method is even worse than SOCP. In many instances, CPLEX

was unable to find a feasible solution (other than zero) for linearized models. Note that, pure

binary instances with p “ 2 are in some sense the easiest class of instances for linearization.

So, it is expected that the performance of the linearization technique to be even worse for

other classes or larger values of p.

Table 3.4: Performance comparison between Algorithm 3, SOCP, and linearization method
on pure binary instances with p “ 2

mˆ n

Pure binary
Algorithm 3 SOCP Linearization

#N T(sec.) #S %G T(sec.) #S %G T(sec.)
200ˆ 100 6.80 1.02 9 0 7.96 10 0 10.19
200ˆ 200 6.40 2.16 10 0 23.26 10 0 270.82
200ˆ 300 6.20 4.90 10 0 60.88 10 0 2,131.75
200ˆ 400 8 10.88 10 0 100.76 10 37 6,116.51
Avg 6.85 4.74 9.75 0 49.24 10 9.25 2,132.32
400ˆ 200 6.60 5.58 8 0 60.63 10 0 140.56
400ˆ 400 7.20 21.76 8 0 273.84 10 7 3,320
400ˆ 600 6.40 35.83 10 0 568.04 10 96 7,200
400ˆ 800 6.20 73.57 9 0 1,124.32 10 97 7,200
Avg 6.60 34.19 8.75 0 527.85 10 50 4,465.14
600ˆ 300 8.20 22.37 7 0 343.48 10 0 554.54
600ˆ 600 8.20 116.95 8 0 1,845.93 10 75 6,918.70
600ˆ 900 6.60 187.37 6 0 3,560.81 9 97 7,200
600ˆ 1200 5.60 228.34 9 30 6,458.21 0 - -
Avg 7.15 138.76 7.50 9 3,222.02 7.25 55.96 4,811.46
800ˆ 400 6.40 31.45 6 0 649.27 10 0 1020.14
800ˆ 800 8.60 227.91 7 6 4,347.04 10 96 7,200
800ˆ 1200 9.80 752.30 10 53 7,200 1 98 7,200
800ˆ 1600 7.40 997.99 10 66 7,200 0 - -
Avg 8.05 502.41 8.25 37.33 5,403.78 5.25 50.38 4,257.2

60

Chapter 4: Exact Solution Approaches for Integer Linear Generalized

Maximum Multiplicative Programs Through the Lens of Multi-objective

Optimization

Due to the importance of GMMPs, several exact approaches exist for solving different

subclasses of GMMPs in the relevant literature. However, the underlying assumption of

(almost) all existing approaches is that all geometric weights are equal to one, i.e. πi “ 1 for

all i “ 1, . . . , p. Of course, it is known that any GMMP can be transformed into a GMMP

with only unit weights by introducing some new variables and constraints [62]. Specifically,

we need to first change πi to a positive integer number for all i “ 1, . . . , p by multiplying

all of them with a sufficiently large positive number. Afterwards, if there exists πi ą 1 for

some i P t1, . . . , pu then πi ´ 1 copies of yi should be created and added to the formulation.

We observe that such a transformation can undesirably increase the size of the formulation

significantly (in terms of non-linearity). Hence, one of the main contributions of this study

is that our proposed approaches directly deal with geometric weights without changing the

size of the formulation. Next, we review some of the existing approaches.

For L-GMMPs, a typical solution approach is to use a log-transformation of the objec-

tive function, i.e.
řp
i“1 πi log yipxq, and then solving the transformed problem (in polynomial

time) using a convex programming solver [63]. However, [3] showed that a faster approach for

solving a L-GMMP is to transform the problem into a Second-Order Cone Program (SOCP)

using the technique introduced by [51] and then solving it using commercial solvers such

as IBM ILOG CPLEX, Gurobi, or FICO Xpress. Since linear programming solvers are sig-

nificantly faster than convex programming solvers (in general), some authors have recently

61

shown that even faster algorithms can be developed for solving L-GMMPs which only solve

a number of linear programs [3, 18].

For IL-GMMPs and MIL-GMMPs, an effective approach is to transform the problem

into a mixed integer SOCP and then solving the problem using IBM ILOG CPLEX, Gurobi,

or FICO Xpress [4, 1]. However, for MIL-GMMPs with p “ 2, [4] proposed a faster algorithm

by incorporating the linear programming based approach developed by [3] for L-GMMPs in

an effective branch-and-bound framework. Recently, [1] proposed an even more effective ap-

proach for solving MIL-GMMPs with p ě 2 which solves a number of single-objective integer

linear programs and SOCPs to compute an optimal solution. As an aside, we note that, in

this study, one of the algorithms that we have developed is a significantly modified/enhanced

version of the algorithm proposed by [1]. We show that the modified algorithm significantly

outperforms the one proposed by [1] for solving instances of IL-GMMPs because of the new

bounding and cut generation techniques. Moreover, another advantage of the modified al-

gorithm is that, in contrast to the algorithm proposed by [1], it can directly deal with the

non-unit geometric weights.

In light of the above, the main contributions of this study are as follows:

• Developing three new exact algorithms for solving any IL-GMMP with two desirable

characteristics: they only solve a finite number of single-objective integer linear pro-

grams to compute an optimal solution (of a nonlinear problem) and also, they directly

deal with (non-unit) geometric weights.

• Developing a novel procedure for computing dual bounds for IL-GMMPs (which also

works for MIL-GMMPs) and incorporating it in our proposed exact algorithms. The

proposed procedure can compute a dual bound from a feasible solution in linear time

if it is generated in a specific way. To the best of our knowledge, this procedure has

not been employed in any existing methods.

62

• Developing an effective cut, the so-called hypotenuse cut, which can be added to the

problem using any feasible solution with strictly positive objective values, and incor-

porating it in our proposed exact algorithms.

• Conducting an extensive computational study with 57600 experiments in which for the

first time (to the best of our knowledge), the performance of three main commercial

mixed integer SOCP solvers, i.e. CPLEX, Gurobi, and FICO Xpress, are compared on

solving IL-GMMPs. Overall, we show that for our test instances, Xpress is the most

reliable commercial mixed integer SOCP solver and is faster than the other commercial

solvers by a factor of at least 10 on many instances. We also compare the performance

of our three proposed algorithms under different single-objective integer programming

solvers, i.e. CPLEX, Gurobi, and Xpress. Overall, we show that for our test instances,

the single-objective integer programming solver of CPLEX aligns significantly better

with our proposed algorithms. All our proposed methods with CPLEX are competitive

with each other but one of them can even outperform the best mixed integer SOCP

solver by a factor of at least 2 on many instances. Furthermore, we show that lineariz-

ing (the objective function of) IL-GMMPs can result in large single-objective integer

linear programs which commercial solvers struggle to solve. Specifically, our proposed

techniques can solve our largest instances in less than 900 seconds while commercial

solvers cannot even find a feasible solution for the smallest linearized instances within

an hour. Finally, it is worth mentioning that, as a side computational effort, we have

compared the performance of our approaches on three different case studies. Interested

readers may refer to Appendices 7.5 to learn about them.

The remainder of this chapter is organized as follows. In Section 4.1, we give pre-

liminaries. In Section 4.2, we introduce a high-level description of our proposed algorithms

and also their key operations. In Section 4.3, the detailed descriptions of the proposed algo-

rithms are given. In Section 4.4, an extensive computational study is provided. Finally, in

Section 7.3, some concluding remarks are provided.

63

4.1 Preliminaries

An IL-GMMP can be stated as

max
p
ź

i“1

yπii

s.t. y “ Dx` d

Ax ď b

x,y ě 0, x P Bnb ˆ Zni , y P Rp,

(4.1)

where nb and ni represent the number of binary and integer decision variables, respectively,

D is an pˆn matrix where n :“ nb`ni, d is an p-vector, A is an mˆn matrix, and b is an m-

vector. For notational convenience, we partition the index set of variables N :“ t1, 2, ..., nu

into binary B and integer I. In this paper, the sets X :“ tx P Bnb ˆ Zni : Ax ď b, x ě 0u

and Y :“ ty P Rp : D x P X , y “ Dx ` d, y ě 0u represent the feasible set in the decision

space and the feasible set in the criterion space, respectively. We usually refer to x P X as a

feasible solution and to y P Y as a feasible point (y is the image of x in the criterion space).

Assumption 4.1. We assume that πi ą 0 and it is not necessarily integer for all i P

t1, . . . , pu.

Assumption 4.2. We assume that X is bounded (which implies that Y is compact) and

that the optimal objective value of the problem is strictly positive, i.e. there exists a y P Y

such that y ą 0.

As an aside, we note that the assumption that there exists a y P Y such that y ą 0

is not restrictive as it can be checked in advance due to the fact that yi will naturally take

integer values for any i P t1, . . . , pu in Problem (4.1) when D and d contain only integer

entries/components. So, one can solve a feasibility problem in advance to identify whether

there exists y P Y such that yi ě 1 for all i P t1, . . . , pu.

64

As mentioned earlier, an IL-GMMP can be reformulated as a mixed integer SOCP

if πi is a positive integer for all i “ 1, . . . , p [51]. In this section, we first review how this

reformulation can be done. Observe that by introducing a new non-negative variable, γ, and

a geometric mean constraint, Problem (4.1) can be reformulated as follows,

max

"

γ : 0 ď γ ď
´

p
ź

i“1

yπii

¯

1
p
ř

i“1
πi
, y P Y

*

.

It is evident that if γ̄ is the optimal objective value of the reformulated problem, then

γ̄

p
ř

i“1
πi

is the optimal objective value of Problem (4.1). Let k be the smallest integer value

such that 2k ě
řp
i“1 πi. By introducing a set of non-negative variables and constraints, the

geometric mean constraint can be replaced as follows:

max γ

s.t. 0 ď γ ď

b

τ k´1
1 τ k´1

2

0 ď τ lj ď
b

τ l´1
2j´1τ

l´1
2j for j “ 1, . . . , 2k´l and l “ 1, . . . , k ´ 1

0 ď τ 0
j “ yi for j “

`

i´1
ÿ

l“1

πl
˘

` 1, . . . ,
`

i
ÿ

l“1

πl
˘

and i “ 1, . . . , p

0 ď τ 0
j “ γ for j “

`

p
ÿ

l“1

πl
˘

` 1, . . . , 2k

y P Y .

The above formulation is a mixed integer SOCP since any constraint of the form

tu, v, w ě 0 : u ď
?
vwu is equivalent to tu, v, w ě 0 :

b

u2 ` pv´w
2
q2 ď v`w

2
u. Now, one

can use a commercial mixed integer SOCP solver such as IBM ILOG CPLEX, Gurobi, and

FICO Xpress, to solve any IL-GMMP. However, the goal of this paper is to develop effective

solution approaches based on the following definition and theoretical results.

65

Definition 4.1. A feasible solution x P X is called efficient, if there is no other x1 P X such

that

yi ď y1i @i P t1, 2, ..., pu

yi ă y1i for at least one i P t1, 2, ..., pu,

where y :“ Dx ` d and y1 :“ Dx1 ` d. If x is efficient, then y is called a nondominated

point. The set of all efficient solutions is denoted by XE. The set of all nondominated points

is denoted by YN and referred to as the nondominated frontier.

Proposition 4.1. An optimal solution of Problem (4.1), denoted by x˚, is an efficient

solution and therefore its corresponding image in the criterion space, denoted by y˚ where

y˚ :“ Dx˚ ` d, is a nondominated point.

Proof. Suppose that x˚ is an optimal solution of Problem (4.1) but it is not an efficient

solution. By definition, this implies that there must exist a feasible solution denoted by

x P X that dominates x˚. In other words, we must have that

y˚i ď yi @i P t1, 2, ..., pu

y˚i ă yi for at least one i P t1, 2, ..., pu

where y :“ Dx`d. In addition, by assumptions of Problem (4.1), we know that πi ą 0 for all

i “ 1, ..., p and y˚ ą 0. Therefore, we must have that 0 ă
p
ś

i“1

py˚i q
πi ă

p
ś

i“1

yπii . Consequently,

x˚ cannot be an optimal solution (a contradiction).

Proposition 4.1 indicates that

max
yPY

p
ź

i“1

yπii “ max
yPYN

p
ź

i“1

yπii ,

66

and therefore, as we discussed earlier, an IL-GMMP is a special case of the problem of

optimization over the efficient set [64]. Hence, instead of searching the entire feasible set, we

propose algorithms which look for an optimal point of Problem (4.1) by searching over the

set of nondominated points. We next present a critical proposition and corollary motivated

by the study of [3] that result in generating effective cuts during the course of our proposed

algorithms.

Proposition 4.2. For all ȳ ą 0 and π ą 0, ȳ is the unique optimal point of the following

L-GMMP,

max

" p
ź

i“1

yπii : y ě 0,
p
ÿ

i“1

πi
ȳi
yi ď

p
ÿ

i“1

πi

*

.

Proof. It is known that every L-GMMP has a unique optimal point [6]. So, let y˚ be the

optimal point of the given L-GMMP. In order to find y˚, we rewrite the given L-GMMP as

the following convex optimization problem,

y˚ P arg min

"

´

p
ÿ

i“1

πi logpyiq : y ě 0,
p
ÿ

i“1

πi
ȳi
yi ď

p
ÿ

i“1

πi

*

.

By assuming that y P Rp (rather than y P Rp
ě), we relax the problem to obtain,

y˚R P arg min

"

´

p
ÿ

i“1

πi logpyiq :
p
ÿ

i“1

πi
ȳi
yi ´

p
ÿ

i“1

πi ď 0

*

.

The KKT conditions of the relaxed problem are as follows,

´πi
yi
` η

πi
ȳi
“ 0 @i P t1, . . . , pu

η

ˆ p
ÿ

i“1

πi
ȳi
yi ´

p
ÿ

i“1

πi

˙

“ 0

p
ÿ

i“1

πi
ȳi
yi ´

p
ÿ

i“1

πi ď 0

η ě 0

67

where η is the dual variable associated with constraint
řp
i“1

πi
ȳi
yi´

řp
i“1 πi ď 0. It is evident

that y˚R “ ȳ and η “ 1 are feasible for the KKT conditions. Moreover, ȳ ą 0, and

consequently, y˚ “ ȳ.

As an aside, in Proposition 4.2, the set ty P Rp : y ě 0,
p
ř

i“1

πi
ȳi
yi ď

p
ř

i“1

πiu can be

viewed as a right-angled triangle when p “ 2 and its generalization (for higher dimensions)

when p ě 2. So, the proposition suggests that for such a generalized right-angled triangle

in the criterion space, the optimal point is always on the hypotenuse and can be computed

easily. An illustration of Proposition 4.2 can be found in Figure 4.1 when p “ 2. Specifically,

in Figure 4.1a, a feasible point ȳ ą 0 in the criterion space is shown and in Figure 4.1b, the

triangle for which ȳ is optimal for a given vector of geometric weights π ą 0 is shown where

the level curve basically represents
śp

i“1 y
πi
i “

śp
i“1 ȳ

πi
i .

pȳ1, ȳ2q

y1

y 2

(a) A feasible point

ȳ
1 pπ

1`
π
2 q

π
1

ȳ
2 pπ

1`
π
2 q

π
2

pȳ1, ȳ2q

y1

y 2

level curve
at optimal point

(b) The dominated triangle

π
1ȳ

1 y
1
`
π
2ȳ

2 y
2
ě
π
1
`
π
2

pȳ1, ȳ2q

y1

y 2

(c) The hypotenuse cut

Figure 4.1: An illustration of Proposition 4.2 and its corollary when p “ 2

Corollary 4.1. Let ȳ ą 0 and y˚ represent a feasible point and the optimal point of an

IL-GMMP (with feasible set Y), respectively. If Y Ď

y P Rp : y ě 0,
p
ř

i“1

πi
ȳi
yi ď

p
ř

i“1

πi
(

then we have that y˚ “ ȳ. Otherwise, if Y Ę

y P Rp : y ě 0,
p
ř

i“1

πi
ȳi
yi ď

p
ř

i“1

πi
(

then either

y˚ “ ȳ or y˚ P

y P Y :
p
ř

i“1

πi
ȳi
yi ą

p
ř

i“1

πi
(

.

68

Corollary 4.1 suggests that, for any strictly positive feasible point ȳ P Y , the following

cut (or half space),
p
ÿ

i“1

πi
ȳi
yi ě

p
ÿ

i“1

πi

can be added to an IL-GMMP because this inequality does not cut off its optimal point. We

sometimes refer to this inequality as the hypotenuse cut. An illustration of the hypotenuse

cut when p “ 2 can be found in Figure 4.1c when p “ 2. Note that one can write the proposed

cut in the form of strict inequality, i.e. ą, based on Corollary 4.1 and that obviously results

in a stronger cut but to avoid numerical issues, we use a weaker cut. Also, note that in this

paper, we introduced the hypotenuse cut in the context of IL-GMMPs but one can easily

infer that the same cut is valid for any GMMP. Next, we present a theorem that plays a

significant role when computing a dual bound in our algorithms.

Theorem 4.1. For a vector of non-negative real numbers pc1, . . . , cpq and a vector of positive

real numbers pπ1, . . . , πpq, the following inequality,

cπ1
1 c

π2
2 . . . cπpp ď

ˆřp
i“1 πici

řp
i“1 πi

˙

řp
i“1 πi

,

holds.

Proof. The proof of this theorem is based on the Arithmetic Mean-Geometric Mean (AM-

GM) inequality [65]. For a vector of non-negative real numbers pc1, . . . , cpq and a vector of

positive real numbers pw1, . . . , wpq with
řp
i“1wi “ 1, the following inequality,

cw1
1 cw2

2 . . . cwpp ď

p
ÿ

i“1

wici,

is known as the AM-GM inequality. So, by setting wi “ πi
řp
j“1 πj

in the AM-GM inequality

for all i P t1, . . . , pu, we have that,

69

c

π1
řp
j“1

πj

1 c

π2
řp
j“1

πj

2 . . . c

πp
řp
j“1

πj

p ď

řp
i“1 πici

řp
i“1 πi

.

Hence,
ˆ

cπ1
1 c

π2
2 . . . cπpp

˙
1

řp
j“1

πj

ď

řp
i“1 πici

řp
i“1 πi

,

and the result follows.

Theorem 4.1 implies the following critical remark for computing dual and primal

bounds for IL-GMMPs.

Remark 4.1. If ȳ is an optimal point of the following integer linear program,

ȳ P arg max

" p
ÿ

i“1

πiyi : y P Y
*

,

where π ą 0, then the following inequalities,

p
ź

i“1

ȳi
πi ď max

yPY

p
ź

i“1

yπii ď

ˆřp
i“1 πiȳi
řp
i“1 πi

˙

řp
i“1 πi

,

hold.

4.2 High-level Description and Key Operations

In this section, we first provide a high-level description of our proposed algorithms

and then, we provide a detailed description of their key operations. First, observe that

the nondominated frontier of a multi-objective integer linear program is discrete and finite

because we assumed that X is bounded. An illustration of the nondominated frontier when

p “ 2 can be found in Figure 4.2a.

In each iteration, the proposed algorithms attempt to compute a nondominated point

(if possible) in the criterion space, denoted by ȳ, using a specific operation. This operation

is specifically designed based on Remark 4.1 and its details are given in Subsection 4.2.2.

70

y1

y2

(a) Nondominated frontier

ȳ

y1

y2

(b) A nondominated point

ȳ

y1

y2

(c) The hypotenuse cut

Figure 4.2: An illustration of the workings of the proposed algorithms in the first iteration
when p “ 2

In other words, ȳ results in computing both primal and dual bounds. An illustration of ȳ

obtained in the first iteration when p “ 2 can be found in Figure 4.2b.

Next, the proposed algorithms add the so-called no-good constraint to the formulation

(see Section 4.2.1 for details of no-good constraint). The purpose of the no-good constraint

is to ensure that (only) the obtained feasible solution associated with ȳ in the decision

space, i.e. x̄, will be excluded from the search in the future iterations. Note that a no-

good constraint may not have an impact on the feasible set in the criterion space (in a single

iteration) because there may exist multiple solutions in the decision space whose image in the

criterion space is exactly ȳ and the algorithms will only remove the one that they obtained

(in a single iteration). The algorithms (if ȳ ą 0) also add a hypotenuse cut based on ȳ to the

problem to remove the parts of the criterion space that cannot contain points better than

ȳ. An illustration of the hypotenuse cut can be found in Figure 4.2c where ȳ is the optimal

point for the triangle and hence the triangle (except its hypotenuse) is removed from the

search.

The algorithms then repeat the process explained above in the remaining feasible

region and will eventually find a solution that is optimal for Problem (4.1), i.e. an IL-

GMMP, with respect to a given user-specified optimality gap tolerance. Specifically, in each

71

iteration, the global primal and dual bounds will be updated and the algorithms terminate as

soon as the optimality gap falls below a given threshold. Note that we later, in Section 4.3,

show the correctness of our algorithms through Proportions 4.3-4.5.

ȳ

y1

y2

(a) Top region

ȳ

y1

y2

(b) Right region

Figure 4.3: An illustration of a possible search strategy

The process explained above is the underlying idea of all our proposed methods.

However, they employ different search mechanisms. For example, one algorithm searches

the remaining region in Figure 4.2c directly and another algorithm first decomposes it into

two parts (because p “ 2 in this example) and then searches each one independently. An

illustration of such a decomposition can be found in Figure 4.3 in which the remaining

search region in Figure 4.2c is decomposed into two parts including top and right regions.

In Figure 4.3 the top and right regions are created based on the observation that the region

dominated by a nondominated point ȳ, i.e. ty ě 0 : y ď ȳu, can be removed from the

search region. Next, the key operations used in our algorithms are explained.

4.2.1 No-good Constraint

As mentioned earlier in this section, no-good constraints, also known as tabu con-

straints [56, 59, 60], play an important role in our proposed algorithms. The underlying idea

of a no-good constraint is to exclude a given feasible solution x1 P X from the search (in the

future iterations). With this in mind, if X Ď t0, 1un, i.e., ni “ 0 or I “ H, then a no-good

72

constraint can be stated a follows,

ÿ

jPS0px1q

xj `
ÿ

jPS1px1q

p1´ xjq ě 1, (4.2)

where S0px1q :“ tj P B : x1j “ 0u and S1px1q :“ tj P B : x1j “ 1u. This implies that

no-good constraints for problems with only binary decision variables are naturally linear.

Unfortunately, for problems with general integer decision variables, no-good constraints are

naturally non-linear [57]. Although the linearization of such non-linear constraints is possible,

due to the computational complexity that will be added to the problem, it is more convenient

to first convert all the integer variables to binaries and then add the linear no-good constraints

to problems. Due to this reason, in the rest of this paper, whenever we want to solve an

IL-GMMP by the proposed algorithms, we assume that all variables are binary, i.e. I “ H

and n “ nb. Note that since we have assumed that X is bounded, then for any integer

decision variable, x, a global upper bound should be computable, i.e. x ď u. For example,

by maximizing the value of x over the linear programming relaxation of the feasible set in the

decision space, i.e., X without the integrality condition, a global bound can be computed.

Hence, the variable x can be replaced by introducing v :“ tlog2uu ` 1 new binary variables

as follows,

x :“ 20z1 ` 21z2 ` ...` 2v´1zv.

Also, we assume that the following constraint is also added when using the transformation,

20z1 ` 21z2 ` ...` 2v´1zv ď u.

In light of the above, in our proposed algorithms, we maintain a list of feasible points

and their corresponding solutions, denoted by Pool, found during the course of these algo-

rithms. Specifically, whenever a feasible point y1 and its corresponding solution x1 is found,

73

px1,y1q will be added to Pool. For each px1,y1q P Pool, the proposed algorithms will add

a no-good constraint of the form (4.2), to ensure that x1 will be excluded from their search

in the future iterations.

4.2.2 Weighted Sum Operation

Following Proposition 4.1, any efficient solution whose image in the criterion space

lies in middle section of the nondominated frontier (and not its endpoints) is intuitively

expected to be a high-quality feasible solution for Problem (4.1). So, such a solution is

expected to provide a good (global) lower/primal bound for the problem. Therefore, the

proposed algorithms attempt to compute such a locally efficient solution in each iteration.

Note that the reason for using the term ‘locally’ is that in each iteration the algorithms

remove a set of feasible solutions from the problem by adding some constraints. With this in

mind, the locally efficient solution will certainly be a nondominated point for the restricted

feasible set but not necessarily for the entire problem.

To obtain a locally efficient solution (if possible), we will use a well-known result

in multi-objective optimization (see for instance [49]): optimizing any positive weighted

summation of the objective functions over a non-empty feasible set must return an efficient

solution of that particular feasible set. In light of this observation, in this research, we

simply assume that the weights are given by the vector w ą 0, and therefore, we maximize
řp
i“1wiyi over y P Y but with some additional constraints.

Note that the additional constraints include the no-good constraints as well as the

hypotenuse cuts. Therefore, the solution returned by solving the weighted sum optimization

after adding such constraints (in particular the no-good constraints) is not guaranteed to be a

true efficient solution for the corresponding multi-objective problem without additional con-

straints. However, an optimal solution (if there exists any) must be efficient for the restricted

problem, i.e. the multi-objective optimization problem with the additional constraints. That

is the reason that we call such an optimal solution a locally efficient solution.

74

In light of the above, the weighted sum optimization problem employed by our algo-

rithms, denoted by WSOpw,Pool, lq, can be stated as follows,

px̄, ȳq P arg max

" p
ÿ

i“1

wiyi :

y P Y ,

yi ě li @i P t1, ¨ ¨ ¨ , pu

p
ÿ

i“1

πi
y1i
yi ě

p
ÿ

i“1

πi @px1,y1q P Pool with y1 ą 0

ÿ

jPS0px1q

xj `
ÿ

jPS1px1q

p1´ xjq ě 1 @px1,y1q P Pool
*

,

where l ě 0 is the vector of lower bound values for y that defines a search region in the

criterion space. Each algorithm in this study updates the vector l according to its underlying

search mechanism in each iteration.

Remark 4.2. Due to Remark 4.1, after solving WSOpπ,H,0q, global primal and dual bounds

for Problem (4.1), i.e. maxyPY
śp

i“1 y
πi
i , can be computed in linear time,

p
ź

i“1

ȳi
πi ď max

yPY

p
ź

i“1

yπii ď

ˆřp
i“1 πiȳi
řp
i“1 πi

˙

řp
i“1 πi

.

Similarly, after solving WSOpπ,Pool, lq, global primal and dual bounds for the restricted

problem, i.e. maxyPȲ
śp

i“1 y
πi
i where Ȳ is the feasible set of WSOpπ,Pool, lq in the criterion

space, can be computed in linear time,

p
ź

i“1

ȳi
πi ď max

yPȲ

p
ź

i“1

yπii ď

ˆřp
i“1 πiȳi
řp
i“1 πi

˙

řp
i“1 πi

.

75

4.3 Proposed Algorithms

In this section, we provide a detailed description of our proposed algorithms and the

main reasons for developing them.

4.3.1 The Criterion Feasible Set Shrinking Algorithm I

The Criterion Feasible Set Shrinking Algorithm I (CFSSA-I) is the simplest but the

most effective algorithm (according to our numerical results) that we have developed. The

algorithm maintains three pieces of information including: a pool of solutions found during

the search denoted by Pool, a global upper/dual bound denoted by GUB, and a global

primal/lower bound denoted by GLB. At the beginning, Pool is empty, and we set GUB “

`8 and GLB “ ´8. The algorithm iteratively shrinks the feasible set in the criterion space

until it becomes empty and/or the optimality gap falls below a given threshold. At the end,

the algorithm returns the best solution found and its image in the criterion space, denoted

by px˚,y˚q.

In each iteration, CFSSA-I first checks whether GUB ´GLB ě ε1 and GUB´GLB
GUB

ě ε2

hold, where ε1, ε2 P p0, 1q are the user-defined absolute and relative optimality gap tolerances.

If at least one of these conditions is not satisfied, then the algorithm terminates. Otherwise,

the algorithm calls WSOpπ,Pool,0q to compute px̄, ȳq, i.e. a locally efficient solution

and its image in the criterion space. If px̄, ȳq “ pnull, nullq, i.e. the problem is infeasible,

then the restricted feasible region is empty, and therefore, the algorithm terminates after

returning px˚,y˚q. In other words, if the WSO operation returns null value, the restricted

region is empty of feasible solutions meaning that the current best solution is optimal.

However, if px̄, ȳq ‰ pnull, nullq, then px̄, ȳq will be added to Pool to be used in the

future iterations. Also, the global lower bound and upper bound will be updated based on

Remark 4.2. Specifically, the algorithm first updates the primal bound, meaning if
śp

i“1 ȳ
πi
i ą

GLB then the best feasible solution known, i.e. px˚,y˚q, will be set to px̄, ȳq and GLB will

76

be set to
śp

i“1 ȳ
πi
i . Afterwards, the global dual bound will be updated by setting GUB to

p

řp
i“1 πiȳi
řp
i“1 πi

q
řp
i“1 πi . A precise description of CFSSA-I can be found in Algorithm 4 and its

correctness is shown in Proposition 4.3.
Input: A feasible instance of Problem (4.1)

List.createpPoolq

GLB Ð ´8; GUB Ð `8

SearchDoneÐ False

while SearchDone “ False do

if GUB ´GLB ě ε1 & GUB´GLB
GUB

ě ε2 then

px̄, ȳq ÐWSOpπ,Pool,0q

if px̄, ȳq ‰(null,null) then

Pool.addppx̄, ȳqq

if
śp
i“1 ȳ

πi
i ą GLB then

px˚,y˚q Ð px̄, ȳq

GLB Ð
śp
i“1 ȳ

πi
i

end

GUB Ð

ˆ

řp
i“1 πiȳi
řp

i“1 πi

˙

řp
i“1 πi

end

else

SearchDoneÐ True

end

end

else

SearchDoneÐ True

end

end

return px˚,y˚q

Algorithm 4: CFSSA-I

Proposition 4.3. CFSSA-I solves a finite number of single-objective integer linear programs

to compute a solution that is optimal for an IL-GMMP with respect to a given user-specified

optimality gap tolerance.

Proof. First note that hypotenuse cuts are valid by Corollary 4.1 and hence they do not (neg-

atively) impact the correctness of CFSSA-I. So, we do not consider them in this proof. With

this in mind, observe that the number of feasible solutions of an IL-GMMP is finite because

X is bounded by Assumption 4.2. In each iteration, CFSSA-I finds a feasible point/solution

77

by solving an integer linear program through calling the weighted sum operation. Also, in

each iteration the obtained solution will be excluded from the search because the algorithm

adds it to the tabu list, i.e. Pool. Note that for each solution in Pool, its corresponding

no-good constraint will be added to the formulation of the weighted sum operation. So,

in the worst case scenario, CFSSA-I will enumerate all feasible solutions before finding an

optimal solution. So, the result follows.

4.3.2 The Criterion Feasible Set Shrinking Algorithm II

We start this subsection by providing an observation about CFSSA-I, i.e. Algorithm 4.

That is, in theory, it is possible to have an instance in which many feasible solutions in the

decision space have exactly the same image in the criterion space. So, in CFSSA-I, it

is possible that WSOpπ,Pool,0q returns the same feasible point, denoted by ȳ, in the

criterion space in different (consecutive) iterations. Of course, because we use no-good

constraints, the solutions in the decision space are certainly different in each iteration of

CFSSA-I but their image in the criterion space can be the same. This observation indicates

that it is possible that CFSSA-I performs not well for such instances. As an aside, it is

worth mentioning that in our computational study, this never happened. However, due to

the importance of this issue, we next discuss a simple approach to resolve this issue when

ȳ ą 0 and present a new algorithm, CFSSA-II, based on that. Note that we simply assume

that ȳ ą 0 does not occur, i.e. none of the components of the vector ȳ can be zero.

This is because based on Assumption 4.2 the optimal objective value of an IL-GMMP is

strictly positive. Hence, one can simply add the condition yi ě ε for all i “ 1, . . . , p to

the formulation of an IL-GMMP where ε is a sufficiently small positive value. Adding these

constraints guarantees that only feasible points with strictly positive objective values will be

produced during the course of our algorithms. Note that one way to compute ε is to solve a

max-min optimization problem, i.e. ε “ maxyPY minpy1, . . . , ypq.

78

We first note that at any iteration of Algorithm 4, after calling WSOpπ,Pool,0q,

px̄, ȳq will be returned and will be added to Pool if px̄, ȳq ‰ pnull, nullq. So, we know that

at the next iteration of Algorithm 4, the following hypotenuse cut,

p
ÿ

i“1

πi
ȳi
yi ě

p
ÿ

i“1

πi,

exists in the model corresponding to WSOpπ,Pool,0q. Observe that, as mentioned in

Section 4.1, we could write this cut in the form of strict inequality based on Corollary 4.1.

Hence, if we use the strict inequality, the feasible point ȳ can never be computed again in

any iteration of Algorithm 4 and this resolves the issue that we mentioned above.

Input: A feasible instance of Problem (4.1)
List.createpPoolq
GLB Ð ´8; GUB Ð `8

SearchDoneÐ False
while SearchDone “ False do

if GUB ´GLB ě ε1 & GUB´GLB
GUB

ě ε2 then
px̄, ȳq ÐWSOpπ,Pool,0q
if px̄, ȳq ‰(null,null) then

Pool.addppx̄, ȳqq
if

śp
i“1 ȳ

πi
i ą GLB then

px˚,y˚q Ð px̄, ȳq
GLB Ð

śp
i“1 ȳ

πi
i

end

GUB Ð

ˆ

řp
i“1 πiȳi
řp

i“1 πi

˙

řp
i“1 πi

if ȳ ą 0 then
π̂ Ð p

π1
ȳ1
, . . . ,

πp

ȳp
q

px̂, ŷq ÐWSOpπ̂,Pool,0q
if px̂, ŷq “(null, null) or

řp
i“1 π̂iŷi ď

řp
i“1 πi then

SearchDoneÐ True
end
else

if
śp
i“1 ŷ

πi
i ą GLB then

px˚,y˚q Ð px̂, ŷq
GLB Ð

śp
i“1 ȳ

πi
i

end
Pool.addppx̂, ŷqq

end
end

end
else

SearchDoneÐ True
end

end
else

SearchDoneÐ True
end

end
return px˚,y˚q

Algorithm 5: CFSSA-II

79

However, using such strict inequality gives rise to numerical issues. So, instead,

we propose to simply check the remaining search region at the end of each iteration for

identifying whether there exists any feasible point, denoted by ŷ, which can strictly satisfy

the hypotenuse cut associated with ȳ. If there exists no such feasible point, then the search

is over. Otherwise, if ŷ ą 0, we can add a new hypotenuse cut based on ŷ and this results in

avoiding the generation of ȳ in future iterations. Moreover, we can update the global primal

bound based on ŷ. Now the only remaining question is how to compute ŷ at the end of

each iteration. In order to do so, we can call the operation WSOpπ̂,Pool,0q where π̂i “
πi
ȳi

for all i P t1, ¨ ¨ ¨ , pu. Obviously, the objective function of WSOpπ̂,Pool,0q is simply the

left-hand-side of the hypotenuse cut associated with ȳ. So, if the optimal objective value of

WSOpπ̂,Pool,0q is not strictly greater than
řp
i“1 πi, which is the right-hand-side of the

hypotenuse cut associated with ȳ, then there is no feasible solution that can strictly satisfy

the hypotenuse cut associated with ȳ.

In light of the above, a precise description of CFSSA-II can be found in Algorithm 5

which is similar to Algorithm 4 but has some additional lines, i.e. see Lines 14-23. Also, the

correctness of CFSSA-II is shown in Proposition 4.4.

Proposition 4.4. CFSSA-II solves a finite number of single-objective integer linear programs

to compute a solution that is optimal for an IL-GMMP with respect to a given user-specified

optimality gap tolerance.

Proof. Similar to the proof of Proposition 4.3. The only difference is that in each iteration

one additional weighted sum operation may be called.

4.3.3 The Criterion Feasible Set Shrinking Algorithm III

The third algorithm, the so-called CFSSA-III, is a significantly modified/enhanced

version of the algorithm proposed by [1]. The two main differences are as follows. First,

the hypotenuse cut does not exist in the algorithm proposed by [1]. Second, to compute a

dual bound at each iteration, the algorithm proposed by [1] simply relaxes the integrality

80

conditions and then solves the relaxed problem after reformulating it as a SOCP. So, not

only additional SOCPs have to be solved in the algorithm proposed by [1] but also the

obtained dual bounds are often significantly weaker. In addition, because of using SOCP

solvers for computing dual bounds, the algorithm proposed by [1] cannot directly handle

non-unit geometric weights as the size of the SOCP reformulation highly depends on the

geometric weights.

CFSSA-III maintains a queue of nodes, denoted by Tree. Each node in the queue

contains two vectors denoted by l and UB. The point l is a lower bound point in the criterion

space that defines a search region, and UB is a dual bound for the associated search region.

We initialize the queue (of nodes) by l “ 0 and UB “ `8. Similar to CFSSA-I and CFSSA-

II, CFSSA-III maintains three other pieces of information including Pool, GUB, and GLB.

