
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

June 2021

Optimization and Machine Learning Methods for Solving Optimization and Machine Learning Methods for Solving

Combinatorial Problems in Urban Transportation Combinatorial Problems in Urban Transportation

Aigerim Bogyrbayeva
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Urban Studies and Planning

Commons

Scholar Commons Citation Scholar Commons Citation
Bogyrbayeva, Aigerim, "Optimization and Machine Learning Methods for Solving Combinatorial Problems
in Urban Transportation" (2021). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9074

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usf.edu%2Fetd%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

x

Optimization and Machine Learning Methods for Solving Combinatorial Problems in

Urban Transportation

by

Aigerim Bogyrbayeva

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: Changhyun Kwon, Ph.D.
Andrei Barbos, Ph.D.

Hadi Charkhgard, Ph.D.
Ankit Shah, Ph.D.
Yasin Yilmaz, Ph.D.

Date of Approval:
June 10th, 2021

Keywords: Vehicle Routing, Neural Networks, Reinforcement Learning, Auction Design

Copyright © 2021, Aigerim Bogyrbayeva

Dedication

For the lasting memory of my grandparents, Duisenbek, Zhumash, Makan and Ka-

mash. Their lifelong examples of self-sacrifice, strength and optimism have always guided

me through difficult times.

Acknowledgments

I would like to express my greatest gratitude to Dr.Kwon for his guidance, support and

patience in writing this dissertation. I deeply thank him for working with me and teaching

me everything I know about research.

I also thank my mother Zhanat, father Askar, my mother-in-law Fatma and sister

Mereili for their prayers, encouragement and trust. I would like to deeply thank my sis-

ter, Akzharkyn, for being a loving, caring and strong daughter and covering up for me at

the moment we needed it the most.

My special appreciation goes to my husband, Yasin, for everything he has done for me. I

thank Yasin for motivating me to start my Ph.D. in general and his wisdom, sense of humor

and love shown every day that helped a lot to finish this dissertation.

Table of Contents

List of Tables ... iv

List of Figures.. vi

Abstract .. viii

Chapter 1 Introduction ... 1

Chapter 2 Combinatorial Auction with Bidder-defined Items for Fractional Owner-
ship of Autonomous Vehicles .. 4

2.1 Introduction ... 4
2.1.1 Unique Challenges and Contributions..................................... 9
2.1.2 Outline ... 10

2.2 The Auction Design for Fractional Ownership of AVs 10
2.2.1 Auction Setting.. 11
2.2.2 The Clock Stage... 11

2.2.2.1 Ask Price Calculation .. 12
2.2.2.2 Activity Rules for the Clock Stage............................. 15

2.2.3 The Supplementary Stage ... 17
2.2.3.1 Winner Determination Problem for the Fractional Own-

ership CCA... 19
2.3 Payment Rules ... 20

2.3.1 Proxy Payments... 20
2.3.2 VCG Payments .. 21
2.3.3 Core-Selecting Payments... 22

2.4 User Agents in the CCA for Fractional Ownership of AVs..................... 23
2.4.1 Bidding Strategies in the Clock Stage 24
2.4.2 Automatic Package Generation in the Supplementary Stage 28

2.5 Numerical Experiments and Case Studies.. 30
2.5.1 Managerial Insights .. 31

Chapter 3 A Reinforcement Learning Approach for Rebalancing Electric Vehicle
Sharing Systems .. 37

3.1 Introduction ... 37
3.2 Related Work ... 42
3.3 Problem Statement and Formulations ... 44

3.3.1 Network .. 44

i

3.3.2 Multi-shuttle Routing as MDP .. 44
3.4 Reinforcement Learning Model... 47

3.4.1 The FFEVSS Simulator .. 47
3.4.2 EV Relocation Decisions ... 49
3.4.3 A Sequence-to-sequence Model for the Shuttle Routing Problem 49
3.4.4 Reward Function.. 52
3.4.5 Training Algorithm .. 52

3.5 Computational Studies .. 53
3.5.1 Data Generation and Configurations 53
3.5.2 RL Agents and Benchmarks .. 56
3.5.3 Results on Random Instances .. 56
3.5.4 Results on the Amsterdam Cases... 61

Chapter 4 Hybrid Model for Solving Travelling Salesman Problem with Drone 63
4.1 Introduction ... 63
4.2 Related Work ... 65

4.2.1 TSPD ... 65
4.2.2 RL for Combinatorial Optimization Problems 66

4.3 The Hybrid Model .. 66
4.3.1 Encoder .. 67
4.3.2 Decoder... 70

4.4 The Central Controller for Routing .. 70
4.5 Computational Experiments .. 72

4.5.1 Data Generation and Configurations 72
4.5.2 Benchmarks and RL Methods.. 73
4.5.3 Results.. 74

Chapter 5 Conclusions and Future Research Directions .. 76

References.. 86

Appendix A: Copyright Permission for Chapter 2 .. 86

Appendix B: Copyright Permission for Chapter 3 .. 94

ii

List of Tables

Table 2.1 – Bidding strategies item selection in clock stage 26

Table 2.2 – Time slots submitted by a customer to the user agent 28

Table 2.3 – Summary of all types of packages.. 30

Table 2.4 – The strategies comparison with Activity Rules 32

Table 2.5 – The strategies comparison without Activity Rules 32

Table 2.6 – Payments rules comparison using exact solutions 34

Table 2.7 – Payments rules comparison using heuristic solutions under mixed strat-
egy.. 35

Table 2.8 – The auction outcomes.. 36

Table 3.1 – A summary of variables. .. 46

Table 3.2 – Hyperparamter values.. 55

Table 3.3 – Difficulty levels description, where De, Ch, Su, and Su′ denote the set
of demanders, chargers, suppliers, and suppliers with EVs that require
charging, respectively. ... 56

Table 3.4 – Comparison of RL agents in terms of total time spent in the system,
the average of 128 test instances are reported.................................. 57

Table 3.5 – RL model vs. the heuristic optimization in terms of total time spent
in the system, the percentages of winning instances and computational
time in seconds, the average of 128 test instances are reported. 58

Table 3.6 – The Amsterdam dataset structure and RL model vs. Sim on the
dataset in terms of total time spent in the system............................ 60

iii

Table 4.1 – The optimal solutions vs. Reinforcement Learning solutions on a grpah
with 11 nodes. .. 74

Table 4.2 – The heuristic solutions vs. reinforcement learning solutions on a grpah
with a various number of nodes.. 75

Table 4.3 – The computational time of the heuristics and reinforcement learning
agents on a grpah with a various number of nodes in terms of CPU
time, sec. ... 75

iv

List of Figures

Figure 2.1 – Comparing the items in the conventional CCA and the proposed auc-
tion ... 13

Figure 2.2 – Price determination through conflict detection in an auction with a
single vehicle (|H| = 1).. 14

Figure 2.3 – Clock stage flow chart ... 17

Figure 2.5 – The performance of the ask price algorithm................................... 36

Figure 3.1 – The overview of the rebalancing problem of FFEVSS, with a single
shuttle and 2 drivers. .. 38

Figure 3.2 – Assign supplier-charger pairs or reuse charger nodes? 39

Figure 3.3 – How to balance traveling time and waiting time trade-off?.............. 40

Figure 3.4 – State transitions: SRi - shuttle routing decisions, EVRi - EV reloca-
tion decisions, ai - selected action ... 40

Figure 3.5 – An overview of the reinforcement learning model. 47

Figure 3.6 – Training rewards with and without distance as an input 58

Figure 3.7 – The number of drivers vs. difficulty levels. 60

Figure 3.8 – Example solution for a single-shuttle case, |N | = 23, |Dr| = 3 and
|I| = 1... 60

Figure 3.9 – Example solution for a multiple-shuttle cases, |N | = 23, |Dr| = 3
and |I| = 2. ... 61

Figure 4.1 – An overview of the hybrid model. ... 67

v

Figure 4.2 – Encoder overview. ... 68

Figure 4.3 – Decoder overview.. 71

Figure 4.4 – An example optimal solution produced by RL. 75

vi

Abstract

This dissertation investigates three applications of emerging technologies for urban trans-

portation. In the first chapter, we design a new market for fractional ownership of au-

tonomous vehicles (AVs), in which an AV is co-leased by a group of individuals. We present

a practical iterative auction based on the combinatorial clock auction to match the interested

customers together and determine their payments. In designing such an auction, we con-

sider continuous-time items (time slots) which are defined by bidders, and naturally exploit

driverless mobility of AVs to form co-leasing groups. To relieve the computational burdens

of both bidders and the auctioneer, we devise user agents who generate packages and bid

on behalf of bidders. Through numerical experiments using the California 2010–2012 travel

survey, we test the performance of the auction design.

In the second chapter, we propose a reinforcement learning approach for nightly offline

rebalancing operations in free-floating electric vehicle sharing systems (FFEVSS). Due to

sparse demand in a network, FFEVSS requires relocation of electrical vehicles (EVs) to

charging stations and demander nodes, which is typically done by a group of drivers. A

shuttle is used to pick up and drop off drivers throughout the network. The objective of

this study is to solve the shuttle routing problem to finish the rebalancing work in minimal

time. We consider a reinforcement learning framework for the problem, in which a central

controller determines the routing policies of a fleet of multiple shuttles. We deploy a policy

gradient method for training recurrent neural networks and compare the obtained policy

results with heuristic solutions.

In the final problem, the application of the tandem of drone and truck for last mile delivery

is proposed. To take advantage of the different properties of drone and truck to deliver goods

vii

to customers, an efficient routing algorithm is introduced based on reinforcement learning.

The proposed method produces the routing policies of both drone and truck that identifies

customers served by drone, customers served by turck and includes recharging nodes for

drone. In this study we present, a novel model, called hybrid, consisting of an attention

encoder and a LSTM decoder to effectively route both drone and truck.

viii

Chapter 1: Introduction

Urban transportation refers to various systems designed to transport people and goods

inside a city or to the nearest suburban areas. In the last decades, urban transportation

has faced significant challenges with increasing urban population and density, as well as

congestion and pollution. Nevertheless, emerging technologies such as electrical vehicles

(EVs), unmanned aerial vehicles (drones), and autonomous vehicles (AVs) have a great po-

tential to offer new forms of urban transportation. Especially, collaborative consumption

trends in urban settings such as shared rides and on-demand services lays down a road to

more sustainable transportation options that can be enhanced with emerging technologies.

This dissertation discussed three applications of novel technologies in urban transportation

and proposes practical tools such as models and algorithms to overcome their operational

challenges.

In the first application, we discuss using AVs in a fractional ownership market, where a

group of individuals can co-own a single AV. Such a novel form of vehicle ownership allows for

better utilization of resources in urban transportation. However, for the fractional ownership

market of AVs to work, a leasing company needs to match customers into groups based on

their travel needs and determine prices for each customer. We propose a combinatorial

iterative auction with bidder-defined items that allows customers to bid on a combination

of their trips with no restriction on their time and length as well as to learn bidding prices

needed to win bids. The auction outcomes determine both matching groups of customers

and their payments. The auction consists of two stages, wherein the first stage customers bid

for each time slot they are interested in and learn their individual bidding prices. We also

introduce activity rules in the first stage to suppress the strategic behavior of bidders. In the

1

second stage customers bid for the combination of trips as a final bid. We propose a bidding

agent with several bidding options to bid on the behalf of the customer. In computational

studies, we compare various bidding strategies and study the effect of activity rules on the

bidders’ payoffs. We find that the designed activity rules successfully remove the strategic

behavior of bidders. We also find that core-selecting payment rule brings the largest revenue

to the auctioneer in most cases.

In the second application, we solve the operational challenges of free-floating electrical

vehicle sharing systems (FFEVSS), which represents an EV sharing system on-demand.

FFEVSS offers a sustainable option for urban transportation, but faces a challenging problem

of rebalancing the system, when EVs need to be charged and relocated to expected demand

locations every night. In the current practice, a group of drivers in a shuttle is routed around

for such a purpose. However, deploying a group of drivers to rebalance the system is costly,

thus requiring an efficient routing of shuttles to rebalance the system in a minimal time. We

propose a reinforcement learning approach to route multiple shuttles deployed in a network.

In particular, we discuss the Markov Decision Process (MDP) formulation of the problem

and introduce a policy learning method based on sequence to sequence to learn the routing

policies of multiple shuttles. Our numerical studies show that unlike the existing solutions in

the literature, the proposed methods allow solving the general version of the problem with no

restrictions on the urban EV network structure and charging requirements of EVs. Moreover,

the learned policies offer a wide range of flexibility, resulting in a significant reduction in the

time needed to rebalance the network.

In the last application, we consider recent advancements in drone technology that lays

out new opportunities in cost-effective last mile delivery. In particular, combining truck

and drone to deliver products to customers is a promising tandem. For instance, truck has

unlimited capacity and traveling range, but it has slow speed. Drone on the other hand has

high speed, but it has limited traveling range and weight carrying capacity. Therefore, to

take the advantages of their different properties, we must develop new routing decisions that

2

enable recharging and reloading of drone. Formally known as Travelling Salesman Problem

with Drone (TSPD), routing of both drone and truck in a shared urban network is NP-

hard, highlighting the need for heuristic solutions. In this study we present, a novel model,

called hybrid, consisting of an attention encoder and a LSTM decoder to effectively route

both drone and truck. As our numerical studies show, the hybrid model performs well both

in solution quality and computational time as compared to the heuristics existing in the

literature.

In summary, the goal of this dissertation is to answer the following questions:

• How to design a market for fractional ownership of AVs?

• How to efficiently route multiple shuttles to rebalance FFEVSS?

• How to efficiently route drone and truck for last mile delivery?

The dissertation can be summarized as follows: in Chapter 2, we propose the design

of an iterative combinatorial auction with bidder-defined items for fractional ownership of

autonomous vehicles. Chapter 3 presents a reinforcement learning approach to route multiple

shuttles to rebalance FFEVSS. In Chapter 4, we introduce a novel hybrid model to efficiently

route drone and truck for last mile delivery. Chapter 5 gives the final remarks by summarizing

the discussed problems and provides future research directions.

3

Chapter 2: Combinatorial Auction with Bidder-defined Items for Fractional

Ownership of Autonomous Vehicles

The copyright permissions for reuse previously published material in this chapter can be

found in Appendix A.

2.1 Introduction

Since the invention of the assembly line, vehicle ownership has been a distinctive part of

the American culture, placing the country on the leading positions by vehicles per capita.

The current model of vehicle ownership is, however, neither cheap nor efficient. In fact, the

total auto-loan amount in the country exceeded $1.24 trillion in 2018, while in 95% of the time

cars are parked (Center Microeconomic Data , 2018; Shoup, 2005). Nevertheless, in recent

years collaborative consumption has been accounted for dramatic changes in transportation.

The wide spectrum of new services ranging from ride-sharing (Uber, Lyft and etc.) to peer

to peer car renting (Buzzcar, Drivy and etc.) has influenced the traditional view of vehicle

ownership. This can be observed in the increase of 7 years on the average age of new

vehicle buyers (Kurz et al., 2016). Consequently, to satisfy the potential shift in consumer

demand, car-manufacturers have launched various car-sharing services (Maven by GM, Audi

on Demand, etc.), thus seeking new forms in vehicle ownership.

Motivated by the recent advancements in autonomous transportation technologies (Akbar

et al.; Gu et al.), this study investigates a novel form of vehicle ownership called fractional

ownership of autonomous vehicles (AVs), where an AV is co-leased by a group of individuals.

Thus, ‘fractional ownership’ means that customers co-lease a vehicle and ‘co-owners’ mean

co-lessees. The benefits of such ownership include reduced costs and increased utilization

4

of vehicles coming from collaborative consumption. A fractional ownership model had been

tested with regular vehicles (Ford Credit Link, Nissan Micra Go & Get) and it had encoun-

tered significant challenges. The most critical challenge came from the need to relocate a

vehicle from the location of one customer to the location of another customer. Therefore,

only customers living in the closest neighborhoods were allowed to group together, thus of-

fering limited options. In addition, in the fractional ownership of the regular vehicles market,

customers were asked to find co-leasing groups themselves, highlighting the absence of mar-

ket design mechanisms. Because of such limitations, the above-mentioned programs have

been discontinued.

In this study, we propose using AVs for the fractional ownership market. AVs naturally

solve the above-mentioned relocation issue since they have driverless mobility. Therefore,

using AVs in fractional ownership model allows to attract a large pool of customers from

various neighborhoods with diverse travel needs. Also, when using AVs, co-leasing may be a

more viable service due to the maintenance and parking costs. As compared to ride-sharing

(Smet, 2021) or car rental services, the fractional ownership of AVs do not require customers

to look for rides or rental cars every time, but instead provides a long-term predictable

service on fixed rates. The premise of the fractional ownership model is in its convenience

for customers to use the same AV for each ride while co-owning it with the fixed set of

customers. For instance, a customer may store a child safety seat in the AV while taking

low health risks associated with a shared vehicle. Lastly, the long term commitment nature

of the fractional ownership allows both for customers and service companies to have a long

planning horizon.