At the beginning, Pool is empty and we set GUB “ `8 and GLB “ ´8. The algorithm

explores the queue as long as it is nonempty and GUB ´GLB ě ε1 and GUB´GLB
GUB

ě ε2. At

the end, the algorithm returns the best solution found and its image in the criterion space,

denoted by px˚,y˚q. Next, we explain how each node of the queue is explored.

In each iteration, the algorithm pops out a node from the queue and denotes it by

pl,UBq. Note that when a node is popped out from the queue then that node does not

exist in the queue anymore. Also, note that, in this study, we use the best-bound strategy to

select a node (for being popped out) because we have numerically observed that this strategy

performs the best. Therefore, whenever a node is popped out, the GUB can be updated as

we know that the selected node contains the highest upper bound. The algorithm next calls

WSOpπ,Pool, lq to compute px̄, ȳq. Afterwards, if px̄, ȳq ‰ pnull, nullq then the algorithm

does the following steps:

• It adds px̄, ȳq to Pool.

• It sets UB to p
řp
i“1 πiȳi
řp
i“1 πi

q
řp
i“1 πi because this is a new dual bound for the node.

81

• The algorithm updates the global primal bound and the best solution found based on

px̄, ȳq.

• If there still exists a chance of finding a better solution in this node, i.e. UB´GLB ě ε1

and UB´GLB
UB ě ε2, it will be decomposed into p new nodes. The difference between

the new nodes are simply their corresponding search regions. Specifically, for each

i P t1, . . . , pu, the node pli,UBq will be added where li defines its associated search

region such that lij “ lj for each j P t1, . . . , puztiu and lii “ ȳi.

Input: A feasible instance of Problem (4.1)
Queue.createpTreeq
List.createpPoolq
lÐ 0; UBÐ `8

Tree.add
`

l,UB
˘

GLB Ð ´8; GUB Ð `8

SearchDoneÐ False
while not Queue.emptypTreeq & SearchDone “ False do

Tree.PopOut
`

l,UB
˘

GUB Ð UB
if GUB ´GLB ě ε1 & GUB´GLB

GUB
ě ε2 then

px̄, ȳq ÐWSOpπ,Pool, lq
if px̄, ȳq ‰(null,null) then

UBÐ
ˆ

řp
i“1 πiȳi
řp

i“1 πi

˙

řp
i“1 πi

Pool.addppx̄, ȳqq
if

śp
i“1 ȳ

πi
i ą GLB then

px˚,y˚q Ð px̄, ȳq
GLB Ð

śp
i“1 ȳ

πi
i

end
if UB´GLB ě ε1 & UB´GLB

UB ě ε2 then
foreach i P t1, 2, .., pu do

li Ð l

lii Ð ȳi
Tree.add

`

li,UBq
end

end
end

end
else

SearchDoneÐ True
end

end
return px˚,y˚q

Algorithm 6: CFSSA-III

In light of the above, a precise description of CFSSA-III can be found in Algorithm 6

and its correctness is shown in Proposition 4.5. As an aside, we note that a similar approach

used for modifying CFSSA-I (to be transformed into CFSSA-II) can be applied to CFSSA-

82

III. However, we do not report the performance of such a modified algorithm in this study

because we numerically observed that it does not improve the solution time for our instances.

Proposition 4.5. CFSSA-III solves a finite number of single-objective integer linear pro-

grams to compute a solution that is optimal for an IL-GMMP with respect to a given user-

specified optimality gap tolerance.

Proof. Similar to the proof of Proposition 4.3. The only difference is that CFSAA-III de-

composes the search region of each iteration into at most p (smaller) search regions (rather

than 1) at the end of each iteration. By construction, the union of the search regions is

exactly the original feasible set. Also, because the tabu list, i.e. Pool, is defined globally in

CFSSA-III, any feasible solution found in each iteration cannot be found in any subsequent

search regions. So, in the worst case scenario, CFSSA-III will enumerate all feasible solutions

before finding an optimal solution.

4.4 Computational Study

In this section, we conduct an extensive computational study using three commercial

solvers including CPLEX 12.7, Gurobi 8.1.1, and Xpress 8.5.6. We implement CFSSA-I,

CFSSA-II, and CFSSA-III in C++ and compare their performances when different com-

mercial solvers are employed for solving single-objective integer linear programs arising

during the course of these algorithms. Also, as shown in Section 4.1, an IL-GMMP can

be reformulated as a mixed integer SOCP and therefore, can be solved by appropriate

solvers. So, in this computational study, we also compare the performance of the mixed

integer SOCP solvers of CPLEX, Gurobi, and Xpress. The instance generator and the

C++ implementation of the algorithms used in this computational study can be found in

https://github.com/paymanghasemi. The computational experiments are conducted on a

Dell PowerEdge R360 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB),

128GB RAM, the RedHat Enterprise Linux 7.0 operating system, and using a single thread.

83

https://github.com/paymanghasemi

Both the absolute and relative optimality gap tolerances, ε1 and ε2, are set to 10´6 in this

computational study. Also, a time limit of 3600 seconds is imposed for solving each instance

for all algorithms.

In our computational study, a total of 2400 instances are generated and solved with

different geometric weights using different algorithms/solvers. Hence, a total of 57600 experi-

ments are conducted to complete this computational study. Specifically, for each p P t2, 3, 4u,

we generate 800 instances and solve each one using different geometric weights shown in Ta-

ble 4.1. For example, for instances with p “ 2, the vector of geometric weights, i.e. π,

can take 5 different values, i.e. p1, 1q p1, 2q, p2, 1q, p1, 3q, and p3, 1q, in this computational

study. Note that in our computational study, we do not generate instances with p ą 4 to

avoid numerical instability. Theoretically, all solution methods discussed in the paper should

handle any IL-GMMPs with any arbitrary value of p. However, in practice, as p increases,

the optimal objective value of Problem (4.1) tends to grow dramatically which directly or in-

directly result in numerical instabilities in all existing solution methods/solvers. Developing

custom-built exact algorithms for solving IL-GMMPS that are guaranteed to not run into

objective-value-caused numerical issues for large values of p is currently an active research

of the authors.

Table 4.1: Different geometric weights for each value of p

p “ 4 p “ 3 p “ 2

řp
i“1 πi “ 4 (1,1,1,1) (2,1,1), (1,2,1), (1,1,2) (1,3), (3,1)

řp
i“1 πi “ 3 - (1,1,1) (1,2), (2,1)

řp
i“1 πi “ 2 - - (1,1)

Now, we explain how the instances are generated. For each p P t2, 3, 4u, two classes of

instances including pure integer (ni “ n) and pure binary (nb “ n) instances are generated.

Each class contains 20 subclasses of instances based on the dimensions of the matrix Amˆn,

and each subclass contains 20 instances. We assume that m P t200, 400, 600, 800, 1000u

and n “ αm where α P t0.5, 1, 1.5, 2u. For example, our smallest subclass is 200 ˆ 100

84

with m “ 200 constraints and n “ 100 variables, i.e. α “ 0.5, and our largest subclass is

1000 ˆ 2000 with m “ 1000 constraints and n “ 2000 variables, i.e. α “ 2. The sparsity

of matrix A is set to 50%. The components of vector b and the entries of matrix A are

randomly drawn from discrete uniform distributions r50, 150s and r10, 30s, respectively. We

set the components of vector d equal to zero. The sparsity of each row of the matrix D

was also set to 50%, and its components were drawn randomly from a discrete uniform

distribution r1, 10s. Note that, since all constraints that are defining the set X are in the

form of ď inequality and all coefficients of matrix A are nonnegative, the set X is bounded.

As mentioned in Section 4.2, each integer decision variable should be replaced by (a

set of) binary decision variables when using our proposed algorithms, i.e. CFSSA-I, CFSSA-

II, and CFSSA-III. However, this is not required when solving an instance using (mixed

integer) the SOCP solvers. Since the maximum value for components of vector b is 150 and

the minimum value for entries of matrix A is 10, each integer decision variable can take a

maximum value of 15. Therefore, the integer variable xi is replaced by four binary decision

variables and one additional constraint as follows,

xi :“ zi1 ` 2zi2 ` 4zi3 ` 8zi4 ,

zi1 ` 2zi2 ` 4zi3 ` 8zi4 ď 15.

Note that the additional constraint is redundant and there is no need to add it to the

problem. Overall, for each of our pure integer instances, the number of decision variables

increases by a factor of 4 when using our proposed algorithms.

In this computational study, we frequently use two types of charts for comparing the

performance of different algorithms/solvers. The first one is a specific boxplot in which on the

horizontal axis different algorithms are shown, and on the vertical axis the run time ratio is

shown. Specifically, for constructing a boxplot, for each instance and for each algorithm, we

need to compute the ratio of the run time of the algorithm on the instance to the minimum

85

of the run times of all algorithms (used in the boxplot) on the same instance. Hence, if the

ratio is closer to one, then it is better. Another tool that we use is performance profile [52]

which provides more details compared to a boxplot (but it does not look as nice/neat as a

boxplot).

A performance profile presents cumulative distribution functions for a set of algo-

rithms being compared with respect to a specific performance metric, i.e. the run time in

this study. Similar to our boxplots, the run time performance profile for a set of algorithms

is constructed by computing for each algorithm and for each instance the ratio of the run

time of the algorithm on the instance and the minimum of the run times of all algorithms on

the instance. The run time performance profile then shows the ratios on the horizontal axis

and, on the vertical axis, for each algorithm, shows the percentage of instances with a ratio

that is smaller than or equal to the ratio on the horizontal axis. This implies that values in

the upper left-hand corner of the graph indicate the best performance.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
FS

S
A

-I
II

B
-a

n
d
-B

C
FS

S
A

-I
II

B
-a

n
d
-B

C
FS

S
A

-I
II

B
-a

n
d
-B

p=2 p=3 p=4

R
a
ti

o

Figure 4.4: Comparison between the algorithm proposed by [1], the so-called B-and-B, and
CFSSA-III on pure binary instances for unit geometric weights

As mentioned in the Introduction and Section 4.3.3, CFSSA-III is a modified/en-

hanced version of the algorithm proposed by [1], the so-called B-and-B. Figure 4.4 is a

boxplot for comparing the performance of these two algorithms on pure binary instances.

Note that each segment in the figure is independent of others as they represent different

classes of instances (due to the difference in their values of p). In other words, in each

86

segment, the ratios are calculated based on the minimum of the solution times reported by

only the two algorithms listed in the segment. We also note that the C++ implementation

of B-and-B is publicly available and uses CPLEX. Moreover, B-and-B cannot deal with the

non-unit geometric weights directly and similar to CFSSA-III replace any general integer

decision variable with a new set of binary decision variables. Therefore, in order to create

the boxplot, we only used CPLEX in CFSSA-III, we set the geometric weights equal to one,

and we only used the class of pure binary instances for each p P t2, 3, 4u. Observe from

Figure 4.4 that CFSSA-III significantly outperforms B-and-B. By comparing the medians,

the run time of B-and-B is around 1.5 times greater than CFSSA-III. For some instances

with p “ 2, the run time of CFSSA-III is around 10 times better.

In light of the above, in the rest of this section, we de not report the results of B-

and-B due to the reason that it does not perform better than CFSSA-III. Finally, it is worth

mentioning that, in this computational study, the terms ‘solve’ and ‘solve to optimality’ have

different meanings. The latter is used when an algorithm was able to find an optimal solution.

The term ‘solve’ is used when an algorithm was able to find a feasible solution (other than

zero) which may or may not be optimal. Note that by setting all decision variables equal to

zero, a feasible solution with the objective value of zero will be constructed for the randomly

generated instances used in our computational study.

4.4.1 Two Objectives (p “ 2)

In this section, we compare the performance of the algorithms on instances with p “ 2.

CFSSA-I and CFSSA-II were able to solve all instances to optimality. However, CFSSA-

III and the (mixed integer) SOCP solver of CPLEX were not able to do so even for unit

geometric weights. Table 4.2 shows a comparison between the SOCP solvers and CFSSA-III

for unit geometric weights. In this table, ‘#S’ is the number of instances that an algorithm

could solve, i.e. found a solution other than zero within the imposed time limit, ‘#Opt’

is the number of instances solved to optimality, and ‘%Gap’ shows the average (relative)

87

optimality gap percentage of the instances that were not solved to optimality. Observe that

both methods are able to find a feasible solution (other than zero) for all instances when

different commercial solvers are embedded in them. However, the SOCP solver of CPLEX is

performing the worst by reporting an average optimality gap of around 60% for more than

one third of the instances.

Table 4.2: Performance comparison for instances with p “ 2 and π “ p1, 1q

CFSSA-III SOCP
CPLEX Gurobi Xpress CPLEX Gurobi Xpress

#S 400 400 400 400 400 400
Binary #Opt 395 392 394 249 400 400

%Gap 0.06 0.09 0.06 58.92 0 0
#S 400 400 400 400 400 400

Integer #Opt 391 391 392 252 400 400
%Gap 0.06 0.06 0.06 60.66 0 0

Figure 4.5 shows the run time boxplots of the algorithms on instances with p “ 2 for

unit geometric weights. Note that, unlike Figure 4.4, each segment in Figure 4.5 is not inde-

pendent of others as the same instances are used in all segments. In other words, the ratios

are calculated based on the minimum of the solution times reported by all 12 algorithms

listed in the figure. From this figure, it is clear that all our proposed algorithms perform

significantly better when using the mixed integer linear programming solver of CPLEX com-

pared to Gurobi and Xpress. However, the SOCP solver of CPLEX is the worst choice

for solving a mixed integer SOCP transformation of an IL-GMMP. The SOCP solver of

Xpress seems to be the best choice for solving a mixed integer SOCP transformation of an

IL-GMMP. However, by comparing the medians of the boxplots, we see that CFSSA-I when

using CPLEX dominates the SOCP solver of Xpress by a factor of around 1.5. The other

two algorithms, CFSSA-II and CFSSA-III (when using CPLEX), are also competitive with

the SOCP solver of Xpress.

Figures 4.6 and 4.7 show the run time performance profile of the best versions of the

algorithms on the instances with p “ 2 for non-unit geometric weights with
řp
i“1 πi “ 3 and

řp
i“1 πi “ 4, respectively. Note that for a few instances, Gurobi SOCP solver was better than

Xpress SOCP solver. So, we have used both SOCP solvers of Xpress and Gurobi for creating

88

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(a) Pure Binary

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(b) Pure Integer

Figure 4.5: Performance comparison for instances with p “ 2 and π “ p1, 1q

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(a) Pure Binary

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(b) Pure Integer

Figure 4.6: Performance profile for instances with p “ 2 and π P tp2, 1q, p1, 2qu

89

these figures. Overall, CFSSA-I (when using CPLEX) performs significantly better than the

others. CFSSA-II and CFSSA-III are competitive (when using CPLEX) but CFSSA-II is

slightly better. Overall, both CFSSA-II and CFSSA-III can be considered as the second best

algorithms. However, it is evident that CSFSA-I solved around 20% of the instances at least

2.5 times faster than the others in any of the figures. Moreover, the figures show that Xpress

SOCP solver dominates the SOCP solver of Gurobi except for pure integer instances with
řp
i“1 πi “ 3, i.e. Figure 4.6b. Overall, they are both either competitive with CFSSA-III or

slightly worse than it.

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(a) Pure Binary

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(b) Pure Integer

Figure 4.7: Performance profile for instances with p “ 2 and π P tp3, 1q, p1, 3qu

4.4.2 Three Objectives (p “ 3)

In this section, we compare the performance of the algorithms on instances with

p “ 3. Again, CFSSA-I and CFSSA-II were able to solve all instances to optimality within

the imposed time limit. However, CFSSA-III and the (mixed integer) SOCP solvers of

CPLEX and Xpress were not able to do so for all the instances with unit geometric weights.

Table 4.3 shows a comparison between the SOCP solvers and CFSSA-III for unit geometric

weights. We observe from the table that the SOCP solver of Xpress was not able to solve

only one of the instances to optimality for the class of pure integer instances. The SOCP

solver of Xpress could reach to the optimality gap of 24.85% for that particular instance.

90

However, CFSSA-III was not able to solve 4 instances to optimality when employing CPLEX

and had an average optimality gap of 0.34%.

Another interesting observation is that the SOCP solver of CPLEX was not able

to solve, i.e. find a feasible solution (other than zero), for 208 and 219 instances of the

classes pure binary and pure integer, respectively. According to [61], the reason can be the

convergence tolerance. Changing this tolerance to a smaller value may result in greater

numerical precision of the solution, but also increases the chance of a convergence failure in

the algorithm and consequently may result in no solution at all. According to the manual,

the smallest value for this tolerance is 10´12 and its default value is 10´7. In order to

overcome the convergence problem, we examined different values for this parameter, i.e.

t10´6, 10´7, 10´8, ¨ ¨ ¨ , 10´12u, during the course of this study. However, we employed the

default value in this paper since it had the best performance for our instances.

Table 4.3: Performance comparison for instances with p “ 3 and π “ p1, 1, 1q

CFSSA-III SOCP
CPLEX Gurobi Xpress CPLEX Gurobi Xpress

#S 400 400 400 192 400 400
Binary #Opt 400 399 400 79 400 400

%Gap 0 0.41 0 75.71 0 0
#S 400 400 400 181 400 400

Integer #Opt 396 394 397 71 400 399
%Gap 0.34 0.37 0.33 74.39 0 24.84

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(a) Pure Binary (n “ nb)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(b) Pure Integer (n “ ni)

Figure 4.8: Performance comparison for instances with p “ 3 and π “ p1, 1, 1q

91

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(a) Pure Binary (n “ nb)

 0

 20

 40

 60

 80

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5 8

 8
.5 9

 9
.5

 1
0

Pe
rc

e
n
ta

g
e

Ratio

CFSSA-I (CPLEX)
CFSSA-II (CPLEX)
CFSSA-III (CPLEX)

SOCP (Gurobi)
SOCP (Xpress)

(b) Pure Integer (n “ ni)

Figure 4.9: Performance profiles for instances with p “ 3 and π P tp2, 1, 1q, p1, 2, 1q, p1, 1, 2qu

Figure 4.8 shows the run time boxplots of the algorithms on instances with p “ 3

for unit geometric weights. From the figure, it is clear that all our proposed algorithms

perform significantly better when using mixed integer linear programming solver of CPLEX.

Again, the SOCP solver of CPLEX is the worst choice for solving a mixed integer SOCP

transformation of an IL-GMMP. The SOCP solver of Xpress seems to be the best choice

for solving a mixed integer SOCP transformation of an IL-GMMP. However, by comparing

the medians of the boxplots, we observe that CFSSA-I when using CPLEX dominates the

SOCP solver of Xpress by a factor of around 1.5. Finally, CFSSA-II (when using CPLEX)

is competitive with the SOCP solver of Xpress but CFSSA-III is not.

Figure 4.9 shows the run time performance profiles of the best versions of the algo-

rithms on instances with p “ 3 for non-unit geometric weights with
řp
i“1 πi “ 4. Again,

we have included both SOCP solvers of Gurobi and Xpress, because for some instances, the

SOCP solver of Gurobi was performing better. From the figure, it is clear that CFSSA-I

when using CPLEX is the best choice. For pure binary instances, the second best choice is

CFSSA-II when using CPLEX. However, for pure integer instances, both CFSSA-II (when

using CPLEX) and Xpress SOCP solver are the second best choice. Overall, we observe that

the best choice has solved around 20% of instances at least 2 and 2.5 times faster than the

second best choice in pure binary and pure integer classes, respectively. We also observe that

92

unlike instances with p “ 2 (see Figure 4.7), CFSSA-III is performing poorly compared to

CFSSA-I and CFSSA-II. This is mainly because CFSSA-III uses a decomposition technique.

So, as p increases, more child nodes can be created in each iteration.

4.4.3 Four Objectives (p “ 4)

In this section, we compare the performance of the algorithms on instances with

p “ 4. Similar to the results obtained for instances with p P t2, 3u, CFSSA-I and CFSSA-II

were able to solve all instances to optimality within the imposed time limit, i.e. one hour.

However, CFSSA-III and the (mixed integer) SOCP solvers of CPLEX and Xpress were not

able to do so for all the instances with unit geometric weights. Table 4.4 shows a comparison

between the SOCP solvers and CFSSA-III for unit geometric weights. We observe from the

table that the SOCP solver of Gurobi was able to solve all instances to optimality. However,

the SOCP solver of Xpress was not able to solve 6 instances to optimality in total (three

per class). The average optimality gap reported by those instances is around 43%. Also,

CFSSA-III was not able to solve 11 instances to optimality in total when employing CPLEX.

However, the average optimality gap reported by CFSSA-III (when using CPLEX) is around

4%. Finally, the SOCP solver of CPLEX was not able to solve, i.e. find a feasible solution

(other than zero), for 320 and 319 instances of the classes pure binary and pure integer,

respectively.

Table 4.4: Performance comparison for instances with p “ 4 and π “ p1, 1, 1, 1q

CFSSA-III SOCP
CPLEX Gurobi Xpress CPLEX Gurobi Xpress

#S 400 400 400 80 400 400
Binary #Opt 395 392 396 19 400 397

%Gap 4.38 3.91 5.26 85.74 0 42.09
#S 400 400 400 81 400 400

Integer #Opt 394 393 396 11 400 397
%Gap 3.11 2.83 3.92 86.21 0 43.33

Figure 4.10 shows the run time boxplots of the algorithms on instances with p “ 4

for unit geometric weights. Again, we observe that all our proposed algorithms perform

significantly better when using the mixed integer linear programming solver of CPLEX.

93

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(a) Pure Binary (n “ nb)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

C
P
LE

X

G
u
ro

b
i

X
p
re

ss

CFSSA-I CFSSA-II CFSSA-III SOCP

R
a
ti

o

(b) Pure Integer (n “ ni)

Figure 4.10: Performance comparison for instances with p “ 4 and π “ p1, 1, 1, 1q

However, this time, although the SOCP solver of Xpress performs well, it is not as good

as the SOCP solver of Gurobi for solving a mixed integer SOCP transformation of an IL-

GMMP. By comparing the medians of the boxplots, we observe that CFSSA-I when using

CPLEX dominates the SOCP solver of Gurobi by a factor of around 1.3. Finally, it is clear

that CFSSA-II (when using CPLEX) is as good as the SOCP solver of Xpress.

4.4.4 Linearization

It is not hard to see that pure binary and pure integer instances can be linearized and

solved directly by single-objective integer linear programming solvers. It is evident that the

easiest case is linearizing pure binary instances with p “ 2 and π “ p1, 1q. Consequently, the

focus of this section will be only on such instances. As an example, consider the following

objective function,

max px1 ` 3x2qpx2 ` 2x3q “ x1x2 ` 2x1x3 ` 3x2
2 ` 6x2x3,

where x1, x2, and x3 are binary variables. First, it is obvious that x2
i “ xi. Second, any

bi-linear term xixj where both xi and xj are binary variables can be linearized by adding

94

the following three constraints and introducing a new binary variable q,

xixj :“

"

q : q ď xi, q ď xj, xi ` xj ´ 1 ď q

*

Note that, since the problem is in maximization form, the third constraint, i.e. xi`xj´1 ď q,

is redundant and can be eliminated. In light of this observation, the linearized objective

function is as follows,

max 3x2 ` q1 ` 2q2 ` 6q3

s.t. q1 ď x1, q1 ď x2, px1x2q

q2 ď x1, q2 ď x3, px1x3q

q3 ď x2, q3 ď x3, px2x3q

qi P t1, 0u @i P t1, 2, 3u

We linearized all pure binary instances of Section 4.4.1 in the way discussed above and

solved them by CPLEX, Gurobi, and Xpress. Table 4.5 provides the detailed performance

comparison on the linearized instances. Observe that the performance of the commercial

solvers on linearized instances is very poor. In many instances, the solvers were unable to

find even a feasible solution (other than 0) for linearized models but CFSSA-I (when using

CPLEX) can solve even the largest classes of instances to optimality in around 200 seconds

on average. Interested readers may refer to Appendix C1 for details of the performance of

CFSSA-I (when using CPLEX) and the best mixed integer SOCP solver on instances with

unit geometric weights. Note that, pure binary instances with p “ 2 and π “ 1 are in some

sense the easiest class of instances for linearization. So, it is expected that the performance

of the linearization technique will be even worse for other classes or larger values of p and π.

95

Table 4.5: Detailed performance of single-objective integer linear programming solvers on
linearized binary instances with p “ 2 and unit geometric weights

mˆ n
CPLEX Gurobi Xpress

#S #Opt %Gap T(sec.) #S #Opt %Gap T(sec.) #S #Opt %Gap T(sec.)
200ˆ 100 20 20 - 10.11 20 20 - 6.92 20 20 - 67.09
200ˆ 200 20 20 - 316.87 20 20 - 216.88 20 20 - 1,303.96
200ˆ 300 20 19 64 1,546.60 20 19 56 710.93 20 - 94 3,600
200ˆ 400 20 1 92 3,566.87 20 13 81 2,661.54 20 - 98 3,600

Avg 20 15 39 1,360.11 20 18 34 899.07 20 10 48 2,142.76
400ˆ 200 20 20 - 122.28 20 20 - 29.93 20 20 - 867.07
400ˆ 400 20 12 88 2,920.83 20 20 - 344.62 20 - 99 3,600
400ˆ 600 20 - 97 3,600 20 20 - 1,730.64 20 - 99 3,600
400ˆ 800 4 - 100 3,600 20 - 97 3,600 20 - 99 3,600

Avg 16 8 71 2,560.78 20 15 24 1,426.30 20 5 74 2,916.77
600ˆ 300 20 20 - 405.62 20 20 - 91.87 20 - 97 3,600
600ˆ 600 20 1 97 3,555.49 20 20 - 1,220.49 20 - 99 3,600
600ˆ 900 4 - 100 3,600 20 - 95 3,600 20 - 99 3,600
600ˆ 1200 - - 100 3,600 20 - 99 3,600 3 - 100 3,600

Avg 11 5.25 74 2,790.28 20 10 49 2,128.09 15.75 - 99 3,600
800ˆ 400 20 20 - 970.65 20 20 - 195.07 20 - 99 3,600
800ˆ 800 20 - 96 3,600 20 15 75 2,702.49 20 - 99 3,600
800ˆ 1200 - - 100 3,600 20 - 99 3,600 4 - 100 3,600
800ˆ 1600 - - 100 3,600 20 - 100 3,600 - - 100 3,600

Avg 10 5 74 2,942.66 20 8.75 68 2,524.39 11 - 100 3,600
1000ˆ 500 20 19 77 1,571.99 20 20 - 354.70 20 - 99 3,600
1000ˆ 1000 13 - 98 3,600 20 8 82 3,287.97 20 - 100 3,600
1000ˆ 1500 - - 100 3,600 20 - 99 3,600 - - 100 3,600
1000ˆ 2000 - - 100 3,600 20 - 100 3,600 - - 100 3,600

Avg 8.25 4.75 94 3,093 20 7 70 2,710.67 10 - 100 3,600

96

Chapter 5: A Cooperative Game Solution Approach for Intensity Modulated

Radiation Therapy Design: Nash Social Welfare Optimization

The copyright permissions for reuse previously published material in this chapter can

be found in Appendix A3.

5.1 Introduction

Cancerous tissues are fast proliferating cells that are more sensitive to radiation com-

pared to healthy cells. This fact provides the basis to fight against cancers using radiother-

apy. In radiotherapy, radiation doses are delivered to cancerous cells which helps shrink or

eliminate the tumors. One of the radiotherapy methods is Intensity Modulated Radiation

Therapy (IMRT) that uses computer-controlled accelerators to deliver radiation doses to a

tumor or specific areas within the tumor. IMRT controls the intensity of the radiation beam

in multiple small volumes and helps the radiation dose to conform to the 3D shape of the

target area. In IMRT, planning is a critical problem which concerns with the choice of the

best setting of radiation. In IMRT planning, the goal is to select the emission plan that as-

sures the deliverance of tumoricidal radiation doses to Planning Target Volume (PTV) with

the minimal impact on healthy organs, referred to as Organs At Risk (OAR). The planning

is usually divided into three phases [66], namely

1. the selection of the radiation angles and beams (beam angle optimization),

2. the design of fluency map or intensity pattern (fluency map optimization),

3. the design of a delivery sequence (segmentation problem).

97

In this research, our focus is on the second step, i.e., fluency map optimization. Our

motivation is that, although the entire process of fluency map optimization is based on the

trade-offs between killing cancerous cells and not harming healthy cells, there are no research

in the literature focusing on modeling these trade-offs from the angle of cooperative game

theory. Therefore, we use a game theoretical approach to create a cooperative game by solely

focusing on modeling the trade-offs occurring in the fluency map optimization problem. To

do so, in what follows in this section, we first provide a brief literature review of how a fluency

map optimization is mathematically modeled. Then, we discuss more about our motivation

and provide a brief explanation of our contributions. Finally, we provide the main structure

of the remainder of our paper.

5.1.1 Literature Review

In fluency map optimization, the assumption is that a number of beam angles are

provided, and the problem is to design a fluency map which maximizes the dose delivered

to PTV while minimizing the doses deposited in OAR. To calculate the depositions made

by the radiations of the selected beam angles, the 3D computed tomography (CT) of the

patient is required. The patient’s body will be considered as a net of small volume elements,

referred to as Voxels, and the dose deposition will be modeled to show how much the amount

of depositions in different body voxels will be if a specific beam or a group of beams radiate.

The dose deposition model is non-linear in nature [67]; however, in the literature of

radiotherapy design, it is well studied that the linear dose deposition matrices can provide

adequately precise approximations of the depositions [68, 69, 70, 71]. This, in specific, is of

benefit as it enables modeling the constraints of the fluency map optimization using linear

functions rather than non-linear relations. To present the linear deposition relations, we

denote the set of all beamlets by N and the set of all body voxels by V . Further, we define

x :“ px1, ¨ ¨ ¨ , x|N |q as the vector of variables where xn represents the amount of radiation

of beamlet n P N , and we define Dvn as the amount of deposition in voxel v P V if beamlet

98

n emits one unit radiation, i.e., xn “ 1. We also define d :“ pd1, ¨ ¨ ¨ , d|V |q as the vector

of doses where dv is the amount of the total doses deposited in voxel v P V . With these

definitions, the set of all possible fluency maps can be written as

D :“ td P R|V |` : dv “
ÿ

nPN

Dvnxn @v P V, x ě 0u. (5.1)

Having defined the deposition relations, a dose prescription is required to design the

fluency map based on it. The dose prescription typically includes a lower and upper dose level

for each organ or voxel in the body. A common problem with the clinical dose prescriptions

is that designing the ideal fluency map delivering such prescriptions is almost impossible

[72]. This is due to the fact that delivering the tumoricidal radiation doses to PTV often

requires the violation of some of the prescribed bounds for healthy voxels. Therefore, instead

of finding a plan satisfying the prescription, the fluency map optimization problem can be

stated as finding a plan that minimizes the deviations from the prescribed levels. That said,

the fluency map optimization problem can be stated as

min
dPD

fpdq, (5.2)

where fpdq represents the non-negative function that measures the deviations, which can

be linear, quadratic, or (convex) non-linear in general [73, 74, 71, 75]. Since the quadratic

penalty functions have been considered as an accepted standard in the literature of radio-

therapy planning [76, 77, 78, 66, 79, 80, 81], we focus on quadratic penalty functions but our

proposed approach is generic and can be customized for any other forms.

To define the quadratic penalty function, we show the dose prescription by pl,uq and

define l :“ pl1, ¨ ¨ ¨ , l|V |q and u :“ pu1, ¨ ¨ ¨ , u|V |q as the respective vector of lower and upper

dose levels such that lv and uv show the lower and upper dose levels prescribed for voxel

v P V . In addition, we define α :“ pα1, ¨ ¨ ¨ , α|V |q as the vector of non-negative real numbers

where αv represents the importance of voxel v P V . Using these notations/definitions, the

99

quadratic fluency map optimization problem can be defined as

min
dPD

fpdq “
ÿ

vPV

αvrpdv ´ uvq
2
` ` plv ´ dvq

2
`s, (5.3)

where pY q` :“ maxp0, Y q. Observe that Problem (5.3) penalizes the doses that surpass the

upper bound or fall below the lower bound by emphasizing the higher deviations.

5.1.2 Motivation

Ideally, the pl,uq is defined as

lv “ uv “

$

’

&

’

%

0 when v is OAR

Tv when v is PTV
, (5.4)

where Tv is the dose level required to eliminate the PTV. Such prescription often makes the

optimal objective value of Problem (5.3) non-zero. Such a non-zero value does not provide

any information other than implying that it is impossible to not violate the prescribed dose

levels. This lack of interpretability in the objective values constructs the main weakness of

quadratic penalty functions. Specifically, due to this weakness, the plans cannot be simply

evaluated using their penalty functions’ values. As a result, the fluency map plans are

usually evaluated and compared using their Dose Volume Histogram (DVH), a histogram

relating radiation dose to tissue volume [82]. By means of clarity, a DVH is a 2D plot where

the vertical axis represents the percentage volume and the horizontal axis shows the dose

amount. Then, the height of a point on the plot provides the percentage volume of the

structure that receives a dose greater than or equal to the length of that point.

The second weakness of quadratic penalty functions is that they do not suffice to

create a plan with a clinically acceptable DVH, and the burden is on the manipulation of the

importance weights, i.e., α, to adjust the DVH of the final plan [78]. Their third weakness is

that the importance weights have no clinical meaning and are priorly unknown, their choice

100

is quite arbitrary, and they are patient-specific [66]. Therefore, several plans with different

choice of weights have to be tried before selecting a final plan. All of these add to the

complexity of the problem in terms of both time and computation.

To handle the problem of importance weights, [78] proposed an automated framework

that iteratively updates the weights in voxel level, but they found some issues regarding the

consistency in quality and control on the trade-offs. Moreover, if the initial dose prescription

is feasible, then the objective value of Problem (5.3) will be zero making the importance

weights completely useless in improving the DVH of the final plan. Therefore, instead of

weights, [76] used the prescribed dose levels as the driving force. They proposed a threshold-

driven penalty function, where they updated the thresholds iteratively to attain a desired

plan. However, their approach is more of a re-planning or adaptive planning rather than

a blank-start optimizer for IMRT. In addition, in their proposed approach, they add some

quadratic terms to the original quadratic penalty function which escalates the problem of

meaningless penalty values and importance weights.

In this research, we want to address these issues by employing the concept of bar-

gaining from the field of cooperative game theory. Our main motivation comes from our

observation that the entire process of IMRT planning seeks to find a solution that can desir-

ably balance the trade-offs between sacrificing some OAR’s or sparing some PTV’s. However,

to the best of our knowledge, there are no research in the literature focusing on finding a de-

sirable balance from a bargaining point of view. That said, we now provide the contributions

of our proposed methodology.

5.1.3 Contributions

In order to discuss the contributions of our research, we first provide a brief definition

of the bargaining game in the field of game theory. The bargaining problem is a game where

all (competing) players agree to create a grand coalition, instead of competing with each

other, to get higher payoffs [11, 83]. To be able to create a grand coalition, the agreement

101

of all players is necessary. Therefore, the main concern when dealing with a bargaining

problem is what the payoff of each player should be in a grand coalition (and how it should be

computed). One of the well-known solution techniques for this problem was first introduced

by [5, 6] and then extended further by [62] and [84]. In this solution approach, a super-

criterion will be optimized over the feasible allocation of payoffs. This supercriterion is

known as the Nash Social Welfare (NSW) function and it guarantees both efficiency and

fairness in the solution that it obtains [12, 85]. For more details, the interested readers may

refer to [86].

The main contribution of our research is to transform the fluency map optimization

problem into a bargaining problem. We do this transformation in organ level where different

body organs are considered as different players with different negotiation powers. As an

overview, our approach takes a dose prescription and a penalty function for each organ as

inputs and then constructs a bargaining game between them and finds a solution for it. To

be able to construct the bargaining problem, we will solve 2|S| ` 1 optimization problems

where S represents the set of body organs (under consideration). Having constructed the bar-

gaining problem, its corresponding optimization problem will be solved to find the desirable

fluency map, which will be a Nash optimal solution. Overall, our proposed methodology has

several advantages and resolves the weaknesses of the state-of-the-art techniques mentioned

in Section 5.1.2 as explained below.

• Our methodology provides the practitioners with the flexibility of using any form of

penalty functions as their inputs. However, as mentioned earlier, we only focus on

quadratic penalty functions due to their popularity.

• Given the convexity of input penalty functions, all optimization problems in our

methodology are convex and can be solved to optimality in polynomial times.

• Our methodology resolves the weakness of interpretability as we transform the penalty

functions to preference functions. Considering that the new objective values are now

102

meaningful, the different plans can be easily evaluated and compared with respect to

their objective values.

• We introduce a new control lever in our modeling referred to as negotiation powers.

These powers provide the practitioners with the flexibility of putting more emphasis

on an organ by changing its negotiation power.

• Finally, although we only focus on the trade-offs in organ level and use the negotiation

powers as our main lever of controlling the trade-offs, we are including voxel weights

and organ weights in our model to provide the ability to control the trade-offs in all

levels.

5.1.4 Structure

The remainder of this chapter is organized as follows. In Section 5.2, we provide

the preliminaries of bargaining problems and how these problems can be optimized. In Sec-

tion 5.3, we provide the details of our methodology by explaining each step in the process of

transforming a fluency map optimization to a bargaining problem. In Section 5.4, we provide

a theoretical discussion about the proposed approach from the angle of multi-criteria opti-

mization. In Section 5.5, we provide some numerical results by implementing our approach

on some instances available in the literature and generating some different plans. Finally, in

Section 7.4, we conclude the paper and provide some future research directions.

5.2 Preliminaries

In this section, we will discuss the preliminaries of bargaining games. In general, to

create a bargaining game, four pieces of information are required:

• The set of feasible actions available for each player: before starting bargaining, players

will assess their set of actions and will join the game when they are fully aware of the

actions that are feasible for them to take.

103

• The utility function of each player: based on their set of feasible actions, players will

define a utility function for themselves, which they will try to optimize during the

bargaining process.

• The disagreement point or the status quo of the game: each bargaining game has a

disagreement point that indicates the payoff of each player if the negotiations break

down. No player accepts a payoff worse than the one in the disagreement point.

• The negotiation powers of players: evidently, stronger players want to receive better

payoffs in the final solution, and the negotiation powers help differentiate between

strong and weak players.

In the context of our research, the bargaining problem is a full-information cooperative

game. The ‘full-information’ setting means that all players know all four pieces of information

about all players. The ‘cooperative setting’ implies that all players are willing to form a

grand coalition to obtain higher payoffs compared to the status quo of the game. That

being said, in this research, we let S be the set of all players (which are body organs),

X be the set of feasible actions of all players, and r :“ pr1, ¨ ¨ ¨ , r|S|q be the disagreement

point where rs represents the payoff of player s P S in the disagreement point. Further,

we define updq :“ pu1pdq, ¨ ¨ ¨ , u|S|pdqq as the vector of non-negative utility functions and

p :“ pp1, ¨ ¨ ¨ , p|S|q as the vector of negotiation powers where uspdq and ps represent the

utility function and negotiation power of player s P S, respectively.

5.2.1 Nash Social Welfare Optimization

In order to find a solution to the bargaining game, we need to define a super-criterion

for the problem that can measure the payoff of the grand coalition. To find the optimal

grand coalition, we need to optimize the super-criterion on the set of all feasible actions.

Such super-criteria are often referred to as social welfares in the literature of bargaining

problems. In this study, we employ the Nash Social Welfare (NSW) as it is well-known that

104

it addresses both efficiency and fairness at the same time when being optimized [12, 85].

Since in the context of our research, each player seeks to minimize its utility function, the

Nash solution, denoted by d˚, to the bargaining problem can be obtained by solving the

following optimization problem,

d˚ P arg max

ź

sPS

rrs ´ uspdqs
ps : d P X , uspdq ď rs @s P S

(

, (5.5)

where
ś

sPS

rrs ´ uspdqs
ps is the NSW function, and rrs ´ uspd

˚
qs is the benefit that player

s P S obtains as a result of creating the grand coalition. Note that constraint uspdq ď rs for

each s P S ensures that no player accepts a payoff worse than its guaranteed payoff in the

disagreement point. In other words, it guarantees that the benefits have to be non-negative.

Also, the benefits are usually from different orders of magnitude, and therefore, comparing

different players’ benefits can be misleading. As a result, we present the following theorem

which says that, by scaling the benefit of any player, an equivalent optimization problem

will be created.

Theorem 5.1. The NSW is scale-free meaning that, by replacing the objective function of

Problem (5.5) by the following function,

ź

sPS

rβsrs ´ βsuspdqs
ps ,

an equivalent problem will be constructed if βs is a positive constant for all s P S [86].

Following Theorem 5.1, we normalize the benefits of players so that they take values

between 0 and 1 as follows,

d˚ P arg max

ź

sPS

r
rs ´ uspdq

rs ´ms

s
ps : d P X , uspdq ď rs @s P S

(

, (5.6)

where

ms “ mintuspdq : d P X u. (5.7)

105

We refer to r
rs ´ uspdq

rs ´ms

s in Problem (5.6) as the preference function of player s P S and

assume that rs ą ms ě 0. Note that if rs “ ms then player s does not have any flexibility.

So, it should be simply removed from the game. The advantage of preference over payoff is

that preferences are easily comparable as they are unitless and are from the same order of

magnitude. More importantly, unlike payoffs, the preference values are meaningful. Specifi-

cally, the value of one for the preference function of player s P S implies that the obtained

solution is 100% similar to the player’s ideal outcome that the player is looking for, which is

ms. Similarly, the value of zero for the preference function of player s P S implies that the

obtained solution is 100% similar to the player’s worse outcome that the player is trying to

avoid, which is rs. As an aside, we note that in Problem (5.6), it is not possible to obtain

values worse than rs for the utility of player s P S because there is a solid constraint for

it. However, there is no constraint to impose that values better/smaller than ms are not

allowed for player s P S. This implies that if, instead of computing ms exactly, we simply

approximate it heuristically, then there will be a chance that the preference functions take

values larger than one in theory (while in practice, this will be unlikely in this study). With

this in mind, in this paper, we will convert the fluency map optimization problem to Prob-

lem (5.6) and solve it to find the Nash optimal plan while ms and rs are both approximated

heuristically for each s P S based on the outcome of the quadratic fluency map optimization

problem. In this study, we do not impose constraints to bound the utility of player s P S

from below by ms because by doing so a desirable property of our approach described in

Proposition 5.1 (see Section 5.4) will no longer hold.

5.2.2 Solution Approaches

Problem (5.6) is sometimes referred to as a Maximum Multiplicative Program (MMP)

in the literature of optimization [4, 1, 87]. In this study, we assume that X is represented

by only linear constraints. There are several approaches for solving MMPs, such as using

nonlinear solvers or solving the log-transformation form of the problem; however, a more

106

efficient solution approach is to transform the objective function of an MMP into second-

order cone constraints using the technique introduced by [51]. In order to do so, we first

observe that Problem (5.6) can be reformulated as a geometric-mean optimization as follows,

max

"

γ : 0 ď γ ď
`

ź

sPS

r
rs ´ uspdq

rs ´ms

s
ps
˘

1
ř

sPS
ps

, d P X , uspdq ď rs @s P S

*

,

where γ is a non-negative variable representing the geometric mean of the NSW function. It

is evident that optimizing the reformulated problem and having γ̄ as its optimal objective

value is the same as optimizing Problem (5.6) whose optimal objective value will be equal to

γ̄

ř

sPS
ps
. By letting k be the smallest integer value satisfying 2k ě

ř

sPS

ps and by introducing a

set of non-negative variables and constraints, the geometric mean constraint can be replaced,

and the problem can be reformulated as

max γ

s.t.: 0 ď γ ď

b

τ k´1
1 τ k´1

2

0 ď τ lj ď
b

τ l´1
2j´1τ

l´1
2j for j “ 1, . . . , 2k´l and l “ 1, . . . , k ´ 1,

0 ď τ 0
j “ p

rs ´ uspdq

rs ´ms

q for j “
`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|,

0 ď τ 0
j “ γ for j “

`

|S|
ÿ

s“1

ps
˘

` 1, . . . , 2k,

d P X ,

uspdq ď rs @s P S.

Observe that any constraint of the form ta, b, c ě 0 : a ď
?
bcu is a second-order cone

constraint because it is equivalent to ta, b, c ě 0 :
b

a2 ` p b´c
2
q2 ď b`c

2
u. Note that any

second-order cone constraint is convex. This combined with the fact that X is assumed to

only contain linear constraints suggest that the proposed reformulation can be solved by a

convex programming solver as long as updq consists of only convex functions. Note that in

107

the reformulation, the only constraint that does not look convex is

0 ď τ 0
j “ p

rs ´ uspdq

rs ´ms

q for j “
`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|.

However, since the problem is in the form of maximization, the constraint can be written in

the form of inequality as follows,

0 ď τ 0
j ď p

rs ´ uspdq

rs ´ms

q for j “
`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|.

This itself is equivalent to

0 ď τ 0
j for j “

`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|,

0 ď rs ´ τ
0
j prs ´msq for j “

`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|,

uspdq ď rs ´ τ
0
j prs ´msq for j “

`

s´1
ÿ

l“1

pl
˘

` 1, . . . ,
`

s
ÿ

l“1

pl
˘

and s “ 1, . . . , |S|.

The last constraint is obviously convex if uspdq is convex. As an aside, since the linear

expression rs ´ τ 0
j prs ´msq is non-negative, it can be replaced by a non-negative (dummy)

variable for simplicity (if needed). Also, we observe that in the presence of the last constraint

(and since by construction τ 0
j ě 0, rs ą ms ě 0, and rs ´ τ 0

j prs ´msq ě 0), we can simply

remove the constraint uspdq ď rs from the reformulation for each s P S as they will be

redundant. Overall, a nice feature of employing the above-explained transformation is that

it can be directly solved by powerful commercial solvers such as CPLEX and Gurobi if

updq is a vector of linear or convex quadratic functions [3, 86]. That is why we use this

transformation in this study.

108

5.3 Proposed Methodology

In this section, we will explain our proposed methodology for transforming a fluency

map optimization problem to a bargaining game. As mentioned in Section 5.1.3, we do the

transformation in organ level by considering each organ in patient’s body as a player of the

bargaining game, which will have |S| players by letting S denote the set of all body organs

(under consideration). We also categorize body voxels into different groups based on the

organ that they belong to, and we let Vs represent the set of all voxels in organ s P S, where

V “
Ť

sPS

Vs. Moreover, our approach requires a dose prescription and a penalty function for

each organ as inputs of the problem. So, we re-define l :“ pl1, ¨ ¨ ¨ , l|S|q and u :“ pu1, ¨ ¨ ¨ , u|S|q

as the prescription vectors where ls and us show the lower and upper dose level prescribed for

organ s P S. As for the penalty function, we mentioned in Section 5.1.1 that our proposed

methodology is not limited to a specific form of penalty functions. However, we use the

quadratic form of penalty functions in this research due to its popularity.

In Problem (5.3), we provided the general form of the quadratic penalty function for

fluency map optimization problems. Note that by dividing voxels into organ categories, we

can re-define Problem (5.3), i.e., quadratic fluency map optimization, as

min
dPD

ÿ

sPS

wsfspdq “
ÿ

sPS

wsp
ÿ

vPVs

αvrpdv ´ usq
2
` ` pls ´ dvq

2
`sq,

where fspdq is the penalty function of organ s P S. We also define w :“ pw1, ¨ ¨ ¨ , w|S|q as

the vector of positive weights where ws represents the importance of organ s P S. Having

the dose prescription and penalty functions provided as inputs, we need to identify the four

pieces of information mentioned in Section 5.2 to create the bargaining game for the fluency

map optimization.

109

5.3.1 The Feasible Set of Actions

We define the feasible set of actions as

X :“ td : d P D, l̂s ď dv ď ûs @v P Vs and @s P Su, (5.8)

where l̂ :“ pl̂1, ¨ ¨ ¨ , l̂|S|q and û :“ pû1, ¨ ¨ ¨ , û|S|q are the vectors of bounds; l̂s and ûs represent

the lower and upper bound for organ s P S, respectively. Observe that the feasible set of

actions, X , is precisely the set of all possible fluency maps, i.e., D, with some additional con-

straints on radiation doses delivered to each voxel within each organ. Note that by replacing

l̂ and û with their prescribed values, i.e., l and u, our feasible set of actions will be exactly

the fluency maps that satisfy the prescription. However, as we mentioned in Section 5.1.1,

a common problem with the clinical dose prescriptions is that they are often infeasible, i.e.,

X “ H. This is problematic because, in the bargaining game, each player/organ will start

to negotiate from their respective references, and some of the references can be out of reach

due to infeasibility. Therefore, to solve this issue, we will define l̂ and û such that they are

feasible and have the minimal deviation from their initial prescription.

To do so, we solve Problem (5.9), which is the quadratic fluency map optimization,

to find a feasible solution for the fluency map problem.

d̃ P arg min
dPD

ÿ

sPS

wsfspdq
(

(5.9)

Next, we define l̂s and ûs as the minimum and the maximum doses delivered to the voxels

of organ s P S as shown in Equation (5.10),

l̂s “ min
vPVs

td̃vu ; ûs “ max
vPVs

td̃vu. (5.10)

110

Note that, as mentioned earlier, the values defined for l̂ and û using the proposed method

are feasible and closest to the prescribed values.

Remark 5.1. The vector of weights, i.e., w :“ pw1, ¨ ¨ ¨ , w|S|q, in Problem (5.9) can be ma-

nipulated to get different d̃ and consequently different l̂ and û. Therefore, if a tighter/looser

bound for a specific organ is favorable, one can increase/decrease the organ’s weight.

We note that, if the initially prescribed dose levels are certainly feasible, one can use

the prescribed dose levels to define the feasible set of actions as shown in

X :“ td : d P D, ls ď dv ď us @v P Vs and @s P Su,

and use the ideal dose levels, i.e.,

ls “ us “

$

’

&

’

%

0 when s is OAR

Ts when s is PTV
,

to define the penalty functions. By so doing, the purpose of the bargaining game will be to

find a fluency map that is closest to the ideal dose levels but does not violate the prescription.

5.3.2 Utility Functions

The utility function of organ s P S is basically its input penalty function, i.e., fspdq,

which is to be minimized. By means of clarity, since we are using quadratic penalty functions

in this research, the utility function of organ s P S is

uspdq “ fspdq “
ÿ

vPVs

αvrpdv ´ usq
2
` ` pls ´ dvq

2
`s, (5.11)

where αv is the importance weight of voxel v in organ s, dv is the total dose delivered to

voxel v in organ s, and ls and us are the lower and upper dose levels prescribed for organ s,

respectively. The point of considering the penalty functions as our utility functions is that

111

we are designing a bargaining game to find a fluency map that minimizes the deviation from

the prescribed dose levels but does not violate the feasible dose levels defined in Section 5.3.1.

In other words, we are trying to find a fluency map that minimizes the utility/penalty

functions of players/organs shown in Equation (5.11) while satisfying the following con-

straint,

ÿ

vPVs

αvrpdv ´ ûsq
2
` ` pl̂s ´ dvq

2
`s “ 0 @s P S .

5.3.3 Disagreement Point

In this section, we explain how the payoff of players/organs in the disagreement

point can be calculated. The importance of disagreement point is that, in a bargaining

game, players/organs will assess their utility/penalty functions with respect to those of

other players/organs and will consider a minimum and a maximum expected outcome for

themselves. Then, they will not accept any solution resulting in less than their minimum

expectation and will try to obtain an outcome as close to their maximum expectation as

possible.

By means of illustration, we provide an example of a bargaining game with two

players (|S| “ 2) trying to minimize their utility functions. Figure 5.1a, shows the image

of the feasible set of actions in the payoff space, i.e., the feasible values that the utility

functions of players can achieve. In Figure 5.1b, the dashed lines show the maximum and the

minimum values of the utility functions. Since both players try to minimize their respective

utility functions, the ideal outcome of the game is when both players achieve their minimum

feasible utility, point m in Figure 5.1c, and the worst outcome of the game is when both

players achieve their maximum feasible utility, point r in Figure 5.1c. In other words, point

r is the disagreement point of the game, and the players will not accept any solution worse

than it. In addition, point m is the ideal point of the game, and the goal of the coalition is

to find a final solution that is closest to it.

112

(a) feasible region (b) boundries (c) ideal and worst points

Figure 5.1: An illustration of the feasible set of a bargaining game with two players
(|S| “ 2) in the payoff space

The process of defining the disagreement point for two-player games (|S| “ 2) is rela-

tively easy, however as the number of players increases, this process becomes more challeng-

ing and computationally expensive [88, 89]. Therefore, we simply propose an approximation

technique to compute the disagreement point for fluency map problems.

In the proposed technique, we first need to solve a pseudo-lexicographic optimization

operation for each player/organ s P S. Note that a normal lexicographic optimization

operation consists of two objective functions: a primary one and a secondary one. The

operation seeks to optimize the secondary objective function over all optimal solutions of the

primary objective function. The proposed pseudo-lexicographic optimization works similarly

but it simply avoids quadratic terms to keep the operation computationally manageable.

With this in mind, the operation starts by first solving

d̄s P arg min
dPX

uspdq
(

(5.12)

and then solving

¯̄ds P arg min
dPX

ÿ

s1PSztsu

us1pdq : d̄sv ´ ε ď dv ď d̄sv ` ε @v P Vs
(

. (5.13)

113

Observe that, for each player/organ s P S, two optimization problems need to be

solved. In the first problem, the player’s/organ’s utility/penalty function will be minimized

on the feasible set of actions defined in Section 5.3.1. This optimization problem finds

the ideal utility/penalty value that the player/organ s can achieve, which is uspd̄sq. Then,

in the second optimization problem, the sum of all other players’/organs’ utility/penalty

functions will be minimized on the feasible set of actions with some additional constraints.

The additional constraints are basically assuring that

uspdq “ uspd̄
s
q.

However, such constraints will add many quadratic terms to the model. So instead, we use

the following set of constraints,

d̄sv ´ ε ď dv ď d̄sv ` ε @v P Vs ,

where ε is a sufficiently small positive constant to avoid numerical issues.

By solving the pseudo-lexicographic problem for all players/organs, the ideal expected

outcome of each player s P S is

ms “ uspd̄
s
q.

Therefore, we refer to d̄s as the ideal fluency map for organ s. Note that the ideal fluency

map of one organ is not necessarily ideal for other organs since when computing the ideal

fluency map for one organ, the other organs are not considered. The worst expected outcome

of player s P S can be estimated by

rs “ usp:d
s
q,

where

:ds P arg max
s1PS

usp
¯̄ds
1

q
(

.

114

Therefore, we refer to :ds as the worst fluency map for organ s. Note that again the worst

fluency map of one organ is not necessarily worst for other organs.

5.3.4 Negotiation Powers

The vector of negotiation powers, p, provides the practitioners with the ability to

further modify the final fluency map by putting more emphasis on an organ by increasing

its negotiation power. In other words, having defined the feasible set of actions, utility

functions, and the disagreement point, the negotiation powers can help improve the final

plan. As mentioned in Section 5.1.3, negotiation powers are control levers for the fluency

map that, to the best of our knowledge, are introduced in this research for the first time.

That said, by developing an update role for negotiation powers, an automated algorithm

can be constructed to improve the final plan. However, this does not fit in the scope of the

current research as we are mainly focusing on introducing the concept of bargaining games

to fluency map optimizations. Therefore, we leave it as a future research guideline.

Remark 5.2. The negotiation powers are different from the organs’ weights, i.e., w. In

particular, the vector w emphasizes the importance of different players/organs in finding

the feasible dose levels, where a higher weight results in a tighter dose level. However, the

vector p emphasizes the power of player/organ in the bargaining process, where a higher

power results in a final solution more preferable for the player/organ.

5.3.5 Fluency Map Bargaining Game

In Sections 5.3.1 - 5.3.4, we explained our proposed methodology to define the neces-

sary pieces of information to create a bargaining game. Now, we formally define the fluency

map bargaining game based on Problem (5.6) as the following optimization problem,

115

max
ź

sPS

“rs ´ uspdq

rs ´ms

‰ps

s.t. uspdq ď rs @s P S,

dv “
ÿ

nPN

Dvnxn @v P V, (5.14)

l̂v ď dv ď ûv @v P V,

xn ě 0 @n P N.

To find the Nash optimal solution of the fluency map bargaining game, practition-

ers can use the approach explained in Section 5.2.2 to convert the objective function of

Problem (5.14) into second-order cone constraints and then solving the reformulation using

commercial solvers such as CPLEX and Gurobi. In terms of implementation, we note that as

mentioned in Section 5.2.2, for each s P S, when applying the transformation the constraint

uspdq ď rs will become redundant and can be removed. Additionally, we know that by con-

struction, when computing ms and rs where s P S, the constraint l̂v ď dv ď ûv is considered

for each v P V . This combined with the fact that uspdq ď rs for each s P S suggest that

when solving the optimization problem, most likely the constraint l̂v ď dv ď ûv will be nat-

urally satisfied for each v P V . This is because the optimization problem attempts to make

uspdq closer to ms for each s P S. Therefore, during the course of this research, we found

out that it is computationally significantly better to remove the constraint l̂v ď dv ď ûv for

each v P V when solving the fluency map bargaining game. Note that by removing these

constraints, ms is no longer a true lower bound for the utility of organ s P S, i.e., it will

become an approximate bound. So, in that case, based on our discussions in Section 5.2,

it is possible that preference functions take values larger than one in theory, however that

would be unlikely in practice. Removing these constraints also has an important theoretical

advantage that will be discussed in the next section, see Proposition 5.1.

116

5.4 Theoretical Discussion

In this section, we explore our proposed fluency map bargaining game (in Section 5.3.5)

from the theoretical perspective. To do so, we first introduce some concepts from the field

of multi-criteria optimization as it is known that radiotherapy treatment planning has a

strong connection with this field (see for instance [90, 91, 92, 93, 94, 95]). Specifically, it is

known that most existing methods for the fluency map optimization problem can be viewed

as different approaches for solving the following multi-criteria optimization problem,

min
dPD
tf1pdq, ¨ ¨ ¨ , f|S|pdqu.

Recall that fspdq is the penalty/objective function defined for organ s P S. Unfortunately,

due to the conflicting nature of the objective functions, it is often impossible to find a

feasible solution, i.e., fluency map, that can minimize all penalty functions simultaneously.

Hence, the goal of many existing state-of-the-art techniques, when solving the fluency map

optimization problem, is to find a Pareto-optimal solution (see Definition 5.1) that can

desirably balance the conflicts between the objectives.

Definition 5.1. A feasible fluency map, pd P D, is Pareto-optimal if there exists no other

feasible fluency map, qd P D, such that

fspqdq ď fsppdq @s P S,

fspqdq ă fsppdq Ds P S.

In the literature of radiotherapy, there are two main categories of solution methods for

computing a desirable Pareto-optimal solution for the fluency map problem [95]. We refer to

theses two categorizes as non-automated and automated in this paper, and the main difference

between them is that the level of interactions with decision maker(s) is more significant in

the non-automated approaches. Specifically, in the non-automated approaches, the focus is

117

on generating the entire set or a large subset of Pareto-optimal solutions in order to enable

decision makers to navigate through them and identify a desirable solution. As an aside,

we note that some existing commercial treatment planning software, e.g., RayStation5.1, are

developed based on the non-automated approaches. Although the non-automated approaches

are a valuable source for understanding the trade-offs between the conflicting objectives,

they have two main disadvantages. First, computing the entire set (or a large subset) of

Pareto-optimal solutions can be computationally expensive, i.e., time consuming. The second

disadvantage is that it is long argued in the field of multi-criteria optimization that presenting

too many Pareto-optimal solutions to decision makers can sometimes confuse the decision

makers and make selecting a preferred solution difficult [7, 8]. So, the process of selecting a

desirable Pareto-optimal solution itself can be burdensome as well.

To overcome the above-mentioned challenges, the automated solution approaches seek

to directly return a desirable Pareto-optimal solution based on the decision maker’s wish-list,

which is a solution-approach and decision-maker dependent list including information such

as the priority of each objective, their corresponding acceptable values, etc. In other words,

in the context of the automated solution approaches, a desirable Pareto-optimal solution can

be viewed as the closest solution to the wish-list of decision makers (rather than a solution

that decision makers select by inspection). Since there is no unique and trivial way to

measure the closeness, identifying the closest solution is not a trivial task too. Consequently,

not surprisingly, several automated solution approaches exist in the literature. In fact all

the solution approaches that we discussed through this paper, e.g., the quadratic fluency

map optimization or our proposed fluency map bargaining game, belong to the category of

automated solution approaches. Two other approaches in the same category are the so-called

lexicographic optimization method and the 2-phase ε-constraint method developed by [96];

We will later use these two methods in our computational study.
5.1https://www.raysearchlabs.com/multi-criteria-optimization-treatment-planning/

118

We note that all automated solution approaches seek to minimize the level of inter-

actions with decision makers in order to speed up the entire planning process. However, if

decision makers are not happy with the plan generated by an automated solution approach,

they still have the option to make changes to their wish-lists in order to force the approach

to return a possibly different solution. Of course, the hope of all automated solution ap-

proaches is to avoid such an interactive process (or minimize the number of iterations). In

the context of our approach, the wish-list can be viewed as the negotiation powers, weights,

etc. With this in mind, we next prove that our approach is indeed an automated solution

approach. In order to do so, it suffices to prove that the proposed approach always returns

a Pareto-optimal solution. We then explain that our approach comes with an additional

natural advantage which makes its outcome likely to be acceptable for decision makers.

Proposition 5.1. The proposed fluency map bargaining game, i.e., Problem (5.14), always

returns a Pareto-optimal solution.

Proof. Recall that in the context of our research, uspdq “ fspdq for each s P S, see Sec-

tion 5.3.2. Moreover, based on our discussions in Section 5.3.5, the constraint l̂v ď dv ď ûv

should be removed from Problem (5.14) for each v P V . So, the proposed fluency map

bargaining game can be stated as

max
ź

sPS

“rs ´ fspdq

rs ´ms

‰ps

s.t. fspdq ď rs @s P S,

d P D.

We now prove the assertion by contradiction. Let d˚ be an optimal solution of the above-

mentioned problem and suppose that it is not Pareto-optimal. In that case, following Defi-

119

nition 5.1, there must exist a solution, qd P D, that dominates d˚, i.e.,

fspqdq ď fspd
˚
q @s P S,

fspqdq ă fspd
˚
q Ds P S.

First note that since fspd˚q ď rs for all s P S, we must have that fspqdq ď rs for

all s P S. This is because otherwise (by definition) there must exist s P S such that

fspd
˚
q ď rs ă fspqdq which clearly violates the assumption that qd dominates d˚. This

combined with the fact that qd P D imply that qd is a feasible solution for the proposed

fluency map bargaining game. Now, since by assumptions rs ą ms ě 0 and ps ą 0 for all

s P S, we have that

ź

sPS

“rs ´ fspd
˚
q

rs ´ms

‰ps
ă

ź

sPS

“rs ´ fspqdq

rs ´ms

‰ps
.

Consequently, d˚ cannot be an optimal solution as qd has a better objective value for the

fluency map bargaining game (a contradiction).

Following Proposition 5.1, as long as the assumption rs ą ms ě 0 and ps ą 0 for all

s P S hold, the returned solution by solving the proposed fluency map bargaining game is

definitely Pareto-optimal. So, in essence, users have the full flexibility to choose any arbitrary

values for those parameters in a clinical setting. The only consideration is that due to the

existence of the constraint fspdq ď rs for all s P S in the fluency map bargaining game, there

is a possibility that the fluency map bargaining game becomes infeasible for some arbitrary

choices of the disagreement point. That is the main reason that in our proposed approach,

we solve 2|S| ` 1 optimization problems to compute the disagreement points such that the

fluency map bargaining game remains feasible.

In addition to the Pareto-optimality, our proposed approach comes with a unique

desirable property which is balancing efficiency and fairness [97, 12, 85]. Intuitively, effi-

120

ciency means maximizing the total size of the cake while fairness means dividing/sharing

the cake as equitable as possible among players with respect to their negotiation powers, i.e,

those with higher negotiation powers are likely to get a larger proportion of the cake. In

the context of our research, the ‘cake’ refers to any feasible treatment plan; The share of a

player/organ from the cake refers to the similarity ratio of the treatment plan to its ideal

plan; Finally, the size of the cake is the sum of all similarity ratios.

In a perfect world, each organ will receive a radiation plan which is 100% similar

to its true ideal plan. However, that may not be achievable in practice, and therefore,

there can be trade-offs between fairness and efficiency. Given the disagreement point and

negotiation powers of players, it is known in the field of game theory that a natural way of

balancing efficiency and fairness is to maximize the NSW function over the feasible set of

actions [97, 86]. In other words, by maximizing the NSW function, we are implicitly trying

to find a solution/plan that maximizes the size of the cake. If by so doing, it turns out

that the cake is divided completely fairly then that solution has to be optimal. Otherwise,

the approach implicitly attempts to give up on the size of the cake in order to improve

fairness. Overall, balancing efficiency and fairness is an important property of our approach

as it suggests that our proposed approach naturally attempts to avoid generating extreme

Pareto-optimal solutions/plans which are significantly biased towards some players (unless

their negotiation powers are considerably higher). This is desirable as such extreme plans

are typically unacceptable for decisions makers [92].

5.5 Numerical Results

In this section, we conduct a numerical study by implementing the proposed bargain-

ing game on the TG-119 and the liver case provided in the CORT dataset [69]. For each

case study, we compare our results with a state-of-the-art solution approach, i.e., quadratic

fluency map optimization, in this section. Note that the quadratic fluency map optimization

is precisely Problem (5.9). In our numerical study, we only consider the weights in organ

121

level, i.e., w, and negotiation powers, i.e., p. Therefore, the voxel-level importance weights

are not considered, i.e., we assume that αv “ 1 for each v P V . For both case studies, we

followed the ideal dose prescription of the form

ls “ us “

$

’

&

’

%

0 when s is OAR

Ts when s is PTV
,

where OAR includes all healthy organs of the body and PTV are the cancerous organs to be

eliminated. Note that the organ weights, w, play an important role in defining the feasible

set of actions of the bargaining game. Therefore to conduct a more comprehensive numerical

study, we considered two different cases for them. Specifically, for the TG-119 case, organ

weights are selected such that they prioritize OAR sparing over PTV coverage. However,

for the liver case, the organ weights are selected to prioritize PTV coverage over OAR

sparing. We implemented our methodology in C++ and used CPLEX 12.9 as our solver.

The computational experiments are conducted on a Dell PowerEdge R360 with two Intel

Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, the RedHat Enterprise

Linux 6.8 operating system, and using the default settings of CPLEX.

5.5.1 TG-119 Case

For TG-119 case, we used all the five beam angles provided in the CORT dataset [69].

The case includes a total of 418 beamlets, a total of 599,440 body voxels, and three body

organs. The organs are Target with 7,429 voxels, Core with 1,280 voxels, and Normal tissues

with 302,953 voxels. Note that the remainder of 287,778 body voxels receive a maximum of

zero radiation, and therefore, we did not include them in the model and in the DVH. We

assumed a prescription dose of 55 Gray (Gy) for the Target. To prioritize Core sparing over

PTV coverage, and PTV coverage over body sparing, we simply considered organ weights

122

relative to the organs’ sizes as follows,

wC “
1

1, 280
, wT “

1

7, 429
, wN “

1

287, 778
,

where wc, wT , and wN are the importance weights of Core, Target, and Normal tissues,

respectively. Following Remark 5.1, these bounds result in the tightest dose levels for Core

and the loosest dose levels for Normal tissues. We followed the steps in Section 5.3.1 to define

the feasible set of actions and to calculate the feasible dose levels for each player/organ, which

are provided in Table 5.1.

Table 5.1: TG119 case: Feasible dose levels

l̂ û
Core 0.56 15.09
Target 31.25 64.46
Normal 0.0 55.90

Following Section 5.3.3 to define the disagreement point, we calculated the ideal and

worst expected utility/penalty values for each player/organ. Figure 5.2 depicts the DVH of

the ideal (solid line) and the worst (dashed line) fluency maps of each player/organ. Note

that for each organ s P S, its ideal DVH can be generated based on d̄s as it corresponds to

ms (which is its expected ideal outcome) and also its worst DVH can be generated based on

:ds as it corresponds to rs (which is its expected worst outcome). Note that in Figure 5.2, the

area between the ideal and the worst DVH of each player/organ provides the range where

the solution of our Nash Social Welfare optimization is expected to lie in.

Figure 5.2 helps to have an overview of the outcome of the bargaining game. As

mentioned in Remark 5.2, the negotiation powers of players/organs determine their simi-

larity to their ideal expected outcome. Therefore, for example, by using a sufficiently large

negotiation power for Target compared to the powers of Core and Normal tissues, one can

obtain a Target DVH identical to its solid line in Figure 5.2. However, in such a case, a

DVH similar to the dashed lines should be expected for Core and Normal tissues. By means

123

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Core
Target

Normal

Figure 5.2: TG-119 case: DVH of the ideal (solid curves) and worst (dashed curves)
utility/penalty values

of clarification, we modeled the bargaining game testing different negotiation powers. The

powers we tested are

ppT , pC , pNq P tp1, 1, 1q, p21, 1, 1q, p42, 1, 1q, p42, 10, 1qu,

where the highest power is related to Target and is approximately equal to the ratio of the

total number of body voxels divided by number of Target voxels. Specifically, we chose

these powers to show the changes in the outcome of the game as the negotiation power of

Target gradually increases. To compare the result of our approach with the quadratic fluency

map optimization, in Figure 5.3, we provided the DVH generated by employing the tested

negotiation powers in bargaining game as solid lines and the DVH of the quadratic fluency

map optimization, i.e., Problem (5.9), as dashed lines.

Figure 5.3a shows the DVH of the game where all players/organs have unit powers.

The outcome of the bargaining problem (solid lines) shows 75%, 90.11%, and 74.9% similarity

of Target, Core, and Normal to their ideal expected utility/penalty values, respectively. Note

that these are the values of preference functions explained in Section 5.2.1 (that are multiplied

124

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Core
Target

Normal

(a) ppT , pC , pN q “ p1, 1, 1q

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Core
Target

Normal

(b) ppT , pC , pN q “ p21, 1, 1q

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Core
Target

Normal

(c) ppT , pC , pN q “ p42, 1, 1q

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Core
Target

Normal

(d) ppT , pC , pN q “ p42, 10, 1q

Figure 5.3: TG-119 case: DVH comparison between the Nash optimal solution (solid
curves) and the quadratic optimal solution (dashed curves)

by 100) after solving the bargaining problem. The similarity percentages of the outcome of

the fluency map optimization problem (dashed lines) can be also obtained by plugging its

solution into the preference functions explained in Section 5.2.1. By doing so, the percentages

will be 88.7%, 70.4%, and 66.5% for Target, Core, and Normal respectively. This indicates

that in the bargaining process, the preference of Target is sacrificed to obtain the maximum

NSW.

Figure 5.3b and Figure 5.3c show the DVH of the game where the negotiation power

of Target is increased to 21 and 42, and Core and Normal have unit powers. These games

resulted in 97.01% and 97.93% similarity of Target to its ideal case. The similarity per-

centages of Core are 55.8% and 48.92%, and of Normal are 41.7% and 34.32%. Observe

that, as we increase the negotiation power of Target in comparison to the power of other

125

players/organs, the preference value of Target increases, and it tends to obtain a DVH closer

to its ideal DVH. However, the preference of other players/organs decreases, and their DVH

moves closer to their worst case.

Figure 5.3d shows the case where Target has a power of 42, Core has a power of 10,

and Normal has unit power. In this case, the similarity of Target, Core, and Normal to their

ideal case are 93.6%, 73.3%, and 39.2%, respectively. It is clear that, due to the negotiation

powers, the preference of Normal is sacrificed to ensure a higher preference for Target and

then Core. Similarly, we observe from Figure 5.3d that the DVH of Core and Target has

changed for the better by sacrificing the DVH of Normal compared to their DVH’s generated

by the quadratic fluency map optimization.

5.5.2 Liver Case

In this section, we implement our methodology on the liver case provided in the

CORT dataset. In this dataset, a total of 56 beam angles are provided, of which we only

use 8 that are reported as the result of the beam angle optimization algorithm developed by

[77]. These 8 beam angles include a total of 519 beamlets. The body organs that we include

in our model are PTV with 6,954 voxels, Skin with 465,093 voxels, Heart with 28,867 voxels,

Left Kidney (KidneyL) with 1,295 voxels, Right Kidney (KidneyR) with 692 voxels, Large

Bowel with 133 voxels, Liver with 52,999 voxels, Spinal Cord with 685 voxels, and Stomach

with 7,789 voxels. Therefore, the total number of body voxels are equal to 564,507, all of

which can receive a maximum dose of greater than zero by the included beam angles.

Since the liver case is more realistic compared to TG-119, we divide our numerical

analysis in this section into two parts. In the first part, we provide an overview of the

performance of the proposed algorithm compared to the quadratic optimization similar to

what we did for the TG-119 case. In the second part, we provide a performance comparison

between our proposed algorithm and two existing automated (multi-criteria) solution ap-

proaches including lexicographic optimization method (Lexico) and the 2-phase ε-constraint

126

method (2pεc). Our specific implementation of Lexico and 2pεc on the liver case is provided

in Appendix D1, and the interested readers can refer to [96] for the generic form of these

approaches.