For a practical fractional AV ownership model to be successful, there must be no time

conflicts among co-owners. In fact, the origins and destinations of trips also need to be

considered to incorporate traveling times of empty AVs. Therefore, a suitable mechanism is

needed to match customers with non-overlapping time-schedules together and avoid conflicts.

There are two popular mechanisms to match customers. The first is matching-theoretic

5

approaches, such as stable or maximal matching, commonly used by ride-sharing services

like Uber and Lyft; see Wang et al. (2018) and Zhang et al. (2020), for example. In this case,

a leasing company needs to solve two problems: to determine matching groups of customer

and to set prices for each customer. Since fractional ownership of autonomous vehicles (AV)

is a novel service, there is no benchmark for pricing, which poses substantial challenges for

leasing companies. The second mechanism is based on auction theory. The outcomes of

auctions not only determine matching groups of customers, but also determine the prices.

Indeed, auction mechanism has a potential to generate more revenue compared to matching

mechanism and it allocates time slots efficiently offering them to customers who value them

the most. Also, we need to note that customers are most likely interested in using AVs for

a combination of time slots (e.g. from home to work and from work to home). With these

in mind, in this paper, we design a combinatorial auction market for fractional ownership

of AVs as an alternative to the traditional full ownership model. In particular, the proposed

auction exploits the unique feature of AVs, thus their driverless mobility in forming co-leasing

groups.

Combinatorial auctions are suitable mechanisms to sell items or allocate resources in pack-

ages, instead of single items separately. They have been used widely across various industry

sectors (De Vries and Vohra, 2003; Pekeč and Rothkopf, 2003; Milgrom, 2019) including al-

location of the spectrum right licenses to telecommunication companies and Internet pricing

(Hershberger and Suri, 2001). In transportation and logistics, combinatorial auctions have

gained attention for selling airport departure and arrival slots (Rassenti et al., 1982), truck-

load transportation (Zhang et al., 2015), city bus route market (Cantillon and Pesendorfer,

2006), and railway industry (Kuo and Miller-Hooks, 2015). Recently, researchers suggest

combinatorial auctions in the ride-sharing market for designing a more efficient shared mo-

bility system (Hara and Hato, 2018), collaborative vehicle routing (Gansterer and Hartl,

2017) and public transportation systems (James et al., 2018).

6

In the proposed auction market, the auctioneer is a car manufacturer or leasing company

that sells AVs, and the bidders are customers who are interested in co-leasing a car. The

auctioneer sells time-slot packages to bidders through an auction that gives the winners the

right to use the same vehicle in these time-slots within a week for a certain period. Each

time-slot package includes several time-slots covering the travel needs of customers.

Combinatorial auctions involve complex package valuation problems for bidders and al-

location problems for the auctioneer. Customers have to value time slot packages. The

value of these packages may be different from the summation of the values of the individual

time slots. Iterative combinatorial auctions have been introduced to address this preference

elicitation problem. In particular, in iterative auctions bidders can bid iteratively, receive

feedback based on their rivals’ valuation and adjust their valuations (Pekeč and Rothkopf,

2003). This feedback information is valuable for the new products, where there is no bench-

mark for the pricing. Indeed, fractional ownership of AVs can be considered as a new product

with limited valuation insight for a customer. Furthermore, the dynamic nature of iterative

combinatorial auctions, where valuation information of time slots is exchanged between cus-

tomers, may potentially lead to higher revenue compared to a single round combinatorial

auction (Parkes, 2006). Because of the above-mentioned reasons, the majority of combinato-

rial auctions with applications in various industries (spectrum auction, real estate and etc.)

are iterative in nature.

The existing combinatorial auction designs, however, do not fully capture the nature of

the bids in the market for fractional ownership of AVs. For instance, in determining winning

bids, the problem under study involves additional constraints to avoid time-conflicts between

bidders. To address such issues, Takalloo et al. proposed a single-round, combinatorial auc-

tion market with user defined continuous-time items for the fractional ownership of AVs.

The auction design of Takalloo et al. is based on the well-known Vickrey-Clarke-Groves

(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973), which possesses many desir-

able properties, but can suffer from low revenue for the auctioneer. In addition, due to the

7

complex nature of combinatorial auctions, a single-round auction may limit opportunities

for bidders to fully learn about the market and express their preferences. In this paper,

we extend the settings of Takalloo et al. and design an iterative auction, as opposed to a

single-round auction, to overcome these limitations of the VCG mechanism.

The proposed Combinatorial Clock Auction (CCA) includes two stages: the clock stage

and the supplementary stage, which are designed to help customers to bid efficiently. The

clock stage consists of multiple rounds and gives insight to the bidders about the market

value of items. In each round, bidders submit bids for a package of time slots and observe

the ask prices from an auctioneer. Even though it is possible to design a single round auction

and avoid iterative bidding, in that case, customers have only a single shot to bid. Thus, in

a single round auction customers bid without any insights about the competitiveness of their

bids. Instead, in the proposed auction the clock stage serves as the price discovery for bid-

ders (Ausubel et al., 2006). In the supplementary stage consisting of a single round, bidders

submit their final bids considering the ask prices from the clock stage. Consequently, the

auctioneer solves the winner determination problem (WDP) considering the bids from both

clock and supplementary stages and calculates the payments. To suppress the strategic be-

havior of bidders such as when bidders avoid bidding until the last round or bid intentionally

on undesired time slots, we use activity rules in both the clock stage and the supplementary

stage. In the auction, to elevate the burden of iterative bidding, customers are given a choice

to use user agents, a software tool designed to bid on behalf of bidders. The proposed user

agents offer several bidding strategies to customers and propose bidding packages based on

customers’ travel needs. We also consider different payment rules and compare them to-

gether to study the revenue of auctioneer. To the best of our knowledge, this is the first

study investigating the CCA as a market design for applications in transportation.

8

2.1.1 Unique Challenges and Contributions

The setting of the problem under study is unique in several aspects. In most existing

combinatorial auctions, products are pre-defined discrete items. In the proposed auction

in this study, items are neither pre-defined nor discrete; instead, we consider bidder-defined

continuous-time items. Every possible time interval becomes an item when a bidder finds

it valuable. While bidder-defined continuous-time slots serve the interests of customers best

and result in greater social welfare compared to discrete-time slot (Takalloo et al.), the

infinite number of possible items cause new challenges as well. In particular, customers face

large scale valuation problems for all possible items (time slots). Selecting a suitable set

of time-slots requires substantial computational resources. In addition, due to its iterative

nature the proposed auction, compared to a single round auction by Takalloo et al., results

in the substantial increase in the number of bids, thus requiring new solution techniques

both for customers and the auctioneer.

The contributions of this study can be summarized as follows. First, we design a unique

iterative combinatorial auction for the market design of fractional ownership of AVs, namely

combinatorial clock auction with bidder-defined items. Second, we devise a fast algorithm for

determining the ask prices in the proposed auction setting. Third, we develop user agents

with different bidding strategies for generating packages as a support tool for customers.

Fourth, we test the performance of the proposed auction design under different payment

rules with the simulation studies.

Our numerical experiments show that core-selecting payment rule results in a relatively

high revenue compare to the other payment rules. We also find that activity rules, which

are based on the eligibility points, are effective under the bidder-defined continuous-time

items setting as they support consistent bidding while suppressing the strategic behavior of

customers.

9

2.1.2 Outline

The remainder of the paper will proceed as follows: In Section 2.2, we describe the

proposed auction design in the clock and the supplementary stages. In Section 2.3, we

investigate several payment rules and their effect on the auction outcome. In Section 2.4, we

introduce user agents who assist bidders in bidding in the clock stage and generating packages

in the supplementary stage. In Section 2.5, we present numerical experiments based on the

California 2010–2012 travel survey dataset and derive insights into the auction market for

fractional AV ownership. Lastly, in Section ??, we conclude the paper.

2.2 The Auction Design for Fractional Ownership of AVs

In this section, we design CCA for the fractional ownership of autonomous vehicles.

First, we define the continuous-time items and packages in the fractional ownership CCA in

Section 2.2.1. Next, we describe the first stage in the CCA which is the clock stage in Section

2.2.2. The clock stage can be viewed as a multi-round auction. In each round, the auctioneer

announces the ask prices, and the bidders bid on the desired items. The auctioneer calculates

the ask price based on the supply-demand balance. We present Algorithm 1 for calculating

the ask prices in Section 2.2.2.1. To ensure that bidders bid actively throughout the clock

stage and to remove the strategic behavior of bidders, we design some activity rules for the

auction which are based on the eligibility points of the bidders. We describe the activity

rules in the clock stage in Section 2.2.2.2. Next, we describe the supplementary stage which

is the final round of the auction in Section 2.2.3. In the supplementary stage, bidders submit

new bids based on the information they gain through the clock stage. Then, the auctioneer

considers all the bids submitted in the clock stage and the supplementary stage to solve the

WDP considering the spatial information of the bidders and the continuous-time items.

10

2.2.1 Auction Setting

To better understand the fundamental elements of the proposed auction design, consider

a customer who is interested in using an AV in the following time slots: 7:30–8:00 AM, 4:40–

5:10 PM. In this case, the items are two mentioned time slots. The customer may submit the

following set of packages from the items: {7:30–8:00 AM}, {4:40–5:10 PM} and {7:30–8:00

AM, 4:40–5:10 PM}. However, each bidder can receive at most one package. More formally,

we introduce the definitions of an item, a package and a bid in the combinatorial auction as

follows:

Definition 1. An item in the CCA for fractional ownership of vehicles is a continu-

ous time-slot uniquely defined by its start and end time that a customer selects based on her

schedule. Unlike the traditional CCA, there are no predefined items in the proposed auction

and a customer is given a choice to define an item.

Definition 2. A package is a combination of continuous time slots defined by a

customer.

Definition 3. A bid is a package submitted by a customer indicating start and end

time of her desired time slots along with spatial information of her trips.

In the proposed combinatorial auction, the auctioneer is a car leasing company who

wants to sell AVs, and the bidders are customers who are interested in co-leasing a car. The

auctioneer offers a homogeneous fleet of vehicles for co-leasing, while interested customers

enter into the iterative bidding. Customers submit their bids as combinations of time slots

and provide spatial information for their trips. The bidding language in the auction is XOR;

that is, the auctioneer will accept at most one bid from each bidder. The auction itself

consists of two stages: clock and supplementary stages with a set of rules specified below.

2.2.2 The Clock Stage

The clock stage in the proposed auction serves as price discovery for each possible item

and subsequently for each package, where package’s ask price equals to the summation of

11

ask prices of its items. In particular, at the beginning of each round of the clock stage, the

auctioneer announces ask prices for items and bidders bid on the desired items. Note that

the collection of items submitted by a bidder in round r form a package, which we call a

clock stage package. The bid price for a clock stage package is computed as the summation

of ask prices for items in the package. The customers can bid on the items that they bid

on previously or on the new items. Ask prices increase for the items with excess demand.

The clock stage continues until we have demand-supply balance or bids do not change in

two consecutive rounds. At the end of the clock stage, bidders learn the minimum bid price

required to win a particular item.

2.2.2.1 Ask Price Calculation

In the traditional CCA setting, finding supply-demand balance and determining the ask

prices is relatively easy. Since items are predefined, the auctioneer can easily count the total

demand for each item. Figure 2.1a shows the conventional CCA, in which items are defined

as hourly time slots. The auctioneer counts demand for each hour and indicates demand-

supply balance. Figure 2.1b represents the proposed CCA with continuous bidder-defined

items (time slots). Each time slot can be identified uniquely by a start time and an end

time. Placing the start time and the end time of all submitted time slots in the time horizon

results in a set of time slices. Each item (time slot) includes a set of consecutive time slices.

To determine the ask prices for each item, the auctioneer specifies its corresponding set of

time slices. For a particular time slice, if the demand (the number of items which include

that time slice) is greater than the supply (the fleet size), then there will be a price increment

εp for that particular time slice. The ask prices for an item in each round will be updated

by adding the summation of price increments for the corresponding time slices. Note that

we need to calculate the ask prices in each round of the auction. Algorithm 1 shows the

pseudo-code of the algorithm for determining the ask price efficiently, which is explained

below.

12

t1 t2 t3 t4 t5

Customer 1

Customer 2

(a) Discrete auctioneer-defined items

t1 t2 t3 t4

Customer 1

Customer 2

(b) Continuous bidder-defined items

Figure 2.1: Comparing the items in the conventional CCA and the proposed auction

Algorithm 1: Ask price calculation in round r
Input: All submitted items in round r denoted by I, fleet size |H|, and price

increment εp
Output: Vector of ask price increment in r-th round p

1 Initialization: times← ∅, soe ← ∅ ; // soe for ‘start or end’
2 for j = 1 to length(I) do
3 push(times, sj); push(soe, 1); // 1 for start time
4 push(times, ej); push(soe, −1); // -1 for end time

5 sorted_times, sorted_idx = sort(times);
6 sorted_soe = soe[sorted_idx]; // soe is sorted in the same order as sorted_times

7 j ← 1; count← 0; conflicts← ∅; p← 0;
8 while j ≤ length(sorted_times) do
9 same_time_idx ← findall(sorted_times, sorted_times[j]) // Finding a vector of

indices with the same time value as sorted_times[j]
10 foreach m ∈ same_time_idx do
11 if sorted_soe[m] = 1 then
12 count← count + 1; // for start time
13 push(conflicts, same_time_idx[m]);
14 else
15 count← count− 1; // for end time
16 remove(conflicts, same_time_idx[m]);

17 if count > |H| then
18 foreach n ∈ conflicts do
19 pn ← pn + εp;

20 j ← j + length(same_time_idx);

13

t1 t2 t3 t4 t5 t6 t7 t8

Customer 1
Customer 2
Customer 3

εp εp εp εp

2εp

3εp

3εp

εp

(a) Regular bids

t1 t2 t3 t4 t5 t6 t7 t8

Customer 1
Customer 2
Customer 3

εp εp εp εp

0

2εp

(b) New bids

Figure 2.2: Price determination through conflict detection in an auction with a single
vehicle (|H| = 1)

An intuitive explanation of the algorithm is illustrated in Figure 2.2a which represents a

CCA with three customers and a single vehicle. To find the ask price increments, we first

collect all the bids and place all the time slots into the time horizon and construct the time

slices (from t1 to t2, from t2 to t3, and so on). Next, we set a price increment εp, where p

stands for price, for each time slice with excess demand. Note that the value of εp is the

same in all rounds of clock stage. Then, the ask price for each item is updated by adding

the summation of price increments for its corresponding time slices. For example, as Figure

2.2a represents, the second customer’s bid consists of a single item which overlaps in three

time-slices with other items. In this case, the ask price for the second customer will be

increased by 3εp.

While determining the ask prices for the items that have been present in the previous

rounds is a relatively easy task, it is not the case for new items. For example, as shown in

Figure 2.2b, the second customer submits a single item bid again in the next round, but with

a new item. Since this item has not been present in the previous rounds, the auctioneer does

not know the initial ask price. The auctioneer may set the initial ask price to 0 for all new

items, but it may lead the customers to submit new items all the time by slightly changing

14

their previous bids. Therefore, the auctioneer requires a more effective way to determine the

initial ask prices for the new items. We propose an alternative approach for setting the ask

prices for new items. As can be seen in Figure 2.2b, for the new items submitted by the

second customer, we consider the corresponding time slices in the previous rounds. The ask

price for the new item will be set to the sum of price increments for the corresponding time

slices in the previous rounds. For example, if we consider Figure 2.2a as the first round,

and Figure 2.2b as the second round, the initial ask price for Customer’s 2 new items in

the second round will set to 2εp. Similarly, the initial ask price for Customer 3’s new item

will be 0, since there is no conflict in any corresponding time slice in the first round. In the

clock stage, as the auction proceeds, the ask prices for the items increase and as a result,

the demand decreases until we achieve the supply-demand balance.

2.2.2.2 Activity Rules for the Clock Stage

Iterative combinatorial auctions, in general, are vulnerable to strategic behaviors of bid-

ders. For instance, a bidder may not bid on her preferred items until the last round to keep

their prices from rising. To suppress such behavior, the CCA has another design element

called activity rules which are present in both the clock stage and the supplementary stage.

These rules restrict bidders to enforce them to bid actively and constantly through the clock

stage in order to be able to submit competitive bids in the supplementary stage.

Ofcom (2011) proposes some activity rules that have gained popularity among practi-

tioners because of their simplicity. These activity rules are based on eligibility points that

bidders purchase with their initial deposit before entering an auction. The auctioneer as-

signs eligibility points to each item based on historical demand for that item. High historical

demand for a time-slot results in a high value of the eligibility point for that time slot. In

particular, the auctioneer determines the eligibility point for each hour (12:00 AM–1:00 AM,

1:00 AM–2:00 AM, ...) based on the historical data for the demand. Then the eligibility

15

point for each item i (time slot) will be determined as:

ei =
∑
t∈T

δtiet

where et is the eligibility for each hour time-slot, and ei is the eligibility for item i, and δti

is the proportion of item i that falls in an hour time slot t. Formally, we can define the

eligibility point of items and packages as follows:

Definition 4 (Eligibility Points of Items and Packages). Let I denote the set of items

in an auction and let ei denote a preassigned eligibility point of item i. Then the eligibility

point of package k denoted by E(k) is defined as the sum of Eligibility Points of items in

the package, i.e. E(k) =
∑

i∈k ei.

Definition 5 (Eligibility Points of Bidders). If bidder j has submitted a bid on

package k in round r − 1, we say that bidder j possesses eligibility point Ej
r = E(k) at

the beginning of round r. This quantity is known as eligibility of bidder j in the literature

(Ausubel et al., 2011).

The bidders start with an initial eligibility point based on the bidders’ initial deposit.

We can state the following activity rule for the clock stage: for each bidder, the eligibility

points of her package at any round should not exceed her eligibility points at the beginning

of the round. Thus, bidders are required to bid large quantities to maintain their eligibility

in future rounds.

According to the activity rule mentioned above, the bidders need to bid constantly

throughout the clock stage. If they do not bid actively in each round of the clock stage,

their eligibility level decreases and they will lose the chance to submit packages in the sup-

plementary stage. Figure 2.3 summarizes the clock stage of the proposed auction.

16

Auction
Set-up

Start
Clock
Phase

Ask Prices

User
Agents
Bidding

Are there
new items
in bids?

Conflict
Detection

Update
Ask Prices

User
Agents
Bidding

Conflict
Detection

Are there
any

conflicts?

Stop Clock
Phaseyes

no no

yes

Figure 2.3: Clock stage flow chart

2.2.3 The Supplementary Stage

The supplementary stage is the final round for the submission of bids. Unlike the clock

stage packages, whose bid prices are calculated as the summation of ask prices for the

corresponding items, the bid prices of supplementary packages are directly determined by

the bidders. In fact, bidders submit new packages based on the price discovery in the clock

stage (where they learn the ask price for each item) and their budget.

Next, considering the clock stage packages and supplementary stage packages, the auc-

tioneer solves the winner determination problem (WDP) to determine the set of winners in

the auction. With the aim to relate the clock stage bids with the supplementary stage bids,

the following activity rules for the supplementary stage were introduced in Ofcom (2011):

• If a bidder submits a package exactly the same as in the final clock round (FCR), the

bidding price for that package should be greater or equal to the FCR package bidding

price

• If the FCR package is a subset of the submitted package in the supplementary stage,

in other words, new bids are introduced in the supplementary stage, then the following

17

condition should hold:

cj(b) ≤ Cj(b
r) + pr(b)− pr(br) (2.1)

where cj(b) is the bidding price of bidder j for package b in the supplementary stage; r

is the last round when bidder j was eligible for package b; br is the package submitted

by bidder j in the r-th round of clock stage; Cj(br) is the maximum bid price by bidder

j for package br in any round of the clock stage or in the supplementary stage; pr(br)

is the ask price in round r for the clock stage package br; and pr(b) is the ask price

for package b in round r (note that if this package has not been bid in round r, we

determine the bidding price for that package in the same way as we determine the ask

price for newly introduced items in round r).

As mentioned above, the activity rules in the supplementary stage, put some restriction on

bidders’ bidding based on their bidding history in the clock stage. Thus, from Equation (1)

we can see that the difference between the bids prices for the newly introduced bid b and a

bid br cannot exceed their respective ask prices’ difference in round r. As for the posted bids,

their bid price in the supplementary stage should be no less than their maximum bid price

in the clock stage. This way the supplementary stage activity rules impose a relative cap

on a bid amount, which can strongly limit the competitiveness of packages not submitted in

the clock stage.

We also note that the proposed auction design may include reservation prices for an auc-

tioneer. Thus, if the trips’ costs for the winning bids exceed the bids’ prices, an auctioneer

may not accept the auction outcome. In order to avoid such situation, all bidders before

entering the auction will be provided with the cost calculation formula. Then in the supple-

mentary stage of the auction, the bidders submit bid prices no less than the summation of

the costs of trips in their packages. Next, we formulate the WDP for the fractional ownership

CCA.

18

2.2.3.1 Winner Determination Problem for the Fractional Ownership CCA

Note that in the supplementary stage, customers submit start and end times of their

trips along with their bidding prices and spatial information. This information can be used

to obtain the approximated commuting time between the bidder’s locations. Also, only a

single bid of each bidder can be determined as a winner as mentioned before. Then each

winning bidder is assigned to a single AV, which will serve all her winning trips. Next, a

simple algorithm can be used to determine the conflicting bids, which are defined as bids

with overlapping trips. In particular, each pair of bids are examined to check if they overlap

by considering the start location, start time and end location, end time of each trip in the

bids. Based on the locations of the bidders, we estimate the travel time of an empty AV

between locations of two bidders. If the end time of the first bidder plus the travel time

of an empty AV is greater than the start time of the second bidder, we consider two bids

as conflicting. Once the conflicting bids determined, the auctioneer can solve the following

winner determination problem (WDP) with the objective to maximize social welfare, as

formulated in Takalloo et al., considering all the bids from the clock and supplementary

stages:

(WDP) max
xbh

∑
j∈J

∑
b∈Bj

∑
h∈H

cj(b)xbh (2.2)

s.t.
∑
b∈Bj

∑
h∈H

xbh ≤ 1 ∀j ∈ J (2.3)

xbh + xlh ≤ 1 ∀h ∈ H, j, q ∈ J , b ∈ Bj, l ∈ Bq : b, l are conflicting (2.4)

xbh ∈ {0, 1} ∀j ∈ J , b ∈ Bj, h ∈ H (2.5)

In the above formulation, J denote the set of bidders and Bj denote the set of bids submitted

by bidder j ∈ J . Similarly, Bq is the set of bids of bidder q, who has a conflicting bid l ∈ Bq

with bid b ∈ Bj of bidder j. A binary decision variable xbh indicates whether bid b is assigned

to vehicle h ∈ H or not where H is the set of vehicles. Constraint (2.3) ensures that at most

19

one bid of each customer will be determined as a winner. Constraint (2.4) is a conflict

constraint, which ensures that two conflicting bids do not share a vehicle. It usually takes a

considerable amount of time to find a high-quality feasible solution for problem (WDP) for

large instances.

However, we can use a sequential heuristic to solve the problem by decomposition. Since

we assume a homogeneous fleet of vehicles, we can decompose the combinatorial auction

problem into a |H|-round single vehicle combinatorial auction, following the approach of

Takalloo et al.. At each round, considering the set of remaining bidders, we solve the winner

determination problem for a single vehicle and find the winners. Then, we update the set

of bidders by excluding the winners from the list of bidders and go to the next round. This

procedure continues until we assign all the vehicles to the bidders.

At the end of the supplementary stage, after determining the winners, the auctioneer

calculates payments based on payment rules that will be discussed in Section 2.3.

2.3 Payment Rules

Choosing a suitable payment rule is an important part of the auction design, as it influ-

ences the bidding strategy of bidders and the revenue for the auctioneer. However, there is

no universal pricing scheme that guarantees both incentive compatibility and high revenue.

For instance, even though setting payments to submitted bid amounts is an intuitive choice,

Ausubel et al. (2014) have shown that such payment rule results in demand reduction. In this

study, we consider three pricing rules; namely, proxy payments, VCG payments (Vickrey-

Clarke-Groves payments) and core-selecting payments. We introduce these payment rules in

this section.

2.3.1 Proxy Payments

The proxy phase (Ausubel et al., 2006) has been proposed as an alternative to the supple-

mentary stage bidding. In the proxy phase, which follows the clock stage, first, each bidder

20

submits her packages and their valuations to her own proxy agent. Then, the proxy agents

enter an iterative proxy auction on behalf of bidders. After each round r, the auctioneer

determines the provisional winners and increases the ask price prb for package b by εp. Then

the agents select the set of packages with the nonnegative utility values to bid in the next

round by solving the following problem.

max
xb

∑
j∈J

∑
b∈Bj

(vb − prb − εp)xb (2.6)

s.t. xb ∈ {0, 1} ∀j ∈ J , b ∈ Bj (2.7)

where xb indicates whether bid b is selected by proxy agent or not. The auction finishes

when there are no more bids offered by any agents and the final outcome determines winners

and their payments. Thus, we can look at proxy payments as iterative first-price payments

that are in the core; there is no other set of bidders willing to pay more than the selected

set of winners.

2.3.2 VCG Payments

The Vickrey-Clarke-Groves (VCG) mechanism is known to satisfy incentive compatibility.

Under the VCG payment rule, truthful bidding is the dominant strategy for the bidders.

VCG payment πj for bidder j can be determined according to the following rule:

πVCGj = Z∗WDP−j −
(
Z∗WDP −

∑
b∈Bj

cj(b)x
∗
b

)
(2.8)

where Z∗WDP and x∗ are the optimal objective function value and optimal allocation of winner

determination problem under the set of bidders J and Z∗WDP−j is the optimal objective

function value of the winner determination problem under the set of bidders J \ {j}.

Although theoretically interesting, the VCG mechanism has shown serious practical prob-

lems (Rothkopf, 2007). It usually takes a considerable amount of time to solve the winner

21

determination problem optimally. However, it is possible to solve relatively large problems

with a small optimality gap. When the solution is suboptimal, incentive compatibility and

rationality do not necessarily hold under the VCG mechanism.

Next, we consider core-selecting payment (Cramton, 2013), which is more practical com-

pared to VCG and entails the desirable auction properties such as rationality, efficiency, and

core property (Day and Cramton, 2012).

2.3.3 Core-Selecting Payments

Payments are in the core, if there is no other set of bidders willing to pay more than

the set of selected winners (Day and Cramton, 2012). Suppose b∗ denote the winning bid

of bidder j, and cj(b∗) denote the bidding price for package b∗. We wish to determine the

payment amount for b∗ which satisfies the core property. Day and Cramton (2012) propose

the following quadratic program to compute the core-selecting payments by minimizing the

Euclidean distance between VCG payments and core-selecting payments:

min
πj

∑
j∈W

(
πj − πVCGj

)2
(2.9)

s.t.
∑

j∈W\S

πj ≥ βS ∀S ∈ S ′ (2.10)

πj ≤ cj(b
∗) ∀j ∈ W (2.11)

where S denotes any set of bidders who are willing to offer more than the total payment of

winners inW and S ′ denotes the set of all such possible sets. Variable πj is the core-selecting

payment for winner j ∈ W , πVCGj is the VCG payment for bidder j and cj(b∗) is the bidding

price for the winner j. Parameter βS denote the aggregate payment offered by set of bidders

S. Constraint (2.10) ensures that the total payment of the winners is greater than or equal

to the payments offered by any other set of bidders. Constraint (2.11) makes sure to satisfy

22

rationality by enforcing the individual payments of the winners to be not greater than their

offered bid amounts.

Day and Cramton (2012) propose an iterative approach to solve (2.9)–(2.11) which finds

a set of bidders S in each iteration by changing the bids’ prices of the bidders in set W . In

particular, the WDP is resolved at each iteration by setting the bid prices of the bids of each

bidder in set W to cj(b) + (cj(b
∗)− πkj). The resulting new set of winners, S is then used to

solve (2.9) - (2.11). We can summarize this procedure as follows:

• Step 0. Set k = 0, S ′ = ∅ and π0
j = πVCGj .

• Step 1. Set cnewj (b) = cj(b) + (cj(b
∗)− πkj) ∀j ∈ W , b ∈ Bj.

• Step 2. Solve the WDP in (2.2)–(2.5) and define S as the corresponding set of winners.

Add S to set S ′ .

• Step 3. Set βk+1
S =

∑
j∈S cj(b

∗)−
∑

j∈S∩W(cj(b
∗)− πkj) in (2.10)–(2.11).

• Step 4. Solve (2.9)–(2.11) to generate a new payment πk+1
j , go to Step 1.

• Stopping rule: The process repeats until the WDP with modified bidding prices does

not generate any new set of bidders S.

It is worth mentioning that in core-selecting payment method, we do not change the original

set of winners W , but we update their payments each time we solve (2.9) - (2.11).

2.4 User Agents in the CCA for Fractional Ownership of AVs

In general, vehicle ownership requires a substantial investment from household income.

As a result, customers may need to spend a considerable amount of time (e.g. several weeks)

in bidding in CCA for AVs. Moreover, it is not uncommon to see hundreds to thousands

of bids from each bidder in combinatorial auctions (Olivares et al., 2012). Considering the

time-consuming and the complex bidding process of the CCA, customers may be interested

23

in choosing user agents. User agents communicate with bidders to assist them in the bidding

process. In particular, as a supporting tool, user agents assist bidders by bidding through the

clock stage on behalf of them and by generating competitive packages in the supplementary

stage.

2.4.1 Bidding Strategies in the Clock Stage

The user agents relieve the computational burden of bidders. In particular, user agents

select items to bid in the clock stage according to some strategies which are determined by

the bidders. We propose the following bidding strategies for the user agents.

• Strategy 1 : Under the first bidding strategy, it is assumed that bidders know the

customers’ exact trip schedule. Under this strategy, customers submit the set of must-

have and optional trips to the user agents. Considering the budget restriction and

the eligibility points, user agents first consider only the must-have items and solve the

following binary optimization problem to select the must-have items to bid in the r-th

round of the clock stage for bidder j:

max
w

∑
i∈Ij

eiwi (2.12)

s.t.
∑
i∈Ij

eiwi ≤ Er
j (2.13)

∑
i∈Ij

priwi ≤ Bj (2.14)

wi ∈ {0, 1} ∀i ∈ Ij (2.15)

where Ij is the set of bidder j’s must-have items, wi is a binary decision variable which

indicates whether item i ∈ Ij is selected for a bid or not, pri is the ask price of item

i in round r, ei is the eligibility point required for item i, and Er
j is the eligibility of

customer j at the beginning of round r. Constraint (2.13) satisfies activity rules in

24

the clock stage and Constraint (2.14) considers the budget limitations of the customer.

The objective function maximizes the eligibility of the bidder, which helps her maintain

her eligibility in the future rounds and bid on more items. After selecting must-have

items, if any eligibility points remained, the user agent solves Problem (2.12)–(2.15)

for optional trips, by letting Ij be the set of optional trip items of bidder j. In such a

case, we must first update the values of both Er
j and Bj to account for used resources

to select must-have items.

• Strategy 2 : In the second bidding strategy, customers are required to submit their

valuation for desired time slots along with the budget constraints. We believe this is

not a demanding task for customers given the ride-sharing services benchmark prices.

Then user agents solve the following optimization problem for customer j in each round

r:

max
w

∑
i∈Ij

(vij − pri)wi (2.16)

s.t. (2.13), (2.14), (2.15) (2.17)

where vij is the value of item i for bidder j. In the second strategy, the user agent

maximizes the utility of customer j by taking into account the ask prices for items in

the current round.

• Strategy 3 : Under the third strategy, at the beginning of auction, instead of submitting

the exact time schedule, customers submit an acceptable time range for each trip.

Then, in each round of the clock stage, the user agents select time slots in the submitted

ranges with the lowest ask prices. In order to find the lowest priced time slots, the

user agents consider the demand in each hour provided by the auctioneer. Algorithm 2

presents a suitable approach to find a set of items with the lowest price for the bidders.

(Note that since the number of continuous time-slot in each range is infinite, the user

25

Table 2.1: Bidding strategies item selection in clock stage

Trips EP Ask Price Trip type Valuation Time range

M 7:15–8:00 AM 15 16 must-have 11.03 6:45–8:30 AM
W 5:00–6:00 PM 20 14 must-have 15.72 4:30–6:30 PM
Th 12:30–1:00 PM 10 8 optional 10.90 12:00–1:30 PM

agents consider only a finite subset of them by discretizing the possible start time

within the range). After obtaining the set of items with the lowest prices, user agents

solve the same optimization problem as in Strategy 2 to determine the items.