5.5.2.1 Overall Performance

Similar to the TG-119 case, we assume a prescription dose of 55 Gy for the PTV

and zero Gy for other organs, and unlike to the TG-119 case, we looked for the feasible

bounds that prioritize PTV coverage over OAR sparing. To do so, we employed the following

importance weights,

ws “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

6, 954

564, 507
s “ PTV

1

564, 507
otherwise

,

where wPTV is the ratio of the PTV size to the total number of voxels, and other weights are

the ratio of one over the total number of voxels. Then, we defined the feasible dose levels

of each player/organ following Section 5.3.1, which are provided in Table 5.2. Further, in

the process of defining the disagreement point, we extracted the DVH of the ideal and worst

expected utility/penalty values for each player/organ, which are provided in Figure 5.4.

Table 5.2: Liver case: Feasible dose levels

l̂ û
PTV 31.31 59.73
Skin 0.0 58.24
Heart 0.0 50.47

KidneyL 0.0 0.03
KidneyR 0.0 0.06

Large Bowl 0.0 0.02
Liver 0.0 55.14

Spinal Cord 0.0 12.14
Stomach 0.0 15.15

127

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

Figure 5.4: Liver case: DVH of ideal (solid curves) and worst (dashed curves)
utility/penalty values

Similar to the previous section, we modeled the bargaining game using different ne-

gotiation powers, where the highest power is related to PTV which is approximately equal

to the ratio of the total number of body voxels to the number of PTV voxels. Figure 5.5

compares the DVH of the Nash optimal solutions with the tested negotiation powers (solid

lines) with the DVH of the quadratic fluency map optimization (dashed lines). Figure 5.5a

shows the DVH of the game where all players/organs have the same unit powers. From this

figure, we observe that, similar to the TG-119 case, the preference of PTV is sacrificed to

obtain the maximum NSW. Moreover, the DVH of Skin has changed a little compared to

the quadratic optimal solution, but the DVH of all the other players/organs have improved.

Figures 5.5b and 5.5c show the DVH of the Nash optimal solution where PTV has a

negotiation power equal to 40 and 81, and the other players/organs have powers equal to one.

Observe that, as the negotiation power of PTV increases, its DVH tends to move closer to

its ideal case. During this change, although the quadratic fluency map optimization resulted

in a better DVH for Skin and Liver, the Nash optimal solution resulted in highly improved

DVH’s for all other organs. Figure 5.5d shows the DVH of the Nash optimal solution where

PTV has a negotiation power equal to 81, Liver has a power equal to 10, and the rest of the

128

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(a) ps “ 1 for all organs

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(b) pPTV “ 40, ps “ 1 for others

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(c) pPTV “ 81, ps “ 1 for others

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(d) pPTV “ 81, pLiver “ 10, ps “ 1 for others

Figure 5.5: Liver case: DVH comparison between the Nash optimal solution (solid curves)
and the quadratic optimal solution (dashed curves)

players/organs have unit powers. Observe from Figure 5.5d that the bargaining game has

improved the DVH of all players/organs compared to the quadratic optimal solution with

the cost of slightly sacrificing the DVH of Skin. Finally, since the liver case is more realistic

(compared to TG-119), for interested readers, we report a 2D dose distribution map of its

Nash optimal solution in Figure 5.6 for all four scenarios of negotiation powers.

5.5.2.2 Performance Comparison

We now compare the performance of our approach with the Lexico and 2pεc. The

wish-list that we use for the Lexico and 2pεc is summarized in Table 5.3. We note that the

wish-list is designed based on the outcome of our proposed approach in Figure 5.5d. In other

words, we define the wish-list in such a way that we can compare the performance of our

129

(a) ps “ 1 for all organs (b) pPTV “ 40, ps “ 1 for others

(c) pPTV “ 81, ps “ 1 for others (d) pPTV “ 81, pLiver “ 10, ps “ 1 for others

Figure 5.6: Liver case: dose distribution map of the Nash optimal solution

130

approach shown in Figure 5.5d with the Lexico and 2pεc. Since in Figure 5.5d, the PTV has

the highest negotiation power, we give the first priority to the PTV in the Lexico and 2pεc.

Moreover, since the liver has the second highest negotiation power in Figure 5.5d, we give the

second highest priority to the liver. Finally, since all other organs have the same negotiation

powers in Figure 5.5d, we give the third priority to all other organs together. In Figure 5.5d,

the (quadratic) penalty value for the PTV is 68,386.38, so we set 68,386.38 as the goal for

the PTV. Similarly, the (quadratic) penalty value for the liver is 8,750,124.63 in Figure 5.5d,

so we set 8,750,124.63 as the goal for the liver. Finally, the sum of all (quadratic) penalty

values for other organs is 42,012,837.22 in Figure 5.5d, so we set 42,012,837.22 as the goal

for the all other organs together.

Table 5.3: Liver case: the wish-list used for the Lexico and 2pεc.

Priority Volume Goal
1 PTV 68,386.38
2 Liver 8,750,124.63
3 Other organs 42,012,837.22

As an aside, we note that CPLEX 12.9 was struggling when solving the Lexico and

2pεc due to the side constraints that these methods involve. Therefore, in order to employ

Lexico and 2pεc, we ended up using Gurobi 9.1 which is another powerful commercial solver.

Figure 5.7 compares the DVH of the outcomes of the Lexico and 2pεc (dashed lines) with

the outcome of the proposed bargaining game (solid lines). From Figure 5.7a, we observe

that the Lexico has resulted in an extreme solution that is mostly preferable to the PTV.

Observe that the DVH of PTV in this figure is almost the same as its expected ideal DVH

in Figure 5.4 while other organs are receiving doses close to their worst expected DVH. In

fact, some organs (e.g., the spinal cord) are receiving DVH which is worse than our worst

expected DVH. Note that this is possible because our worst expected DVH is defined based

on our proposed Nash bargaining approach, i.e., the disagreement point. Therefore, since the

concept of disagreement point does not exist in the other approaches, there is no gurantee

that they do not violate it.

131

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(a) Bargaining vs Lexico

 0

 20

 40

 60

 80

 100

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

R
e
la

ti
v
e
 V

o
lu

m
e
 [

%
]

Dose [Gy]

Skin
PTV

Heart
KidneyL
KidneyR

LargeBowel
Liver

SpinalCord
Stomach

(b) Bargaining vs 2pεc

Figure 5.7: Liver case: DVH comparison between the Nash optimal solution (solid curves)
and Lexicographic optimization or 2pεc approach (dashed curves)

By comparing Figures 5.7a and 5.7b, we observe that the plan generated by 2pεc is

significantly less extreme than the one generated by Lexico. While the plan generated by

2pεc is favorable towards skin, we observe that its negative impacts on some organs (e.g.,

heart, spinal cord, and stomach) are more significant than the plan generated by the Nash

bargaining solution. In other words, although the wish-list is designed to guide the Lexico

and 2pεc to create plans similar to the one generated by our proposed bargaining game,

they ended up creating more extreme solutions compared to the proposed approach. This

is mainly because as mentioned in Section 5.4, the proposed fluency map bargaining game

naturally seeks to generate a Pareto-optimal plan that can balance the efficiency and fairness

based on the parameters that users provide. However, such a process does not naturally exist

in other solution approaches. So, users need to manually achieve that by exploring different

parameters settings (e.g., different wish-lists). Finally, similar to the previous subsection,

for interested readers, we report a 2D dose distribution map of the Nash optimal solution

for both the Lexico and 2pεc in Figure 5.8. We observe that similar conclusions to the

above-mentioned ones can be made by comparing Figures 5.6d, 5.8a, and 5.8b.

132

(a) Lexico (b) 2pεc

Figure 5.8: Liver case: dose distribution map of the treatment plans generated by the
Lexico and 2pεc

133

Chapter 6: Solving Multiplicative Programs by Binary-encoding the

Multiplication Operation

6.1 Introduction

The focus of this paper is on the following class of optimization problems, known as

(linear) multiplicative programs,

max or min

#

ź

iPI

yipxq : x P X , ypxq ě 0

+

, (6.1)

where I :“ t1, . . . , pu, X Ď RnCˆZnI (nC , nI ě 0 being the number of continuous and integer

variables, respectively) is the set of feasible solutions described by only linear constraints,

and ypxq is a vector of p non-negative linear functions of x P X . A multiplicative program is

referred to as a Maximum Multiplicative Program (MMP) if it is in the form of maximization.

Similarly, it is referred to as a minimum Multiplicative Program (mMP) if it is in the form

of minimization. This study is motivated by two observations.

The first one is that MMPs and mMPs are typically studied independently in the

existing body of literature as they are completely different in nature. This is highlighted

by the fact that when there are no integer variables, i.e., nI “ 0, MMPs can be solved in

polynomial time while mMPs remain NP-hard [3, 54, 55]. Consequently, not surprisingly,

more effective solution methods exist for MMPs that cannot be used for solving mMPs [98].

One such method is to replace the multiplicative objective function by its corresponding log-

transformed function, i.e.,
ř

iPI logpyipxqq, and to solve the transformed problem by a mixed

integer convex programming solver. Another method, which in practice is even faster, first

replaces the multiplicative objective function by its corresponding geometric mean function,

134

i.e., p
a

ś

iPI yipxq, and then transforms the problem into a mixed integer Second Order Cone

Program (SOCP) in order to be solved by powerful commercial solvers such as CPLEX and

Gurobi [3]. Overall, there is a lack of custom-built exact solution methods that can be used

for both mMPs and MMPs, and this study attempts to address this gap.

The second observation is that for large values of p, the optimal objective value of

Problem (6.1) tends to be either very large or very small due to the multiplicative nature

of its objective function. We refer to this issue as the curse of multiplication. For example,

suppose that p “ 100 and y1 “ ¨ ¨ ¨ “ y100 “ 99 in an optimal solution. The optimal objective

value, 99100, is an astronomical number that far exceeds the capabilities of any state-of-the-

art method to handle it. Moreover, for such magnitudes of objective values, the (typical)

relative optimality gap tolerance that solvers use, e.g., 10´4, is insufficient as the absolute

optimality error continues to be beyond our imagination. Therefore, existing solvers need to

select smaller values for their relative optimality gap tolerance, however, that can decrease

their performance significantly and possibly create other forms of numerical issues. It is

worth mentioning that transformation-based solution methods (e.g., the log-transformation)

can possibly resolve the curse of multiplication for some multiplicative programs. However,

transformations themselves can create other forms of numerical issues because of their non-

linear nature and the fact that their outcomes can be irrational numbers. For example,

log10 99 “ 2 log10 3` log10 11 is obviously irrational. Overall, there is a lack of custom-built

exact solution methods that can truly resolve the curse of multiplication, and this study

attempts to address this gap.

6.1.1 Applications

An important application of multiplicative programs is in the field of conservation

planning. This field deals with the issues related to preserving and/or increasing biodi-

versity [99]. Preserving biodiversity is crucial to human societies and the future of planet

Earth, and its slow erosion constitutes a threat as consequential as that posed by climate

135

change [100]. Preserving biodiversity is a vague goal and needs to be translated into mea-

surable and definable objectives. Unfortunately, such a translation is not a trivial task and

is known to be one of the significant challenges in environmental management [101, 33].

Therefore, a common approach in the literature of conservation planning is to compute ex-

tinction risks and use them for measuring biodiversity and comparing different solutions in

conservation planning problems [33]. Specifically, the existing body of literature suggests

that conservation planning problems need to be formulated and solved as multiplicative

programs.

In such multiplicative programs, X represents the set of feasible solutions of a con-

servation planning problem. A feasible solution can represent, for example, which parcels of

land can be purchased for protection, i.e., creating a nature reserve, based on the available

budget as well as spatial and temporal constraints. Moreover, p represents the number of

important/endangered species under consideration. Note that p can be a large number in

practice as natural resource managers may be interested in considering dozens of species for

a conservation planning problem [102]. For each species i P I, let fipxq be a (linear) function

that captures the extinction risk corresponding to solution x P X . Based on these notations,

the literature suggests that mMPs can be solved if managers are interested in minimizing

the probability of more species being extinct. For mMPs, we should set yipxq “ fipxq for

each species i P I. The literature also suggests that MMPs can be solved if managers are

interested in minimizing the probability of all species being extinct. Then, for MMPs, we

should set yipxq “ 1´ fipxq for each species i P I.

In addition to conservation planning, multiplicative programs have applications in

many other domains. For example, mMPs have applications in bond portfolio management,

economic analysis, and VLSI chip design [103]. MMPs, on the other hand, can be used

to compute the Nash solution in bargaining problems in the field of cooperative game the-

ory [104]. In bargaining problems, the multiplicative function is sometimes referred to as the

Nash Social Welfare function [105]. Hence, in bargaining problems, MMPs can be viewed

136

as maximizing the Nash Social Welfare function over the feasible set of actions. Note that

many real-world bargaining problems require integer decision variables, e.g., the allocation

of indivisible goods among heirs [105]. MMPs can also be used in computing an equilib-

rium for Fisher’s linear or Kelly’s capacity allocation market [106] or systems reliability

problems [107, 108, 109].

Finally, we note that multiplicative programs have applications in multi-objective

optimization [3, 55]. Two areas of research (among others) in multi-objective optimization

are (1) computing the entire Pareto-optimal/efficient frontier [110, 111] and then asking

decision makers to select a desirable solution; (2) optimization over the Pareto-optimal/

efficient set whose attempts to directly compute a desirable solution without generating the

entire Pareto-optimal frontier [112]. Multiplicative programs are special cases of the latter.

Observe that for MMPs (mMPs), yipxq can be viewed as an individual objective function

that needs to be maximized (minimized) for each i P I. Therefore, the multi-objective

optimization counterpart of a multiplicative program can be stated as

max or min ty1pxq, . . . , yppxq : x P X , ypxq ě 0u .

In this case, solving MMPs (mMPs) is equivalent to maximizing (minimizing) the super-

criterion
ś

iPI yipxq over the set of Pareto-optimal solutions of its multi-objective optimiza-

tion counterpart [98, 113, 114, 115, 116].

6.1.2 Contributions

The main contribution of our research is to develop techniques in order to binary-

encode the multiplication operation in the objective function of a multiplicative program.

We note that the idea of binary-encoding has a long history in the field of mathematical

optimization and computer science, see for instance [117, 118, 119, 120] and [121]. In fact, it

is the very foundation of any existing (non-quantum) computer. We are therefore certainly

137

not the first to apply the binary-encoding operation – however, to the best of our knowledge,

we are the first to employ it for developing techniques for solving multiplicative programs.

Using our proposed techniques, a family of novel solution methods will be introduced

for solving both MMPs and mMPs. The new family of solution methods can resolve the curse

of multiplication as they do not necessarily need to deal with the magnitude of the objective

values. In fact, they are designed to compute the value of bits of the optimal objective

value from the most significant bit to the least significant one. Overall, a nice property of

the proposed family of solution methods is that they only solve a finite number of integer

linear programs to compute an optimal solution for a multiplicative program. Depending

on a specific solution method, the number of integer linear programs that need to be solved

is at least one and at most equal to the number of bits required to represent the objective

of a multiplicative program. Solution methods in our proposed family are different mainly

because of two reasons.

The first reason is that the binary-encoding of the multiplication operation can be

done in multiple ways (if p ą 2) which in turn results in different equivalent reformulations.

In this study, we explore two categories of reformulations which we will refer to as Altogether

and Nested. The Altogether strategy generates a reformulation that directly binary-encodes
ś

iPI yi as a whole. To run the Nested strategy, first, a sequence will be generated, e.g.,

p1, 2, 3, . . . , pq, reflecting how the multiplication process should be carried out. Then, in the

reformulation, p´ 1 binary-encoded multiplications of two variables will be generated based

on the sequence. For example, for the sequence p1, 2, 3, . . . , pq, the reformulation contains

the binary-encoded multiplication y1 ˆ y2, the binary-encoded multiplication y1 ˆ y3 (where

y1 is the outcome of y1 ˆ y2), and so on.

The second reason is that after creating a reformulation, different search mechanisms

can be developed to solve it. In this study, we consider two main categories of search

mechanisms which we will refer to as One-shot and Bitwise. One-shot means that the

reformulation should be solved directly by solving a mixed integer linear program. In this

138

strategy, the optimal values of all bits will be obtained at the same time. For the Bitwise

reformulation, the values of bits will be obtained iteratively, i.e., exploring one bit at a

time. To compute the optimal value of each bit, one mixed integer linear program must be

solved (if needed). We also develop two cut-generating techniques that can be combined

with the Bitwise strategy to tighten the reformulations in each iteration and possibly reduce

the number of mixed integer linear programs needed.

Multiplicative programs

Direction: maximize

Exact:
GRB SOCP

Direction: minimize

Variables: binary

Exact:
Nested, One-shot

Variables: continuous

Approximate:
Nested, One-shot
t100, 102, 104u

Figure 6.1: High-level summary of computational results as a tree (recommended solution
approaches)

The Bitwise strategy is naturally slower as it is the only strategy that fully resolves

the curse of multiplication. The One-shot strategy, on the other hand, is faster as it does

not resolve the curse of multiplication but directly solves an integer linear programming

reformulation of a multiplicative program. In this study, we first provide some numerical

examples to show that the Bitwise strategy is the best strategy to deal with large values of p

as it does not run into any numerical instabilities. We then conduct a detailed computational

study on instances with p P t2, 3, 4u and compare the One-shot strategy with GRB SOCP

(Gurobi mixed integer SOCP solver) on MMPs and GRB Nonconvex (Gurobi mixed integer

nonconvex quadratic solver) on mMPs. The computational study provides a practical guide

indicating which solution method to use for which problem variation. A high-level summary

of this guide is shown in Figure 6.1, which is a tree representation of the results later

shown in Section 6.5, Table 6.5. In this tree, for a given problem variation, we list the

solution methods with the shortest solution times. Since the aforementioned applications

139

of multiplicative programs are typically either pure binary or pure continuous cases, we

employ two classes of (random) instances in our study. We note that to binary-encode the

multiplication operation, yipxq should only take integer values for all i P I. Otherwise, our

proposed family of solution methods are only approximate methods. For such instances,

the function yipxq will be assumed to be integer for all i P I after being multiplied by a

sufficiently large number. The sufficiently large number should be determined based on the

level of precision required. In our computational study, we consider three possible scenarios

for the value of the multiplier: 100, 102, and 104. Overall, our results show that for MMPs,

GRB SOCP is the best choice. For mMPs, however, our proposed family of solution methods

beat the off-the-shelf benchmark most of the time.

6.1.3 Outline

The remainder of this chapter has the following outline: in Section 6.2, we introduce

the methodology at a high level, and in Section 6.3, we introduce the methodology in de-

tail. In Section 6.4, we show the power of the Bitwise search mechanism in resolving the

curse of multiplication for some extreme examples. In Section 6.5, we compare the solution

methods with the aforementioned benchmarks in an extensive computational study that we

ran on 900 instances spanning a total of 5,400 runs grouped in 4 experiments, with each

experiment designed to find the best solution method for a given problem variation. Fi-

nally, in Section 7.5, we provide the concluding remarks of the paper as well as some final

recommendations.

140

6.2 High-level Methodology

A multiplicative program can be stated as

max or min
x,y

ź

iPI

yi (6.2)

s.t. y “ Dx` d, (6.3)

Ax ď b, (6.4)

x,y ě 0, x P RnCˆnI , y P RpCˆpI , (6.5)

where nC and nI denote the number of continuous and integer decision variables in the

space of x-variables, respectively. Moreover, pC and pI denote the number of continuous and

integer decision variables in the space of y-variables, respectively. Given n :“ nC ` nI and

p :“ pC ` pI , D is a p ˆ n matrix representing the coefficients of the multiplicative terms.

Similarly, d is a vector of size p representing the constants of the multiplicative terms.

Further, A is an m ˆ n matrix that denotes the technological coefficients, with m being

the number of linear constraints. Finally, b represents the m-sized vector of right-hand side

values. A powerful off-the-shelf solver that can solve any multiplicative program is Gurobi.

For an MMP, users need to transform the problem into a (mixed integer) SOCP as described

in [51, 3] and then call GRB SOCP (Gurobi mixed integer SOCP solver) to solve it. To solve

mMPs, users can use GRB Nonconvex (Gurobi mixed integer nonconvex quadratic solver).

Obviously, for p ą 2, an mMP is not quadratic. However, it can be brought into quadratic

form by introducing some auxiliary variables. For example, instead of y1y2y3, one can write

y1y3 where y1 “ y1y2.

The breakthrough idea of the proposed research is to binary-encode the multiplication

operation (analogously to how a computer conducts it internally) such that the objective

value of any solution is represented by bits. In that case rather than dealing with the entire

optimal objective value, computing the bits of the optimal objective value becomes crucial.

141

Each bit is a binary decision variable and the values of the bits can be determined in an

iterative fashion from the most significant bit to the least significant one. In each iteration,

the value of one bit of the optimal objective value will be computed and then its value will

be fixed for future iterations. Describing the full mathematical model of a binary-encoded

reformulation of the multiplicative program requires heavy notation. Instead of introducing

the full notation now (we will do so later), in this section, we present the key idea using a

simple example with pI “ 2 and pC “ 0. Suppose that it is known that y1, y2 ď 10. To

develop a binary-encoded reformulation, the following steps need to be taken:

• Step 1: Find an upper bound for the optimal objective value. Observe that, by defining

z “ y1y2, we have z ď 100. This implies that the binary representation of the value of

the product has at most tlog2 100u` 1 “ 7 bits. Let ẑ0, . . . , ẑ6 denote the values of the

bits to binary-encode z where ẑ0 is the least significant bit and ẑ6 is the most significant

one. The optimal values of ẑ0, . . . , ẑ6 are unknown and the idea is to compute them

one by one. As an example, an illustration of how to compute ẑ5 is shown in Figure 6.2

where we binary-encode the multiplication of 14 and 5.

Figure 6.2: Binary multiplication of two binary-encoded numbers (numbering/indexing
starts from zero and is done from right to left, e.g., column j ´ 1 is to the right of column j

and ẑ4 is to the right of ẑ5)

142

• Step 2: Represent y1 and y2 in a binary-encoded format. This can be done easily (using

linear equations) when it is known that both y1 and y2 can only take integer values:

y1 “

tlog2 10u`1
ÿ

i“0

2iŷ1,i and y2 “

tlog2 10u`1
ÿ

i“0

2iŷ2,i (6.6)

where ŷ1,i and ŷ2,i capture the value of the bit with index number i for y1 and y2,

respectively. Note that tlog2 10u ` 1 “ 4, and hence, only 4 bits each are required to

represent y1 and y2.

• Step 3: Apply the principles of the binary multiplication (see Figure 6.2) for captur-

ing the value of ẑj for all j P t0, 1, . . . , 6u. As an aside, we note that the ‘binary

multiplication’ is basically the Fast Fourier Transform (FFT) based multiplication of

integers [122], which is closely related to a multiplication method commonly referred

to as ancient Egyptian multiplication or Ethiopian/Russian multiplication6.1.

– The sum of all binary products of column j is denoted by vj and it can be captured

by the following equation for all j P t0, . . . , 6u:

vj “
ÿ

i,i1Pt0,1,2,3u:
i`i1“j

ŷ1,i ŷ2,i1 . (6.7)

– The carried value from column j ´ 1 to j is denoted by cj and it can be captured

by the following equation for all j P t0, . . . , 6u:

cj “

$

’

’

&

’

’

%

Yvj´1 ` cj´1

2

]

if j ‰ 0

0 if j “ 0

. (6.8)

6.1As the name suggests, such multiplication methods were already known to the Ancient Egyptians, as
can be seen e.g. in The Rhind Mathematical Papyrus dating to around 1550 BC (see the British Museum
objects EA10057 and EA10058).

143

https://www.britishmuseum.org/collection/object/Y_EA10057
https://www.britishmuseum.org/collection/object/Y_EA10058

– Finally, the value of ẑj can be captured by the following equation for all j P

t0, . . . , 6u:

ẑj “

$

’

’

&

’

’

%

vj ` cj ´ 2cj`1 if j ‰ 6

vj ` cj if j “ 6

. (6.9)

An illustration of how to compute v3, c6, and ẑ5 is shown in Figure 6.2. In light of the

above, the binary-encoded reformulation of the multiplicative programs for this example can

be stated as

max or min
x,y,ẑ,ŷ,c,v

6
ÿ

j“0

2j ẑj

s.t. (6.3)–(6.5) and (6.6)–(6.9),

ŷ1,i, ŷ2,i P t0, 1u, i P t0, 1, . . . , 3u,

ẑj P t0, 1u, and cj, vj P N0 j P t0, 1, . . . , 6u,

(6.10)

where N0 :“ N Y t0u. Note that, in Problem (6.10), the variable ẑj represents the bit

j P t0, 1, . . . , 6u of the objective value and it naturally takes a binary value. Observe that

in Problem (6.10), only Constraint (6.7) is nonlinear. However, this constraint can be easily

linearized. In Constraint (6.7), the term ŷ1,iŷ2,i1 is nonlinear but ŷ1,i and ŷ2,i1 are binaries.

Hence, the term can be replaced by a new binary variable ui,i1 and by adding the following

three inequalities (often referred to as McCormick envelopes [123, 124]):

ui,i1 ď ŷ1,i, ui,i1 ď ŷ2,i1 , ui,i1 ě ŷ1,i ` ŷ2,i1 ´ 1.

Note that it is not necessary to impose the integrality condition on ui,i1 as it naturally

takes integer values. Also, note that Constraint (6.8) appears nonlinear but can be written

144

in linear form without introducing any new variables as follows:

c0 “ 0,

2cj ě vj´1 ` cj´1 ´ 1, j P t1, . . . , 6u,

2cj ď vj´1 ` cj´1, j P t1, . . . , 6u.

Overall, the proposed reformulation is a mixed integer linear program that can be solved

directly by commercial solvers such as CPLEX and Gurobi. By directly solving the proposed

reformulation, the optimal values of all bits will be determined at the same time. However,

solving the proposed binary reformulation directly does not resolve the curse of multiplication

as the magnitude of the objective value of the reformulation remains exactly the same as in

the original formulation. Observe now that it is not necessary to solve the binary-encoded

reformulation directly. Instead, the values of the bits of the optimal objective value can be

obtained in an iterative fashion from the most significant bit to the least significant one.

More formally, at iteration t “ 0, . . . , 6, Problem (6.11) needs to be solved:

max or min
x,y,ẑ,ŷ,c,v

ẑ6´t

s.t. ẑ6´t1 “ ẑ˚6´t1 , t1 P t0, . . . , t´ 1u,

(6.3)–(6.5) and (6.6)–(6.9),

ŷ1,i, ŷ2,i P t0, 1u, i P t0, 1, . . . , 3u,

ẑj P t0, 1u, and cj, vj P N0, j P t0, 1, . . . , 6u,

(6.11)

Note that in Problem (6.11), ẑ˚6´t1 represents the optimal value of Problem (6.11)

obtained in iteration t1. In other words, after each iteration, the value of its corresponding

bit will be fixed for future iterations. Observe that the proposed iterative method completely

resolves the curse of multiplication. Moreover, users can impose any desired level of precision

as the termination condition on the proposed algorithm. The level of precision then defines

145

how many bits need to be accurately computed. Overall, in the proposed iterative method

only a mixed integer linear program needs to be solved in each iteration whose objective

value is either zero or one (assuming the original formulation is feasible). In Section 6.3.2.2,

we discuss that it is not necessary to solve all mixed integer linear programs as the optimal

value of some bits can be determined directly based on the information obtained in the

previous iterations.

In summary, from the discussions above, after developing a binary-encoded reformula-

tion for a multiplicative program, two search mechanisms can be used to solve it: the direct

approach, One-shot, and the iterative one, Bitwise. We note that in the simple example

above, we assumed that pC “ 0. However, this is not an impractical assumption since if

pC ą 0, it can still be approximated to any desired level of precision by a multiplicative

program with pC “ 0. Specifically, we can assume that only a certain number of digits

after the decimal point is needed/necessary for fractional y-variables. If, for example, two

digits after the decimal point are needed for yi, then we can still assume that yi is an integer

variable after multiplying the right-hand-side of its associated constraint in (6.3) by 100.

Such transformations are of course costly as they will increase the maximum number of bits

required to represent the optimal objective value of a multiplicative program. However, they

can be used to solve multiplicative programs involving fractional y-variables. We note that

in terms of implementation, there are a few points that should be considered when dealing

with continuous variables. We will address these in Section 6.3.4.

Finally, we note that while for instances with p “ 2, there is only one way to develop

a binary-encoded reformulation, for p ą 2 there are many possible ways. In this study, we

focus only on two main categories of reformulations: Nested and Altogether. For example, if

p “ 3, a Nested reformulation is py1y2qy3 and the Altogether reformulation is py1y2y3q. Such

binary-encoded reformulations are substantially different in terms of the number of variables

and constraints that they introduce. For example, for p “ 3, the Altogether reformulation

comes with the disadvantage of making the linearization of Equation (6.7) more difficult

146

because instead of bilinear terms, trilinear terms will appear in Equation (6.7). However, it

also comes with the advantage of having only minor impacts on increasing the complexity

of Equations (6.6), (6.8), and (6.9). The Nested reformulation, on the other hand, has

exactly the opposite effect. Later, in Section 6.3.1.2, we show that a nice property of the

Nested reformulation is that it keeps the size of the problem polynomially bounded while

the Altogether reformulation does not guarantee that.

Table 6.1: Frequently used notations (subscripts and superscripts will be added whenever
needed)

Variables
z An integer variable used for representing the product of some y variables
ẑ A binary variable used for representing a bit of the binary-encoded version of a z variable
ŷ A binary variable used for representing a bit of the binary-encoded version of a y variable
v An integer variable used for representing the summation of a column in the process of binary multiplication
c An integer variable used for representing the carried value from a column to its next column in the process of binary

multiplication
u A binary variable used for representing McCormick envelopes of the product of some ŷ variables

Parameters
nz An integer parameter showing the maximum number of bits required to represent a z variable
ny An integer parameter showing the maximum number of bits required to represent a y variable

6.3 Detailed Methodology

In this section, we provide the detailed description of our proposed family of solution

methods for multiplicative programs. Our notational convention in this section is summa-

rized in Table 6.1. We start this section by assuming pC “ 0 for now, but we will later relax

this condition.

6.3.1 Binary-encoded Reformulations

6.3.1.1 Products of Length Two: The Nested Reformulation

We are now going to implement the FFT-based multiplication as constraints to re-

formulate a multiplicative program. For this and for the following section, let

• yi denote the upper bounds on yi, i P I (calculated in preprocessing),

• nyi “ tlog2pyiqu` 1 denote the number of binary variables needed to encode yi, i P I,

147

• Jyi “ t0, . . . , n
y
i ´ 1u, i P I,

• ŷi,j P t0, 1u, j P Jyi , denote the binary variables to encode yi, i P I.

In this formulation, the idea is to interleave (or nest) the product (6.2) into products

of length two – that is – for all i P I, we set

zi “ yi ˆ

$

’

&

’

%

1, i “ 1,

zi´1, i P Izt1u,

where (6.2) “
ś

iPI

yi “ zp. Let

• zi “
ś

i1PI:
i1ďi

yi1 denote the upper bounds on zi, i P I,

• nzi “ tlog2pziqu` 1 denote the number of binary variables needed to encode zi, i P I,

• Jzi “ t0, . . . , n
z
i ´ 1u, i P I,

• ẑi,j P t0, 1u, j P Jzi , denote the binary variables to encode zi, i P I,

• ui,j,j1 P r0, 1s, i P Izt1u, j P Jyi , j1 P Jzi´1, be a continuous variable that is naturally

binary and that encodes the ŷẑ products,

• vi,j P N0, i P Izt1u, j P Jzi , be an integer variable that represents the j-th column sum

of the u variables,

• ci,j P N0, i P Izt1u, j P Jzi , be an integer variable that represents the carried value from

column j ´ 1 to column j.

We reformulate a multiplicative program linearly exactly as follows, referring to it as

the Nested reformulation:

148

max or min
x,y,ẑ,ŷ,c,v,u

ÿ

jPJzp

2j ẑp,j

s.t. (6.3), (6.4), (6.5),

yi “
ÿ

jPJyi

2j ŷi,j, i P Izt1u, (6.12)

y1 “
ÿ

jPJz1

2j ẑ1,j, (6.13)

ui,j,j1 ě ŷi,j ` ẑi´1,j1 ´ 1, i P Izt1u, j P Jyi , j
1
P Jzi´1, (6.14)

ui,j,j1 ď ŷi,j, i P Izt1u, j P Jyi , j
1
P Jzi´1, (6.15)

ui,j,j1 ď ẑi´1,j1 , i P Izt1u, j P Jyi , j
1
P Jzi´1, (6.16)

vi,j “
ÿ

j1PJyi , j
2PJzi´1:

j1`j2“j

ui,j1,j2 , i P Izt1u, j P Jzi , (6.17)

ci,0 “ 0, i P Izt1u, (6.18)

2ci,j ě vi,j´1 ` ci,j´1 ´ 1, i P Izt1u, j P Jzi zt0u, (6.19)

2ci,j ď vi,j´1 ` ci,j´1, i P Izt1u, j P Jzi zt0u, (6.20)

ẑi,j “ vi,j ` ci,j ´

$

’

&

’

%

2ci,j`1, j ă nzi ´ 1,

0, j “ nzi ´ 1,

i P Izt1u, j P Jzi , (6.21)

ui,j,j1 P r0, 1s, i P Izt1u, j P Jyi , j
1
P Jzi´1, (6.22)

vi,j, ci,j P N0, i P Izt1u, j P Jzi , (6.23)

ŷi,j P t0, 1u, i P Izt1u, j P Jyi , (6.24)

ẑi,j P t0, 1u, i P I, j P Jzi . (6.25)

Note that Constraints (6.14)–(6.17) are equivalent to computing the cyclic convolution

(i.e., Equation (6.7)) using a McCormick relaxation. The u variables will naturally take

149

binary values. Constraints (6.18)–(6.20) are added to capture the carries (i.e., they are the

linear form of Equation (6.8)), and Constraints (6.21) compute the binary-encoded product.

Observe that the way we interleave the product (6.2) into

pp. . . p py1q
loomoon

“z1

y2q

looooomooooon

“z2
...

. . . yp´1q

looooooooooooomooooooooooooon

“zp´1

ypq

loooooooooooooooomoooooooooooooooon

“zp

raises an interesting side question: what is the optimal way of reindexing the y variables?

We leave this question as a future research direction and we do not apply reindexing in

this study. However, the following proposition shows that reindexing may result in Nested

reformulations with different numbers of variables (and constraints) if ny1 “ . . . “ nyp does

not hold. The proof of this and all the following propositions in this study can be found

in Appendix E1.

Proposition 6.1. For a given reindex σ : p1, . . . , pq Ñ p1, . . . , pq, the number of u variables,

i.e., continuous variables, in the Nested reformulation is

p
ÿ

i“2

˜

nyσpiq

˜[

i´1
ÿ

j“1

log2

`

ȳσpjq
˘

_

` 1

¸¸

,

and the total number of v and c variables, i.e., integer variables, in the Nested reformulation

is

2

˜

p
ÿ

i“2

˜[

i
ÿ

j“1

log2

`

ȳσpjq
˘

_

` 1

¸¸

.

6.3.1.2 Products of Length p: the Altogether Reformulation

Interleaving the product (6.2) into products of length two, while convenient, is not

necessary. We may also reformulate the product altogether. A motivating example is shown

150

in Table 6.2 where we carry out the generalized FFT-based multiplication of the three integers

y1 “ y2 “ y3 “ 7.

Table 6.2: Generalized FFT-based multiplication of the three integers y1 “ y2 “ y3 “ 7

j 8 7 6 5 4 3 2 1 0

ŷ1,j 0 0 0 0 0 0 1 1 1
ŷ2,j 0 0 0 0 0 0 1 1 1
ŷ3,j 0 0 0 0 0 0 1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

vj 0 0 1 3 6 7 6 3 1
cj 1 2 4 5 5 3 1 0 0
ẑj 1 0 1 0 1 0 1 1 1

y1y2y3 “ 28 ` 26 ` 24 ` 22 ` 21 ` 20

We are now going to implement the generalized FFT-based multiplication as con-

straints to reformulate a multiplicative program. Let

• z “
ś

iPI

yi denote the upper bound on z “
ś

iPI

yi,

• nz “ tlog2pzqu` 1 denote the number of binary variables needed to encode z,

• Jz “ t0, . . . , nz ´ 1u,

• Pk, k P Jz, denote the set of two-dimensional sets whose j-indices add up to k:

Pk “

#

tp1, j1q, p2, j2q, . . . , pp, jpqu : ji P J
y
i , i P I;

ÿ

iPI

ji “ k

+

,

As an example, consider Table 6.2 and let p “ 3 and ȳi “ yi “ 7 for i P I. We then

have nyi “ 3 and Jyi “ t0, 1, 2u for i P I. For z̄ “
ś

iPI ȳi “ 343, we then have nz “ 9

151

and Jz “ t0, . . . , 8u. Therefore,

P0 “ ttp1, 0q, p2, 0q, p3, 0quu,

P1 “ ttp1, 1q, p2, 0q, p3, 0qu, tp1, 0q, p2, 1q, p3, 0qu, tp1, 0q, p2, 0q, p3, 1quu,

P2 “ ttp1, 2q, p2, 0q, p3, 0qu, tp1, 0q, p2, 2q, p3, 0qu, tp1, 0q, p2, 0q, p3, 2qu,

tp1, 1q, p2, 1q, p3, 0qu, tp1, 1q, p2, 0q, p3, 1qu, tp1, 0q, p2, 1q, p3, 1quu,

...