Table 2.1 gives an example of the bidding strategies in fractional ownership CCA. A

customer provides as an input three trips with start time and end time information, out of

which a user agent needs to select some items for bidding in the next round. The customer

also indicates her budget as $50 and her current eligibility as 40 points.

After receiving the given input, a user agent calculates eligibility points and ask prices for

each trip (columns EP and Ask Prices in Table 2.1). If the customer selects the first strategy,

the user agent bid on the first and the second trip, since both of them are must-have trips and

have high eligibility. Under the second bidding strategy, the customer provides her valuation

for each trip (see Valuation column). In this case, the user agent bid on the second and the

third item, because they generate nonnegative payoffs. Lastly, under the third strategy, the

customer provides a time range for each trip, which suits customer travel needs (see Time

range column). For instance, for the first trip, a customer may consider 6:45–8:30 AM as

her acceptable time range. Then, user agent may consider 6:45–7:30 AM, 7:15–8:00 AM and

7:45–8:30 AM as possible items to bid. To choose the best item, the user agent determines

the time slot with the lowest price.

Note that as discussed before, the activity rules aim to remove the strategic behavior of

bidders. Hence, under an effective set of activity rules, we expect that the bidders’ payoff

does not differ from each other significantly, where payoff is defined as the difference between

a customer’s valuation of the bid and bid price. However, without any set of activity rules, we

26

Algorithm 2: Package generation algorithm in the r-th round of Clock Stage under
Strategy 3
Input: The set of desired items for the customer Ir, aggregate demand until r-th

round each item i, Dr
i , demand in r-th round for item i, dri , set Rr which

includes the desired acceptable time range (li, ui) for each item i, number of
vehicles |H|, price for item i submitted in r-th round pri , time increment by
user agents εt, and trip length (ei − si) for each item i.

Output: Set of items with the lowest prices Imin

1 Initialization: Imin ← ∅;
2 foreach i ∈ Ir do
3 Dr

i = Dr−1
i + dri ;

4 if pri = pr−1i then
5 push(Imin, i);
6 else
7 if Dr

i > |H| then
8 remove(Ir, i);
9 i← find_item(i,Rr, εt); // finding set of items with the lowest

prices
10 push(Ir, i);
11 else
12 push(Imin, i);

13 function find_item(i,Rr, εt):
14 k ← [li, li + ei − si];
15 kmin ← k;
16 pmin ← prk;
17 t← li;
18 while t+ ei − si ≤ ui do
19 t← t+ εt;
20 k ← [t, t+ ei − si];
21 if prk < pmin then
22 kmin ← k ;
23 pmin ← prk;

24 return kmin;

27

Table 2.2: Time slots submitted by a customer to the user agent

Trips Monday Tuesday Wednesday

1 8:00–9:00 AM 8:00–9:00 AM 8:00–9:00 AM
2 5:00–6:00 PM 12:00–1:00 PM
3 5:00–6:00 PM

expect that the bidder’s payoff under the third strategy becomes higher. We will study the

impact of activity rules on bidders’ payoff under different strategies by presenting numerical

experiments in Section 5.

2.4.2 Automatic Package Generation in the Supplementary Stage

Generating competitive packages is challenging for bidders. The problem intensifies under

the proposed customer-defined continuous time slots, where an infinite number of items exist.

While iterative bidding in the clock stage reveals the minimum bid amount to win a certain

package of time slots, customers may find it useful to bid on other packages which are

generated by the user agents in the supplementary stage. In this section, we propose two

sets of automatically generated packages by user agents.

The first set of automatically generated packages rely on the bidding strategy selected

by a customer in the clock stage. For example, for customers who select the first bidding

strategy, the user agent may include all must-have trip time slots while generating other

packages which also include several optional trips. For the second strategy, we propose to

use a package generation technique similar to the internal-based strategy presented in An

et al. (2005), by adding items with the highest utility first while considering the budget

constraints. For the third bidding strategy, we propose selecting items that were chosen

most frequently in the clock stage by the user agent, since these items tend to have lower

prices.

The second group of packages are generated based on the day and the time of the trips

submitted by bidders. These packages are common among all bidding strategies. We propose

28

Tue1

Tue2

Mon1

Wed2

Wed1

Wed3

(a) A diverse package

Tue1

Tue2

Mon1

Wed2

Wed1

Wed3

(b) A consistent package

Tue1

Tue2

Mon1

Wed2

Wed1

Wed3

(c) A single-day package

Figure 2.4: Diverse, consistent and single-day packages

generating diverse, consistent, and single-day packages. Diverse packages include time-slots

from different days. Consistent packages include the trips in different days which take place

in the exact same time. Single-day packages include only the trips within the same day.

To understand the package generation procedure for the second group, let us look at the

trips submitted by a customer given in Table 2.2. Figure 2.4 shows graphs used for generating

packages, where nodes represent time slots for submitted trips. For instance, Figure 2.4a

visualizes a diverse package, where time slots from different days have been connected with

edges while time slots from the same days do not. We use maximum cliques to generate

the second group of packages. Note that in graph theory a clique is a complete subgraph

of a given graph. A maximum clique is a clique with the maximum number of vertices. By

looking for a maximum clique in the graph, user agents generate a package, which consists

of all time slots within the clique. Another example is given in Figure 2.4b, which displays

a network for a consistent package. In this case, we connect nodes (time slots) with similar

start and end time of trips such as the first trips on Monday, Tuesday and Wednesday. Then

user agents again look for a maximum clique in the graph and select time slots within the

clique for a consistent package. Lastly, in the single-day package, we connect time slots from

the same day as shown in Figure 2.4c. The summary of all automatically generated package

types can be found in Table 2.3.

29

Table 2.3: Summary of all types of packages.

Packages Strategy 1 Strategy 2 Strategy 3

Must-have trips only X
Must-have trips plus optional X
Highest utility trips X
Frequently chosen trips X
Diverse package X X X
Consistent package X X X
Single-day package X X X

2.5 Numerical Experiments and Case Studies

The goal of the numerical experiments is two-fold. First, we investigate the efficiency

of the proposed auction elements such as activity rules, the ask price algorithm and pricing

rules. Second, we discuss the auction outcomes to bidders and an auctioneer in terms of

winning bids and generated revenue.

For the numerical studies, we build a simulation module based on 2010–2012 California

Household Travel Survey, which indicates start and end time of trips as well as miles for 2908

vehicles for one week. Based on this data, we generate bids for customers. In practical, we

remove trips with a length less than 15 minutes from the data. Then each vehicle represents

a customer with the respective trips information out of which we generated bids as discussed

in Section 4. The location distances of each pair of customers are randomly selected between

0 and 60 minutes. Further, we use Caltrans Traffic Counts data, namely Annual Average

Daily Traffic 2016, for assigning required eligibility points for each hour of a week. All

instances are run 3 times using seeds 1, 3 and 5. For all our experiments we set the ask price

increment εp = 2.

We use the Julia Language (Bezanson et al., 2012) to implement the simulation model

and CPLEX 12.5 to solve integer programs via the JuMP.jl package (Dunning et al., 2017).

We also use the heuristic algorithm by Takalloo et al. to solve WDPs not only to determine

the winners, but also solve sub-problems arising in various payment rules.

30

The simulation model includes three modules that have different functionalities; namely

the general module, the auctioneer module, and the user agent module.

The general module in the simulation aims to generate trips, bidders, bids and etc. The

general module takes as input the number of bidders and the percentage of bidders with a

particular bidding strategy. Based on the given input, the module generates a set of bidders

and assigns them their initial eligibility points, budget constraints, selected trips, including

their start time, end time and miles.

The auctioneer module performs all the auctioneer’s tasks such as calculating ask prices

in the clock stage, enforcing activity rules, solving WDP and calculating payments. This

module takes as an input the fleet size to be auctioned and price increment for ask prices in

the clock stage in the absence of supply-demand balance.

The user agent module performs all the user agent’s tasks. As discussed in Section

2.4, user agents bid on behalf of bidders both in the clock and the supplementary stages.

User agents also generate packages for bidders. This module takes as an input the bidding

strategies of the bidders.

2.5.1 Managerial Insights

To compare the different bidding strategies offered by user agents and check the efficiency

of the proposed activity rules, we conduct experiments under 4 different scenarios discussed

below. In each scenario, we simulate an auction with 21 bidders and a single AV. We let a

bidder select strategy 1, 2, or 3 for the clock stage and consider the following scenarios for

the rest of bidders:

• Scenario 1 : The rest of bidders select Strategy 1.

• Scenario 2 : The rest of bidders select Strategy 2.

• Scenario 3 : The rest of bidders select Strategy 3.

• Scenario 4 : The rest of bidders are split to select Strategy 1, 2, or 3.

31

Table 2.4: The strategies comparison with Activity Rules

The total wins The percentage of full wins

Scenario Str1 Str2 Str3 Str1 Str2 Str3

1 55 44 47 57.69% 19.23% 23.08%
2 62 46 51 48.78% 21.95% 29.27%
3 59 51 52 42.86% 28.57% 28.57%
4 58 48 50 44.44% 25.00% 30.56%

Table 2.5: The strategies comparison without Activity Rules

The total wins The percentage of full wins

Scenario Str1 Str2 Str3 Str1 Str2 Str3

1 32 36 42 23.08% 38.46% 38.46%
2 34 48 47 14.29% 47.62% 38.10%
3 27 38 50 5.88% 23.53% 70.59%
4 43 42 51 28.57% 32.14% 39.29%

We run the simulation for 3 instances for each class (strategy-scenario combination) and

count the number of times (in 3 instances) a bidder has been selected as a winner under

different scenarios and strategies.

Table 2.4 reports the total number of times bidders win (in 3 instances) using different

strategies and under 4 scenarios and the percentage of full wins (when a bidder wins in

all 3 runs) when the proposed eligibility based activity rules are used. We observe that

the greatest number of wins is achieved under Strategy 1 regardless of any configuration

of scenarios. Similarly, bidders who select Strategy 1 are more likely be selected as a full

winners under any scenario followed by Strategies 3 and 2.

From computational studies, we may conclude that the activity rules effectively induce

the first bidding strategy. When the bidders with the third bidding strategy (who seeks to

bid for items with the lowest ask prices) enter the supplementary stage, they face a relative

cap on their bidding price induced by the supplementary stage activity rules.

Thus, submitting competitive bids under Strategy 3 is relatively harder compared to

bidding under the first strategy which is not restricted by activity rules. Indeed, under the

32

first strategy bidders consistently bid for must-have trips and gradually increase bid prices,

which is a favored behavior according to activity rules. This explains why a customer with

Strategy 1 tends to be a winner. Similarly, since under Strategies 2 and 3, item selection is

based on the value of ask prices, when entered into the competition for conflicting time slots,

customers with such bidding strategies most likely to choose less competitive items. Then a

bidder with the first bidding strategy encounters less competition with the bidders with the

second or the third bidding strategy, which increases her chance of winning.

We also run similar experiments in the absence of the proposed activity rules to investi-

gate the auction outcomes under different strategies and scenarios. In particular, we removed

eligibility constraints in selecting bids presented in (2.13) for Strategies 1 and 2 and elim-

inated the objective function of Strategy 1 shown in (2.12). Also, we removed the relative

caps imposed by (2.1). Table 2.5 presents the results, which clearly indicate the prevalence

of Strategy 3 in the number of wins and in the percentage of full wins, while Strategy 1

results in the lowest number of wins in almost all scenarios. These experiment results clearly

indicates the importance and efficiency of the proposed activity rules to prevent strategic

bidding.

As discussed before, in order to select payment rules for the proposed auction, we used the

simulation model. In particular, we measure the generated revenue and the computation time

to compare VCG, core-selecting and proxy payments. We run the simulation model multiple

times by generating instances based on the different number of bidders, vehicle numbers

and bidding strategies in the clock stage while using the exact and heuristic approaches in

solving the WDP. We implement proxy-auction using safe start with VCG prices (Hoffman

et al., 2006). We also implement quadratic core-selecting payments suggested by Day and

Cramton (2012).

Table 2.6 reports the results when the WDP is solved exactly and |H| = 1. In this case,

core-selecting payments generate the highest revenue under all bidding strategies, while proxy

payments also demonstrate competitive revenues. We have to note that for proxy payments

33

Table 2.6: Payments rules comparison using exact solutions

Revenue, $ Time, sec

|J | Bidders’ Strategy VCG Core Proxy VCG Core Proxy

30 Strategy 1 1,017 4,850 2,960 9.89 10.96 112.55
Strategy 2 889 1,193 1,055 85.83 91.39 387.10
Strategy 3 1,090 2,063 1,728 102.58 108.73 5,404.54

Mixed 779 2,930 1,469 63.87 67.31 286.86

60 Strategy 1 3,370 7,189 4,858 57.95 60.24 193.32
Strategy 2 1,478 2,267 2,012 457.23 471.25 656.90
Strategy 3 2,429 4,121 3,666 682.35 703.44 11,695.41

Mixed 1,970 4,582 3,052 247.25 254.72 662.30

90 Strategy 1 4,308 8,940 6,405 150.66 155.08 827.98
Strategy 2 2,191 2,954 2,711 17,573.46 17,898.58 15,056.72
Strategy 3 3,776 5,767 5,304 7,468.69 7,641.55 14,730.09

Mixed 3,003 6,172 4,313 751.17 769.80 5,875.49

calculation, we place a time limit of 4 hours and report the revenues generated within the

time limit. Nevertheless, the computation time of the proxy payment method is significantly

larger than those of other payment methods, while core-selecting payments dominate both

in terms of revenue and calculation time.

Table 2.7 reports the revenue and the computation time when the WDP is solved using

the heuristic method discussed in Section 2.2.3.1 for |H| = 2 and |H| = 3. We observe

that both under the exact and heuristic solutions the VCG payments dominate in terms of

computation time. When the WDP is solved using the heuristic approach, core-selecting

payments generate higher revenues compared to other payments except when |H| = 3 and

|J | = 120 with the proxy payments being the highest. Since the WDP is solved using the

heuristic solution, the VCG payments may violate individual rationality, thus resulting in

higher payments compared to core-selecting payments which enforce individual rationality.

Consequently, the warm start of proxy payments with the VCG payments results in larger

proxy payments compared to core-selecting payments. We place a time limit of 4 hours for

the proxy payments calculation and took the average run time for 3 replicates. Even though

34

Table 2.7: Payments rules comparison using heuristic solutions under mixed strategy

Revenue, $ Time, sec

|H| |J | VCG Core Proxy VCG Core Proxy

2 90 2,756 8,771 6,564 1,315 1,335 3,064
120 4,904 11,018 8,805 3,038 3,077 10,986

3 90 170 10,069 6,694 1,649 1,671 10,561
120 17,496 12,948 19,986 4,486 4,533 6,168

the time limit may cause lower revenues under the proxy payments, in general, we conclude

that core-selecting payments generate the highest payments using the heuristic solutions.

Therefore, based on the computational study we recommend using core-selecting payments

as a pricing scheme for fractional ownership of AVs.

We also study the auction outcomes to bidders measuring a number of co-leasers defined

as customers sharing the same AV and some statistics of the winning bids. For instance,

average values of payments, miles, time slots’ lengths and the number of trips are calculated

by summing their respective values for the winning bids and dividing by the total number

of winners. The number of bids indicates the average number of bids submitted by all

winners. We report the results of 3 replicates for each instance taken as their average values.

As shown in Table 2.8, the average payments increase with the increase in the number of

participating bidders due to the rise in the competition. From the used dataset containing

trips of customers, the average number of trips in the winning bids is above 2. We also note

that the average number of trips in the winning bids change slightly across all instances. Such

outcomes are related to the structure of the bids. For instance, bids with a large number

of trips encounter a significant number of conflicts with other bids, thus, requiring large bid

prices to win. In contrast, bids with a small number of trips have fewer chances to overlap

with other bids. Then when solving the WDP selecting a large pool of bids with a small

number of trips may contribute more to the social welfare compared to accepting a small

pool of bids with a large number of trips.We also note that the trip costs per mile and per

minute increase with the increased number of bidders. We may also enforce the minimum

35

Table 2.8: The auction outcomes

Average Value

|H| |J | # co-leasers Payments Miles Time, min # trips # bids WDP sol.

1 30 23.30 38.76 39.65 74.46 2.88 19.38 exact
1 45 31.33 47.91 30.33 60.66 2.49 17.01 exact
2 60 26.33 22.56 33.91 69.36 2.82 15.85 heuristic
2 90 34.67 69.80 29.04 58.93 2.45 16.15 heuristic

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

150 200 250 300 350 400 450 500

C
om

pu
ta
ti
on

al
ti
m
e,

se
c

Number of Bids

Figure 2.5: The performance of the ask price algorithm

trip length requirement in the WDP. For instance, the auctioneer may require customers

to use AVs at least for 30 minutes per use. This may reduce the revenue of the auctioneer

as it limits options for serving small trips and increases the idle time of AVs. However, it

also offers more flexibility to winners in their schedule offering a wide time window between

serving two customers and making such an option more attractive. In return, such a setting

actually may boost the revenue.

Finally, to demonstrate the performance of the proposed ask price algorithm, we run

the algorithm under various bid numbers, while measuring the computational time. As has

shown in Figure 2.5, the algorithm solves all instances in a fraction of a second. Also, the

computational time increases linearly with the number of bids, suggesting O(n) complexity.

36

Chapter 3: A Reinforcement Learning Approach for Rebalancing Electric

Vehicle Sharing Systems

The copyright permissions for reuse previously published material in this chapter can be

found in Appendix B.

3.1 Introduction

The advent of electric vehicles (EVs) and car-sharing services provides a sustainable op-

tion to move people and goods across dense urban areas. Car sharing services with EVs

have the potential to increase the utilization of resources and offer a unique opportunity to

the urban population in the form of free-floating EV sharing systems (FFEVSS). With the

FFEVSS, examples of which include companies such as car2go car2go (2021b) and WeShare

Volkswagen (2021), customers no longer need to own a vehicle and can conveniently pick

up/drop off any EV, on-demand, from the parking lots of designated service areas. How-

ever, there are some critical operational challenges to bring this on-demand service into the

mainstream.

Before the start of the day, an operating company needs to relocate EVs to the ideal

demand locations to establish a supply-demand balance in the system. Furthermore, to

provide a certain level of service, EVs need to be charged before they can be used by the

customers. There are two major issues: (i) there exists a sparse demand in the service area

network, and hence it is not trivial to find the ideal locations to relocate the EVs; and (ii)

there needs to be an efficient routing plan to drop off the drivers for picking up the EVs

and taking the EVs to the charging stations for charging, and then pick up the drivers from

their respective locations car2go (2021a). It is evident that without efficient solutions for

37

Depot

2
1

0

12

Case I

Case II

Figure 3.1: The overview of the rebalancing problem of FFEVSS, with a single shuttle and
2 drivers. The numbers indicate the number of drivers in the shuttle. Solid and dashed
lines represent the routes of the shuttle and EVs, respectively. Cases I and II refer to

relocation of EVs without and with charging, respectively.

the above complex and costly operational challenges Chianese et al. (2017), the sustainable

existence of the FFEVSS is uncertain.

We consider a static, nightly rebalancing problem similar to Kypriadis et al. (2018);

Santos et al. (2017); Folkestad et al. (2020); Haider et al. (2019), where a group of drivers

is used to relocate and recharge the EVs based on the predicted demand for the next day,

assuming the utilization level of FFEVSS is minimal. As shown in Figure 3.1, shuttles are

used to support the movements of drivers. In this setting, rebalancing operations require

two key decisions to be made: (i) how to route shuttles to pick up and drop off the drivers

(shuttle routing decision) and (ii) where to charge and relocate each of the EVs (EV relocation

decision). In this paper, focusing on solving the shuttle routing decision problem, we propose

a reinforcement learning (RL) approach, in which the EV relocation decisions are made by

a rule-based approach.

The proposed RL approach possesses several advantages compared to optimization-based

approaches. First, unlike solutions coming from the static optimization techniques such as

Folkestad et al. (2020); Haider et al. (2019), which need to be re-solved each time an input

changes, the RL agent learns robust solutions that can be applied to any input coming from

38

Su1

Ch1

Su2

Ch2

Su1

Ch1

Su2

Ch2

Figure 3.2: Assign supplier-charger pairs or reuse charger nodes? Ch and Su denotes
charger and supplier nodes respectively.

the same distribution Bello et al. (2016). Second, while static optimization approaches can

take significant time to solve a problem, a trained RL agent can be invoked to produce quality

solutions instantaneously. Third, many practical considerations can be flexibly incorporated

within the simulator in the training phase.

The shuttle routing to rebalance FFEVSS with its variety of trade-offs is not a trivial

problem. For instance, as depicted in Figure 3.2, one may allow or disallow the reuse of

charging stations in the derivation of solutions. The former choice offers more flexibility, but

it also increases the complexity of exploring solutions. Therefore, the existing methods do

not allow the reuse of the charging stations Haider et al. (2019). On the other hand, such a

choice results in opportunity loss.

Another trade-off is depicted in Figure 3.3, where the first supplier node has an EV that

needs to be recharged while the second supplier has an EV with a sufficient charging level.

Then one needs to balance between traveling time and waiting time when routing a shuttle

to supplier nodes. The complexity of such routing decisions increases with the network size,

the network structure, and the number of shuttles and drivers deployed. Hence, it may not

be possible to explore potential solutions with human-driven heuristics efficiently. With the

proven ability of neural networks in recognizing patterns in graph-based representations, the

utilization of neural network architecture with the proposed RL approach will provide better

approximations and assist in obtaining efficient solutions that can be generalized.

In recent years, there has been a surge of studies that apply reinforcement learning to solve

various traditional vehicle routing problems (VRPs) Nazari et al. (2018); Kalakanti et al.

(2019); James et al. (2019) with capacity constraints, time windows, or stochastic demand.

39

Su1

Ch

De

Su2

Su1

Ch Su2

De

Figure 3.3: How to balance traveling time and waiting time trade-off? De, Ch and Su
denotes demander, charger and supplier nodes respectively.

S0 S1 S2

a0 : SR0 a1 : SR1

EVR0

a2 : SR2

EVR1

Figure 3.4: State transitions: SRi - shuttle routing decisions, EVRi - EV relocation
decisions, ai - selected action

The shuttle routing problem, taken under this study, possesses significant differences with

traditional VRPs. First, in a VRP setting, nodes to visit (demand) are typically independent

of the routing decisions. However, in the shuttle routing problem, the locations of drivers

to be picked up are determined by preceding routing decisions. This highlights a strong

interdependence between demand and routing. Second, unlike VRP, the shuttle routing

problem is characterized by delayed rewards. As shown in Figure 3.4, the actual relocations

of EVs from a node happen after the execution of shuttle routing to the node. As a result,

we observe delayed rewards with respect to the shuttle routing decision only after EVs reach

their designated nodes. Such differences require a new approach to finding solutions for the

shuttle routing problem.

We consider two settings of rebalancing FFEVSS. In the first setting, we focus on a

single shuttle problem, where we train a single agent to learn routing policies. In the second

setting, we aim to train a fleet of shuttles through single-agent reinforcement learning, where

a central controller is responsible for routing multiple shuttles. In both cases, we deploy

policy gradient methods along with recurrent neural networks for training. The shuttle

routing problem under both of the above-mentioned settings possesses significant challenges

that prohibit the direct use of the existing solution methods. For instance, in routing a

single shuttle, we must train an agent not only to find efficient routes, but at the same time

40

maintain the feasibility of the solutions related to the precedence of the visiting nodes. As

for routing the fleet of shuttles, we must promote learning policies to route multiple shuttles

that will contribute to a common goal.

The main contributions of this study are as follows. First, to the best of our knowledge,

this study is the first to present an RL-based approach for handling multiple vehicles explic-

itly in the context of VRPs, while focusing on the shuttle routing problem for rebalancing

the FFEVSS. Second, within the RL framework, we propose the utilization of deep neural

network architecture to process the complex and high dimensional observations from an ur-

ban service area network to help train the RL agent in its decision-making. In particular,

we adopt sequence-to-sequence models with an attention mechanism to fit the unique chal-

lenges of the rebalancing FFEVSS. Third, we present a novel training algorithm to route

efficiently a fleet of shuttles to rebalance FFEVSS by utilizing policy gradient methods. Our

training algorithm does not require splitting an urban network into sub-clusters for each

shuttle, but instead allows developing policies that efficiently utilize shuttles and drivers in a

whole network. Fourth, we develop a simulator to mimic real-world FFEVSS, which serves

as the environment for training an RL-agent and allows efficient exploration of joint actions

of multiple shuttles.

Unlike the solutions obtained using the methods from the literature, the empirical results

obtained from this study show that the proposed method allows solving the general version

of the problem with no restrictions on the urban network structure and charging levels of

EVs. The learned policies offer a wide range of flexibility, resulting in a significant reduction

in the time needed to rebalance the network.

The remainder of the paper will proceed as follows. In Section 3.2 we provide an overview

of relevant literature and outline the unique challenges of the rebalancing FFEVSS. In Sec-

tion 3.3 we present the problem formulation. In Section 3.4 we introduce the proposed

reinforcement learning model. In Section 3.5 we demonstrate the results of our computa-

tional studies.

41

3.2 Related Work

Even though the problem of rebalancing FFEVSS has been recognized as essential for

their sustainable existence in the literature Schulte and Voß (2015); Herrmann et al. (2014),

most of the studies focus on high-level approaches to address the issue. One category of

studies falls on incentive-based methods that aim to rebalance the system through influ-

encing customer behavior Weikl and Bogenberger (2013). Another set of papers study the

deployment of personnel and offer rule-based high-level decision-making frameworks Weikl

and Bogenberger (2015); Zhao et al. (2018). There are only a few studies that specifically

focus on the shuttle routing problem to rebalance FFEVSS, thus offering detailed solutions

for day-to-day operational challenges.

One of such studies is Folkestad et al. (2020), which aims to solve both EV relocation and

shuttle routing problems jointly. However, the proposed model does not enforce relocation

of EVs directly to demander nodes, but indeed permits leaving EVs in charger nodes. As a

result, charger stations will be blocked and cannot be reused, requiring the postponing of

charging for the remaining set of EVs. Similarly, a recent study Haider et al. (2019) presents

novel approaches in addressing EV relocation and shuttle routing problems simultaneously.

Even though the study aims at relocating EVs directly to demander nodes, it assumes the

abundance of charger stations in an urban network. Thus, again reusing charger stations

is not considered, and the postponement of charging for EVs requiring it is allowed. Since

charging infrastructure is often limited He et al. (2020), the reuse of charging stations must

be an integral part of solutions to rebalance FFEVSS in real-world urban networks.

Recently reinforcement learning approaches gained popularity to solve various problems

in transportation, including fleet management and rebalancing in ride-hailing services Shi

et al. (2019); Lin et al. (2018); Wen et al. (2017); Sadeghianpourhamami et al. (2018).

However, none of the existing studies focus on FFEVSS specifically and do not address the

unique issue of charging and relocation together. For solving VRPs, deep reinforcement

42

learning has been first applied in Nazari et al. (2018), which utilizes sequence-to-sequence

methods Sutskever et al. (2014) and an attention mechanism Vinyals et al. (2015a). Later

Kool et al. (2018) adopted the transformer model Vaswani et al. (2017) to solve VRPs without

recurrent neural networks. James et al. (2019) proposes a novel model to solve online VRPs

by utilizing neural combinatorial optimization and deep reinforcement learning. Similarly,

Zhao et al. (2020) presents a hybrid model that combines local search with an attention

mechanism. However, these studies focus on routing a single capacitated vehicle, where the

main goal is to minimize the distance traveled. While multiple loops of a single capacitated

vehicle can be interpreted as multiple vehicles, this paper is the first to present explicit

modeling of multiple vehicles within an RL framework.

Although this study also adopts sequence-to-sequence models with an attention mecha-

nism similar to Nazari et al. (2018), the significant differences in the nature of the rebalancing

FFEVSS problem and VRP dictate the development of novel solution techniques. For in-

stance, in the given problem, shuttles need to leave a depot, drop off, pick up drivers who

relocate EVs, and return to the depot, highlighting two sets of constraints. First, the prece-

dence of visited nodes needs to be maintained when charging stations are visited after nodes

with EVs and nodes that require EVs are visited after either charging stations or nodes with

EVs. Second, the capacity constraint must be satisfied when nodes with EVs are visited

only when there is a driver in a shuttle and nodes with drivers are visited only if there is

seating available for a driver in the shuttle. In addition to feasibility constraints, since both

charging and relocations of EVs are involved in the shuttle routing problem, only considering

factors that affect the total distance traveled is not sufficient. Moreover, the dynamics of

an urban network due to routing a shuttle is more complex compared to the VRP due to

the delayed movements of EVs relocation. Also, routing multiple shuttles requires a novel

training algorithm. In particular, when several shuttles are present in an urban network and

each of their movement influence the state of the network, we need a novel framework that

43

enables the application of reinforcement learning tools based on Markov Decision Process

(MDP).

3.3 Problem Statement and Formulations

3.3.1 Network

Let us consider a network N consisting of N number of nodes and a depot. We define a

node as a supplier if it has an excess EV and a demander if it requires an EV. The network

also has charger nodes. Each node in the network can store at most one EV. Depending on

the charging levels of EVs there are two possibilities of the EVs relocation. In Case I, EVs

are relocated from supplier nodes directly to demander nodes. In Case II, EVs first need

to be taken to charger nodes, and after charging is complete, they need to be relocated to

the demander nodes, as shown in Figure 3.1. We consider discrete charging levels of EVs,

where a threshold-based rule is applied to decide whether to charge an EV or not. Also, a

driver may wait at a charging station until an EV is fully charged or may head for the next

activity. We consider two settings of the problem when a single shuttle or a fleet of shuttles

is deployed for rebalancing the system. We formulate the routing problem for a single shuttle

as MDP and utilize a central controller to route a fleet of shuttles.

3.3.2 Multi-shuttle Routing as MDP

Even though it is possible to formulate the routing of a fleet of shuttles using a multi-

agent reinforcement learning framework, such an approach suffers from several drawbacks.

Firstly, in the presence of several shuttles, each of which is treated as an autonomous agent,

the stationary assumption of MDP is no longer valid Buşoniu et al. (2010). Therefore, a

multi-agent reinforcement learning framework works under partially observable MDP Lowe

et al. (2017); Gupta et al. (2017); Foerster et al. (2018), when each agent can observe only a

local view of the network Oliehoek et al. (2016). Then each agent can only visit nodes visible

from its local view, which imposes significant restrictions on developing an efficient routing.

44

Secondly, it is challenging to train autonomous agents without making strong assumptions

about constant communication between agents. For instance, if at the current time step one

agent selects a node to visit, then such information must be shared among other agents to

avoid the presence of several agents at the same node. Lastly, under a static network, when

the state of the network is constant and well-known, a centralized approach will help navigate

a fleet of shuttles efficiently. Therefore, we formulate routing multiple shuttles to rebalance

FFEVSS using a central controller responsible for making routing decisions of all shuttles.

Then, we can formulate the problem using a single-agent reinforcement learning framework

and MDP. We also note that the concept of multi-agent reinforcement learning and central

controller is similar to decentralized control and centralized control in the transportation

literature.

A fleet of shuttles with drivers leaves a depot and visits nodes in the network to relocate

EVs from supplier nodes to demander nodes. Shuttles must return to a depot after fulfilling

demand at all demander nodes and picking up all the drivers. These sequential decisions of

a central controller for routing shuttles under uncertain demand (locations of drivers) can

be formulated as a finite horizon MDP, where the future dynamics of the system depend

only on the current state. We define the RL framework for the problem as tuple M =

〈X,A, P, R, T 〉 representing states, actions, transition probabilities, reward function, and

time horizon, respectively. The definitions are as follows:

• I = {1, ..., I} is the set of I shuttles that are controlled by a central controller;

• State set X represents the network, where for each node it shows its location, the

relative distance, the number of EVs, the number of drivers, the charging levels of EVs’

and indicators for the expected transitions. We utilize binary vectors to indicate if

there is an expected EV coming to a node. We denote state as xt at time t.

• A is the set of joint actions such that At = A1
t ×A2

t × · · · ×AIt , where Ait is the action

set of shuttle i at time t and action ait indicates a node number to be visited next by

45

Table 3.1: A summary of variables.

I the set of shuttles A the set of joint actions
X the state of network tc current clock time
τ traveling time w waiting time
T the max number of time steps r immediate reward
R total reward θa parameters of actor
θc parameters of critic π routing policy
Y the set of visited nodes n node in network

shuttle i. Then a central controller’s action set consists of joint actions of all shuttles,

At, at time t.

• Transition Probabilities, P , determines state transitions probabilities p(xt+1|xt, at) at

time t with respect to taken action at. In the given problem, transitions are determin-

istic but often delayed. After an action is taken, the relocations of EVs are scheduled.

However, the actual state transitions related to the movements of EVs occur later, as

shown in Figure 3.4.