P8 “ H.

Note that, intuitively speaking, each k P Jz basically represents the index of a column

of values (which are all 1’s in this example) in the large middle section of Table 6.2.

Specifically, index k “ 0 is the index of the column on the rightmost side and k “ 8

is the index of the column on the leftmost side. Since the number of values reported

in the middle section for index k “ 0 is one, P0 will only have one element. Similarly,

since the number of values reported in the middle section for index k “ 1 is three, P1

will only have three elements.

• P “
Ť

kPJz
Pk,

• ẑj P t0, 1u, j P Jz, denote the binary variables to encode z,

• uP P r0, 1s, P P P , be a continuous variable that is naturally binary and that encodes

the ŷi,j products, pi, jq P P ,

• vj P N0, j P Jz, be an integer variable that represents the j-th column sum of the u

variables,

• cj P N0, j P Jz, be an integer variable that represents the carried value from column

j ´ 1 to column j.

152

We now reformulate a multiplicative program linearly exactly as follows, referring to

it as the Altogether reformulation:

max or min
x,y,ẑ,ŷ,c,v,u

ÿ

jPJz

2j ẑj

s.t. (6.3), (6.4), (6.5),

yi “
ÿ

jPJyi

2j ŷi,j, i P I, (6.26)

uP ě
ÿ

pi,jqPP

ŷi,j ´ pp´ 1q, P P P , (6.27)

uP ď ŷi,j, P P P , pi, jq P P, (6.28)

vj “
ÿ

PPPj

uP , j P Jz, (6.29)

c0 “ 0, (6.30)

2cj ě vj´1 ` cj´1 ´ 1, j P Jzzt0u, (6.31)

2cj ď vj´1 ` cj´1, j P Jzzt0u, (6.32)

ẑj “ vj ` cj ´

$

’

&

’

%

2cj`1, j ă nz ´ 1,

0, j “ nz ´ 1,
j P Jz, (6.33)

uP P r0, 1s, P P P , (6.34)

ẑj P t0, 1u, and vj, cj P N0, j P Jz, (6.35)

ŷi,j P t0, 1u, i P I, j P Jyi . (6.36)

Proposition 6.2. The number of u variables, i.e., continuous variables, in the Altogether

reformulation is
ź

iPI

nyi ,

153

and the total number of v and c variables, i.e., integer variables, in the Altogether reformu-

lation is

2

˜[

ÿ

iPI

log2

`

ȳi
˘

_

` 1

¸

“ 2nz.

Comparing Propositions 6.1 and 6.2 shows that the Nested and Altogether reformula-

tions have very different properties in terms of the number of variables (and constraints). Let

L :“ maxtny1, . . . , n
y
pu and assume that the size of a multiplicative program is polynomially

bounded. In that case, the size of its Nested reformulation is polynomially bounded, too,

as the number of its u variables is OpL2p2q and the total number of its c and v variables is

Op2Lp2q. However, the size of the Altogether reformulation is exponential as the number of

its u variables is OpLpq and the total number of its c and v variables is Op2Lpq.

6.3.2 Search Mechanisms

To optimize the Nested and Altogether reformulations, we propose two search mech-

anisms, which in this section we refer to as One-shot and Bitwise.

6.3.2.1 One-shot Search Mechanism

In this search mechanism, we directly solve the Nested or Altogether reformulation,

which are (mixed) integer linear programs, using an off-the-shelf solver such as CPLEX or

Gurobi. The advantage of this search mechanism is that it only solves one optimization

problem to compute the optimal values of all bits of the multiplicative objective function.

Its disadvantage is that it does not resolve the curse of multiplication.

6.3.2.2 Bitwise Search Mechanism

Without loss of generality, in this section, we explain the Bitwise search mechanism

only in the context of the Altogether reformulation. To apply it in the context of the

Nested reformulation, we should add the subscript p to some notations used in this section.

154

Specifically, any instance of nz, Jz, ẑi, ẑ˚i , and ẑti should be changed to nzp, Jzp , ẑp,i, ẑ˚p,i, and

ẑtp,i, respectively.

In the Bitwise search mechanism, we compute the optimal values of bits one by one

from the most significant one to the least significant one. In each iteration, the optimal

value of one bit will be computed and will be fixed for future iterations. The advantage of

this search mechanism is that it fully resolves the curse of multiplication. Its disadvantage is

that one (mixed) integer integer program with the optimal objective value of either zero or

one must be solved for each bit. Specifically, for the Altogether reformulation, the following

objective function must be optimized at iteration t P Jz,

max or min ẑnz´1´t,

and the following constraints should be added,

ẑnz´1´t1 “ ẑ˚nz´1´t1 t1 P Jz : t1 ă t,

where ẑ˚nz´1´t1 is the optimal value of bit ẑnz´1´t1 obtained in each iteration t1. We now make

a few observations.

Observation 6.1. In the Bitwise search mechanism, in each iteration, one feasible solution

will be naturally found for the multiplicative program. Therefore, a global primal bound can

be computed for a multiplicative program after each iteration.

To understand Observation 6.1, consider the Altogether reformulation and let

ẑt :“ pzt0, . . . , z
t
nz´1q

be the value of all bits obtained in iteration t P Jz. Since at iteration t P Jz, the optimal

value of bit ẑnz´1´t will be obtained, we have ẑ˚nz´1´t “ ẑtnz´1´t. Moreover, since ẑt is feasible

155

ř

iPJz 2iẑti is a global primal bound for the optimal objective value of the multiplicative

program.

Observation 6.2. In the Bitwise search mechanism, in each iteration, a global dual bound

can be obtained by setting the value of not-yet-explored bits to their ideal values.

To understand Observation 6.2, note that for mMPs, the ideal value, denoted by v˚,

for any arbitrary bit is zero, i.e., v˚ “ 0, as the problem is in the form of minimization

(but that may not be feasible). Similarly, for MMPs, the ideal value for any arbitrary bit is

one, i.e., v˚ “ 1, as the problem is in the form of maximization (but that, too, may not be

feasible). Hence, for the Altogether reformulation, after obtaining ẑt in iteration t P Jz, we

know that
t
ÿ

t1“0

2n
z´1´t1 ẑtnz´1´t1 `

nz´1
ÿ

t1“t`1

2n
z´1´t1v˚

is a global dual bound for the optimal objective value of the multiplicative program.

Observation 6.3. In the Altogether reformulation, after obtaining ẑt in iteration t P Jz, if

ẑtnz´1´pt`1q “ v˚, then iteration t` 1 can be skipped as ẑt is optimal for iteration t` 1, too,

i.e., we can set ẑt`1 “ ẑt.

Due to the importance of Observation 6.3, when implementing the Bitwise search

mechanism, we assume that the observation is employed. In other words, we assume that in

the basic version of the Bitwise search mechanism, Observation 6.3 is included for removing

redundant calculations and reducing the number of optimization problems needed to be

solved. In addition to the basic version of Bitwise, in this study, we consider two additional

variations of the Bitwise search mechanism which we will present next.

6.3.2.2.1 Bitwise + Full Index Set Cut (Bitwise + F-cut)

This is the basic version of the Bitwise search mechanism with one additional cut

(referred to as F-cut) that needs to be added if an optimization problem is solved at iteration

t. The full index set at iteration t is the set of all indices of not-yet-explored bits whose

156

values in the solution found in iteration t´ 1 are not equal to v˚, i.e., the ideal value. Note

that because of Observations 6.1 and 6.3, the solution found at iteration t ´ 1 corresponds

to the best global primal bound known at the beginning of iteration t. For the Altogether

reformulation, the full index set at iteration t, denoted by F t, can be defined as

F t
“

i P t0, . . . , nz ´ 1´ tu : ẑt´1
i ‰ v˚

(

.

Observation 6.4. If the solution found at iteration t ´ 1 is not globally optimal for the

multiplicative program, then at least one of the bits with indices in F t should take its ideal

value.

Based on Observation 6.4, for the Altogether reformulation, the F-cut can be defined

as

v˚
ÿ

iPF t

ẑi ` p1´ v
˚
q
ÿ

iPF t

p1´ ẑiq ě 1.

Observation 6.5. If after adding the F-cut at iteration t, the optimization problem that needs

to be solved at iteration t becomes infeasible, then the solution found at iteration t ´ 1 is

globally optimal and the Bitwise search can terminate immediately.

6.3.2.2.2 Bitwise + Partial Index Set Cut (Bitwise + P-cut)

This variation is similar to Bitwise + F-cut. The main difference is that F-cut will

be replaced by a different cut, referred to as P-cut. At the beginning of iteration t, let αt

be the index of the most significant not-yet-explored bit whose value in the solution found

in iteration t ´ 1 is equal to v˚, i.e., the ideal value. In other words, for the Altogether

reformulation αt can be defined as

αt “ max

i P t0, . . . , nz ´ 1´ tu : ẑt´1
i “ v˚

(

.

157

The partial index set, denoted by rF t, is the set of all elements in F t that are greater than

αt, i.e.,

rF t
“

i P F t : i ą αt
(

.

Using rF t, for the Altogether reformulation, the P-cut can be defined as

v˚
ÿ

iP rFt
ẑi ` p1´ v

˚
q
ÿ

iP rFt
p1´ ẑiq ě 1.

Note that rF t is a subset of sequential most significant not-yet-explored bits whose

values are not ideal in the solution obtained in iteration t´ 1. Hence, the P-cut is designed

to ensure that at least one of these bits will take its ideal value in iteration t if possible.

However, if it is not possible, then we have the following observation that helps us skip some

iterations.

Observation 6.6. If after adding the P-cut at iteration t, the optimization problem that needs

to be solved at iteration t becomes infeasible, then the optimal value of the bits with indices

in rF t cannot be ideal. In other words, their values will surely be 1 ´ v˚. This implies that

for the Altogether reformulation, we can set ẑt1 “ ẑt´1 for all t1 P tt, t` 1, . . . , t` | rF t| ´ 1u,

and all iterations tt, t` 1, . . . , t` | rF t| ´ 1u can be skipped.

6.3.3 Warm-start Enhancements for Minimum Multiplicative Problems

Similar to the previous section, again without loss of generality, we explain our en-

hancements only in the context of the Altogether reformulation. However, the same enhance-

ments can be applied to the Nested reformulation by simply adding the subscript p to some

notations used in this section. Specifically, any instance of nz and ẑwi should be replaced by

nzp and ẑwp,i, respectively. With this in mind, suppose that before starting a search mecha-

nism (One-shot or Bitwise), a feasible solution is known for a multiplicative program that

can be used for warm-starting. We denote the objective bit values of this feasible solution

by ẑw :“ pẑw0 , . . . , ẑ
w
nz´1q for the Altogether reformulation. Moreover, we denote the most

158

significant bit in ẑw that has not taken its ideal value by βw, i.e.,

βw :“ max

i P t0, . . . , nz ´ 1u : ẑwnz´1 ‰ v˚
(

for the Altogether reformulation.

Observation 6.7. In the Altogether reformulation, the optimal values of bits with indices

tβw ` 1, βw ` 2, . . . , nz ´ 1u are equal to the ideal value, i.e., ẑi “ v˚ for all i P tβw ` 1, βw `

2, . . . , nz ´ 1u.

Observation 6.7 is important as it suggests that the optimal value of some of the

most significant bits can be determined in advance if a feasible solution is known in advance.

In practice, this observation is more likely to be effective for mMPs. This is because the

maximum number of bits required to represent the optimal objective value of a multiplicative

program, i.e., nz (for the Altogether formulation), is determined based on the product of the

upper bounds on y1,. . . , yp. Therefore, since mMPs are in the form of minimization, many

of the most significant bits naturally take the optimal value of zero. We hence suggest to

employ Observation 6.7 only for mMPs. Next, we present two simple ways of computing a

good initial feasible solution for mMPs.

6.3.3.1 Min-Min Appraoch

Our first proposed approach minimizes the minimum of y1, . . . , yp over the feasible

set. The following (mixed) integer linear program needs to be solved:

min
x,y,λ,θ

θ : (6.3), (6.4), (6.5), θ ě yi ´Mλi i P I,
ÿ

iPI

λi “ p´ 1, λi P t0, 1u i P I
(

,

where M is a sufficiently large number. We denote the vector of optimal values for the

y-variables by yw. The binary-encoded version of
ś

iPI y
w
i generates ẑw.

159

6.3.3.2 Indirect Min-Min Approach

In our second approach, we first minimize each yi for i P I separately and then choose

the solution of the problem that results in the smallest objective value for mMP. In other

words, for each i P I, we solve

arg min
x,y

yi : (6.3), (6.4), (6.5)
(

,

and denote the vector of optimal values for the y-variables by yw,i. The binary-encoded

version of

min

#

ź

iPI

yw,1i , . . . ,
ź

iPI

yw,pi

+

generates ẑw.

6.3.4 Continuous Cases

In all previous cases, we assumed that all y-variables are integer. In this section,

we explain how our approach can be used for approximating multiplicative programs with

pC ‰ 0 (with any desirable level of precision). Suppose that there exists an i P I such that

yi can only take fractional values. Suppose further that users are interested in only β P N0

digits after the decimal point of the value of yi. The following two steps should be applied

in order to modify the Nested or the Altogether reformulation:

• Step 1: We first find the equation corresponding to yi from Constraint (6.3). We then

multiply its right-hand side by 10β. Note that to avoid running into numerical issues

and removing any solutions, we keep the declaration of yi as continuous variables, i.e.,

we do not change it to integer. As an aside, we note that Constraint (6.3) appears in

both the Nested and the Altogether reformulation. Hence, both reformulations will be

modified in this step.

160

• Step 2: We change the equation corresponding to yi in Constraints (6.12), (6.13), and

(6.26) from equality to inequality. Specifically, we change ‘“’ to ‘ě’ for the maximiza-

tion instances. Moreover, we change ‘“’ to ‘ď’ for the minimization instances. These

inequalities ensure that the optimal binary-encoded value of yi represents tyiu and ryis

in MMPs and mMPs, respectively. In other words, our approximation technique is a

lower approximation for MMPs and an upper approximation for mMPs.

6.4 Extreme Examples

As mentioned earlier, the Bitwise search mechanism is the only strategy (in this paper)

that can truly resolve the curse of multiplication. Moreover, the Nested reformulation keeps

the size of the problem polynomially bounded while the Altogether reformulation increases

the size of the problem exponentially (as p increases). To solve instances with large values

of p, the only suitable approach is to employ the Nested reformulation when being combined

with the Bitwise search mechanism. In order to testify this claim, in this section, we compare

the performance of our approach, i.e., Nested reformulation + Bitwise search mechanism,

with an off-the-shelf solver on two instances where the curse of multiplication is likely to

arise.

Both instances have 20 binary variables, i.e., nC “ 0 and nI “ 20, and 10 constraints

in the space of x-variables, i.e., m “ 10. However, one instance has p “ 15 and the other has

p “ 20. Interested readers may refer to Appendix E2 to find the fully defined instances. As

an aside, we note that although these instances look small, simply generating the Altogether

reformulation can consume a significant amount of time and memory space due to p P

t15, 20u. In fact we could not load the Altogether reformulations of either one of these two

instances in a computing platform with 128GB RAM. However, the Nested reformulations

require a negligible amount of time and memory space and that is why we have used it in

this section.

161

Table 6.3: Results for the instance with p “ 15

Min Max

Objective value Time (s) Objective value Time (s)

Bitwise 37,881,049,842,155,520 669.21 13,426,599,939,480,000,000 2107.71
GRB 131,262,150,868,992,000 0.07 2,456,521,675,442,388,480 0.05

We solve each instance both in the form of minimization and maximization using

our approach, i.e., Nested reformulation + Bitwise search mechanism. Additionally, we solve

each instance using a powerful commercial off-the-shelf solver, Gurobi version 9.0.2 (which we

refer to as GRB), to conduct comparisons. As previously mentioned in Section 6.2, in order

to solve multiplicative programs using GRB, an MMP can be reformulated as a (mixed

integer) SOCP and an mMP can be reformulated as a nonconvex optimization program,

specifically, a nonconvex quadratically constrained quadratic program. Hence, we employ

GRB SOCP for the maximization form and GRB Nonconvex for the minimization form. For

consistency, when implementing our algorithm, we also set GRB as the default solver for

solving mixed integer linear programs arising during the course of our algorithm. We impose

a time limit of 259,200 seconds (3 days) and set the optimality gap tolerance to zero for all

solution approaches. The results are shown in Tables 6.3 and 6.4 for p “ 15 and p “ 20,

respectively.

Table 6.4: Results for the instance with p “ 20

Min Max

Objective value Time (s) Objective value Time (s)

Bitwise 322,275,494,202,543,737,864,192 259,200.00 65,290,849,092,115,078,053,888,000 259,200.00
GRB Infeasible 0.00 – 259,200.00

In Table 6.3, we observe that GRB claims optimality within a fraction of a second.

However, obviously, the objective values reported are far from the optimal values reported

by the Bitwise approach. This is an indication that GRB has faced numerical issues. In

Table 6.4, we observe that GRB Nonconvex (for minimization) immediately reports infeasi-

bility and GRB SOCP (for maximization) does not report any feasible solution within the

time limit. However, our Bitwise approach found feasible solutions for both cases report-

162

ing 4 ˆ 10´7% and 98.6% optimality gap for minimization and maximization, respectively.

We note that the 98.6% optimality gap reported for the maximization case is due to the

magnitude of the objective value.

6.5 Computational Study

In this computational study, we compare the performance of our proposed algorithms

with GRB SOCP and GRB Nonconvex when solving MMPs and mMPs for small values of

p, respectively. All solution methods as well as our instance generator are implemented in

C++ (the source files are available at https://github.com/paymanghasemi/Multiplicative-

Programs-by-Binary-encoding-the-Multiplication-Operation and the ‘.lp’ format of the in-

stances are available at https://usf.box.com/s/1u6xesylwufybxj8fjwyefslcxw77nyt). For con-

sistency, when implementing our algorithms, we also set GRB as the default solver for solving

mixed integer linear programs arising during the course of our algorithms. All computational

experiments are conducted on a Dell PowerEdge R360 with two Intel Xeon E5-2650 2.2 GHz

12-core processors (30MB), 128GB RAM, the RedHat Enterprise Linux 7.0 operating system,

using a single thread. We set the optimality gap tolerance of GRB to zero in all experiments.

Moreover, a time limit of 3,600 seconds (1 hour) is imposed for solving each instance using

each solution method.

We generate 900 instances for this computational study through the procedure de-

scribed in Appendix E3. Specifically, we generate 300 binary instances that can be used

in both maximization and minimization forms, 300 continuous maximization instances, and

300 continuous minimization instances. Our computational study is based on 5,400 runs

where each run means solving an instance by a specific solution method. These 5,400 runs

are divided (not equally) into four experiments:

• Experiment 1: The first experiment focuses on identifying the best search mechanism.

We conduct this experiment on only instances with p “ 2 as the Altogether and Nested

reformulations are the same for such instances. Since our solution methods are only ap-

163

https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation
https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation
https://usf.box.com/s/1u6xesylwufybxj8fjwyefslcxw77nyt

proximate algorithms for continuous instances, we only focus on pure binary instances

for the first experiment. We show that One-shot is the fastest search mechanism.

Hence, in the remaining experimental settings, One-shot is set as the default search

mechanism for our solution approaches.

• Experiment 2: In the second experiment, we focus on binary instances in minimiza-

tion form with p P t2, 3u to identify whether the proposed warm-start techniques are

effective and, if so, which one performs the best. Note that we do not introduce any

enhancements for the maximization instances (in this paper) and that is why the fo-

cus of this experiment is only on minimization instances. In this experiment, we use

the Nested reformulation (combined with the One-shot search mechanism). Overall,

based on the results of the second experiment, we show that ‘Indirect Min-Min’ per-

forms best. Therefore, in the remaining experiments, ‘Indirect Min-Min’ is the default

enhancement technique when solving minimization instances.

• Experiment 3: In the third experiment, we compare the performance of the Nested and

Altogether reformulations (when being combined with the One-shot search mechanism

and the Indirect Min-Min enhancement) with the performance of GRB on all pure bi-

nary instances with p P t2, 3, 4u. Specifically, for pure binary maximization instances,

GRB SOCP is the benchmark for comparison, and for pure binary minimization in-

stances, GRB Nonconvex is the benchmark for comparison. We show that GRB SOCP

performs best for maximization instances while for minimization instances, the Nested

reformulation is the dominant approach.

• Experiment 4: In the fourth experiment, we repeat Experiment 3 but for all continuous

instances with p P t2, 3, 4u. The only difference is that due to the poor performance

of the Altogether reformulation, we do not use it in this experiment. Moreover, as our

proposed approaches are approximations for continuous instances, we consider three

multipliers t100, 102, 104u for transforming the continuous y-variables into integers, i.e.,

164

β P t0, 2, 4u. We show that GRB SOCP performs best for maximization instances while

for minimization instances, the Nested reformulation is the dominant approach.

In light of the above, the following are the solution approaches (in addition to GRB

SOCP and GRB Nonconvex) that we use in our experiments for binary instances:

• N-O: Nested, One-shot,

• N-B: Nested, Bitwise,

• N-B+F: Nested, Bitwise + F-cut,

• N-B+P: Nested, Bitwise + P-cut,

• N-O-Imm: Nested, One-shot, Indirect Min-Min,

• N-O-mm: Nested, One-shot, Min-Min,

• A-O: Altogether, One-shot,

• A-O-Imm: Altogether, One-shot, Indirect Min-Min.

Specifically, N-O, N-B, N-B+F, and N-B+P are used in Experiment 1. Note that the Nested

and Altogether reformulations are indeed the same when dealing with instances of p “ 2.

Hence, the term ‘Nested’ can be replaced by ‘Altogether’ for instances with p “ 2. In

Experiment 2, N-O, N-O-Imm, and N-O-mm are used. In Experiment 3, N-O, A-O, and

GRB SOCP are used for maximization instances while N-O-Imm, A-O-Imm, and GRB

Nonconvex are used for minimization instances. The following are the solution approaches

(in addition to GRB SOCP and GRB Nonconvex) that we used in our experiments for

continuous instances:

• N-O-M : N-O with M as multiplier from the set t100, 102, 104u,

• N-O-Imm-M : N-O-Imm with M as multiplier from the set t100, 102, 104u.

165

Table 6.5: High-level summary of computational results

p

2 3 4

D
ir
ec
ti
on

M
ax

im
iz
e

V
ar
ia
bl
es B
in
ar
y

Runs: 600
Instances: 100
GRB SOCP 85.00%
Time outs 14.00%
N-O 1.00%

Runs: 300
Instances: 100
GRB SOCP 82.00%
Time outs 18.00%

Runs: 300
Instances: 100
GRB SOCP 87.00%
Time outs 13.00%

C
on

ti
nu

ou
s # Runs: 400

Instances: 100
GRB SOCP 95.00%
N-O-100 4.00%
N-O-104 1.00%

Runs: 400
Instances: 100
GRB SOCP 85.00%
N-O-100 8.00%
Time outs 6.00%
N-O-104 1.00%

Runs: 400
Instances: 100
GRB SOCP 92.00%
Time outs 7.00%
N-O-104 1.00%

M
in
im

iz
e

V
ar
ia
bl
es

B
in
ar
y

Runs: 900
Instances: 100
N-O-Imm 76.17%
N-O 17.17%
GRB Nonconvex 3.33%
N-O-mm 3.33%

Runs: 600
Instances: 100
N-O-Imm 75.00%
Time outs 12.00%
A-O-Imm 11.00%
GRB Nonconvex 1.00%
N-O 1.00%

Runs: 300
Instances: 100
N-O-Imm 40.00%
Time outs 36.00%
GRB Nonconvex 24.00%

C
on

ti
nu

ou
s # Runs: 400

Instances: 100
N-O-Imm-100 94.00%
N-O-Imm-102 3.00%
GRB Nonconvex 2.00%
N-O-Imm-104 1.00%

Runs: 400
Instances: 100
N-O-Imm-100 100.00%

Runs: 400
Instances: 100
N-O-Imm-100 89.00%
GRB Nonconvex 7.00%
N-O-Imm-102 3.00%
Time outs 1.00%

Specifically, in Experiment 4, N-O-100, N-O-102, N-O-104, and GRB SOCP are used

for maximization instances while N-O-Imm-100, N-O-Imm-102, N-O-Imm-104, and GRB

Nonconvex are used for minimization instances.

Table 6.5 shows a high-level summary of the computational results of all 5,400 runs.

It is worth mentioning that the result tree shown in Figure 6.1 (given in the introduction)

is generated based on Table 6.5. In this table, we classify the problem variation by the

direction (maximize, minimize), the variables (binary, continuous), and p P t2, 3, 4u. Hence,

in total there are 2ˆ 2ˆ 3 “ 12 problem variations. For each problem variation, we provide

the number of unique runs and instances in Table 6.5. Below that, we list the solution

methods and their share of instances for which they had the shortest solution time. For

some instances, there may be a tie between two or more solution methods, which explains

the fractional percentages. For example, for the maximization, binary, and p “ 2 case, GRB

SOCP had the shortest solution time for 85% of instances, followed by 14% time outs and 1%

One-shot. Solution methods that never had the shortest solution time for any instance (i.e.,

166

0%) are omitted. It is immediately clear that GRB SOCP performs best for maximization

problems. For minimization problems, however, the solution methods introduced in this

paper outperform the off-the-shelf benchmarks. Specifically, for binary problems, N-O-Imm

and N-O perform best for p “ 2. For p “ 3, the top performers are N-O-Imm and A-O-

Imm. It is only for p “ 4 that the instances either time out or can only be solved by GRB

Nonconvex or N-O-Imm. For continuous problems, N-O-Imm-100 approximations dominate

the other approaches.

To see more details of Experiments 1–4, interested readers may refer to Appendix E4.

Moreover, there is a 185-page supplementary PDF document (along with its corresponding

CSV file) available at https://github.com/paymanghasemi/Multiplicative-Programs-by-Bi-

nary-encoding-the-Multiplication-Operation for details on every one of the 5,400 runs in this

study.

167

https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation
https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation

Chapter 7: Conclusions and Future Research Directions

7.1 Conclusions of Chapter 2

We developed a bi-objective linear programming based branch-and-bound algorithm

for solving a class of mixed integer linear maximum multiplicative programs (with a bi-linear

objective function). This class of optimization problems has only one objective function and

it can be solved directly by a commercial mixed integer second-order cone programming

solver. However, it was shown that the proposed branch-and-bound algorithm outperforms

such a solver by a factor of around 2 on average. Using a computational study, different

branching and node selecting strategies as well as enhancement techniques were explored.

It was shown that the most infeasible branching and best-bound search strategies perform

the best for the proposed branch-and-bound algorithm. However, enhancement techniques

were only useful for mixed binary instances. One drawback of the proposed method is that

it can only be applied to mixed integer linear maximum multiplicative programs in which

its objective function involves a bi-linear term. Therefore, developing a multi-objective

optimization based algorithm for cases where the objective function involves a multi-linear

term can be a future research direction.

7.2 Conclusions of Chapter 3

We developed a multi-objective mixed binary linear programming based algorithm for

solving MIL-MMPs. This class of optimization problems has only one objective function and

can be reformulated as mixed integer second-order cone programs. The reformulation can

be directly solved by a commercial solver such as CPLEX. Using a detailed computational

study, we demonstrated that our proposed algorithm significantly outperforms such a solver.

168

We also showed that our algorithm outperforms a recent algorithm for solving instances of

MIL-MMPs with p “ 2. Finally, we showed that even by linearizing the objective function

and solving the resulted (mixed) integer linear program by a commercial solver, the solution

time will be significantly larger than the one obtained by our proposed approach.

As for the future research guideline, the following shortcomings of the current pa-

per can be of interest. As mentioned in Section 3.4, a major limitation of our proposed

algorithm is its natural instability when solving MIL-MMPs with large values of p. The op-

timal objective value of MIL-MMPs tends to grow exponentially as p increases. Therefore,

not surprisingly, existing solution approaches (including the one proposed in this study) do

not guarantee to not run into numerical instabilities when dealing with such instances. So,

studying algorithms that are theoretically guaranteed to not run into objective-value-caused

numerical instabilities can be an interesting future research direction. Another limitation of

our proposed algorithm is that it requires converting all integer decision variables to bina-

ries which in turn increases the overall size of a formulation. Specifically, in our proposed

approach, any integer decision variable with an upper bound equal to u needs to be replaced

by exactly tlog2 uu` 1 binary variables. Moreover, to complete the transformation, one ad-

ditional constraint needs to be added to the formulation for each integer variable. Such a

transformation is expensive but makes the process of adding no-good constraints, which are

essential for the correctness of our proposed approach, more conveniently. Therefore, study-

ing algorithms that do not require adding no-good constraints and/or the transformation of

integer variables can be another interesting future research direction of this study as such

algorithms can possibly have computational advantages over the one proposed in this paper.

7.3 Conclusions of Chapter 4

We studied a subclass of GMMPs, the so-called IL-GMMPs, with a significant number

of applications in many fields including but not limited to game theory, conservation plan-

ning, and system reliability. We developed three new multi-objective optimization based

169

algorithms with two desirable characteristics: (1) they only solve single-objective integer

linear programs and (2) they can directly deal with geometric weights. Using an extensive

computational study, we demonstrated the efficacy of our proposed algorithms. We showed

that the performance of our algorithms depends highly on the choice of a commercial solver

employed for solving single-objective integer linear programs. Overall, for our test instances,

CPLEX was shown to be the best choice for our proposed algorithms. We also illustrated

that an IL-GMMP can be reformulated as a mixed integer SOCP but the size of such a refor-

mulation depends on the geometric weights. Overall, we showed that for our test instances,

Xpress performs significantly better than CPLEX and Gurobi for solving such mixed integer

SOCPs. However, even the mixed integer SOCP solver of Xpress was shown to perform

poorly compared to one of our algorithms, i.e. CFSSA-I. Finally, we showed that although

one can linearize the objective function of an IL-GMMP (by introducing new sets of vari-

ables and constraints), commercial solvers struggle to solve even small IL-GMMPs using the

linearized formulation. Next, two future research directions are explained.

The first future research direction of this study is about how to customize the proposed

algorithms for solving MIL-GMMPs. One simple idea would be to employ the approach

proposed by [1]. Their proposed approach is motivated by this simple observation that

for solving any mixed integer optimization problem four steps can be done iteratively: (1)

Finding a new feasible solution for the optimization model and then updating the best

solution found so far accordingly. (2) Fixing the values of the integer decisions by setting

them to their corresponding values in the feasible solution, the so-called integer support

vector, in order to generate a continuous optimization problem. (3) Solving the continuous

optimization problem to obtain the best feasible solution for the integer support vector

used and then updating the best solution found so far accordingly. (4) Adding a no-good

constraint to the model for removing the integer support vector permanently from the search

and then returning to Step 1.

170

In light of the above, in order to customize our proposed algorithms for solving MIL-

GMMPs, an extra primal-bound updating operation should be added to each algorithm. This

operation should be called after computing a feasible solution px1,y1q by WSOpw,Pool, lq

at any iteration. In this operation, we set the values of only integer decision variables of a

MIL-GMMPs to those in x1. By doing so, a reduced continuous problem will be generated

which is basically a L-GMMP. So, we can reformulate such a L-GMMP as a SOCP and solve

it accordingly to obtain the best feasible solution associated with the integer support vector

of x1. Therefore, that feasible solution should be used for updating the global primal bound

(if it is better).

Although the approach mentioned above is theoretically correct, it is certainly worth

investigating its performance in practice. In fact, it is possible that solving such SOCPs

creates numerical issues for large values of p and/or the geometric weights. This is because

an optimal objective value of a L-GMMP (or in general any GMMP) can easily become a very

small/large number as p and/or the geometric weights increase. So, to obtain more precise

solutions, the optimality gap should be set to very small values and this by itself can be a

potential source of numerical issues. Hence, any solution approach that solves optimization

problems (such as the SOCP reformulation) in which the objective function of a GMMP,

i.e. the multiplicative function, exists is not probably reliable/precise for large values of p

and/or the geometric weights. Note that none of the optimization problems solved in our

proposed algorithms (in this study) deals with a multiplicative function. So, in some sense,

our proposed approaches are expected to be less sensitive to large values of p and/or the

geometric weights. So, customizing these algorithms for solving MIL-GMMPs is better to

be done in a way that this property is preserved.

The second future research direction of this study is about how to explore the idea of

developing multi-objective optimization based algorithms for other classes of single-objective

optimization problems. In particular, GMMPs with unit geometric weights appear to be

closely related to minimum multiplicative programs (see for instance [125, 126, 54, 55] and

171

[114]). Specifically, by changing the objective function of a GMMP with the unit geomet-

ric weights from max to min a minimum multiplicative program is obtained. Note that

L-GMMPs can be solved in polynomial time. However, it is known that a minimum multi-

plicative program is NP-hard even when all constraints are linear and all decision variables

are continuous [55]. Therefore, because of this significant difference, we did not consider

this class of optimization problems in this study. However, it is worth studying whether

similar approaches can be developed for minimum multiplicative programs involving only

linear constraints and some integer decision variables.

7.4 Conclusions of Chapter 5

In this research, we proposed a methodology that, for the first time to the best of our

knowledge, models a fluency map problem as a game. Specifically, we proposed a bargaining

game where players/organs start bargaining from their worst expected DVH and try to get

a final solution closer to their ideal plan. During this process, we redefined the fluency

map optimization such that, instead of the typical penalty functions, we have new objective

functions referred to as preference functions. The advent of preference functions has several

advantages. First, the preference values of all organs are unitless and are expected to be in

the range of zero to one, which makes the objective values comparable to each other. Second,

the values of the new functions are meaningful as they represent the similarity percentage

of each player’s/organ’s plan to its ideal plan.

Further, to assure the efficiency and mathematically provable fairness of the final

solution of our proposed game, we utilized the concept of Nash Social Welfare in our proposed

methodology. The use of Nash Social Welfare enabled us to introduce a new control lever

for the fluency map optimization, the so-called negotiation powers. These powers control

the similarity rate of each player/organ to their ideal plan in the final solution and provide

the flexibility of putting more emphasis on an organ by increasing its negotiation power.

172

We note that we tried to provide the most straightforward form of our methodology in

this paper, and an extensive future research is needed to improve the proposed methodology

to its full capacity. Specifically, as a guideline for future research directions, we have created

Figure 7.1 which is a general framework for extending our methodology. In Figure 7.1,

the potential blocks to improve the final plan are presented in gray, and the dashed lines

indicate the potential loops that can be added to the methodology to construct an automated

algorithm. Next, we discuss the future research directions based on this figure.

start

Prescription
(l,u)

Penalties
(f)

Weights
(α,w)

Feasible set
of actions

Disagreement
point

Negotiation Powers
(p) Nash Social

Welfare

Fluency Map

end

Figure 7.1: A general framework for extending our proposed methodology

• Penalties (f): Penalty functions play the role of utility functions in our methodology

and are critical in defining the feasible set of actions and finding the disagreement point.

As a result, the quality of the final plan highly depends on the choice of the penalty

173

functions. Although we used the quadratic function as our main penalty type and tried

to get closer to the ideal solution defined by this function, one can use different concepts

as the initial criterion. There are some linear and non-linear objective functions that

can be utilized in our proposed approach [74, 71, 75, 127, 128, 129, 130], each of which

has its own pros and cons. So, a future research guideline is to study the impact of

different penalty types in the final plan of our methodology.

• Prescription (l,u): In our methodology, the goal is to get closer to the ideal plan

while distancing from the worst plan, both of which are defined based on the initial

prescription. If a prescription with higher alignment with the status of the patience

is provided, less diverged ideal and worst cases can be defined which can impact the

final plan drastically. One approach for so doing is to iteratively update the prescribed

dose levels, which can be done by including the dashed line entering to the Prescription

block in Figure 7.1. Hence, a guideline for the future research is creating an automated

approach for updating the prescriptions to improve the final plan. A similar research

has been done by [76], where instead of the prescription, a threshold is introduced to

the model and updated iteratively.

• Initial Weights (α,w): In Remark 5.1, we mentioned that how manipulating the vec-

tor of importance weights can affect the final plan. Therefore, a smart choice of the

initial importance weights, similar to ones proposed by [131] and [132], can be a good

candidate to improve the final plan. In addition, further improvement of the impor-

tance weights is possible by including the dashed line entering to the Weights block in

Figure 7.1 and using the methods that iteratively update the importance weights [78].

• Disagreement points : In Section 5.3.3, we proposed a simple approach to find the

reference points for our game, i.e., the ideal and worst penalty values. However, prac-

titioners can use their preferred values as the reference points. For instance, the penalty

values resulted by the quadratic fluency map optimization, i.e., Problem (5.9), can be

174

implemented as the disagreement point. By so doing, the model will try to get farther

from the result of Problem (5.9) rather than the real worst expected values. Another

approach can be estimating the ideal and worst values [133] which will reduce the

computational efforts of the methodology.

• Negotiation powers (p): As mentioned in Section 5.3.4, the negotiation powers are

new control levers introduced for the first time for fluency map optimization. Having

fixed initial prescriptions and importance weights, the negotiation powers provide the

ability to improve the final plan. Particularly, by developing an update role for ne-

gotiation powers and including the dashed line entering the Negotiation powers block

in Figure 7.1, an automated algorithm can be constructed to improve the final plan.

Therefore, a future research guideline is developing an automated algorithm for updat-

ing the negotiation powers.

7.5 Conclusions of Chapter 6

In this paper, we addressed the question of how the curse of multiplication can be re-

solved when solving multiplicative programs. Specifically, we showed how the multiplication

operation itself can be binary-encoded as an integer linear program following the procedure

that a computer uses internally. We developed two types of binary-encoded reformulations

for a multiplicative program: the Nested reformulation and the Altogether reformulation.

Assuming that a multiplicative program has a compact (i.e., polynomially bounded) size, we

proved that the Nested reformulation will also have a compact size. However, that is not the

case for the Altogether reformulation. We also introduced two search mechanisms, One-shot

and Bitwise, with several enhancement techniques for solving the proposed reformulations.

One-shot is suitable for multiplicative programs with small values of p, while Bitwise is suit-

able for multiplicative programs with large values of p. Therefore, the combination of the

Nested reformulation and the Bitwise search mechanism is the first approach (to the best of

our knowledge) that can fully resolve the curse of multiplication in multiplicative programs.

175

Although our focus has been mainly on resolving the curse of multiplication, surprisingly,

we observed that the Nested reformulation combined with the One-shot search mechanism

completely outperforms standard solvers on minimization instances, regardless of the value

of p. However, for maximization instances with small values of p, standard solvers perform

best. This difference can be explained by the fact that maximization instances are different

from minimization instances in nature, i.e., continuous mMPs are NP-hard while continuous

MMPs are polynomially solvable.

We hope that the simplicity of our proposed solution approaches and their promising

results encourage more researchers to study multiplicative programs. Specifically, many

different reformulations and/or search mechanisms can be developed by combining ideas

behind those presented in this paper. Therefore, studying such reformulations and search

mechanisms both theoretically and computationally could be valuable.

176

References

[1] Payman Ghasemi Saghand and Hadi Charkhgard. A criterion space search algorithm

for mixed integer linear maximum multiplicative programs: a multiobjective optimiza-

tion approach. International Transactions in Operational Research, 2021. Available

online.

[2] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Economet-

rica, 47(2):423–435, 1979.

[3] Hadi Charkhgard, Martin Savelsbergh, and Masoud Talebian. A linear programming

based algorithm to solve a class of optimization problems with a multi-linear objective

function and affine constraints. Computers & Operations Research, 89:17 – 30, 2018.

https://doi.org/10.1016/j.cor.2017.07.015.

[4] Payman Ghasemi Saghand, Hadi Charkhgard, and Changhyun Kwon. A branch-and-

bound algorithm for a class of mixed integer linear maximum multiplicative programs:

A bi-objective optimization approach. Computers & Operations Research, 101:263 –

274, 2019.

[5] J F Nash. The bargaining problem. Econometrica, 18:155–162, 1950.

[6] J F Nash. Two-person cooperative games. Econometrica, 21:128–140, 1953.

[7] Jesús M Jorge. An algorithm for optimizing a linear function over an integer efficient

set. European Journal of Operational Research, 195(1):98–103, 2009.

177

https://doi.org/10.1016/j.cor.2017.07.015

[8] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A new method for op-

timizing a linear function over the efficient set of a multiobjective integer program.

European Journal of Operational Research, 260(3):904 – 919, 2017.

[9] Serpil Sayın. Optimizing over the efficient set using a top-down search of faces. Oper-

ations Research, 48(1):65–72, 2000.

[10] Harold P Benson. Optimization over the efficient set. Journal of Mathematical Analysis

and Applications, 98(2):562–580, 1984.

[11] Roberto Serrano. Fifty years of the Nash program 1953-2003. Investigaciones Eco-

nomicas, pages 219–258, 2005.

[12] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah,

and JunxingWang. The unreasonable fairness of maximum nash welfare. In Proceedings

of the 2016 ACM Conference on Economics and Computation, EC ’16, pages 305–322,

New York, NY, USA, 2016. ACM.

[13] Dongmo Zhang. A logic-based axiomatic model of bargaining. Artificial Intelligence,

174(16):1307 – 1322, 2010.

[14] John P. Conley and Simon Wilkie. The bargaining problem without convexity: Ex-

tending the egalitarian and kalai-smorodinsky solutions. Economics Letters, 36(4):365

– 369, 1991.

[15] Deeparnab Chakrabarty, Nikhil Devanur, and Vijay V Vazirani. New results on ratio-

nality and strongly polynomial time solvability in Eisenberg-Gale markets. In Internet

and Network Economics, volume 4286 of Lecture Notes in Computer Science, pages

239–250. Springer Berlin Heidelberg, 2006.

[16] Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-

mutuel method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.

178

[17] Kamal Jain and Vijay V Vazirani. Eisenberg-Gale markets: Algorithms and structural

properties. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of

Computing, STOC ’07, pages 364–373, New York, NY, USA, 2007. ACM.

[18] V V Vazirani. Rational convex programs and efficient algorithms for 2-player Nash

and nonsymmetric bargaining games. SIAM J. discrete math, 26(3):896–918, 2012.

[19] Thomas Stidsen, Kim Allan Andersen, and Bernd Dammann. A branch and bound

algorithm for a class of biobjective mixed integer programs. Management Science,

60(4):1009–1032, 2014.

[20] Özgür Özpeynirci and Murat Köksalan. An exact algorithm for finding extreme sup-

ported nondominated points of multiobjective mixed integer programs. Management

Science, 56(12):2302–2315, 2010.

[21] Selcen (Pamuk) Phelps and Murat Köksalan. An interactive evolutionary metaheuris-

tic for multiobjective combinatorial optimization. Management Science, 49(12):1726–

1738, 2003.

[22] Thomas Erlebach, Hans Kellerer, and Ulrich Pferschy. Approximating multiobjective

knapsack problems. Management Science, 48(12):1603–1612, 2002.

[23] Michael P. Johnson and Arthur P. Hurter. Decision support for a housing mobility pro-

gram using a multiobjective optimization model. Management Science, 46(12):1569–

1584, 2000.

[24] Serpil Sayın and Panos Kouvelis. The multiobjective discrete optimization problem: A

weighted min-max two-stage optimization approach and a bicriteria algorithm. Man-

agement Science, 51(10):1572–1581, 2005.

179

[25] Alexander Engau and Margaret M. Wiecek. Interactive coordination of objective de-

compositions in multiobjective programming. Management Science, 54(7):1350–1363,

2008.

[26] Jyrki Wallenius, James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Stanley Zionts,

and Kalyanmoy Deb. Multiple criteria decision making, multiattribute utility theory:

Recent accomplishments and what lies ahead. Management Science, 54(7):1336–1349,

2008.

[27] S.S. Rao. Game theory approach for multiobjective structural optimization. Computers

& Structures, 25(1):119 – 127, 1987.

[28] Hadi Charkhgard, Kimia Keshanian, Rasul Esmaeilbeigi, and Parisa Charkhgard. The

magic of Nash social welfare in optimization: Do not sum, just multiply. Preprint,

2020.

[29] Emily Nicholson and Hugh P. Possingham. Objectives for multiple-species conservation

planning. Conservation Biology, 20(3):871–881, 2006.

[30] Zulqarnain Haider, Hadi Charkhgard, and Changhyun Kwon. A robust optimization

approach for solving problems in conservation planning. Ecological Modelling, 368:288

– 297, 2018.

[31] Alvaro Sierra-Altamiranda, Hadi Charkhgard, Mitchell Eaton, Julien Martin, Simeon

Yurek, and Bradley J. Udell. Spatial conservation planning under uncertainty us-

ing modern portfolio theory and nash bargaining solution. Ecological Modelling,

423:109016, 2020.

[32] David E Calkin, Claire A Montgomery, Nathan H Schumaker, Stephen Polasky, Jef-

frey L Arthur, and Darek J Nalle. Developing a production possibility set of wildlife

species persistence and timber harvest value. Canadian Journal of Forest Research,

32(8):1329–1342, 2002.

180

[33] Emily Nicholson and Hugh P. Possingham. Objectives for multiple-species conservation

planning. Conservation Biology, 20(3):871–881, 2006.

[34] Paul H. Williams and Miguel B. Araújo. Apples, oranges, and probabilities: Integrat-

ing multiple factors into biodiversity conservation with consistency. Environmental

Modeling & Assessment, 7(2):139–151, Jun 2002.

[35] David W. Coit. Cold-standby redundancy optimization for nonrepairable systems. IIE

Transactions, 33(6):471–478, Jun 2001.

[36] Mostafa Abouei Ardakan and Ali Zeinal Hamadani. Reliability optimization of se-

ries–parallel systems with mixed redundancy strategy in subsystems. Reliability Engi-

neering & System Safety, 130:132 – 139, 2014.

[37] Mohammad Feizabadi and Abdolhamid Eshraghniaye Jahromi. A new model for re-

liability optimization of series-parallel systems with non-homogeneous components.

Reliability Engineering & System Safety, 157:101 – 112, 2017.

[38] David A. Hensher. Sequential and full information maximum likelihood estimation of

a nested logit model. The Review of Economics and Statistics, 68(4):657–667, 1986.

[39] Anna Fernandez-Antolin, Virginie Lurkin, Matthieu de Lapparent, and Michel Bier-

laire. Discrete-continuous maximum likelihood for the estimation of nested logit mod-

els. 16th Swiss Transport Research Conference, Ascona, Switzerland, 17-19 May, 2017.

[40] Pierre Bonami, Jon Lee, Sven Leyffer, and Andreas Wächter. More branch-and-bound

experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-

0911, Argonne National Laboratory, Mathematics and Computer Science Division,

2011.

[41] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.

Operations Research Letters, 33(1):42–54, 2005.

181

[42] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard

Ribière, and O Vincent. Experiments in mixed-integer linear programming. Math-

ematical Programming, 1(1):76–94, 1971.

[43] Alexander Martin. Integer programs with block structure, 1999.

[44] ILOG ILOG. Cplex 9.0 reference manual. ILOG CPLEX Division, 2003.

[45] J-P Goux and Sven Leyffer. Solving large minlps on computational grids. Optimization

and Engineering, 3(3):327–346, 2002.

[46] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and

Ashutosh Mahajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131,

2013.

[47] John D. C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel. An algo-

rithm for the traveling salesman problem. Operations Research, 11(6):972–989, 1963.

[48] A. H. Land and A. G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28(3):497–520, 1960.

[49] M Ehrgott. Multicriteria optimization. Springer, New York, second edition, 2005.

[50] Y P Aneja and K P K Nair. Bicriteria transportation problem. Management Science,

27:73–78, 1979.

[51] Aharon Ben-Tal and Arkadi Nemirovski. On polyhedral approximations of the second-

order cone. Mathematics of Operations Research, 26(2):193–205, 2001.

[52] E D Dolan and J J Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, 2002.

182

[53] HP Benson and GM Boger. Multiplicative programming problems: analysis and

efficient point search heuristic. Journal of Optimization Theory and Applications,

94(2):487–510, 1997.

[54] Lizhen Shao and Matthias Ehrgott. An objective space cut and bound algorithm for

convex multiplicative programmes. Journal of Global Optimization, 58(4):711–728,

2014.

[55] Lizhen Shao and Matthias Ehrgott. Primal and dual multi-objective linear program-

ming algorithms for linear multiplicative programmes. Optimization, 65(2):415–431,

2016.

[56] John Hooker. Logic-based methods for optimization: combining optimization and con-

straint satisfaction, volume 2. John Wiley & Sons, 2011.

[57] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical

Programming, 104(1):91–104, 2005.

[58] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search

algorithm for biobjective mixed integer programming: The triangle splitting method.

INFORMS Journal on Computing, 27(4):597–618, 2015.

[59] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming,

98(1):23–47, 2003.

[60] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical

Journal, 29(2):147–160, 1950.

[61] IBM ILOG CPLEX Optimization Studio. CPLEX Parameters Reference, 2016.

[62] E. Kalai. Nonsymmetric Nash solutions and replications of 2-person bargaining. In-

ternational Journal of Game Theory, 6(3):129–133, 1977.

183

[63] M Grötschel, L Lovasz, and A Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer-Verlag, Berlin, 1988.

[64] Alvaro Sierra Altamiranda and Hadi Charkhgard. A new exact algorithm to optimize

a linear function over the set of efficient solutions for biobjective mixed integer linear

programs. INFORMS Journal on Computing, 31(4):823–840, 2019.

[65] J. Michael Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of

Mathematical Inequalities. Cambridge University Press, 2004.

[66] Matthias Ehrgott, Çiğdem Güler, Horst W Hamacher, and Lizhen Shao. Mathematical

optimization in intensity modulated radiation therapy. Annals of Operations Research,

175(1):309–365, 2010.

[67] F. Bartolozzi, A. de Gaetano, E. Di Lena, S. Marino, L. Nieddu, and G. Patrizi. Op-

erational research techniques in medical treatment and diagnosis: A review. European

Journal of Operational Research, 121(3):435 – 466, 2000.

[68] Sebastiaan Breedveld and Ben Heijmen. Data for trots–the radiotherapy optimisation

test set. Data in brief, 12:143–149, 2017.

[69] David Craft, Mark Bangert, Troy Long, Dávid Papp, and Jan Unkelbach. Shared

data for intensity modulated radiation therapy (IMRT) optimization research: the

cort dataset. GigaScience, 3(1):37, 2014.

[70] Matthias Ehrgott, Allen Holder, and Josh Reese. Beam selection in radiotherapy

design. Linear Algebra and its Applications, 428(5-6):1272–1312, 2008.

[71] Allen Holder. Radiotherapy treatment design and linear programming. Springer, 2005.

[72] Yair Censor, Adi Ben-Israel, Ying Xiao, and James M Galvin. On linear infeasibility

arising in intensity-modulated radiation therapy inverse planning. Linear algebra and

its applications, 428(5-6):1406–1420, 2008.

184

[73] Ying Xiao, Darek Michalski, James M Galvin, and Yair Censor. The least-intensity

feasible solution for aperture-based inverse planning in radiation therapy. Annals of

Operations Research, 119(1-4):183–203, 2003.

[74] Gino J Lim, Michael C Ferris, Stephen J Wright, David M Shepard, and Matthew A

Earl. An optimization framework for conformal radiation treatment planning. IN-

FORMS Journal on Computing, 19(3):366–380, 2007.

[75] Allen Holder. Partitioning multiple objective optimal solutions with applications in

radiotherapy design. Optimization and engineering, 7(4):501–526, 2006.

[76] Troy Long, Mingli Chen, Steve Jiang, and Weiguo Lu. Threshold-driven optimization

for reference-based auto-planning. Physics in Medicine & Biology, 63(4):04NT01, feb

2018.

[77] Hongcheng Liu, Peng Dong, and Lei Xing. A new sparse optimization scheme for simul-

taneous beam angle and fluence map optimization in radiotherapy planning. Physics

in Medicine & Biology, 62(16):6428–6445, jul 2017.

[78] Masoud Zarepisheh, Troy Long, Nan Li, Zhen Tian, H. Edwin Romeijn, Xun Jia, and

Steve B. Jiang. A DVH-guided IMRT optimization algorithm for automatic treatment

planning and adaptive radiotherapy replanning. Medical Physics, 41(6Part1):061711,

2014.

[79] Chunhua Men, Xuejun Gu, Dongju Choi, Amitava Majumdar, Ziyi Zheng, Klaus

Mueller, and Steve B Jiang. GPU-based ultrafast IMRT plan optimization. Physics

in Medicine and Biology, 54(21):6565–6573, oct 2009.

[80] Sebastiaan Breedveld, Pascal R M Storchi, Marleen Keijzer, and Ben J M Heijmen.

Fast, multiple optimizations of quadratic dose objective functions in IMRT. Physics

in Medicine and Biology, 51(14):3569–3579, jul 2006.

185

[81] Chuan Wu, Gustavo H Olivera, Robert Jeraj, Harry Keller, and Thomas R Mackie.

Treatment plan modification using voxel-based weighting factors/dose prescription.

Physics in Medicine and Biology, 48(15):2479–2491, jul 2003.

[82] William U. Shipley, Joel E. Tepper, George R. Jr Prout, Lynn J. Verhey, Oscar A.

Mendiondo, Michael Goitein, Andreas M. Koehler, and Herman D. Suit. Proton Radi-

ation as Boost Therapy for Localized Prostatic Carcinoma. JAMA, 241(18):1912–1915,

05 1979.

[83] S. S. Rao and T. I. Freiheit. A Modified Game Theory Approach to Multiobjective

Optimization. Journal of Mechanical Design, 113(3):286–291, 09 1991.

[84] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Economet-

rica, 47(2):423–435, 1979.

[85] Sara Ramezani and Ulle Endriss. Nash social welfare in multiagent resource allo-

cation. In Esther David, Enrico Gerding, David Sarne, and Onn Shehory, editors,

Agent-Mediated Electronic Commerce. Designing Trading Strategies and Mechanisms

for Electronic Markets, pages 117–131, Berlin, Heidelberg, 2010. Springer Berlin Hei-

delberg.

[86] Hadi Charkhgard, Kimia Keshanian, Rasul Esmaeilbeigi, and Parisa Charkhgard. The

magic of Nash social welfare in optimization: Do not sum, just multiply. Preprint,

2020.

[87] Payman Ghasemi Saghand and Hadi Charkhgard. Exact solution approaches for in-

teger linear generalized maximum multiplicative programs through the lens of multi-

objective optimization. Preprint, 2019.

[88] S. Bechikh, L. Ben Said, and K. Ghedira. Estimating nadir point in multi-objective

optimization using mobile reference points. In IEEE Congress on Evolutionary Com-

putation, pages 1–9, 2010.

186

[89] Kalyanmoy Deb and Kaisa Miettinen. Nadir point estimation using evolutionary ap-

proaches: Better accuracy and computational speed through focused search. In Mul-

tiple Criteria Decision Making for Sustainable Energy and Transportation Systems,

pages 339–354, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[90] Karl-Heinz Küfer, Alexander Scherrer, Michael Monz, Fernando Alonso, Hans

Trinkaus, Thomas Bortfeld, and Christian Thieke. Intensity-modulated radiotherapy–a

large scale multi-criteria programming problem. OR spectrum, 25(2):223–249, 2003.

[91] H Edwin Romeijn, James F Dempsey, and Jonathan G Li. A unifying framework

for multi-criteria fluence map optimization models. Physics in Medicine & Biology,

49(10):1991, 2004.

[92] David L Craft, Tarek F Halabi, Helen A Shih, and Thomas R Bortfeld. Approximat-

ing convex pareto surfaces in multiobjective radiotherapy planning. Medical physics,

33(9):3399–3407, 2006.

[93] Guillermo Cabrera-Guerrero, Andrew J Mason, Andrea Raith, and Matthias Ehrgott.

Pareto local search algorithms for the multi-objective beam angle optimisation prob-

lem. Journal of Heuristics, 24(2):205–238, 2018.

[94] Mac Clements, Nicholas Schupp, Megan Tattersall, Anthony Brown, and Randy Lar-

son. Monaco treatment planning system tools and optimization processes. Medical

Dosimetry, 43(2):106–117, 2018.

[95] Sebastiaan Breedveld, David Craft, Rens Van Haveren, and Ben Heijmen. Multi-

criteria optimization and decision-making in radiotherapy. European Journal of Oper-

ational Research, 277(1):1–19, 2019.

[96] Sebastiaan Breedveld, Pascal RM Storchi, and Ben JM Heijmen. The equivalence

of multi-criteria methods for radiotherapy plan optimization. Physics in Medicine &

Biology, 54(23):7199, 2009.

187

[97] Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indi-

visible items. SIAM J. Comput., 47(3):1211–1236, 2018.

[98] Payman Ghasemi Saghand, Hadi Charkhgard, and Changhyun Kwon. A branch-and-

bound algorithm for a class of mixed integer linear maximum multiplicative programs:

A bi-objective optimization approach. Computers & Operations Research, 101:263–274,

2019.

[99] Hawthorne L Beyer, Yann Dujardin, Matthew E Watts, and Hugh P Possingham.

Solving conservation planning problems with integer linear programming. Ecological

Modelling, 328:14–22, 2016.

[100] Alain Billionnet. Mathematical optimization ideas for biodiversity conservation. Eu-

ropean Journal of Operational Research, 231(3):514–534, 2013.

[101] Lee Failing and Robin Gregory. Ten common mistakes in designing biodiversity in-

dicators for forest policy. Journal of Environmental Management, 68(2):121 – 132,

2003.

[102] Alvaro Sierra-Altamiranda, Hadi Charkhgard, Mitchell Eaton, Julien Martin, Simeon

Yurek, and Bradley J. Udell. Spatial conservation planning under uncertainty us-

ing modern portfolio theory and Nash bargaining solution. Ecological Modelling,

423:109016, 2020.

[103] HP Benson and GM Boger. Outcome-space cutting-plane algorithm for linear multi-

plicative programming. Journal of Optimization Theory and Applications, 104(2):301–

322, 2000.

[104] John F Nash Jr. The bargaining problem. Econometrica: Journal of the Econometric

Society, pages 155–162, 1950.

188

[105] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah,

and Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Trans-

actions on Economics and Computation (TEAC), 7(3):1–32, 2019.

[106] Vijay V Vazirani. The notion of a rational convex program, and an algorithm for the

arrow-debreu Nash bargaining game. Journal of the ACM (JACM), 59(2):1–36, 2012.

[107] Mostafa Abouei Ardakan, Mohammad Sima, Ali Zeinal Hamadani, and David W Coit.

A novel strategy for redundant components in reliability–redundancy allocation prob-

lems. IIE Transactions, 48(11):1043–1057, 2016.

[108] Mohammad Feizabadi and Abdolhamid Eshraghniaye Jahromi. A new model for re-

liability optimization of series-parallel systems with non-homogeneous components.

Reliability Engineering & System Safety, 157:101–112, 2017.

[109] Enze Zhang and Qingwei Chen. Multi-objective reliability redundancy allocation in

an interval environment using particle swarm optimization. Reliability Engineering &

System Safety, 145:83–92, 2016.

[110] Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated set of mul-

tiobjective discrete optimization problems. INFORMS Journal on Computing, 2020.

Available online.

[111] Tyler Perini, Natashia Boland, Diego Pecin, and Martin Savelsbergh. A criterion

space method for biobjective mixed integer programming: The boxed line method.

INFORMS Journal on Computing, 32(1):16–39, 2020.

[112] Alvaro Sierra Altamiranda and Hadi Charkhgard. A new exact algorithm to optimize

a linear function over the set of efficient solutions for biobjective mixed integer linear

programs. INFORMS Journal on Computing, 31(4):823–840, 2019.

189

[113] Vahid Mahmoodian, Iman Dayarian, Payman Ghasemi Saghand, Yu Zhang, and Hadi

Charkhgard. A criterion space branch-and-cut algorithm for mixed integer bi-linear

maximum multiplicative programs. Preprint, 2020.

[114] Vahid Mahmoodian, Hadi Charkhgard, and Yu Zhang. Multi-objective optimization

based algorithms for solving mixed integer linear minimum multiplicative programs.

Computers & Operations Research, 128:105 – 178, 2021.

[115] Payman Ghasemi Saghand and Hadi Charkhgard. A criterion space search algorithm

for mixed integer linear maximum multiplicative programs: A multi-objective opti-

mization approach. Preprint, 2019.

[116] Payman Ghasemi Saghand and Hadi Charkhgard. Exact solution approaches for in-

teger linear generalized maximum multiplicative programs through the lens of multi-

objective optimization. Preprint, 2019.

[117] Lawrence J. Watters. Reduction of integer polynomial programming problems to zero-

one linear programming problems. Operations Research, 15(6):1171–1174, 1967.

[118] Fred Glover and Eugene Woolsey. Technical note—converting the 0-1 polynomial

programming problem to a 0-1 linear program. Operations Research, 22(1):180–182,

1974.

[119] Fred Glover. Improved linear integer programming formulations of nonlinear integer

problems. Management Science, 22(4):455–460, 1975.

[120] Christopher J C Burges. Factoring as optimization. Technical Report MSR-TR-2002-8,

August 2002. https://www.microsoft.com/en-us/research/wp-content/uploads/

2016/02/tr-2002-83.pdf.

190

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2002-83.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2002-83.pdf

[121] D Coppersmith and J Lee. Indivisibility and divisibility polytopes. In Novel Approaches

to Hard Discrete Optimization, page 71–95. Fields Institute Communications, Ameri-

can Mathematical Society, Providence, Rhode Island, 2003.

[122] Jonathan Borwein and David Bailey. Mathematics by Experiment: Plausible Reasoning

in the 21st Century. A K Peters/CRC Press, 2nd edition, 2008.

[123] Santanu S. Dey and Akshay Gupte. Analysis of MILP techniques for the pooling

problem. Operations Research, 63(2):412–427, 2015.

[124] James Luedtke, Mahdi Namazifar, and Jeff Linderoth. Some results on the strength

of relaxations of multilinear functions. Mathematical Programming, 136(2):325–351,

2012.

[125] Yuelin Gao, Chengxian Xu, and Yongjian Yang. An outcome-space finite algorithm

for solving linear multiplicative programming. Applied Mathematics and Computation,

179(2):494 – 505, 2006.

[126] Hong-Seo Ryoo and Nikolaos V. Sahinidis. Global optimization of multiplicative pro-

grams. Journal of Global Optimization, 26(4):387–418, 2003.

[127] Pavel Stavrev, D Hristov, B Warkentin, E Sham, N Stavreva, and BG Fallone. Inverse

treatment planning by physically constrained minimization of a biological objective

function. Medical physics, 30(11):2948–2958, 2003.

[128] M Alber and F Nüsslin. A representation of an NTCP function for local complication

mechanisms. Physics in Medicine & Biology, 46(2):439, 2001.

[129] M Zaider and GN Minerbo. Tumour control probability: a formulation applicable

to any temporal protocol of dose delivery. Physics in Medicine & Biology, 45(2):279,

2000.

191

[130] J. Löf, Stockholms universitet. Department of Medical Radiation Physics, and Can-

cerföreningen i Stockholm. Development of a General Framework for Optimization of

Radiation Therapy. Department of Medical Radiation Physics, 2000.

[131] Taewoo Lee, Muhannad Hammad, Timothy C. Y. Chan, Tim Craig, and Michael B.

Sharpe. Predicting objective function weights from patient anatomy in prostate IMRT

treatment planning. Medical Physics, 40(12):121706, 2013.

[132] Justin J. Boutilier, Taewoo Lee, Tim Craig, Michael B. Sharpe, and Timothy C. Y.

Chan. Models for predicting objective function weights in prostate cancer IMRT.

Medical Physics, 42(4):1586–1595, 2015.

[133] Saeed Ahmed, Benjamin Nelms, Dawn Gintz, Jimmy Caudell, Geoffrey Zhang, Ed-

uardo G Moros, and Vladimir Feygelman. A method for a priori estimation of best

feasible DVH for organs-at-risk: Validation for head and neck VMAT planning. Med-

ical physics, 44(10):5486–5497, 2017.

[134] Andreas Darmann and Joachim Schauer. Maximizing nash product social welfare in

allocating indivisible goods. European Journal of Operational Research, 247(2):548 –

559, 2015.

[135] Trung Thanh Nguyen and Jörg Rothe. Minimizing envy and maximizing average nash

social welfare in the allocation of indivisible goods. Discrete Applied Mathematics,

179:54 – 68, 2014.

[136] Richard Cole and Vasilis Gkatzelis. Approximating the nash social welfare with indi-

visible items. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory

of Computing, STOC ’15, pages 371–380, New York, NY, USA, 2015. ACM.

[137] Brandon Fain, Kamesh Munagala, and Nisarg Shah. Fair allocation of indivisible public

goods. In Proceedings of the 2018 ACM Conference on Economics and Computation,

EC ’18, pages 575–592, New York, NY, USA, 2018. ACM.

192

[138] Sara Retal and Abdellah Idrissi. A multi-objective optimization system for mobile

gateways selection in vehicular ad-hoc networks. Computers & Electrical Engineering,

73:289 – 303, 2019.

[139] Jennifer Mendoza-Alonzo, JosÃ© Zayas-Castro, and Hadi Charkhgard. Office-based

and home-care for older adults in primary care: A comparative analysis using the nash

bargaining solution. Socio-Economic Planning Sciences, page 100710, 2019.

193

Appendix A: Copyright Permissions

A1: Reprint Permission for Chapter 2

https://www.elsevier.com/about/policies/copyright#Author-rights

194

https://www.elsevier.com/about/policies/copyright#Author-rights

A2: Reprint Permission for Chapter 3

5/12/2021 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=a82f5e9e-10b6-446f-a30b-31dbc9a9565e&email= 1/3

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

May 12, 2021

This Agreement between Mr. Payman Ghasemi Saghand ("You") and John Wiley and Sons ("John Wiley and Sons") consists of
your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 5066731284477

License date May 12, 2021

Licensed Content
Publisher

John Wiley and Sons

Licensed Content
Publication

International Transactions in Operational Research

Licensed Content Title A criterion space search algorithm for mixed integer linear maximum multiplicative programs: a
multiobjective optimization approach

Licensed Content Author Payman Ghasemi Saghand, Hadi Charkhgard

Licensed Content Date Mar 12, 2021

Licensed Content Volume 0

Licensed Content Issue 0

Licensed Content Pages 29

Type of Use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be translating? No

Title Maximum Multiplicative Programming: Theory, Algorithms, and Applications

Institution name University of South Florida

Expected presentation
date

May 2021

Requestor Location Mr. Payman Ghasemi Saghand
4202 E. Fowler Avenue
ENG 226B

TAMPA, FL 33620
United States
Attn: Mr. Payman Ghasemi Saghand

Publisher Tax ID EU826007151

Total 0.00 USD
Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each
a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a
particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree
that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions
established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you
opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable,
worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This
license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and
limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted

195

5/12/2021 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=a82f5e9e-10b6-446f-a30b-31dbc9a9565e&email= 2/3

by this license must be completed within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any
other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement
given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that
appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that
nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party
content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no
part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new
Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may
be made based on the Wiley Materials without the prior permission of the respective copyright owner.For STM Signatory
Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license
are extended to include subsequent editions and for editions in other languages, provided such editions are for
the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley
Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a
stand-alone basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of
John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having
possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this
Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property
rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is
granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU
OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE
ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY
IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE
HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and
employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from
any breach of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER
PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE
DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING,
PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER
FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE
(INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS
OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF
ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or
unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as
the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not
be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's
right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed
waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or
consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be
construed as a waiver of or consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written
consent.

196

5/12/2021 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=a82f5e9e-10b6-446f-a30b-31dbc9a9565e&email= 3/3

Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated
herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of
fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be
amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the
parties' successors, legal representatives, and authorized assigns.

In the event of any conflict between your obligations established by these terms and conditions and those established by
CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you
and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and
Payment terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the
licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without
regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms
and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the
State of New York in the United States of America and each party hereby consents and submits to the personal
jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although
most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC
BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons
Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and
make commercial use of the article. The CC-BY license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and
reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no
modifications or adaptations are made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from
Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

197

A3: Reprint Permission for Chapter 5

https://publishingsupport.iopscience.iop.org/permissions-faqs/

198

https://publishingsupport.iopscience.iop.org/permissions-faqs/

Appendix B: Chapter 3

B1: Detailed Comparison Between B&B and Algorithm 3

Table B1.1: Performance comparison between Algorithm 3 and B&B on pure binary and
mixed binary instances with p “ 2

mˆ n

Pure binary Mixed binary
Algorithm 3 B&B Algorithm 3 B&B

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 6.80 1.02 10 0 40.05 5.20 0.67 0 1.95
200ˆ 200 6.40 2.16 10 0 73.67 4.40 1.04 0 7.13
200ˆ 300 6.20 4.90 10 0 743.49 5.20 1.74 0 12.44
200ˆ 400 8 10.88 10 0 2,955.39 5.20 2.32 0 20.42
Avg 6.85 4.74 10 0 953.15 5 1.44 0 10.48
400ˆ 200 6.60 5.58 10 0 288.37 4.40 3.03 0 15.93
400ˆ 400 7.20 21.76 10 0 3,071.54 4.40 5.53 0 51.15
400ˆ 600 6.40 35.83 10 0 772.04 4.80 8.75 0 97.61
400ˆ 800 6.20 73.57 10 3 2,923.57 4.40 10.88 0 210.09
Avg 6.60 34.19 10 0.75 1,763.88 4.50 7.05 0 93.70
600ˆ 300 8.20 22.37 10 0 1,189.86 4.60 6.82 0 44.51
600ˆ 600 8.20 116.95 10 2 4,340.54 4.80 14.21 0 186.53
600ˆ 900 6.60 187.37 10 3 5,066.02 4.60 22.41 0 357.60
600ˆ 1200 5.60 228.34 10 2 5,079.97 4.80 31.61 0 621.89
Avg 7.15 138.76 10 1.75 3,919.10 4.70 18.76 0 302.63
800ˆ 400 6.40 31.45 10 0 229.88 4.60 15.72 0 114.58
800ˆ 800 8.60 227.91 10 15 6,487.76 4.80 31.75 0 457.34
800ˆ 1200 9.80 752.30 9 44 7,200 4.40 48.53 0 964.60
800ˆ 1600 7.40 997.99 10 58 7,200 4.60 72.14 0 1,811.48
Avg 8.05 502.41 9.75 28.87 5,230.16 4.60 42.04 0 837

199

Table B1.2: Performance comparison between Algorithm 3 and B&B on pure integer and
mixed integer instances with p “ 2

mˆ n

Pure integer Mixed integer
Algorithm 3 B&B Algorithm 3 B&B

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 7.20 2.45 10 0 17.71 5 1.09 0 2.32
200ˆ 200 7 7.42 10 0 459.70 5.20 2.51 0 6.07
200ˆ 300 6.40 10.29 10 0 378.83 4.60 3.49 0 9.88
200ˆ 400 6.80 17.36 10 0 1,973.02 4.60 4.77 0 15.79
Avg 6.85 9.38 10 0 707.31 4.85 2.97 0 8.52
400ˆ 200 5.80 11.83 10 0 115.91 4.60 5.51 0 10.97
400ˆ 400 7.20 51.10 10 3 1,220.47 4.80 12.59 0 25.08
400ˆ 600 6.80 80.70 10 3 1,772.22 4.60 20.07 0 47.78
400ˆ 800 7.40 145.43 10 1 3,917.70 4.20 25.87 0 61.76
Avg 6.80 72.27 10 1.75 1,756.58 4.55 16.01 0 36.40
600ˆ 300 8.40 50.96 10 0 994.18 4.20 13.02 0 20.14
600ˆ 600 5.80 145.57 10 9 2,912.02 4.60 34.46 0 102.28
600ˆ 900 6.80 283.66 10 2 5,777.41 4.80 63.91 0 125.36
600ˆ 1200 8 641.92 10 20 7,200 4.60 84.89 0 204.25
Avg 7.25 280.53 10 7.75 4,220.90 4.55 49.07 0 113.01
800ˆ 400 6.80 90.88 10 0 31.73 4.20 29.66 0 84.177
800ˆ 800 11.40 684.77 10 21 6,486.08 4.60 76.56 0 267.462
800ˆ 1200 10.20 1,071.83 10 43 7,200 4.40 133.84 0 371.819
800ˆ 1600 9.20 1,764.42 8 56 7,200 4.40 195.79 0 405.548
Avg 9.40 902.97 9.50 28.63 5,125.73 4.40 108.96 0 282.25