• All shuttles share a common reward R and immediate reward rt, which are assigned

based on the joint actions of all shuttles at time t denoted by at and state xt;

• Instead of defining the specific time value of T , we define one episode rollout for the

problem based on the experiment outcomes. One episode is terminated either if all

demander nodes are fulfilled and all drives are picked up back to a depot or if the total

number of time steps exceeds the predefined maximum time steps, the value of which

is set based on the size of a network.

• Each time step t is determined by the earliest fulfilled action among all shuttles. Thus,

each time step starts when a central controller takes an action and finishes whenever

any action is fully executed.

The list of variables used can be found in Table 3.1.

46

Figure 3.5: An overview of the reinforcement learning model.

3.4 Reinforcement Learning Model

We adopt a policy gradient method, similar to those popularly used in routing problems

Nazari et al. (2018); Kool et al. (2018); James et al. (2019), to learn the complex routing

policies of shuttles directly. In general, policy gradient methods consist of two separate

networks: an actor and a critic. The critic estimates a value function given a state according

to which the actor’s parameters are set to generate policies in the direction of improvement.

We train an agent and a central controller to route a single shuttle and multiple shuttles

in an urban network by simulating the FFEVSS environment. The simulator is developed

to handle EV relocations through rule-based decisions and utilizing sequence-to-sequence

models to generate policies. The overview of the model is shown in Figure 3.5.

3.4.1 The FFEVSS Simulator

The main function of the FFEVSS simulator is to represent the dynamics in an urban

network caused by movements of shuttles. There are immediate and delayed transitions

related to routing shuttles. In an immediate update to the environment at each time step, we

consider locations of shuttles, drivers, EVs, the number of drivers in a shuttle, and fulfillment

47

of scheduled transitions either related to charging or relocation of EVs. Also, at each time

step, we schedule transitions related to movements of EVs that have started but unfulfilled.

In particular, starting at the current clock time tc = 0, we update the environment according

to movements of a shuttle:

tc ←


tc + τ(nt−1, nt) if nt−1 6= nt

tc + wt if nt−1 = nt

where τ represents traveling time between nodes visited by a shuttle at time t−1 and t and wt

denotes waiting time at node n. We define waiting time at node n as the difference between

the time when a delayed transition at node n occurs and the time when a shuttle reaches

node n. To account for delayed transitions, we introduce a time vector, which keeps track

of remaining times until either EVs arrive at designated nodes or their charging completes.

In the case of multiple shuttles, the environment is updated with the earliest movements of

shuttles.

Another function of the FFEVSS simulator is to update a masking scheme according to

the current state of the urban network. The masking scheme helps to maintain the feasibility

of solutions related to the precedence of visited nodes and the number of drivers in a shuttle.

Also, having an efficient masking scheme expedites the exploration of action space. We

deploy the following masking scheme, where At = ∅ stores the set of available nodes/actions

to visit at time t and the rest of the nodes are masked. For each n ∈ N , we update:

At ←


At ∪ {n} if lt > 0 and n ∈ Dt ∪ Et

At ∪ {n} if lt = 0 and n ∈ Dt

Here set Et denotes nodes with an EV or nodes with the expected EV due to delayed transi-

tions, set Dt denotes nodes with a driver or nodes with the expected drivers, and lt denotes

the number of drivers in a shuttle at time t.

48

3.4.2 EV Relocation Decisions

As described earlier, our focus in this study is to solve the shuttle routing problem. Hence,

we are using a rule-based approach for EVs’ relocation decisions. The rule-based approach

is as follows: every time a supplier node with an EV has a driver, that EV is relocated to

the nearest available either charger or demander node. The decision of whether to relocate

an EV to a demander or charger node is predetermined in the settings of a simulator. We

apply a threshold-based rule; that is, if the charging level of an EV exceeds the threshold,

then it can be directly relocated to a demander node or must be charged, otherwise.

We maintain a binary vector in the simulator to indicate if a charger node is available or

not. This representation helps in deciding the relocation of an EV from a supplier node to

an available charger node. We determine the closest available charger node by multiplying

the binary vector by a time matrix that indicates time to travel among any pair of nodes.

To decide EVs’ relocations from either supplier or charger nodes to demander nodes, we

maintain a demand matrix that keeps track of demander nodes that still need an EV at time

t. In particular, in the simulator, we store the time needed to move from all nodes to each

demander node and increase those values to large numbers if a demander node is satisfied.

Then, if an EV needs to be relocated to a demander node, we compute the minimum time

from a node to the closest demander nodes.

3.4.3 A Sequence-to-sequence Model for the Shuttle Routing Problem

Motivated by Nazari et al. (2018), we propose using a sequence-to-sequence model for

rebalancing FFEVSS, which typically consists of an encoder and a decoder. Given urban

network N , we aim to generate a sequence of nodes to be visited by either a shuttle or a fleet

of shuttles. In other words, we are interested in learning the following conditional probability

or parametrized policy πθ:

49

πθ(YT |x0) =
T−1∏
t=0

φ(yt+1|xt, Yt) (3.1)

In (3.1), we let xt = {x1t , . . . , xNt }, where xnt denotes static and dynamic states of node n

at time t. Unlike in machine translation, the state of nodes in the network status changes

dynamically with shuttles movement; thus, we need to consider both static and dynamic

states for each node. Also, we let yt denote a node to be visited at time t and Yt =

{y1, . . . , yt} with Y0 = ∅. Then to select a next node to visit yt+1, we are interested in

learning φ(yt+1|xt, Yt).

However, a set of nodes in the network does not convey any sequential information.

Therefore, it is common in literature Nazari et al. (2018), to omit recurrent neural network

for encoding. Indeed, due to the sparse nature of networks, graph embedding is deployed

in encoder to build their continuous vector representation as they suit better for statistical

learning Perozzi et al. (2014). The following equation describes embedding for each n ∈ N :

xns = bs +W sxns (3.2)

xndt = bd +W dxndt (3.3)

where, xns and xndt are embedded static and dynamic states of node n at time t and b,W

represent the trainable parameters of a neural network. We denote by xnt = (xns ;x
n
dt
) con-

catenation of embedded static and dynamic states of nodes.

For decoding we use recurrent neural networks (RNN), that takes static state of the last

visited node and stores the sequence as follows:

ht = W hf(ht−1) +W xxns (3.4)

where ht is a memory state of RNN, f represents nonlinear transformation and xns is a

static state of node n visited at time t. Trainable weight matrices W h and W x represent

50

connections between hidden state to hidden state and hidden state to an input respectively.

Note in our implementations, we use a LSTM cell as RNN.

In addition to encoder and decoder, we also utilize content based attention mechanism

as in Nazari et al. (2018). Content based attention tries to mimic associative memory and is

designed to handle cases when an input to the sequence-to-sequence model is a set Vinyals

et al. (2015a). In particular, the current state of an urban network is coupled with the

memory state of RNNs about the sequence to calculate an alignment vector ct that assigns

the probabilities of nodes to visit next:

unt = v tanh(W (xnt ;ht)) ∀n ∈ N (3.5)

ct = softmax(ut) (3.6)

where v and W are trainable weight matrices.

For the problem under study, we define the static state of nodes as their location coor-

dinates and the initial charging levels of EVs at supplier nodes. Even though the charging

levels of EVs will change as EVs are taken to charging stations, only their initial values deter-

mine charging times. Therefore, we consider them as a static state of nodes. For a dynamic

representation of the states of nodes, we use the number of EVs, the number of drivers in a

shuttle, and the distance from the current node to other nodes. Our experimental studies

show that passing distance information as a dynamic state of nodes substantially reduces

training time. Figures 3.5 summarizes the sequence-to-sequence model of the shuttle routing

problem used in the actor network. In routing a fleet of shuttles, we also deploy a single

actor network, where a sequence of visited nodes Yt, includes nodes visited by all shuttles

up to time t.

51

3.4.4 Reward Function

Reward function along with sets of available actions reflects our aim to maintain the

feasibility and efficiency of routing decisions. Since the shuttle routing problem considers

both charging and relocation of EVs, reward function must not only reflect traveling times

between nodes, but also include waiting times. Therefore, we define reward function as the

negative of total time spent in the system starting when a shuttle or a fleet of shuttles leaves

a depot and ending when all shuttles are returned back to the depot with all drivers after

fulfilling all demander nodes. Then our aim is to maximize the negative of total time spent

in the system denoted by R. More formally we define reward function as follows, using

immediate rewards rt:

R =
T∑
t=1

rt (3.7)

where

rt =


−τ(nt−1, nt) if nt−1 6= nt

−wt if nt−1 = nt

and τt is traveling time and wt is waiting time at time t.

3.4.5 Training Algorithm

In training, we are interested in finding policy parameters θ that maximize the total

expected reward:

θ = argmax
θ

Eπθ [R]. (3.8)

Given the state of network X, we can write:

J(θ|x) = Eπ∼pθ(·|x)[R(π|x)] (3.9)

52

and

∇θJ(θ|x) = Eπ[Aπ∇θ log pθ(π|x)] (3.10)

Aπ = R(π|x)− V (x0). (3.11)

We use the REINFORCE algorithm with a baseline Williams (1992), which is the value

of the initial state of an urban network estimated by a critic with trainable parameters

θc. Algorithm 3 represents our training procedure, where the actor network with trainable

parameters θa represents policy π. In a batch training setting, the batch of instances is

generated by a data generator. Instances are passed through the simulator. Then, the

actor network produces probabilities of nodes to be visited by shuttles at each time step,

and the simulator is updated accordingly until the entire episode is finished. Then with the

received total reward for the selected actions, the parameters of the actor and critic networks

are updated. Unlike in the existing literature Haider et al. (2019), the algorithm does not

require splitting an urban network into sub-clusters for each shuttle, but instead deploys all

shuttles to serve the whole network. Also, utilizing a central controller that observes the

entire urban network state along with the masking scheme in the simulator allows efficiently

exploring joint action of all shuttles. For instance, if a node has been assigned to be visited

by a shuttle, then that node is masked for other shuttles.

3.5 Computational Studies

3.5.1 Data Generation and Configurations

We consider a 1 × 1 square mile network consisting of demander, supplier, and charger

nodes. We first specify the total number of nodes in the network and the number of demander

and charger nodes. We sample x, y coordinate of each node from a uniform distribution

with values ranging from 0 to 1. Similarly, we sample demander, charger, and supplier nodes

from a uniform distribution. For each supplier node we set the initial charging levels of EVs

53

Algorithm 3: Training Algorithm
Input: Initialize network parameters θa and θc for actor and critic networks

respectively. Set the maximum number of epochs, a batch size and the
maximum number of steps denoted as Mepochs, Mepis and T respectively;

1 for epochs = 1 to Mepochs do
2 Reset gradients dθa, dθc;
3 for m = 1 to Mepis do
4 data ∼ DataGenerator(ρ);
5 xm0 , A0 = simulator.reset(data);
6 Add xm0 to X0, set Rm = 0, set L to I;
7 for t=0 to T do
8 foreach i ∈ L do
9 ait, pit = actor network(xt, Ait);

10 Store pit in pm, remove ait from At;
11 xt+1, At+1, rt, tc = simulator.step(at);
12 Empty set L;
13 foreach i ∈ I do
14 if ait is complete at tc then
15 add i to L

16 else
17 ait+1 = ait and remove ait from At+1

18 Rm = Rm + rt;

19 Calculate V m(xm0 ; θc) using critic;

20 dθa =
1

Mepis

∑Mepis
m=1 (R

m − V m(xm0 ; θc))∇θa log p
m;

21 dθc =
1

Mepis

∑Mepis
m=1 ∇θc(R

m − V m(xm0 ; θc))
2;

54

Table 3.2: Hyperparamter values

Conv1D, LSTM hidden dim 128 Conv1D kernel size 1
Critic, linear hidden dim 128 Learning rate actor, critic 10−4

randomly between 1 and 5. We assume that EVs do not need charging and can be directly

taken to demander nodes if their charging levels exceed 3. Otherwise, EVs first need to

be taken to charger nodes, where all of them are charged until the charging level of 5 is

reached. For each charging level, we assign the charging time equal to the average traveling

time between all pairs of nodes in the network. We do not consider discharging rates in the

movements of EVs, while we assume the constant velocity for EVs equal to 45 miles/hour.

Computational experiments are conducted with 2 Intel Xeon E5-2630 2.2 GHz 20-Core

Processors, 32 GB RAM, and the Ubuntu 18.04.4 LTS operating system. All implementa-

tions are done in Python 3.7 using PyTorch 1.5. Our implementations of the critic network

have similarities to the actor network structure except for the use of LSTM. We first embed

the initial static state of the urban network using 1D convolution networks and then pass

it to the attention mechanism. We pass the output of the attention mechanism through a

sequence of feed-forward networks to obtain the final estimate for a value function. Table

3.2 represents the hyperparameters used for training, which are the same as in Nazari et al.

(2018). We train RL agents on networks of various sizes and difficulty levels. For each prob-

lem class defined by the size of a network, we consider instances with three different levels of

difficulty. Cases when there is an abundant presence of charging stations than the number

of EVs requiring charging we call easy instances. Similarly, cases when there is an exact

number of charging stations as the number of demander nodes we call medium difficulty

instances. Finally, in cases when there is a less number of charging stations than the number

of demander nodes, we call them hard instances. The descriptions of difficulty levels are

found in Table 3.3.

55

Table 3.3: Difficulty levels description, where De, Ch, Su, and Su′ denote the set of deman-
ders, chargers, suppliers, and suppliers with EVs that require charging, respectively.

Easy Medium Hard

|N | |De| |Ch| |Su| |Su′| |De| |Ch| |Su| |Su′| |De| |Ch| |Su| |Su′|

23 7 7 8 4 7 7 8 8 8 6 8 8
50 16 16 17 8 16 16 17 17 17 15 17 17
100 33 33 33 16 33 33 33 33 33 32 34 34

3.5.2 RL Agents and Benchmarks

We train three types of agents using the proposed RL models. The first agent denoted as

gen-RL is trained on all three difficulty levels, but on a fixed network size. The second agent

denoted as net-RL is trained on networks of various sizes, but it is tailored to a specific

difficulty level. The last agent denoted as RL is trained on a fixed network size and on

a specific difficulty level. For our computational studies, we consider a benchmark from

Haider et al. (2019). The benchmark model denotes as Sim represents a joint model that

solves the EVs relocation and the shuttle routing problems simultaneously. To solve multi-

shuttle routing problems, the heuristic splits an urban network into some clusters and solves

a single-shuttle routing problem for each cluster. However, there are some limitations to

the method. One of them is related to the inflexibility of the solutions when drivers that

have been dropped off from one shuttle cannot be picked up by other shuttles. Another

disadvantage is related to charger nodes. The heuristic can only handle cases when the

number of charger nodes is not less than the number of EVs that must be charged.

3.5.3 Results on Random Instances

Figure 3.6 shows training rewards for the multi-shuttle problems on the network with 23

nodes and 3 drivers. Overall, training time depends on the network size, its structure, and

the features passed to the actor network. Using distance information from the current node

56

Table 3.4: Comparison of RL agents in terms of total time spent in the system, the average
of 128 test instances are reported. In bold are the best results.

Easy Medium Hard

|N | |I| |Dr| net-RL gen-RL RL net-RL gen-RL RL net-RL gen-RL RL

23 1 3 9.29 8.34 7.70 14.63 11.75 10.27 16.01 13.73 12.32
2 3 6.01 5.79 5.40 7.93 8.45 6.93 8.89 9.00 8.34
3 2 5.48 5.28 5.21 7.02 7.58 6.38 8.33 8.11 7.79

50 1 3 14.97 13.96 13.77 20.35 19.36 17.93 22.60 20.05 18.92
2 3 8.54 8.21 8.41 11.81 10.81 11.23 12.15 11.76 11.96
3 2 7.22 6.90 6.89 9.58 9.41 9.23 10.33 9.89 9.77

100 1 3 23.16 22.98 22.18 30.62 32.33 30.67 31.53 32.30 36.67
2 3 12.91 14.25 12.92 17.55 18.42 17.54 17.21 18.79 17.90
3 2 10.23 10.21 10.21 13.39 13.73 13.33 13.69 13.67 14.94

to other nodes in the actor network results in better rewards compared to when not passing

such information.

To compare different RL agents’ performances, we conduct experiments on various net-

work sizes and the degree of difficulty of instances and measure the mean of the total time

spent in the system out of 128 instances. Table 3.4 shows the experiments’ results. In most

instances, an RL agent trained on a specific size and a specific instance difficulty level tends

to perform the best. We observe that net-RL agents, trained on various network sizes, tend

to perform better on larger network sizes, while gen-RL agents, trained on various difficulty

levels, can be competitive on medium-sized networks. As the network size increases, the

results show that using net-RL and gen-RL agents can be beneficial. For the rest of the

experiments, we use RL agents.