200

B2: Detailed Comparison Between Algorithm 3 and SOCP for p “ 3

Table B2.1: Performance comparison between Algorithm 3 and SOCP on pure binary and
mixed binary instances with p “ 3

mˆ n

Pure binary Mixed binary
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 19.20 2.57 7 0 10.13 11.70 1.34 0 2.34
200ˆ 200 17.10 6.82 7 0 38.29 12 2.39 0 5.53
200ˆ 300 15.60 13.24 7 0 87.59 12.60 3.77 0 10.58
200ˆ 400 18 28.84 8 0 219.55 12.30 5.10 0 14.76
Avg 17.48 12.87 7.25 0 93.39 12.15 3.15 0 8.30
400ˆ 200 16.40 16.48 2 0 53.66 11.40 6.44 0 14.84
400ˆ 400 13.80 43.54 2 0 93.20 11.40 11.98 0 37.98
400ˆ 600 16.50 177.93 1 0 330.82 11.10 18.52 0 62.40
400ˆ 800 15.30 129.70 4 0 967.47 10.20 23.47 0 90.17
Avg 15.50 91.92 2.25 0 499.38 11.03 15.10 0 51.35
600ˆ 300 21.30 64.60 0 - - 11.40 15.79 0 43.69
600ˆ 600 14.10 341.89 0 - - 10.50 29.86 0 132.32
600ˆ 900 12.50 1,829.57 0 - - 10.50 49.83 0 212.06
600ˆ 1200 14.10 1,611.47 2 61 7,200 10.50 65.24 0 359.56
Avg 15.50 961.88 0.50 61 7,200 10.73 40.18 0 186.91
800ˆ 400 15 61.13 2 0 538.43 11.70 37.72 0 135.12
800ˆ 800 15 571.09 0 - - 12 75.93 0 284.44
800ˆ 1200 10.60 1,534.63 5 69 7,200 10.50 111.03 0 485.98
800ˆ 1600 12.60 904.61 7 78 7,200 9.90 147.69 0 917.01
Avg 13.30 767.87 3.50 63.64 6,248.34 11.03 93.09 0 455.63

Table B2.2: Performance comparison between Algorithm 3 and SOCP on pure integer and
mixed integer instances with p “ 3

mˆ n

Pure integer Mixed integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 18.30 5.94 3 0 12.18 15.60 3.37 0 2.66
200ˆ 200 17.70 15.38 3 0 31.49 12.60 5.63 0 7.54
200ˆ 300 16.50 23.57 7 0 87.47 12.90 9.24 0 11.80
200ˆ 400 17.10 57.27 8 0 163.80 10.80 10.48 0 14.43
Avg 17.40 25.54 5.25 0 97.79 12.98 7.18 0 9.11
400ˆ 200 15.30 28.22 1 0 40.53 11.70 12.92 0 16.19
400ˆ 400 18.90 170.47 2 0 187.09 12.60 31.58 0 42.72
400ˆ 600 16.80 808.42 1 0 425.47 12.60 51.05 0 70.57
400ˆ 800 13.50 240.03 1 0 936.87 10.50 59.11 0 95.09
Avg 16.13 311.78 1.25 0 355.41 11.85 38.67 0 56.14
600ˆ 300 17.40 110.51 0 - - 11.70 35.75 0 51.73
600ˆ 600 15.30 445.30 1 0 480.87 12.30 91.49 0 159.76
600ˆ 900 11.70 725.84 0 - - 10.50 133.61 0 268.54
600ˆ 1200 15.30 1,612.40 4 65 7,200 11.10 191.46 0 320.96
Avg 14.93 723.51 1.25 13 5,856.17 11.40 113.08 0 200.24
800ˆ 400 15 209.66 1 0 372.01 11.40 79.60 0 110.55
800ˆ 800 15.90 815.31 0 - - 10.80 188.62 0 347.45
800ˆ 1200 13.50 1,338.27 3 72 7,200 11.40 335.26 0 541.40
800ˆ 1600 11.40 2,627.90 6 70 7,200 10.80 454.43 0 879.86
Avg 13.95 1,247.79 2.50 63.6 6,517.2 11.10 264.48 0 469.81

201

Table B2.3: Performance comparison between Algorithm 3 and SOCP on instances with
p “ 3 for the convergence tolerance of 10´6

mˆ n

Pure binary Pure integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N T(sec.) #S %G T(sec.) #N T(sec.) #S %G T(sec.)
200ˆ 100 19.20 2.57 3 0 9.47 18.30 5.94 6 0 7.93
200ˆ 200 17.10 6.82 8 0 33.15 17.70 15.38 6 0 30.02
200ˆ 300 15.60 13.24 7 0 74.65 16.50 23.57 9 0 78.35
200ˆ 400 18 28.84 4 0 182.92 17.10 57.27 9 0 147.17
Avg 17.48 12.87 5.50 0 70.36 17.40 25.54 7.50 0 75.25
400ˆ 200 16.40 16.48 2 0 44.36 15.30 28.22 2 0 52.60
400ˆ 400 13.80 43.54 2 0 91.16 18.90 170.47 1 0 139.75
400ˆ 600 16.50 177.93 1 0 297.88 16.80 808.42 0 - -
400ˆ 800 15.30 129.70 3 0 807.54 13.50 240.03 0 - -
Avg 15.50 91.92 2 0 373.94 16.13 311.78 0.75 0 81.65
600ˆ 300 21.30 64.60 1 0 310.20 17.40 110.51 0 - -
600ˆ 600 14.10 341.89 0 - - 15.30 445.30 1 0 460.33
600ˆ 900 12.50 1,829.57 0 - - 11.70 725.84 1 53 7,200
600ˆ 1200 14.10 1,611.47 2 60 7,200 15.30 1,612.40 3 64 7,200
Avg 15.50 961.88 0.75 20 4,903.4 14.93 723.51 1.25 49 5,852.07
800ˆ 400 15 61.13 3 0 528.88 15 209.66 1 0 353.46
800ˆ 800 15 571.09 0 - - 15.90 815.31 0 - -
800ˆ 1200 10.60 1,534.63 4 64 7,200 13.50 1,338.27 4 71 7,200
800ˆ 1600 12.60 904.61 9 75 7,200 11.40 2,627.90 8 72 7,200
Avg 13.30 767.87 4 58.19 5,949.17 13.95 1,247.79 3.25 66.15 6,673.34

202

B3: Detailed Comparison Between Algorithm 3 and SOCP for p “ 4

Table B3.1: Performance comparison between Algorithm 3 and SOCP on pure binary and
mixed binary instances with p “ 4

mˆ n

Pure binary Mixed binary
Algorithm 3 SOCP Algorithm 3 SOCP

#N %G T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 15.60 0 4.90 1 0 7.52 30.80 2.96 0 3.09
200ˆ 200 12.60 0 10.77 2 0 24.19 27.20 4.80 0 6.23
200ˆ 300 12.90 0 35.89 3 0 60.68 27.60 7.80 0 12.28
200ˆ 400 10.80 0 85.49 3 0 117.06 22 8.50 0 18.27
Avg 12.98 0 34.26 2.25 0 65.79 26.90 6.02 0 9.97
400ˆ 200 11.70 0 26.92 0 - - 26 13.63 0 18.03
400ˆ 400 12.60 0 443.29 0 - - 28.80 29.57 0 53.02
400ˆ 600 12.60 0 178.64 0 - - 20 33.40 0 102.24
400ˆ 800 10.50 0 845.93 0 - - 20.40 45.06 0 84.54
Avg 11.85 0 373.70 0 - - 23.80 30.41 0 64.46
600ˆ 300 11.70 0 177.38 0 - - 24.40 33.19 0 64.13
600ˆ 600 12.30 0 648.58 0 - - 19.60 54.95 0 130.47
600ˆ 900 10.50 0 415.80 0 - - 21.20 98.67 0 222.37
600ˆ 1200 11.10 0 1,779.17 0 - - 21.60 135.58 0 429.50
Avg 11.40 0 755.23 0 - - 21.70 80.60 0 211.62
800ˆ 400 11.40 0 168.92 0 - - 18.80 60 0 136.90
800ˆ 800 10.80 0 503.96 0 - - 18.40 117.05 0 331.42
800ˆ 1200 11.40 0 803.93 0 - - 20 212.15 0 632.41
800ˆ 1600 10.80 0 2,624.57 6 85 7,200 18 264.62 0 1,065.65
Avg 11.10 0 1,025.35 1.50 85 7,200 18.80 163.46 0 541.59

Table B3.2: Performance comparison between Algorithm 3 and SOCP on pure integer and
mixed integer instances with p “ 4

mˆ n

Pure integer Mixed integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N %G T(sec.) #S %G T(sec.) #N T(sec.) %G T(sec.)
200ˆ 100 32.70 0 11.20 1 0 8.92 25.20 4.55 0 3.10
200ˆ 200 41.20 0 37.91 1 0 26.23 24.40 10.96 0 6.64
200ˆ 300 35.60 0 250.81 3 0 57.30 23.20 17.23 0 10.85
200ˆ 400 28 0 66.93 4 0 150.77 21.60 20.90 0 17.13
Avg 34.38 0 91.71 2.25 0 90.01 23.60 13.41 0 9.43
400ˆ 200 30.80 0 58.30 0 - - 28.80 32.96 0 19.66
400ˆ 400 56 0 879.93 0 - - 23.20 60.35 0 38.58
400ˆ 600 40 0 557.63 0 - - 19.60 80.85 0 78.88
400ˆ 800 36.80 0 595.24 0 - - 21.20 124.73 0 118.59
Avg 40.90 0 522.77 0 - - 23.20 74.73 0 63.93
600ˆ 300 32 0 214.37 0 - - 20.80 66.21 0 50.38
600ˆ 600 26.80 0 540.55 0 - - 24 187.22 0 165.47
600ˆ 900 32.40 1 1,837.98 0 - - 21.20 268.38 0 331.15
600ˆ 1200 19.20 0 953.24 0 - - 19.20 353.33 0 371.62
Avg 27.60 0.25 886.53 0 - - 21.30 218.79 0 229.66
800ˆ 400 37.60 0 487.38 0 - - 18.80 140.61 0 136.76
800ˆ 800 24.40 0 1,002.58 0 - - 20.40 371.33 0 356.37
800ˆ 1200 26.20 1.1 2,757.03 0 - - 19.20 578.22 0 591.10
800ˆ 1600 24.10 0.6 3,482.28 3 84 7,200 18.80 824.59 0 1,099.42
Avg 28.08 0.42 1,932.32 0.75 84 7,200 19.30 478.69 0 545.91

203

Table B3.3: Performance comparison between Algorithm 3 and SOCP on instances with
p “ 4 for the convergence tolerance of 10´6

mˆ n

Pure binary Pure integer
Algorithm 3 SOCP Algorithm 3 SOCP

#N %G T(sec.) #S %G T(sec.) #N %G T(sec.) #S %G T(sec.)
200ˆ 100 15.60 0 4.90 1 0 4.49 32.70 0 11.20 1 0 4.65
200ˆ 200 12.60 0 10.77 2 0 23.70 41.20 0 37.91 1 0 21.61
200ˆ 300 12.90 0 35.89 2 0 73.26 35.60 0 250.81 2 0 44.59
200ˆ 400 10.80 0 85.49 2 0 113.27 28 0 66.93 3 0 89.97
Avg 12.98 0 34.26 1.75 0 60.7 34.38 0 91.71 1.75 0 55.05
400ˆ 200 11.70 0 26.92 0 - - 30.80 0 58.30 0 - -
400ˆ 400 12.60 0 443.29 0 - - 56 0 879.93 0 - -
400ˆ 600 12.60 0 178.64 1 0 196.93 40 0 557.63 0 - -
400ˆ 800 10.50 0 845.93 0 - - 36.80 0 595.24 0 - -
Avg 11.85 0 373.70 0.25 0 196.93 40.90 0 522.77 0 - -
600ˆ 300 11.70 0 177.38 0 - - 32 0 214.37 0 - -
600ˆ 600 12.30 0 648.58 0 - - 26.80 0 540.55 0 - -
600ˆ 900 10.50 0 415.80 0 - - 32.40 1 1,837.98 0 - -
600ˆ 1200 11.10 0 1,779.17 0 - - 19.20 0 953.24 0 - -
Avg 11.40 0 755.23 0 - - 27.60 0.25 886.53 0 - -
800ˆ 400 11.40 0 168.92 0 - - 37.60 0 487.38 0 - -
800ˆ 800 10.80 0 503.96 0 - - 24.40 0 1,002.58 0 - -
800ˆ 1200 11.40 0 803.93 1 79 7,200 26.20 1.1 2,757.03 0 - -
800ˆ 1600 10.80 0 2,624.57 3 83 7,200 24.10 0.6 3,482.28 2 86 7,200
Avg 11.10 0 1,025.35 1 82 7,200 28.08 0.42 1,932.32 0.50 86 7,200

204

Appendix C: Chapter 4

C1: A Detailed Comparison Between SOCP and CFSSA-I on Instances with

Unit Geometric Weights

In Tables C1.1 and C1.2, ‘#IP’ is the average number of single-objective integer linear

programs solved by CFSSA-I, and ‘T(sec.)’ is the average solution time in seconds.

Table C1.1: Pure binary instances with unit geometric weights

mˆ n

p “ 2 p “ 3 p “ 4
CFSSA-I SOCP CFSSA-I SOCP CFSSA-I SOCP
(CPLEX) (Xpress) (CPLEX) (Xpress) (CPLEX) (Gurobi)

#IP T(sec.) T(sec.) #IP T(sec.) T(sec.) #IP T(sec.) T(sec.)
200ˆ 100 2.30 0.50 0.45 2.85 0.67 0.62 3.20 0.81 1.14
200ˆ 200 2.35 0.98 1.05 2.60 1.08 1.58 3.05 1.72 2.85
200ˆ 300 2.30 1.52 1.90 2.80 3.39 3.90 2.80 3.15 4.49
200ˆ 400 2.05 3.39 3.90 2.80 8.06 7.74 3.00 6.60 7.93

Avg 2.25 1.60 1.82 2.76 3.30 3.46 3.01 3.07 4.10
400ˆ 200 2.45 2.16 2.21 2.70 2.55 3.11 3.05 3.92 9.57
400ˆ 400 2.35 4.84 7.35 2.45 7.78 10.61 2.85 10.21 16.12
400ˆ 600 2.10 12.27 15.80 2.55 17.80 27.66 2.90 28.39 23.92
400ˆ 800 2.20 21.39 23.49 2.35 31.42 46.32 3.05 52.02 36.54

Avg 2.28 10.17 12.22 2.51 14.89 21.92 2.96 23.63 21.54
600ˆ 300 2.35 5.37 6.21 2.35 6.05 8.73 2.80 11.77 20.45
600ˆ 600 2.25 36.36 32.98 2.05 35.57 50.19 2.90 65.19 45.91
600ˆ 900 2.10 61.35 77.90 2.60 89.05 120.77 2.60 97.18 88.98
600ˆ 1200 2.05 91.70 168.43 2.70 140.40 288.75 2.30 122.53 131.35

Avg 2.19 48.69 71.38 2.43 67.77 117.11 2.65 74.17 71.68
800ˆ 400 2.30 8.43 11.41 2.10 11.39 17.50 3.20 22.65 44.24
800ˆ 800 2.00 61.32 60.54 2.20 83.12 99.29 3.00 126.62 87.56
800ˆ 1200 2.25 140.89 195.04 2.15 150.30 325.68 2.55 179.75 198.21
800ˆ 1600 2.85 300.91 464.76 2.60 345.53 838.86 2.40 379.69 319.68

Avg 2.35 127.89 182.94 2.26 147.58 320.33 2.79 177.18 162.42
1000ˆ 500 2.40 21.19 20.88 2.30 16.40 29.34 2.70 31.11 71.47
1000ˆ 1000 2.60 122.98 102.95 2.85 192.68 195.04 3.50 248.37 176.51
1000ˆ 1500 3.55 339.47 420.36 2.35 284.43 595.67 2.50 290.94 330.39
1000ˆ 2000 2.05 332.24 1,079.01 2.40 554.23 1,623.30 2.25 479.06 495.21

Avg 2.65 203.97 405.80 2.48 261.94 610.84 2.74 262.37 268.40

205

Table C1.2: Pure integer instances with unit geometric weights

mˆ n

p “ 2 p “ 3 p “ 4
CFSSA-I SOCP CFSSA-I SOCP CFSSA-I SOCP
(CPLEX) (Xpress) (CPLEX) (Xpress) (CPLEX) (Gurobi)

#IP T(sec.) T(sec.) #IP T(sec.) T(sec.) #IP T(sec.) T(sec.)
200ˆ 100 2.15 0.56 0.46 3.00 0.96 0.68 3.60 1.26 1.35
200ˆ 200 2.50 1.38 1.21 2.70 1.73 1.79 2.65 2.33 2.59
200ˆ 300 2.20 1.79 1.95 2.80 3.67 4.00 3.30 4.77 5.77
200ˆ 400 2.35 5.45 4.29 2.40 7.01 7.68 3.05 11.01 8.58

Avg 2.30 2.30 1.98 2.73 3.34 3.54 3.15 4.84 4.57
400ˆ 200 2.35 2.40 2.42 3.10 4.13 3.50 2.75 3.86 8.39
400ˆ 400 2.20 7.17 7.59 2.50 10.44 13.33 3.30 13.64 16.21
400ˆ 600 2.05 8.94 12.56 2.70 21.44 22.50 2.60 26.61 24.59
400ˆ 800 2.05 21.76 21.36 2.55 29.70 34.74 3.10 54.32 41.66

Avg 2.16 10.07 10.98 2.71 16.42 18.52 2.94 24.61 22.71
600ˆ 300 2.20 5.50 6.28 2.35 5.96 9.65 3.40 12.09 18.23
600ˆ 600 1.95 28.46 32.78 2.20 38.87 52.66 2.80 54.01 48.92
600ˆ 900 1.95 57.68 85.95 2.20 74.87 122.45 2.60 89.27 89.63
600ˆ 1200 2.00 98.96 166.15 2.75 148.99 286.57 3.15 177.73 151.61

Avg 2.03 47.65 72.79 2.38 67.17 117.83 2.99 83.28 77.10
800ˆ 400 2.20 11.78 13.42 2.50 17.46 20.42 2.70 19.53 38.47
800ˆ 800 1.90 58.20 76.84 2.70 103.51 129.93 2.85 120.76 95.30
800ˆ 1200 3.20 220.34 289.09 2.65 169.54 338.19 2.20 172.06 202.87
800ˆ 1600 2.75 338.12 768.56 2.85 353.13 968.90 2.35 284.82 314.93

Avg 2.51 157.11 286.98 2.68 160.91 364.36 2.53 149.29 162.90
1000ˆ 500 2.55 17.68 20.62 2.85 28.64 29.14 3.00 36.74 71.29
1000ˆ 1000 2.05 118.30 152.73 2.35 156.05 235.28 2.70 175.11 181.26
1000ˆ 1500 1.80 160.09 409.84 2.70 330.57 696.16 2.90 368.95 368.98
1000ˆ 2000 4.25 804.30 1,130.13 2.80 584.50 1,905.47 2.40 522.43 525.06

Avg 2.66 275.09 428.33 2.68 274.94 716.51 2.75 275.81 286.65

C2: Case Study

In this section, we show the performance of our proposed solution methods on three

different problems arising in the fields of game theory, transportation, and health-care.

C2.1: Fair Allocation of Indivisible Goods

The allocation of indivisible goods is the problem of allocating a set of indivisible

items, such as artwork or jewelry, among a set of (independent) agents. In this problem,

every agent has a utility function that they would like to maximize during the allocation

process. The main issue arising in this context is to guarantee the fairness of the allocation.

[12] showed that the highest provable fairness is achievable by maximizing the Nash Social

Welfare, which is the multiplication of all utility functions. This combined with the fact that

206

agents are mostly assumed to have additive utilities across the goods in the relevant literature

(see for instance [12, 134, 135, 136, 137]) gives rise to IL-GMMP with unit geometric weights.

Specifically, binary decision variables are required for identifying whether item i

should be assigned to person j or not. Also, some linear constraints are needed for en-

suring that each item will be assigned to exactly one person. Every agent is assumed to have

a linear utility function of goods where the coefficients in the function represent the prefer-

ence that each agent has for each good. We note that the linearity of each utility function is

the result of the additivity of the utilities. Moreover, in order to guarantee the fairness, the

utility functions are assumed to be strictly positive, i.e. every agent should receive at least

one item.

As for our case study, we consider the problem of allocating 50 goods to 5 agents,

which results in an IL-GMMP with p “ 5, 250 binary variables, and 50 equality constraints.

Every agent is required to choose a preference of t1, 2, 3u for each item. In order to eliminate

the need for the normalization of the utility functions, the summation of the preferences of

each agent over the 50 goods should be twice the number of goods. For the instance, we

tested our best approach CFSSA-I (when employing CPLEX) against the SOCP solver of

CPLEX, Gurobi, and Xpress by imposing a time limit of 3,600 seconds and using a single

thread. The solution times and relative optimality gaps are presented in Table C2.1. In this

table, columns labeled ‘T (sec.)’ show the solution time of a method, and columns labeled

‘%Gap’ show relative optimality gap obtained by a method.

Table C2.1: Performance comparison for the fair allocation of indivisible goods problem

CFSSA-I SOCP
CPLEX CPLEX Gurobi Xpress

π T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap
p1, 1, 1, 1, 1q 21.06 0 3,600 0.01 – – 3,600 0.01

Observe that our proposed approach is the best choice. In fact, the SOCP solver of

CPLEX and Xpress were not able to close the optimality gap within the imposed time limit.

Also, we did not report any result for SOCP of Gurobi because it shortly faced some issues

and returned a solution that its objective value was very far from the optimal one.

207

C2.2: Mobile Gateway Selection in Intelligent Transportation Systems

In the field of Intelligent Transportation Systems, permanent access of Client Vehicles

(CVs) to the Internet is crucial. However, due to the speed of CVs, it would be difficult to

create a stable Internet access through fixed/stationary gateways. This is because CVs go

in and out of the communication range of a gateway quickly. A solution proposed in the

literature for resolving this issue is to employ Mobile Gateways (MGs). Ideally, we would

like to assign all CVs to all MGs but that is typically impossible since it results in overload

issues for some MGs. So, a key problem in Intelligent Transportation Systems is to identify

the best utilization of MGs.

To solve this problem, [138] proposed a bi-objective binary linear programming model

where the goals are maximizing the number of CVs that are connected to MGs and minimiz-

ing the amount of traffic handled by the selected MGs. Their model includes several linear

constraints which assure that each CV is connected to at most one MG. The constraints

further assure that, if a CV is connected to a MG, they are within a predefined distance

of each other, the difference between their velocities does not surpass a threshold, and they

are moving in the same direction. [138] proposed to solve the bi-objective model by trans-

forming it into an IL-GMMP (with p “ 2). They showed the effectiveness of their method

over a variety of instances for different preference/geometric weights including π “ p1, 1q,

π “ p0.3, 0.7q, and π “ p0.7, 0.3q.

The authors of [138] kindly provided their data to us. Hence, for this case study, we

were able to generate one of their largest instances, which includes 5775 binary variables and

313775 constraints. However, by employing a simple variable-fixing (or preprocessing) tech-

nique, the size of their model can be reduced to 2540 binary variables and 22111 constraints.

Again, we tested our best approach CFSSA-I (when employing CPLEX) against the SOCP

solver of CPLEX, Gurobi, and Xpress by imposing a time limit of 3,600 seconds and using a

single thread. The solution times and relative optimality gaps are presented in Table C2.2.

It is obvious that our approach has been able to solve the instance for different geometric

208

weights very quickly to optimality. The second best approach is the SOCP solver of Xpress

which is significantly slower than our proposed approach.

Table C2.2: Performance comparison of different solution approaches on the mobile gateway
selection problem

CFSSA-I SOCP
CPLEX CPLEX Gurobi Xpress

π T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap
p1 , 1q 4.44 0 3,600 18 32.08 0 202.09 0
p0.3, 0.7q 4.58 0 3,600 2 3600 – 2060.6 0
p0.7, 0.3q 101.57 0 3,600 25 3600 – 3600 2ˆ 10´3

C2.3: Primary Care Selection Problem for Older Adults

The population of people with the age of 65 or more is increasing in the world.

Therefore, the World Health Organization (WHO) is emphasizing the primary health care

for dealing with the aging population. In the United States (US), there are three main

primary care delivery settings including home-based care, office-based care, and mixed-care.

For a given geographical region and primary care practice, identifying which delivery setting

is the best strategy is a key problem. This problem is challenging since a health care system

has multiple players including the organization, patients, and providers. These players have

conflicting objectives. For example, an organization is typically interested in reducing its

total cost, patients would like to improve their experience, e.g. not to be rejected and/or be

assigned to an unpreferred care delivery setting, providers (such as physicians and nurses)

would also like to improve their experience, e.g. not to have a high utilization rate.

To address this problem, [139] proposed a four objective optimization model that

attempts to identify which patients should be served, when they should be served, through

which primary care setting they should be served, and by whom they should be served. Their

optimization model is a pure integer linear program. To solve the problem, they proposed to

use the Nash bargaining solution. Therefore, they re-formulated the problem as a IL-GMMP

with unit geometric weights.

209

The authors of [139] kindly provided their data to use. Hence, for this case study,

we were able to generate one of their large instances, which includes 4100 binary and 484

integer variables, and 4834 constraints. Note that, in order to use our proposed algorithms,

we converted all integer variables to binaries, resulting in a problem with a total of 5520

binary variables and 5318 constraints. Similar to the other two case studies, we solved the

instance using CFSSA-I (when employing CPLEX) and compared it against the SOCP solver

of CPLEX, Gurobi, and Xpress. We imposed a time limit of 3,600 seconds and used a single

thread. The solution times and relative optimality gaps are presented in Table C2.3. Again,

we observe that, our proposed method has preformed significantly better than any other

method.

Table C2.3: Performance comparison for the primary care selection problem

CFSSA-I SOCP
CPLEX CPLEX Gurobi Xpress

π T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap T(sec.) %Gap
p1, 1, 1, 1q 7.8 0 3600 14 3600 0.08 453 0

210

Appendix D: Chapter 5

D1: Implementing Lexico and 2pεc on the Liver Case

In this section, we provide the details of how we have specifically implemented Lexico

and 2pε on the liver case, i.e., Section 5.5.2. Before doing so, we provide some notations to

facilitate the presentation. First note that based on the wish-list given in Table 5.3, three

penalty objectives should be created. The first one belongs to the PTV (which has the

highest priority), the second one belongs to the liver (which has the second highest priority),

and the last one belongs to all other organs together (which means that none of the other

organs has priority over each other). With this in mind, we denote the objective with priority

i P t1, 2, 3u by f̄ipdq and define them as follows,

f̄1pdq :“
ÿ

vPVPTV

pdv ´ 55q2,

f̄2pdq :“
ÿ

vPVLiver

pdv ´ 0q2,

f̄3pdq :“
ÿ

sPS{
tPTV,Liveru

ÿ

vPVs

pdv ´ 0q2.

We denote the goal values given in Table 5.3 by gi for each i P t1, 2, 3u. Specifically,

we have that,

g1 “ 68, 386.38,

g2 “ 8, 750, 124.63,

g3 “ 42, 012, 837.22.

211

Finally, we define δ as a constant slightly greater than one to avoid numerical issues

in Lexico and 2pεc. In our implementation, we set δ “ 1.03 as suggested by [96].

D1.1: Lexico

The Lexico contains three main steps and in each step, one optimization problem

needs to be solved. The first step optimizes the penalty function with the highest priority

over all feasible solutions, i.e.,

f̄˚1 :“ mintf1pdq : d P Du.

In the second step, the second penalty function is optimized over all feasible solutions

that are optimal for the first objective,

f̄˚2 :“ mintf2pdq : f1pdq ď f̄˚1 δ , d P Du.

In the third step, the third penalty function is optimized over all feasible solutions

that are optimal for the second objective among all optimal solutions for the first objective,

d˚Lexico P arg mintf3pdq : f1pdq ď f̄˚1 δ , f2pdq ď f̄˚2 δ , d P Du.

The solution d˚Lexico is the final outcome of the Lexico which we used to make Fig-

ures 5.7 and 5.8.

D1.2: 2pεc

The 2pεc approach is developed by [96] and is a combination of Lexico and goal

programming. The underling idea of this approach comes from this observation that Leixco

tends to generate extreme solutions mainly because in each step it always searches among

optimal solutions of the previous step. However, in practice, that is only necessary if the

212

optimal objective value of the previous step is larger (i.e., worse) than the goal defined

for that step. Otherwise, searching among solutions satisfying the goal can be sufficient in

practice. With this in mind, 2pεc, as the name suggests, consists of two phases. The first

phase is similar to the Lexico with the only difference being in the right-hand-side values of

the constraints imposed in each step. Specifically, the following three optimization problems

need to be solved:

f̄˚1 :“ mintf1pdq : d P Du,

f̄˚2 :“ mintf2pdq : f1pdq ď maxtf̄˚1 δ, g1u , d P Du,

f̄˚3 :“ mintf3pdq : f1pdq ď maxtf̄˚1 δ, g1u , f2pdq ď maxtf̄˚2 δ, g2u , d P Du.

The issue about the first phase is that the solution corresponding to f̄˚3 may not be

Pareto-optimal if maxtf̄˚1 δ, g1u ‰ f̄˚1 δ or maxtf̄˚2 δ, g2u ‰ f̄˚2 δ. So, the second step is designed

to ensure that a Pareto-optimal solution will be generated. Similar to the first phase, the

second phase will also have three steps and in each step one optimization problem needs to

be solved. The optimization problems are as follows:

¯̄f˚1 :“ mintf1pdq : f2pdq ď maxtf̄˚2 δ, g2u , f3pdq ď maxtf̄˚3 δ, g3u , d P Du,

¯̄f˚2 :“ mintf2pdq : f1pdq ď
¯̄f˚1 δ , f3pdq ď maxtf̄˚3 δ, g3u , d P Du,

d˚2pεc P arg mintf3pdq : f1pdq ď
¯̄f˚1 δ , f2pdq ď

¯̄f˚2 δ , d P Du.

The solution d˚2pεc is the final outcome of 2pεc which we used it to make Figures 5.7

and 5.8. We note that some steps of the second phase may be redundant and therefore can

be skipped. For example, if maxtf̄˚1 δ, g1u “ f̄˚1 δ and maxtf̄˚2 δ, g2u “ f̄˚2 δ then the solution

corresponding to f̄˚3 is Pareto-optimal and can be named as d˚2pεc. So, in that case there is no

need to call the second phase at all. If maxtf̄˚2 δ, g2u “ f̄˚2 δ and maxtf̄˚3 δ, g3u “ f̄˚3 δ then the

solution corresponding to ¯̄f˚1 is Pareto-optimal and can be named as d˚2pεc. So, in that case

213

there is no need to call steps 2 and 3 of the second phase at all. Finally, if maxtf̄˚3 δ, g3u “ f̄˚3 δ

then the solution corresponding to ¯̄f˚2 is Pareto-optimal and can be named as d˚2pεc. So, in

that case there is no need to call step 3 of the second phase at all.

214

Appendix E: Chapter 6

E1: Proofs

Proof of Proposition 6.1. Observe that in the Nested reformulation, we interleave the prod-

uct (6.2) into

pp. . . ppyσp1qq
loomoon

“z1

yσp2qq

loooooomoooooon

“z2
...

. . . yσpp´1qq

looooooooooooooooomooooooooooooooooon

“zp´1

yσppqq

looooooooooooooooooooomooooooooooooooooooooon

“zp

,

where z1 “ yσp1q and zi “ yσpiqzi´1 for each i “ 2, . . . , p. We note that the u variables

are used in Constraints (6.14)–(6.16), i.e., the McCormick relaxation constraints for the

binary multiplication of yσpiqzi´1 for each i “ 2, . . . , p. We know that the number of bits

required to represent yσpiq is equal to nyσpiq for each i “ 1, 2, . . . , p. We also know that

zi´1 ď
śi´1

j“1 ȳσpjq for each i “ 2, . . . , p. Hence, the number of bits required to represent zi´1

is t
ři´1
j“1 log2

`

ȳσpjq
˘

u ` 1 for each i “ 2, . . . , p. Further, the total number of u variables in

the Nested reformulation is

p
ÿ

i“2

˜

nyσpiq

˜[

i´1
ÿ

j“1

log2

`

ȳσpjq
˘

_

` 1

¸¸

.

Similarly, observe from Constraints (6.17)–(6.21) that in order to compute zi, some

v variables and c variables should be generated for each i “ 2, . . . , p. Specifically, when

computing zi, the number of bits required to represent zi is the number of v variables (or

215

the number of c variables). Hence, the total number of c and v variables is

2
p
ÿ

i“2

˜[

i
ÿ

j“1

log2

`

ȳσpjq
˘

_

` 1

¸

.

Proof of Proposition 6.2. Observe that in the Altogether reformulation, we calculate the

product (6.2) as a whole, i.e.,

z “
ź

iPI

yi.

We note that the u variables are used in Constraints (6.27)–(6.28), i.e., the McCormick

relaxation constraints for the binary multiplication of
ś

iPI yi. We know that z ď
ś

jPI ȳi

and that ȳi requires nyi bits to be represented for each i “ 1, . . . , p. Therefore, the total

number of u variables in the Altogether reformulation is

ź

iPI

nyi .

Similarly, observe from Constraints (6.29)–(6.32) that in order to compute z, some

v and c variables should be generated. Specifically, when computing z, the number of bits

required to represent z is the number of v variables (or the number of c variables). Therefore,

the total number of c and v variables is

2

˜[

ÿ

iPI

log2 pȳiq

_

` 1

¸

“ 2nz.

E2: Extreme Examples

In this section, we provide the model of each extreme example in ‘.lp’ format. We

do not provide the objective function of the models as it is simply the multiplication of all

y-variables. We first provide the model for the extreme example with p “ 15. In this model,

C1 to C15 are equations used to represent y-variables.

216

C1: y1 ` 8x1 ` 4x2 ` 9x7 ` 4x8 ` x9 ` x10 ` 6x12 ´ 4x13 ´ 5x17 “ 18

C2: y2 ´ 3x1 ` 6x6 ` 10x7 ` 9x8 ` 10x9 ´ x10 ´ 9x11 ´ 3x14 ` 7x16 ´ 2x19 “ 20

C3: y3`6x1´7x2`10x4´2x5´10x6´4x8´5x9`9x11´2x12`7x14`7x15´7x17´9x19`x20 “

34

C4: y4 ` 4x3 ´ 10x5 ´ 10x7 ` 4x8 ` 3x9 ´ 5x12 ` 10x13 ` 2x16 ´ 10x17 ` 8x18 ´ 3x19 “ 23

C5: y5 ´ 8x1 ´ 3x3 ´ 5x4 ` 3x5 ` 6x10 ` x12 ´ 4x15 ` 10x16 ` 10x18 ` 6x19 “ 35

C6: y6 ` 9x3 ´ 7x4 ´ 10x6 ´ 6x8 ` 7x9 ` 8x12 ´ 3x20 “ 10

C7: y7 ` x1 ´ 7x4 ´ 4x10 ` 5x15 ´ 2x17 ´ 3x19 “ 13

C8: y8 ` 7x1 ´ 3x2 ` 4x3 ` 9x5 ´ 2x7 ` 7x8 ´ 7x9 ´ 6x11 ´ 2x13 ´ 10x16 ` 3x17 ´ 7x18 “ 16

C9: y9´ 10x1` 5x2´ 8x4´ 6x6´ 4x9` 4x10´ 6x12` 7x13`x16` 10x17´ 10x18` 9x19 “ 13

C10: y10 ` 4x1 ´ 7x3 ` 4x6 ´ 6x7 ` 4x11 ´ 10x12 ` 2x14 ` x15 ´ 3x17 ´ 9x19 ` 10x20 “ 17

C11: y11 ´ 9x1 ´ 7x2 ` 9x4 ´ 6x5 ´ 10x7 ´ 4x11 ` 2x17 ` 7x19 “ 17

C12: y12 ´ 3x6 ` 2x7 ` x9 ` 2x12 ` 5x16 ` 7x19 “ 17

C13: y13 ´ 2x3 ` 9x4 ` x6 ` 8x7 ` 2x9 ` 6x12 ´ x15 ´ 4x16 ` x18 ` 9x19 ´ 9x20 “ 25

C14: y14 ´ 5x1 ` 4x3 ` 4x5 ´ 2x8 ´ 5x9 ` 4x10 ´ 8x11 ´ 9x13 ´ 9x14 ´ 4x15 ´ 10x16 ` 7x17 ´

9x18 ´ 2x20 “ 1

C15: y15 ` x2 ´ x8 ´ 6x9 ´ 5x10 ` 9x11 ` 7x14 ` 2x15 ´ x16 ` 5x20 “ 24

C16: 11x1 ` 11x5 ` 27x10 ` 4x11 ` 22x12 ` 22x15 ` 24x19 ` 28x20 ď 32

C17: 27x2 ` 21x3 ` 13x5 ` 7x7 ` 15x8 ` 19x10 ` 25x11 ` 3x12 ` 4x13 ` 5x16 ` 15x17 ď 27

C18: 8x2 ` 24x3 ` 15x7 ` 21x11 ` 16x13 ` 17x14 ` 22x16 ` 15x18 ` 8x19 ď 60

C19: 26x1`2x3`7x4`16x5`26x6`23x8`17x9`24x11`30x13`29x14`18x17`15x18`9x19 ď

32

C20: 21x2 ` 21x3 ` 28x4 ` 11x5 ` 20x6 ` 13x7 ` 5x9 ` x11 ` 16x12 ` 11x15 ď 91

C21: 16x3 ` 9x4 ` 4x5 ` 14x6 ` 20x7 ` 6x9 ` 8x15 ` x16 ď 80

C22: 28x3 ` 17x6 ` 22x7 ` 7x11 ` 27x14 ` 29x15 ` 11x17 ď 52

C23: 26x1 ` 10x3 ` 28x5 ` 26x8 ` 27x10 ` 30x12 ` 20x15 ` 5x16 ` 28x17 ` 18x18 ď 26

C24: 2x1 ` 27x2 ` 30x3 ` 28x5 ` 29x7 ` 22x9 ` 7x10 ` 29x12 ` 4x13 ` 24x19 ` 4x20 ď 27

C25: x1 ` 22x3 ` 9x5 ` 30x10 ` 12x13 ` 17x14 ` 22x17 ` 5x18 ` 30x19 ` 19x20 ď 89

217

xi P t0, 1u @i P t1, 2, ¨ ¨ ¨ , 20u

We now provide the model for the extreme example with p “ 20. In this model, C1

to C20 are equations used to represent y-variables.