Table 3.5 illustrates the performance of the RL solutions with those of the heuristic opti-

mization method, labeled Sim. The reinforcement learning approach can solve all instances

of the problem, while the optimization method can handle only easy and medium cases.

Moreover, for easy and medium cases measured in the mean of total time spent in the sys-

tem, the RL solutions perform better than the heuristic optimization solutions. We also note

that the derived RL solutions do not solve for optimal relocation of EVs and are only based

57

0 5 10 15 20 25
Episodes

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Re
wa

rd
s

without
with

Figure 3.6: Training rewards with and without distance as an input

Table 3.5: RL model vs. the heuristic optimization in terms of total time spent in the system,
the percentages of winning instances and computational time in seconds, the average of 128
test instances are reported. In bold are the best results.

Easy Med Hard

Mean Win % Time, s Mean Win % Time, s Mean Time, s

|N | |I| |Dr| Sim RL RL-Sim Sim RL Sim RL RL-Sim Sim RL Sim RL Sim RL

23 1 3 8.81 7.70 85.94% 7.07 0.01 12.39 10.27 94.53% 13.98 0.02 – 12.32 – 0.02
2 3 5.72 5.40 65.63% 1.61 0.04 7.43 6.93 73.44% 3.31 0.04 – 8.34 – 0.09
3 2 5.27 5.21 51.56% 0.91 0.06 6.39 6.38 48.44% 1.71 0.05 – 7.79 – 0.11

50 1 3 17.34 13.77 96.09% 48.43 0.05 24.59 17.93 100.00% 98.61 0.05 – 18.92 – 0.06
2 3 9.19 8.41 74.22% 11.62 0.21 12.25 11.23 73.44% 23.47 0.16 – 11.96 – 0.25
3 2 6.96 6.89 53.13% 5.35 0.20 9.25 9.23 50.00% 10.75 0.21 – 9.77 – 0.35

100 1 3 34.20 22.18 100.00% 152.15 0.16 45.97 30.67 100.00% 599.36 0.17 – 36.67 – 0.26
2 3 16.11 12.92 100.00% 66.13 0.44 21.63 17.54 96.09% 118.68 0.44 – 17.90 – 0.55
3 2 11.71 10.21 86.72% 28.23 0.92 15.63 13.33 92.97% 53.86 1.03 – 14.94 – 1.02

58

on predefined rules, while the optimization heuristic solves for both the shuttle routing and

EV relocation problems.

Table 3.5 shows the performance comparison of Sim and RL models in terms of per-

centages of winning instances. For instance, in an RL-Sim pair comparison, the value of

cells under the column indicates the percentages of instances when the RL model performed

at least equally to Sim model out of 128 test instances. As shown in Table 3.5 the RL

model performs better than the heuristic method in at least 50% of all instances, except one

instance.

To show the generation of the instantaneous solutions using RL models, we measured

computation time. Table 3.5 demonstrates the computation time it takes to derive a solution

under Sim and RL models. We report an average time to solve an instance out of 128

instances in total. The difference in deriving solutions between Sim and RL models increases

up to 585 times in the case of a single shuttle routing in a network with 100 nodes for Easy

instances.

We also compare the effects of the number of drivers and difficulty levels on the trained

models. In particular, we train models with a specific number of drivers on easy, medium,

and hard instances on a fixed network size and check these models’ performances against

the models with varying a number of drivers and difficulty levels. For example, in Figure

3.7 rows indicate the problems’ configurations in testing and columns indicate the problems’

configurations in training datasets. The cells corresponding to a row and column show the

percentages of instances when a trained model outperformed the model specifically trained

for a test dataset. As we observe, models trained on specific difficulty levels tend to perform

better on similar instances with a different number of drivers compared to on test models

with the same number of drivers, but different difficulty levels.

The sample solution for a single-shuttle case, where 4 EVs in an urban network require

charging, is shown in Figure 3.8. A shuttle with 3 drivers leaves the depot and visits supplier

nodes first, followed by a charger node. By interchangeably visiting nodes thorough the

59

Figure 3.7: The number of drivers vs. difficulty levels.

Table 3.6: The Amsterdam dataset structure and RL model vs. Sim on the dataset in terms
of total time spent in the system.

Weekdays Weekends

|N | |I| |Dr| Sim RL Sim RL

170 1 5 420.08 416.23 411.59 433.63
2 3 207.63 182.39 224.88 185.06
3 2 142.90 136.52 153.38 142.20

9

14

6

7

8

13

11

17
15

2

4

3

5
10

12

16

1

Demander
Supplier
Charger
Depo
Shuttle
EV

Figure 3.8: Example solution for a single-shuttle case, |N | = 23, |Dr| = 3 and |I| = 1.

60

7

5 10

2

13

11

9

6

8

12

4 3

1

7

5 10

7

9

2

4

2

6

13

11

3

9

6

8

5

12

4 3

8

1 1

Demander
Supplier
Charger
Depo
1st shuttle
2nd shuttle
EV

Figure 3.9: Example solution for a multiple-shuttle cases, |N | = 23, |Dr| = 3 and |I| = 2.

network, the shuttle returns to the depot after picking up drivers from demander nodes. We

can observe the versatility of the produced solutions by looking at the charging stations.

For instance, a driver dropped off at the first visited supplier node relocates the EV to a

charging station, waits there until the EV is charged, and then relocates it to a demander

node. Only then the driver is picked up by a shuttle. In another example, the driver dropped

off at the second visited supplier node is picked up immediately at a designated charging

station by a shuttle. Similarly, Figure 3.9 represents the sample solution for the case with

2 shuttles. Each shuttle visits supplier nodes first until it runs out of drivers. Then each of

them interchangeably visits charger, supplier, and demander nodes and returns to the depot.

The flexibility of the produced solutions can be observed when a driver originally dropped

at the second visited supplier node by the first shuttle is picked up at a charging station by

the second shuttle.

3.5.4 Results on the Amsterdam Cases

We also use real data of FFEVSS representing car2go operations in Amsterdam, the

Netherlands, which was collected between May 5th and October 29th, 2016. From the

61

actual data, we collect locations of supplier, demander and charger nodes and reduce the

network by removing EVs that do not need relocation/charging. We also group the data

into weekdays and weekends, which results in 14 and 12 instances for the respective groups

that we use as test data for the experiments. To train an RL agent, we generate on the fly

training data by sampling locations of nodes using weekdays data by extracting the CDF

of the distribution for nodes’ coordinates. We also assign node types randomly by following

the similar structure observed in weekdays data. In particular, the training and testing data

have 170 nodes with 71 supplier, 71 demander, and 27 charger nodes. Table 3.6 presents the

results of the RL agent performance on the Amsterdam dataset. In all instances with except

one, the RL agent performs better as compared to the heuristic; overall, RL performs 6.17%

better. The poor performance of the RL agent in the instance with a single shuttle and 5

drivers on weekends may be improved by training with more weekend data.

62

Chapter 4: Hybrid Model for Solving Travelling Salesman Problem with Drone

4.1 Introduction

Last mile delivery, which refers to the transportation of products from a distribution cen-

ter to the doorstep of a customer, is an integral part of the supply chain. However, last mile

delivery is often not cost-effective due to transportation costs associated with individualized

shipments, complex routes, and various destinations. Therefore, emerging technologies such

as unarmed aerial vehicles (drones) are viewed as a potential breakthrough in reducing inef-

ficiencies in last mile delivery. For instance, Amazon launched the Prime Air program which

aims to deliver parcels using drones Amazon (2021). Similarly, Wing owned by Alphabet

delivers books, meals, and medicine using drones Wing (2021). The steady development

of drone technology including its capacity and flying range enables transporting of various

products. For instance, HorseFly drone, used by UPS can carry packages up to 10 pounds

and has a flight time of 30 minutes UPS (2021).

While drones certainly have high speed and do not require any infrastructure such as

roads, bridges, etc., they also possess some limitations. Drones have a limited flying range,

which depends on battery life. Also, drones cannot carry parcels of many customers, thus

they must return every time to a distribution center to pick up customer orders. On the

other hand, trucks, which are traditionally used for last mile delivery, have a large capacity

to store all customer orders and can transport goods to long distances. However, trucks

usually have slow speeds due to congestion and require built infrastructure to reach their

destinations. Therefore, combining drone and truck is a promising tandem to improve the

efficiency of last mile delivery. Indeed, UPS has started testing combining drone and truck

to deliver goods UPS (2021). In this setting, a driver of the truck loads a package to drone

63

and sends drone to an autonomous route to an address. Meanwhile truck can serve other

customers. When drone returns to truck, the driver swaps the battery of drone and launches

the next delivery.

To effectively deploy trucks and drones together for last mile delivery, we must answer

several challenging questions such as which customers should be served by drone, which

customers should be served by truck, where to recharge drone, how to route both drone

and truck, and etc. In the literature, the problem of routing of truck and drone is known

as Travelling Salesman Problem with Drone (TSPD) Agatz et al. (2018). The objective of

TSPD is to serve customers in a minimal time, while truck and drone are subjected to routing

constraints. TSPD is NP-hard problem Agatz et al. (2018), highlighting the need to develop

heuristic methods that can scale to large urban networks. Indeed, several exact and heuristic

methods have been proposed to solve TSPD in the operations research literature Poikonen

et al. (2019); Agatz et al. (2018). However, the proposed solutions fail to generalize and they

solve each instance of TSPD from scratch while suffering from either long computational

time or low solution quality. Therefore, in this study, we propose using deep reinforcement

learning (RL) to solve TSPD, where deep neural networks are utilized to process complex

urban network information to help an RL agent to route both truck and drone. Unlike

methods coming from the operations research literature, the proposed model generalizes to

all instances coming from the same distribution and the trained RL model produces good

quality solutions in a matter of seconds.

From a reinforcement learning modeling perspective, TSPD possesses some unique chal-

lenges. For instance, the RL agent must learn how to route drone and truck that operate in

a shared urban environment. In this case, we must promote cooperation in drone and truck

routing decisions while constrained by capacity and flying time limits. In particular, the

learned routing policies must consider the timely recharging of drone. Also, unlike regular

TSP, where after visiting each customer, that customer no longer needs to be revisited, TSPD

allows revisiting some customers, presenting a wider variety in routing decisions. Lastly, due

64

to the distinct characteristics of truck and drone, the RL agent must efficiently explore all

resulting routing opportunities.

In this study, we present a novel deep reinforcement learning model called the hybrid

model to solve TSPD. The hybrid model consists of an attention encoder and LSTM decoder,

which allows to learning policies to promote cooperation in routing truck and drone. As our

computational studies show, the proposed hybrid model works well in solving regular TSP

and outperforms the existing methods in solving TSPD.

4.2 Related Work

Before presenting the proposed model, we briefly introduce some related studies to the

problem and the method.

4.2.1 TSPD

TSPD, in general, has many variants depending on the number of drones and trucks

used and routing operations involved in the literature Chung et al. (2020). Most studies

focus on a single truck and single drone variation of the problem and consider only customer

locations as possible points for recharging drone. Also, it is common to assume that drone

can carry only a single parcel at a time. Typically, TSPD is formulated as a mixed-integer

program and is known to be NP-hard. Therefore, the existing exact methods solve TSPD

with less than 20 customers, while relying on heuristic methods to handle large instances.

Some heuristics Agatz et al. (2018); Poikonen et al. (2019); Ha et al. (2018) first solve regular

TSP to generate a feasible solution and then assign customers to be served either by drone

or truck, while another set of heuristics first assign customers to either drone or truck and

then develop routes Wang and Sheu (2019). Nevertheless, the presented heuristics fail to

generalize and each instance of the problem must be resolved from scratch.

65

4.2.2 RL for Combinatorial Optimization Problems

Recently reinforcement learning has received increased attention to solve combinatorial

optimization problems. For instance, Bello et al. (2016) proposed using Pointer Networks

Vinyals et al. (2015b) and policy gradient methods to solve TSP. Dai et al. (2017) proposed

graph embedding trained with DQN algorithm to solve a group of combinatorial problems.

Later, Nazari et al. (2018) showed inefficiencies of Pointer Networks and proposed adopting

Sequence to Sequence models with an attention mechanism. In particular, Nazari et al.

(2018) removed LSTM cells in the encoder and instead used element-wise projections, while

a LSTM cell served as a decoder to store the sequence of visited nodes. Dai et al. (2017);

Deudon et al. (2018) presented attention models to solve combinatorial problems. In par-

ticular, Kool et al. (2018) uses several layers of multi-head attention to encode a graph

and proposes the idea of context node used by a decoder to output probabilities of visiting

the next node. However, all the studies above focus on well-known problems such as TSP,

Vehicle Routing Problem (VRP) and route only a single-vehicle. Another set of studies fo-

cus on routing a fleet of vehicles Sykora et al. (2020); Bogyrbayeva et al. (2020) consisting

of homogeneous vehicles. However, TSPD considers routing multiple heterogeneous vehi-

cles including truck and drone, which have different properties including different routing

constraints.

4.3 The Hybrid Model

We consider a fully connected graph G with a set of nodes N representing customer

locations, where the distances between nodes are computed using the Euclidean distance.

Given the state of a graph x, we aim to learn the routing policy of drone and truck,π, and

generate the sequence of nodes to be visited Y . Then using the chain rule, we aim to learn

the following conditional probability parametrized by θ:

66

Figure 4.1: An overview of the hybrid model.

πθ(YT |G) =
T∏
t=0

p(yt+1|xt, Yt) (4.1)

The state of a graph xt at time t consists of the static and dynamic features of nodes

such as coordinates and distances from other nodes. We start with an empty set Y at time

t = 0. We develop the hybrid model consisting of an attention-based encoder and a LSTM

cell as a decoder to learn πθ as shown in Figure 4.1. Encoder embeddes the static elements

of a graph including the locations of customers. Decoder takes as an input the coordinates

of the last visited node and stores the sequence of visited nodes. The outputs of encoder

and decoder are passed to the attention which outputs the probabilities of visiting the next

node.

4.3.1 Encoder

Given a graph with a set of nodes N , we have coordinates of each node in 2-dimensional

Euclidean space. Let xn represent x and y coordinates for node n. To embed such a fully

connected graph we start from the initial embeddings of the nodes using linear projection:

h0
n = W xx+ bx ∀n ∈ N (4.2)

67

(a) The structure of Encoder. (b) m-th head of MHA in the first layer.

Figure 4.2: Encoder overview.

where W x and bx are learnable parameters. These initial embeddings of nodes h0 are then

passed through L number of attention layers. Each attention layer, l, consists of two sublay-

ers: a multi-head attention layer and a fully connected feed-forward layer as shown in Figure

4.2a.

A multi-head attention (MHA) layer takes as an input the output of the previous layer

(either output from the initial embedding or the output of the previous attention layer) and

passes messages between nodes. In particular, for each input to MHA we compute the values

of q ∈ Rdq ,k ∈ Rdq ,v ∈ Rdv or queries, keys and values respectively by projecting the input

hn:

qn = WQhn, kn = WKkn, vn = W V hn ∀n ∈ N (4.3)

where, WQ,WK ,W V are trainable parameters with sizes (dk × dh), (dk × dh) and (dv × dh)

respectively. From keys and queries we compute compatibility between nodes i and j as

follows since we consider the fully connected graph:

ui,j =
q>i kj√
dk

∀i, j ∈ N (4.4)

68

We use compatibility ui,j to compute the attention weights, ai,j ∈ [0, 1] using softmax:

ai,j =
euij∑
j′ e

u
i,j
′ (4.5)

Then a message received by node n is a convex combination of messages received from all

nodes as shwon in Figure 4.2b:

h
′

n =
∑
j

an,jvj (4.6)

Instead of using a single head, we use a multi head attention with head size M , which allows

to pass different messages from other nodes. Then after computing messages from each head

using Equation 4.5, we can combine all massages coming to node n as follows:

MHAn(h1, . . . ,hN) =
M∑
1

WO
mh

′

nm (4.7)

The output of the MHA sublayer along with skip connection is passed through Batch Nor-

malization:

ĥ
l

n = BNl(MHA(hl−11 , . . . ,hl−1N)) (4.8)

The output of Batch Normalization then passed through fully connected feed forward (FF)

network with ReLu activation function. We again apply skip connecion and batch normal-

ization to the output of FF.

hln = BNl(ĥ
l

n + FFl(ĥ
l

n)) (4.9)

where

FFl(ĥ
l

n)) = W ff,1 · ReLU(W ff,0ĥ
l

n + bff,0) + bff,1 (4.10)

The overview of encoder is shown in Figure 4.2.