C1: y1 ´ 10x1 ` 3x2 ` 7x3 ´ 8x4 ´ 7x6 ´ x7 ´ 9x9 ´ 2x10 ` 2x11 ´ 10x13 ´ 8x14 ` 3x15 `

8x16 ` 10x17 ` 3x18 ` 10x19 ´ 6x20 “ 25

C2: y2` 5x2` 6x5` 5x6´ 10x7` 6x11` 6x12´ 9x14` 6x15` 4x17´ 6x18` 8x19´ 8x20 “ 21

C3: y3 ` x3 ´ 3x4 ` 4x6 ´ 7x8 ´ 10x9 ` 6x10 ` 6x11 ` 4x19 ` 4x20 “ 17

C4: y4 ` 10x4 ´ 3x7 ´ 3x11 ´ 8x13 ` 3x14 ´ 9x19 “ 16

C5: y5´ 10x2` 7x3´ 8x5´ 5x6´ 5x7` 2x8´ 7x10´ 4x13` 2x17` 5x18` 7x19` 6x20 “ 24

C6: y6 ´ 9x1 ´ 8x3 ´ 4x4 ´ 5x8 ´ 8x10 ` 6x13 ` 9x15 ´ 3x17 ´ 4x19 “ 9

C7: y7 ´ 7x2 ` 5x8 ´ 2x10 ´ 7x12 ´ 9x15 ´ 4x16 ´ 8x18 ` 2x19 ´ 2x20 “ 14

C8: y8 ` 5x2 ` 2x8 ` 5x10 ´ 10x11 ´ 6x12 ´ 2x15 ` 7x16 ` 3x17 ´ 6x18 ´ 8x19 ` 8x20 “ 19

C9: y9 ´ 8x9 ` x10 ´ 8x15 ` 10x18 ` 8x19 ` 2x20 “ 21

C10: y10`x2´3x4`4x5`8x6`5x7`6x8´10x10´x12`7x13´4x15`2x16`8x19´2x20 “ 24

C11: y11 ` 9x1 ´ 2x3 ` 2x4 ´ 8x5 ` 7x10 ´ 3x11 ´ 6x14 ´ 6x17 ´ 8x18 “ 18

C12: y12 ´ 2x3 ` 3x4 ´ 8x5 ´ x9 ´ 8x10 ` 10x13 ´ x14 ´ 3x15 ´ 5x17 ´ 9x19 ´ 9x20 “ 20

C13: y13 ` 3x3 ´ 6x4 ` 2x5 ` 4x7 ´ 5x8 ` 2x14 ´ 4x15 ´ 2x16 “ 19

C14: y14 ` 8x5 ` 7x6 ´ 2x8 ´ 6x13 ` 5x17 ´ 4x18 ´ 2x19 ´ 5x20 “ 18

C15: y15 ` 6x4 ´ 6x6 ` 7x8 ` 5x11 ´ 2x17 ` 10x18 ´ 9x19 ` 2x20 “ 31

C16: y16´ 6x1` 4x2´ 6x3` 9x4´ 5x5` 9x12` 7x15´ 8x16` 2x17` 7x18` 10x19` 7x20 “ 28

C17: y17 ` 6x1 ´ 10x2 ´ 10x3 ´ 5x6 ` 2x14 ´ 10x16 ´ 10x19 ´ 10x20 “ 9

C18: y18´4x2´5x5`x6`7x7´8x8`5x9`6x10´x11´8x12´5x14`3x15`3x18´6x20 “ 16

C19: y19 ` 10x1 ` x5 ´ x6 ` 4x8 ` 9x9 ` 10x12 ` x14 ´ 5x17 ´ 9x18 ` 4x20 “ 27

C20: y20 ´ 10x1 ` 10x4 ` x9 ` 4x10 ` 9x12 ` 4x13 ` 4x16 ´ 5x17 ` 10x20 “ 38

C21: 8x1 ` 4x2 ` 13x4 ` 19x6 ` 19x9 ` 21x10 ` 8x11 ` 29x14 ` 11x15 ` 25x16 ` 3x17 ď 22

C22: 26x2 ` 30x3 ` 19x4 ` 2x12 ` 3x13 ` 3x17 ` 29x19 ď 44

218

C23: 14x1 ` 3x3 ` 13x4 ` 10x5 ` 9x8 ` 19x9 ` 2x10 ` 9x11 ` 5x13 ` 24x15 ` 22x16 ` 27x17 `

19x18 ` 7x19 ď 96

C24: 27x2 ` 26x4 ` 27x5 ` 15x10 ` 21x13 ` 4x14 ` 16x15 ` 25x19 ď 49

C25: 15x3`13x4`10x5`7x7`24x8`12x9`10x11`28x13`18x14`10x15`10x17`14x19 ď 42

C26: 16x1 ` 12x4 ` 13x6 ` 18x7 ` 3x8 ` x9 ` 4x10 ` x13 ` 28x15 ` 24x16 ` 19x17 ` 9x20 ď 54

C27: 15x1 ` 25x2 ` 12x7 ` 3x9 ` 2x13 ` 21x14 ` 27x15 ` 23x17 ď 21

C28: 20x2 ` 20x3 ` 16x7 ` 17x8 ` 26x11 ` 24x12 ` 10x18 ď 53

C29: 22x3 ` 22x6 ` 25x7 ` 3x8 ` 21x9 ` x11 ` 15x14 ` 12x15 ` 24x18 ` 4x19 ď 89

C30: 16x1 ` 27x2 ` 30x5 ` 9x8 ` 27x10 ` 16x12 ` 15x14 ` 17x15 ` 7x16 ` 11x18 ` 16x20 ď 35

xi P t0, 1u @i P t1, 2, ¨ ¨ ¨ , 20u

E3: Instance Generator

We generate a total of 900 instances for the computational study. From the total of

900 instances, 300 are pure binary instances (which will be used for both minimization and

maximization forms), 300 are pure continuous instances for the minimization form, and 300

are pure continuous instances for the maximization form. We generate the binary instances

in such a way that they become challenging to solve both in the form of minimization or

maximization. Note that generating pure continuous instances using the same settings that

we employ for generating binary instances often results in instances that can be solved in

just a fraction of a second by GRB, and that cannot be used for making any meaningful com-

parisons. Hence, we make some changes in the settings when creating continuous instances.

Moreover, as mentioned in the introduction, continuous instances in maximization form can

be solved in polynomial time (while mMPs remain NP-hard even in pure continuous form).

Therefore, our pure continuous instances in the maximization form are larger than our pure

continuous instances in the minimization form.

Specifically, pure binary instances are divided into three classes based on their value

of p P t2, 3, 4u. Each class contains 20 subclasses of instances based on the dimensions of

219

the matrix Amˆn, and each subclass contains 5 randomly generated instances. We consider

n P t100, 200, 300, 400, 500u andm “ αn, where α P t0.5, 1, 1.5, 2u. For example, our smallest

subclass is 100ˆ50 with n “ 100 x-variables and m “ 50 constraints (related to x-variables),

i.e., α “ 0.5, and our largest subclass is 500ˆ 1000 with n “ 500 x-variables and m “ 1000

constraints (related to x-variables), i.e., α “ 2. The sparsity of matrix A is set to 50%,

i.e. sA :“ 0.5, and the entries of matrix A are randomly drawn from the discrete uniform

distribution r1, 30s. The components of vector b are randomly drawn from the discrete

uniform distribution rnsA, 10nsAs, where nsA is the expected number of non-zero elements

in each row of matrix A. The sparsity of matrix D is also set to 50%, and its entries in row

i P I are drawn randomly from the discrete uniform distribution r´10i, 10is. Note that each

row represents a linear function defining a y-variable. By generating the entries of D in that

way, different y-variables require different numbers of bits to be represented. To ensure that

the instances are non-trivial in the form of both minimization and maximization, we make

the y-variables highly conflicting. Specifically, if we decide to assign a non-zero value to the

entry located in row i P I and column j P t1, . . . , nu of matrix D, we first count how many

times column j has taken positive and negative values in previously generated rows of D. If

the number of positives (negatives) is larger than the number of negatives (positives), then

we make sure that the value of the entry located in row i P I and column j P t1, . . . , nu

is negative (positive). In the case of a tie, no restriction on the sign is imposed. Finally,

to assure that every objective function takes a positive value, we first assume that all the

elements of vector d are zero and solve an optimization problem for each i P I to compute

the minimum possible value for yi, denoted by Li. We then randomly draw the components

of d from the discrete uniform distribution r|Li| ` 1, |Li| ` 10s.

For pure continuous instances in minimization form, we generate 300 instances similar

to the procedure described for generating pure binary instances. The only difference is

that the entries of matrix A for pure continuous instances are randomly drawn from the

discrete uniform distribution r´30, 30s (rather than r1, 30s). This makes the feasible set of

220

the instances larger and consequently instances are expected to become more challenging to

solve. We also generate 300 instances for the maximization form similarly to the procedure

described for minimization. The only difference is that the dimensions of matrix Amˆn are

set to larger values. Specifically, we use n P t400, 800, 1200, 1600, 2000u and m “ αn, where

α P t0.5, 1, 1.5, 2u for pure continuous maximization instances. This implies that the smallest

subclass of the pure continuous instance in maximization form has 400 x-variables and 200

constraints (related to x-variables). Similarly, the largest subclass of the pure continuous

instance in maximization form has 2000 x-variables and 4000 constraints (related to x-

variables).

E4: Detailed Experimental Results

In this section, we provide the details of all our four experiments outlined in Sec-

tion 6.5. Throughout this section, we use two types of charts for comparing the performance

of different algorithms/solvers, one for time comparison and the other for solution quality

comparison.

For solution time comparisons, we use a specific boxplot in which on the horizontal

axis different algorithms are listed, and on the vertical axis the run time ratio is provided.

Specifically, for constructing a boxplot, for each instance and for each solution approach,

we need to compute the ratio of the run time of the approach to the minimum of the run

times of all approaches for that specific instance. Hence, the closer the ratio is to one,

the better the approach. Note that we do not report the solutions times explicitly when

describing the details of our experiments in this section. This is because interested readers

may refer to the 185-page supplementary PDF document (or its corresponding CSV file)

available at https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encod-

ing-the-Multiplication-Operation to see the details for every instance and run. However, for

convenience, at the end of this section, we report the averages solution times (in seconds)

221

https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation
https://github.com/paymanghasemi/Multiplicative-Programs-by-Binary-encoding-the-Multiplication-Operation

of our best solution approaches compared to GRB SOCP or GRB Nonconvex for different

subclasses of instances in the form of tables.

For solution quality comparisons, we employ performance profiles as they provide

more details compared to a boxplot [52]. The reason that we need to show more details to

reader is that GRB SOCP or GRB Nonconvex can face numerical issues and report incorrect

optimal solutions when solving a multiplicative program. We measure the solution quality of

an approach for a multiplicative program as the gap between the objective value reported by

the approach and the best objective value reported by all algorithms available on the same

chart. We refer to this gap as the best gap, which helps identifying the cases where GRB

SOCP or GRB Nonconvex face numerical issues.

In light of the above, the solution quality performance profiles present cumulative

distribution functions for a set of solution approaches being compared with respect to their

best gaps. The performance profiles show the best gaps on the horizontal axis and, on the

vertical axis, for each approach, show the percentage of instances with a best gap that is

smaller than or equal to the best gap on the horizontal axis. This means that values in the

upper left-hand corner of the graph indicate the best performance.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O N-B
N-B+P

N-B+F

R
a
ti

o

(a) Minimization

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O N-B
N-B+P

N-B+F

R
a
ti

o

(b) Maximization

Figure E4.1: Solution time comparison between the proposed search mechanisms for pure
binary instances with p “ 2

222

E4.1: Experiment 1 Identifying the Best Search Mechanism

In this experiment, we intend to find which of our proposed search mechanisms,

including One-shot, Bitwise, Bitwise + P-cut, and Bitwise + F-cut, is the fastest in solving

multiplicative programs. We limit the focus of this experiment to instances with p “ 2

as the Altogether and Nested formulations are the same for such instances. Figure E4.1

shows the solution time comparison of different search mechanisms. From this figure, we can

observe that for both minimization and maximization instances, One-shot is the fastest search

mechanism. The median of the One shot approach solution times is 6 to 20 times smaller

than the solution times of other search mechanisms. This is not surprising as Bitwise is more

suitable for resolving the curse of multiplication (and not for instances with small values of

p). In the remaining experiments, we use the One-shot search mechanism whenever calling

our proposed method. As an aside, we note that from Figure E4.1, we also observe that

Bitwise + P-cut performs significantly better than Bitwise and Bitwise + F-cut. Therefore,

users may want to use Bitwise + P-cut if they want to employ the Bitwise search mechanism.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N-O

N-O-mm

N-O-Im
m

R
a
ti

o

(a) p “ 2

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N-O

N-O-mm

N-O-Im
m

R
a
ti

o

(b) p “ 3

Figure E4.2: Solution time comparison between different enhancement settings for pure
binary minimization instances

223

E4.2: Experiment 2 Identifying the Best Enhancement Technique for Minimization Instances

By fixing One-shot as the default search mechanism (based on the results of Exper-

iment 1), in this experiment, we test our proposed warm-start enhancements for minimum

multiplicative programs. Figure E4.2 provides the solution time comparison between the

three enhancement settings, i.e., no warm-start, Min-Min, and Indirect Min-Min, for pure

binary multiplicative instances with p P t2, 3u. We later show in Experiment 3 that the Alto-

gether reformulation does not perform well. Therefore, in this experiment, we use the Nested

reformulation to deal with instances where p “ 3. We can observe that Indirect Min-Min

significantly decreases (by a factor of 1.5 to 5) the solution time for almost all instances. As

an aside, we also observe that the Min-Min warm-start setting increases the overall solution

time compared to using no warm-start as it is too time-consuming to solve the optimiza-

tion problem for the Min-Min strategy. In the remaining experiments, the Indirect Min-Min

setting will be active when solving minimization instances.

E4.3: Experiment 3 Comparing Different Solution Methods for Binary Instances

In this experiment, we compare the overall performance of our proposed solution

approaches, including the Nested and Altogether reformulations (when One-shot and Indirect

Min-Min are set as the default), with the performance of GRB SOCP and GRB Nonconvex

on pure binary instances with p P t2, 3, 4u. Figure E4.3 provides the solution time comparison

on the pure binary maximum multiplicative instances. In Figure E4.3a, we can observe that

GRB SOCP dominates our proposed solution approaches for any p P t2, 3, 4u. Similarly,

in Figures E4.3b and E4.3c, we can observe that the Nested reformulation performs better

than the Altogether reformulation. However, it is evident that none of them are capable of

competing with GRB SOCP.

Figure E4.4 provides the solution time comparison on pure binary minimum multi-

plicative instances. We observe that our proposed Nested reformulation outperforms GRB

Nonconvex for any p P t2, 3, 4u. From Figures E4.4b and E4.4c, we observe that, for instances

224

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O

GRB SOCP

R
a
ti

o

(a) p “ 2

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O A-O

GRB SOCP
R

a
ti

o

(b) p “ 3

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

N-O A-O

GRB SOCP

R
a
ti

o

(c) p “ 4

Figure E4.3: Solution time comparison between the proposed algorithms and GRB SOCP
for binary maximization instances

225

with p P t3, 4u, the Nested reformulation performs significantly better than the Altogether

reformulation. Further, we observe that even the Altogether reformulation outperforms GRB

Nonconvex on the binary minimum instances with p “ 3. However, we observe from Fig-

ure E4.4c that GRB Nonconvex performs better than the Altogether reformulation. Overall,

due to the poor performance of the Altogether reformulation, we set the Nested reformulation

as the default setting for the last experiment.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N-O-Im
m

GRB Nonconvex

R
a
ti

o

(a) p “ 2

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N-O-Im
m

A-O-Im
m

GRB Nonconvex

R
a
ti

o

(b) p “ 3

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

N-O-Im
m

A-O-Im
m

GRB Nonconvex

R
a
ti

o

(c) p “ 4

Figure E4.4: Solution time comparison between the proposed algorithms and GRB
Nonconvex for binary minimization instances

E4.4: Experiment 4 Comparing Different Solution Methods for Continuous Instances

In this experiment, we compare the overall performance of our proposed Nested refor-

mulation (when One-shot and Indirect Min-Min are set as the default) with the performance

of GRB SOCP and GRB Nonconvex on pure continuous instances with p P t2, 3, 4u. We note

226

that for continuous instances, our approach can be used for only generating approximations

(with any desirable level of precision) based on the discussion in Section 6.3.4. Hence, we

conduct our experiments for three scenarios where 0, 2, and 4 digits after the decimal point

are considered for each continuous y-variable, i.e., β P t0, 2, 4u. In other words, we consider

three multipliers t100, 102, 104u for transforming the continuous y-variables into integers.

First, we report our results for only instances with p “ 2. We note that for some

continuous instances, GRB (including SOCP, Nonconvex, and its MIP solvers) reports errors,

e.g., “unable to satisfy optimality tolerances", and/or terminates early. This was not observed

for pure binary instances. While such issues can possibly be resolved by changing/tuning

internal parameters of GRB (as described in its manual), we did not change them as it is

not clear what the most efficient way of tuning is. Therefore, to have a fair comparison, we

simply remove such instances in our comparisons in this section and report the number of

removed instances wherever appropriate.

Figure E4.5 provides the performance comparison between the solution approaches

for pure continuous instances with p “ 2. From the continuous maximization instances

with p “ 2, a total of 16 instances are removed (due to errors or early termination) before

generating the figure. However, no instances are removed for the minimization instances.

For the maximization instances, we observe from Figure E4.5a that GRB SOCP dominates

our proposed algorithm with respect to solution time. However, one interesting observation

is that the solutions reported by our approach with multipliers of 102 and 104 have a better

quality than those reported by GRB SOCP (although the optimality gap tolerance of GRB

SOCP is set to zero). This again shows the power of the proposed solution method in

handling numerical issues. For the maximization instances, we observe from Figure E4.5b

that our proposed algorithm outperforms GRB Nonconvex with respect to solution time.

However, we observe from Figure E4.5d that GRB Nonconvex has obtained better quality

solutions. Overall, we observe that mMPs and MMPs have completely opposite performance

227

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O-10
0

N-O-10
2

N-O-10
4

GRB SOCP

R
a
ti

o

(a) Solution time comparison for maximization

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N-O-Im
m-10

0

N-O-Im
m-10

2

N-O-Im
m-10

4

GRB Nonconvex
R

a
ti

o

(b) Solution time comparison for minimization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-100

N-O-102

N-O-104

GRB SOCP

(c) Solution quality comparison for
maximization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-Imm-100

N-O-Imm-102

N-O-Imm-104

GRB Nonconvex

(d) Solution quality comparison for
minimization

Figure E4.5: Performance comparison between the proposed approach, GRB SOCP, and
GRB Nonconvex for pure continuous instances with p “ 2

228

compared to our proposed approach. One reason for this could be the fact that continuous

MMPs are polynomially solvable while continuous mMPs are NP-hard.

Figure E4.6 provides the performance comparison for pure continuous instances with

p “ 3. From the continuous maximization instances with p “ 3, a total of 23 instances are

removed (due to errors or early termination) before generating the figure. In total, only 2

instances are removed for the minimization instances. For the maximization instances, we

observe from Figures E4.6a and E4.6c that GRB SOCP dominates our proposed algorithm

with respect to both solution time and quality. However, for the minimization instances, we

observe the opposite result. Specifically, Figures E4.6b and E4.6d show that our proposed

algorithm outperforms GRB Nonconvex with respect to both solution time and quality (for

the multiplier of 104).

Figure E4.7 provides the performance comparison for pure continuous instances with

p “ 4. From the continuous maximization instances with p “ 4, a total of 8 instances

are removed (due to errors or early termination) before generating the figure. In total,

14 instances are removed for the minimization instances. For the maximization instances,

we again observe from Figure E4.7a and E4.7c that GRB SOCP dominates our proposed

algorithm with respect to both solution time and quality. However, for the minimization

instances, we observe from Figures E4.7b and E4.7d that our proposed algorithm outperforms

GRB Nonconvex with respect to both solution time and quality (for the multiplier of 100).

We also observe that as the multiplier increases, we do not necessarily see an improvement

in the quality of solutions reported. This is because when p “ 4, the instances become larger

and more difficult to solve. Hence, many instances with a multiplier of 104 cannot be solved

to optimality within the time limit.

E4.5: Report Average Solution Times

In the previous parts of the paper, we have not provided any information about

the actual solution times (in seconds). So, the propose of this section is to report such

229

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N-O-10
0

N-O-10
2

N-O-10
4

GRB SOCP

R
a
ti

o

(a) Solution time comparison for maximization

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N-O-Im
m-10

0

N-O-Im
m-10

2

N-O-Im
m-10

4

GRB Nonconvex
R

a
ti

o

(b) Solution time comparison for minimization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-100

N-O-102

N-O-104

GRB SOCP

(c) Solution quality comparison for
maximization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-Imm-100

N-O-Imm-102

N-O-Imm-104

GRB Nonconvex

(d) Solution quality comparison for
minimization

Figure E4.6: Performance comparison between the proposed approach, GRB SOCP, and
GRB Nonconvex for pure continuous instances with p “ 3

230

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N-O-10
0

N-O-10
2

N-O-10
4

GRB SOCP

R
a
ti

o

(a) Solution time comparison for maximization

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N-O-Im
m-10

0

N-O-Im
m-10

2

N-O-Im
m-10

4

GRB Nonconvex
R

a
ti

o

(b) Solution time comparison for minimization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-100

N-O-102

N-O-104

GRB SOCP

(c) Solution quality comparison for
maximization

 0

 20

 40

 60

 80

 100

0

1
e
-9

1
e
-8

1
e
-7

1
e
-6

1
e
-5

1
e
-4

1
e
-2

1
e
-2

1
e
-1 1

Pe
rc

e
n
ta

g
e

Ratio

N-O-Imm-100

N-O-Imm-102

N-O-Imm-104

GRB Nonconvex

(d) Solution quality comparison for
minimization

Figure E4.7: Performance comparison between the proposed approach, GRB SOCP, and
GRB Nonconvex for pure continuous instances with p “ 4

231

information for interested readers. Note that based on Table 6.5, we know the best setting

for our proposed solution approach for different types of instances. So, in this section, we

report the average solution times (in seconds) per subclass for the best setting of our proposed

solution approach compared to GRB (Nonconvex or SOCP). Specifically, Table E4.1 is for all

binary instances (in both maximization and minimization forms); Table E4.2 is for continuous

instances in the form of minimization; Table E4.3 is for continuous instances in the form of

minimization. The figures reported in each table are averages over 5 instances. Each figure

reported in the row labeled ‘Avg’ shows the average of the four figures above it. Recall that

the imposed time limit is 3600 seconds for each method and instance in our computational

study. So, in the tables, 3600 means that the instance is not solved to optimality.

232

Table E4.1: Average solution time (sec.) per subclass of pure binary instances

Subclass

p “ 2 p “ 3 p “ 4

Max Min Max Min Max Min

(nˆm) GRB N-O GRB N-O-Imm GRB N-O GRB N-O-Imm GRB N-O GRB N-O-ImmSOCP Nonconvex SOCP Nonconvex SOCP Nonconvex

100 ˆ 50 0.14 0.54 0.25 0.10 0.45 3.55 1.53 0.65 0.29 77.13 11.39 9.25
100 ˆ 100 0.25 0.60 0.36 0.16 0.48 4.33 3.38 0.91 0.37 71.80 10.39 11.33
100 ˆ 150 0.36 0.61 0.49 0.23 0.70 8.93 4.19 0.97 0.44 63.32 17 19.01
100 ˆ 200 0.76 1.01 0.88 0.30 1.11 11.11 4.59 0.98 0.77 41.61 14.52 19.73

Avg 0.38 0.69 0.49 0.20 0.69 6.98 3.42 0.88 0.47 63.46 13.33 14.83

200 ˆ 100 1.54 7.38 1.14 0.36 3.01 88.74 11.47 2.61 2.77 2,870.68 132.07 95.27
200 ˆ 200 2.01 6.94 3.84 1.09 3.44 87.61 32.67 22.14 6.35 2,381.17 223.37 197.34
200 ˆ 300 3.69 11.86 5.73 2.11 6.18 173.19 56.30 20.44 8.13 1,967.04 469.03 272.54
200 ˆ 400 7.61 21.29 14.78 15.95 24.75 704.89 140.78 63.46 4.79 1,480.42 597.52 369.64

Avg 3.71 11.87 6.37 4.88 9.34 263.61 60.30 27.16 5.51 2,174.83 355.50 233.70

300 ˆ 150 5.96 36.52 12.73 11.22 132.87 1,973.46 111.50 134.90 21.37 3,600 695.87 669.48
300 ˆ 300 51.35 252.81 76.21 20.03 43.78 1,793.30 364.95 179.79 31.95 3,600 2,978.88 1,198.98
300 ˆ 450 141.68 916.02 62.26 26.45 42.69 1,885.81 683.88 182.68 68.78 3,600 3,548.87 1,906.17
300 ˆ 600 294.83 1,576.01 308.89 79.05 784.29 2,171.42 1,320.08 367.16 80.69 3,600 3,600 3,304.56

Avg 123.45 695.34 115.02 34.19 250.91 1,956 620.10 216.14 50.70 3,600 2,705.91 1,769.80

400 ˆ 200 45.21 917.19 38.47 6.03 377.79 3,049.79 406.28 164.66 24.35 3,600 2,374.11 1,080.32
400 ˆ 400 831.15 2,189.04 272.19 80.87 2,299.85 3,600 1,596.66 564.67 1,931.86 3,600 3,600 3,039.43
400 ˆ 600 1,582.25 3,600 599.28 426.08 506.79 3,355.18 3,045.58 524.68 1,588.82 3,600 3,600 2,923.85
400 ˆ 800 805.74 2,517.37 994.61 486.01 2,195.25 3,600 3,127.87 593.89 814.04 3,600 3,600 3,600

Avg 816.09 2,305.90 476.14 249.75 1,344.92 3,401.24 2,044.10 461.98 1,089.77 3,600 3,293.53 2,660.90

500 ˆ 250 620.12 2,559.68 851.29 195.43 1,598.27 3,600 1,311.07 163.22 1,040.80 3,600 3,600 3,600
500 ˆ 500 2,948.09 3,600 1,251.10 506.82 3,238.07 3,600 3,142.02 1,886.16 2,338.58 3,600 3,600 3,137.05
500 ˆ 750 2,281.89 3,249.34 1,765.53 652.18 2,937.46 3,600 3,600 3,600 2,950.63 3,600 3,600 3,600
500 ˆ 1000 3,600 3,600 2,565.95 816.81 3,013.91 3,600 3,600 3,600 3,140.03 3,600 3,600 3,600

Avg 2,362.52 3,252.25 1,608.47 542.81 2,696.93 3,600 2,913.27 2,312.35 2,367.51 3,600 3,600 3,484.26

233233233

Table E4.2: Average solution time (sec.) per subclass of continuous minimization instances

Subclass
p “ 2 p “ 3 p “ 4

GRB N-O-Imm-100 GRB N-O-Imm-100 GRB N-O-Imm-100

(nˆm) Nonconvex Nonconvex Nonconvex

100 ˆ 50 37.33 0.23 220.88 1.45 998.77 44.78
100 ˆ 100 5.69 0.26 68.38 1.23 2,261.40 19.21
100 ˆ 150 5.07 0.31 72.50 1.08 1,430.73 26.11
100 ˆ 200 5.55 0.37 118.20 1.66 620.05 10.75

Avg 13.41 0.29 119.99 1.35 1,327.74 25.21

200 ˆ 100 49.02 0.50 1,337.04 2.71 2,944.63 385.93
200 ˆ 200 19.88 0.55 607.64 2.97 3,040.51 18.96
200 ˆ 300 26.85 0.88 813.28 3.45 3,600 53.41
200 ˆ 400 32.72 1.21 882.82 3.85 3,600 38.48

Avg 32.12 0.79 910.20 3.25 3,296.28 124.19

300 ˆ 150 92.34 1.13 3,590.85 5.05 1,479.46 92.66
300 ˆ 300 62.85 1.50 2,849.71 5.55 3,600 37.87
300 ˆ 450 82.94 1.87 3,363.13 9 3,600 60.60
300 ˆ 600 88.51 3.18 3,329.60 8.75 3,600 277.01

Avg 81.66 1.92 3,283.32 7.09 3,069.87 117.04

400 ˆ 200 1,359.81 1.89 3,600 8.17 2,123.66 122
400 ˆ 400 184.88 2.57 3,131.84 14.08 3,600 112.85
400 ˆ 600 212.07 4.73 3,600 12.77 3,600 122.28
400 ˆ 800 234.05 4.14 3,600 15.61 3,600 630.45

Avg 497.70 3.33 3,482.96 12.66 3,230.92 246.90

500 ˆ 250 3,600 2.56 3,600 12.61 3,485.64 231.24
500 ˆ 500 256.90 4.94 3,600 17.63 3,600 840.50
500 ˆ 750 331.01 6.06 3,600 26.87 2,885.45 492.56
500 ˆ 1000 308.96 8.09 3,600 27.51 3,600 218.81

Avg 1,124.22 5.41 3,600 21.16 3,392.77 445.78

234

Table E4.3: Average solution time (sec.) per subclass of continuous maximization instances

Subclass
p “ 2 p “ 3 p “ 4

GRB N-O-100 GRB N-O-100 GRB N-O-100

(nˆm) SOCP SOCP SOCP

400 ˆ 200 0.14 2.78 0.15 19.78 0.10 2,724.88
400 ˆ 400 0.37 4.20 0.40 286.35 0.28 3,192.79
400 ˆ 600 0.68 4.17 0.75 190.12 0.55 3,513.46
400 ˆ 800 1.22 7.16 1.28 93.40 0.93 3,347.84

Avg 0.60 4.58 0.64 147.41 0.46 3,194.74

800 ˆ 400 0.69 16.45 0.75 96.25 0.53 3,443.42
800 ˆ 800 2.28 29.45 2.51 755.75 1.86 3,600
800 ˆ 1600 9.43 25.07 10.78 506.14 8.04 3,600
800 ˆ 1200 5.19 50.11 5.71 141.58 4.33 3,600

Avg 4.39 30.27 4.94 374.93 3.69 3,560.85

1200 ˆ 600 2.13 38.30 2.58 1,429.86 1.84 3,600
1200 ˆ 1200 8.73 44.51 9.40 1,566.67 8.26 2,925.10
1200 ˆ 1800 19.97 141.72 22.20 2,324.84 22.43 3,600
1200 ˆ 2400 38.44 160.13 40.59 2,374.15 35.69 3,600

Avg 17.32 96.16 18.69 1,923.88 17.05 3,431.27

1600 ˆ 800 6.56 51.67 7.13 2,069.30 5.56 3,600
1600 ˆ 1600 23.81 228.91 25.65 1,428.67 23.85 3,600
1600 ˆ 2400 52.18 283.11 53.67 2,611.75 56.41 3,600
1600 ˆ 3200 88.48 354.25 100.31 2,259.04 94.07 3,600

Avg 42.76 229.49 46.69 2,092.19 44.97 3,600

2000 ˆ 1000 13.21 169.92 15.94 3,598.26 14 3,600
2000 ˆ 2000 44.85 367.85 52.53 3,600 56.13 3,600
2000 ˆ 3000 104.11 662.59 117.80 2,983.96 114.12 3,600
2000 ˆ 4000 176.46 987.35 192.10 2,872.06 196.33 3,600

Avg 84.66 546.93 94.59 3,263.57 95.15 3,600

235

	Maximum Multiplicative Programming: Theory, Algorithms, and Applications
	Scholar Commons Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Game Theory
	Multi-objective Optimization
	Conservation Planning
	Other Applications

	Contributions of the Thesis
	Outline of the Thesis

	A Branch-and-Bound Algorithm for a Class of Mixed Integer Linear Maximum Multiplicative Programs: A Bi-objective Optimization Approach
	Preliminaries
	A Branch-and-Bound Algorithm
	Branching Strategies
	Node Selecting Strategies
	Enhancements
	Computational Study
	A Performance Comparison on Instance of Set I: Mixed Binary Instances
	A Performance Comparison on Instance of Set II: Mixed General Integer Instances

	A Criterion Space Search Algorithm for Mixed Integer Linear Maximum Multiplicative Programs: A Multi-objective Optimization Approach
	Preliminaries
	High-level Description
	Detailed Description
	No-good Constraints
	Computing Primal Bound
	Computing Dual Bound
	The Proposed Algorithm

	Computational Study
	Two Objectives (p=2)
	Three Objectives (p=3)
	Four Objectives (p=4)
	Linearization

	Exact Solution Approaches for Integer Linear Generalized Maximum Multiplicative Programs Through the Lens of Multi-objective Optimization
	Preliminaries
	High-level Description and Key Operations
	No-good Constraint
	Weighted Sum Operation

	Proposed Algorithms
	The Criterion Feasible Set Shrinking Algorithm I
	The Criterion Feasible Set Shrinking Algorithm II
	The Criterion Feasible Set Shrinking Algorithm III

	Computational Study
	Two Objectives (p=2)
	Three Objectives (p=3)
	Four Objectives (p=4)
	Linearization

	A Cooperative Game Solution Approach for Intensity Modulated Radiation Therapy Design: Nash Social Welfare Optimization
	Introduction
	Literature Review
	Motivation
	Contributions
	Structure

	Preliminaries
	Nash Social Welfare Optimization
	Solution Approaches

	Proposed Methodology
	The Feasible Set of Actions
	Utility Functions
	Disagreement Point
	Negotiation Powers
	Fluency Map Bargaining Game

	Theoretical Discussion
	Numerical Results
	TG-119 Case
	Liver Case
	Overall Performance
	Performance Comparison

	Solving Multiplicative Programs by Binary-encoding the Multiplication Operation
	Introduction
	Applications
	Contributions
	Outline

	High-level Methodology
	Detailed Methodology
	Binary-encoded Reformulations
	Products of Length Two: The Nested Reformulation
	Products of Length p: the Altogether Reformulation

	Search Mechanisms
	One-shot Search Mechanism
	Bitwise Search Mechanism
	Bitwise + Full Index Set Cut (Bitwise + F-cut)
	Bitwise + Partial Index Set Cut (Bitwise + P-cut)

	Warm-start Enhancements for Minimum Multiplicative Problems
	Min-Min Appraoch
	Indirect Min-Min Approach

	Continuous Cases

	Extreme Examples
	Computational Study

	Conclusions and Future Research Directions
	Conclusions of Chapter 2
	Conclusions of Chapter 3
	Conclusions of Chapter 4
	Conclusions of Chapter 5
	Conclusions of Chapter 6

	References
	Appendix A: Copyright Permissions
	A1: Reprint Permission for Chapter 2
	A2: Reprint Permission for Chapter 3
	A3: Reprint Permission for Chapter 5

	Appendix B: Chapter 3
	B1: Detailed Comparison Between B&B and Algorithm 3
	B2: Detailed Comparison Between Algorithm 3 and SOCP for p=3
	B3: Detailed Comparison Between Algorithm 3 and SOCP for p=4

	Appendix C: Chapter 4
	C1: A Detailed Comparison Between SOCP and CFSSA-I on Instances with Unit Geometric Weights
	C2: Case Study
	C2.1: Fair Allocation of Indivisible Goods
	C2.2: Mobile Gateway Selection in Intelligent Transportation Systems
	C2.3: Primary Care Selection Problem for Older Adults

	Appendix D: Chapter 5
	D1: Implementing Lexico and 2pc on the Liver Case
	D1.1: Lexico
	D1.2: 2pc

	Appendix E: Chapter 6
	E1: Proofs
	E2: Extreme Examples
	E3: Instance Generator
	E4: Detailed Experimental Results
	E4.1: Experiment 1 Identifying the Best Search Mechanism
	E4.2: Experiment 2 Identifying the Best Enhancement Technique for Minimization Instances
	E4.3: Experiment 3 Comparing Different Solution Methods for Binary Instances
	E4.4: Experiment 4 Comparing Different Solution Methods for Continuous Instances
	E4.5: Report Average Solution Times