69

4.3.2 Decoder

Given the encoder outputs as embeddings of each node in the graph, we pass to the

LSTM the embedding of the last node selected hLlt .

h̃t+1, c̃t+1 = rnn(hLlt , (h̃t, c̃t)) (4.11)

where h̃t and c̃t correspond to the hidden and cell states of the LSTM at time t.

After applying dropout to the output of RNN, we pass its hidden state to attention along

with embeddings of all nodes and the distance information from the current location of a

decision taker :

ai,j = v>a tanh(Wa[h; h̃t+1;W
ddi,j]) (4.12)

where i represents the current location of a decision taker, h is the embeddings of all nodes

in the graph, h̃t+1 is a hidden state of LSTM, di,j is the distance from the current node to all

other nodes, va,Wa,W
d are trainable parameters. Then the computed attention is passed

through softmax to produce the probabilities of visiting next node.

pi =
eaij∑
j′ e

a
i,j
′ (4.13)

Figure 4.3 gives the overview of decoder.

4.4 The Central Controller for Routing

To route both drone and truck in a shared urban environment, we deploy the idea of

a central controller. Then a central controller observes the entire graph and cooperatively

routes drone and truck to finish serving customers in a minimal time. We can formalize

routing drone and truck using a central controller as Markov Decision Process (MDP), where

only the current state of the graph defines the next node to be visited. Then we aim to learn

directly the policy to route drone and truck using the policy gradient methods. In particular,

70

Figure 4.3: Decoder overview

actor network in a form of the hybrid model learns the routing policy, while critic estimates

the total time needed to serve all customers given the initial state of the urban network.

Algorithm 4: Distributed training for TSPD
Input: Generate a set of K multiple parallel agents, A = {a1, . . . , aK}. Initialize

actor and critic networks parameters {θa1 , . . . , θaK}, {θc1, . . . , θcK} of A. Set
the maximum number of epochs, Mepochs;

1 for epochs = 1 to Mepochs do
2 Initialize a set of test rewards, R = {};
3 for k = 1 to K do
4 Reset gradients dθak, dθck;
5 Bk ∼ DataGenerator(ρ);
6 RolloutUpdate(ak, Bk);
7 rk = Test(ak);
8 R = R ∪ rk;
9 j ← argmin(R);

10 for k = 1 to K do
11 θak ← θaj ;
12 θck ← θcj

For an efficient exploration of an RL agent, we trained the model in a distributed setting

as shown in Algorithm 4 . First, we generate multiple RL agents in a parallelized manner

with the same initial weights. Then each agent rollouts a batch of episodes with different

71

Algorithm 5: RolloutUpdate
Input: Batch of data B with a number of episodes denoted Mepis, an agent id k.

Set the maximum number of steps denoted, T ;
1 Create an empty list logs, set R = 0;
2 Initialize (h̃0, c̃0);
3 x0, mask0 = simulator.reset(B);
4 for t=0 to T do
5 atrt , log, (h̃t′ , c̃t′) = actor-network(xtrt , masktrt , (h̃t, c̃t));
6 add log to logs;
7 adt , log, (h̃t, c̃t) = actor-network(xdt , maskdt , (h̃t′ , c̃t′));
8 add log to logs;
9 xt+1, mask, rt = simulator.step(atrt , adt);

10 R = R + rt;

11 logs =
∑2T

t=0 logst;
12 Calculate V (x0; θ

c
k) using critic;

13 dθak =
1

Mepis

∑Mepis
m=1 (R

m − V m(xm0 ; θ
c
k))∇θak

logsm;

14 dθck =
1

Mepis

∑Mepis
m=1 ∇θck

(Rm − V m(xm0 ; θ
c
k))

2;

data instances generated by a distrubution denoted as ρ and updates its weights by the

REINFORCE algorithm (Williams, 1992) using the advantage function as a baseline as

shown in Algorithm 5. Each agent tests the updated weights with a shared test instance.

Finally, we pick the agent with the best testing reward, and copy the weight of the best

agent to the weight of the other agents. We repeat this procedure iteratively each epoch

during training.

4.5 Computational Experiments

4.5.1 Data Generation and Configurations

We consider a graph on 100×100 square miles, where x and y coordinates of each node are

sampled from a uniform distribution with values ranging from 1 to 100. Similarly, we sample

x and y coordinates of depot from a uniform distribution with values ranging from 0, 1. For

the general setting of TSPD, we consider an infinite time range for drone. However, drone

can visit a single customer per launch and after serving a customer it must be recharged.

72

Each node in a graph can be visited by either drone, truck or by both, but only once. Then

we develop a masking scheme to restrict available nodes to be visited by drone or truck

according to the above assumptions.

Our implementations are done in Python 3.8 using PyTorch 1.5. The architecture of the

critic network has similarities to the actor network, except we do not use recurrent neural

networks. The goal of the critic network is to estimate the total time needed to serve all the

customers and return back to depot, which is achieved through embedding the initial state

of the graph. In particular, we embed x and y coordinates of the nodes through element-

wise projections with 1D convolution networks whose outputs are passed through attention

followed by feed-forward networks.

4.5.2 Benchmarks and RL Methods

There are exisist two groups of methods to solved TSPD. The first group solves the prob-

lem exactly and allows revisiting nodes visited both by drone and truck (Agatz et al., 2018).

The second group solves the problem using the heuristic methods by splitting the graph into

several subgraphs Poikonen et al. (2019). For instance, divide-and-conquer heuristic (DCH)

of Poikonen et al. (2019) splits the network into n-groups and solves each subgroup using

the TSP-ep-all heuristic of Agatz et al. (2018). The TSP-ep-all heuristic aims to partition

exactly a graph into nodes to be served by drone and truck, by considering different com-

binations. Therefore, TSP-ep-all provides high-quality solutions on small-sized graphs and

fails to generalize into large-sized graphs.

There are exist two methods by which we sample solutions from the trained hybrid model.

In the first method called greedy, we always select nodes with the highest probabilities to

visit at each time step. In the second method, called sampling, we sample several solutions

from the trained model, by selecting randomly nodes to visit from output probabilities. Then

we select the sample solution with the lowest reward as the final solution.

73

Table 4.1: The optimal solutions vs. Reinforcement Learning solutions on a grpah with 11
nodes.

Instance Optimal RL Greedy Gap Greedy, % RL Sampling Gap Sampling, %

1 221.19 223.41 1.00 223.41 1.00
2 205.76 205.76 0.00 205.76 0.00
3 192.96 203.93 5.68 200.01 3.65
4 241.26 241.26 0.00 241.26 0.00
5 248.14 248.82 0.27 248.82 0.27
6 217.69 217.69 0.00 217.69 0.00
7 237.34 244.95 3.21 237.34 0.00
8 214.77 226.64 5.53 225.36 4.93
9 256.34 269.80 5.25 256.83 0.19
10 227.90 227.90 0.00 227.90 0.00

mean 226.33 231.01 2.09 228.44 1.01

4.5.3 Results

First, we measure the performance of the hybrid model against the optimal solutions

(Agatz et al., 2018). In a graph with 11 nodes with 10 instances shown in Table 4.1, the

greedy RL solutions result in 2.09% optimality gap, while the sampling method reduced the

optimality gap by half. Figure 4.4, represents the optimal solution of 6-th instance found by

the greedy RL method. After leaving the depot, drone and truck visit customer locations and

drone returns back to the customers served by truck to recharge. We also, note that drone

mostly serves customers located far away from depot and in total travels longer distances

compared to truck.

In the second set of experiments we compare the performance of the proposed model

against the heuristics from the operations research literature in graphs of various sizes. As

shown in Table 4.2, the sampling RL method outperforms the existing heuristic in a majority

of instances. Table 4.3 shows the computational time of heuristics and reinforcement learning

agents, where a greedy solution can be invoked instantaneously.

74

4

3

6

5

2

1
10

8

4

76

2

3

5

4

6
95

2

3

1

1

Combined Node
Truck Node
Drone Node
Depot
Truck Route
Drone Route

Figure 4.4: An example optimal solution produced by RL.

Table 4.2: The heuristic solutions vs. reinforcement learning solutions on a grpah with a
various number of nodes. The average of 100 instances are reported.

N TSP-ep-all DCH RL Greedy Gap Greedy, % RL Sampling Gap Sampling %

11 230.57 - 234.48 1.89 229.15 -0.41
15 255.53 - 262.63 2.80 256.03 0.23
20 281.71 292.11 288.55 2.46 282.10 0.16
50 - 423.89 439.20 3.82 412.29 -2.53
100 - 570.90 568.60 -0.48 548.92 -3.85

Table 4.3: The computational time of the heuristics and reinforcement learning agents on
a grpah with a various number of nodes in terms of CPU time, sec. The average of 100
instances are reported.

N TSP-ep-all DCH RL Greedy RL Sampling

11 0.12 - 0.00 1.13
15 0.50 - 0.00 1.61
20 0.57 0.04 0.00 1.72
50 - 0.10 0.00 5.27
100 - 0.34 0.02 20.15

75

Chapter 5: Conclusions and Future Research Directions

In this dissertation, we use optimization and machine learning approaches to solve prob-

lems in urban transportation.

In the first problem, we propose the design of an iterative combinatorial auction for the

fractional ownership of AVs. The auction allows bidding for combinations of time slots for

customers with no restrictions on their lengths. Also, the iterative nature of the auction

enables customers to learn the bidding prices needed to win interested time slots. We also

devise practical tools such as algorithms and user agents to help bidders and an auctioneer

apply the auction in the real life.

As a future direction, the auction can include machine learning methods to learn the

bidding behavior of customers to help them to generate new time slots to bid and learn

the bidding prices for the packages of time slots. Also, the Winner Determination Problem

solution methods can be advanced to improve the solution quality for auctions with multiple

homogenous vehicles. We also need to investigate how the properties of the auction will

change if a fleet of heterogeneous vehicles is offered.

In the second problem, we proposed a reinforcement learning approach to route a fleet

of homogenous shuttles to rebalance FFEVSS. The proposed methods allow solving the

challenging task of relocating and efficiently recharging EVs in a static network in the absence

of customer demand. Also, the flexibility of the reinforcement method enables to solve the

hard instances of the problem, when charging stations must be reused.

In the future, the problem can be extended to the dynamic version of the problem, when

we need to rebalance the system in the presence of customer demand. Also, the rule-based

76

approach to decide where to relocate EVs can be replaced with a more sophisticated method

that will take into account the long-term rewards associated with relocating EVs.

In the last problem, we develop a novel hybrid model to route drone and truck to serve

customers for last mile delivery. The hybrid model allows to cooperatively route drone

and truck through encoding the graph using multi-head attention and decoding with the

combination of a LSTM cell and attention. The proposed method produces good quality

solutions and scales on large instances of the problem.

The hybrid model can be later applied to route multiple drones and trucks. Also, it

will be interesting to see other applications involving routing heterogenous vehicles being

solved by the hybrid model and the comparison of its results with other optimization and

reinforcement learning methods.

77

References

Agatz, N., Bouman, P., Schmidt, M., 2018. Optimization approaches for the traveling

salesman problem with drone. Transportation Science 52, 4, 965–981.

Akbar, A., Aasen, A.K.A., Msakni, M.K., Fagerholt, K., Lindstad, E., Meisel, F., . An

economic analysis of introducing autonomous ships in a short-sea liner shipping network.

International Transactions in Operational Research n/a, n/a. https://onlinelibrary.wiley.

com/doi/pdf/10.1111/itor.12788.

Amazon, 2021. Amazon Prime Air. https://www.amazon.com/Amazon-Prime-Air/b?ie=

UTF8&node=8037720011. Accessed: 2021-03-10.

An, N., Elmaghraby, W., Keskinocak, P., 2005. Bidding strategies and their impact on

revenues in combinatorial auctions. Journal of Revenue and Pricing Management 3, 4,

337–357.

Ausubel, L.M., Cramton, P., Milgrom, P., 2006. The clock-proxy auction: A practical

combinatorial auction design. Handbook of Spectrum Auction Design pp. 120–140.

Ausubel, L.M., Cramton, P., Pycia, M., Rostek, M., Weretka, M., 2014. Demand reduction

and inefficiency in multi-unit auctions. The Review of Economic Studies 81, 4, 1366–1400.

Ausubel, L.M., Cramton, P., et al., 2011. Activity rules for the combinatorial clock auction.

Department of Economics, University of Maryland, Discussion Paper

Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S., 2016. Neural combinatorial optimiza-

tion with reinforcement learning. arXiv preprint arXiv:1611.09940

78

https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12788
https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12788
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A., 2012. Julia: A fast dynamic language

for technical computing. arXiv preprint arXiv:1209.5145

Bogyrbayeva, A., Jang, S., Shah, A., Jang, Y.J., Kwon, C., 2020. A reinforcement learning

approach for rebalancing electric vehicle sharing systems. arXiv preprint arXiv:2010.02369

Buşoniu, L., Babuška, R., De Schutter, B., 2010. Multi-agent reinforcement learning: An

overview. In Innovations in multi-agent systems and applications-1. Springer, pp. 183–221.

Cantillon, E., Pesendorfer, M., 2006. Auctioning bus routes: The London experience. Com-

binatorial auctions

car2go, 2021a. Do you know: What a “relocation” is and which car2gos are relocated? https:

//blog.car2go.com/2017/06/26/know-relocation-car2gos-relocated/. Accessed: 2021-02-

24.

car2go, 2021b. The electric drive in Montreal. https://www.car2go.com/NA/en/nextgen/.

Accessed: 2021-02-24.

Center Microeconomic Data , 2018. Household Debt and Credit. Technical report.

Chianese, Y., Avenali, A., Gambuti, R., Palagi, L., 2017. One-way free floating car-sharing:

applying vehicle-generated data to assess the market demand potential of urban zones. In

2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),

Vol. 2, IEEE, pp. 777–782.

Chung, S.H., Sah, B., Lee, J., 2020. Optimization for drone and drone-truck combined

operations: A review of the state of the art and future directions. Computers & Operations

Research p. 105004.

Clarke, E.H., 1971. Multipart pricing of public goods. Public Choice 11, 1, 17–33.

Cramton, P., 2013. Spectrum auction design. Review of Industrial Organization 42, 2,

161–190.

79

https://blog.car2go.com/2017/06/26/know-relocation-car2gos-relocated/
https://blog.car2go.com/2017/06/26/know-relocation-car2gos-relocated/
https://www.car2go.com/NA/en/nextgen/

Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L., 2017. Learning combinatorial opti-

mization algorithms over graphs. arXiv preprint arXiv:1704.01665

Day, R.W., Cramton, P., 2012. Quadratic core-selecting payment rules for combinatorial

auctions. Operations Research 60, 3, 588–603.

De Vries, S., Vohra, R.V., 2003. Combinatorial auctions: A survey. INFORMS Journal on

Computing 15, 3, 284–309.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M., 2018. Learning

heuristics for the tsp by policy gradient. In International conference on the integration

of constraint programming, artificial intelligence, and operations research, Springer, pp.

170–181.

Dunning, I., Huchette, J., Lubin, M., 2017. JuMP: A modeling language for mathematical

optimization. SIAM Review 59, 2, 295–320.

Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S., 2018. Counterfactual

multi-agent policy gradients. In Thirty-second AAAI conference on artificial intelligence.

Folkestad, C.A., Hansen, N., Fagerholt, K., Andersson, H., Pantuso, G., 2020. Optimal

charging and repositioning of electric vehicles in a free-floating carsharing system. Com-

puters & Operations Research 113, 104771.

Gansterer, M., Hartl, R.F., 2017. Collaborative vehicle routing: a survey. European Journal

of Operational Research 268, 1–12.

Groves, T., 1973. Incentives in teams. Econometrica: Journal of the Econometric Society

41, 4, 617–631.

Gu, Y., Goez, J.C., Guajardo, M., Wallace, S.W., . Autonomous vessels: state of the art and

potential opportunities in logistics. International Transactions in Operational Research

n/a, n/a. https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12785.

80

https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12785

Gupta, J.K., Egorov, M., Kochenderfer, M., 2017. Cooperative multi-agent control using

deep reinforcement learning. In International Conference on Autonomous Agents and

Multiagent Systems, Springer, pp. 66–83.

Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H., 2018. On the min-cost traveling salesman

problem with drone. Transportation Research Part C: Emerging Technologies 86, 597–621.

Haider, Z., Charkhgard, H., Kim, S.W., Kwon, C., 2019. Optimizing the relocation

operations of free-floating electric vehicle sharing systems. Available at SSRN: http:

//dx.doi.org/10.2139/ssrn.3480725.

Hara, Y., Hato, E., 2018. A car sharing auction with temporal-spatial OD connection

conditions. Transportation Research Part B: Methodological 117, 723–739.

He, L., Ma, G., Qi, W., Wang, X., 2020. Charging an electric vehicle-sharing fleet. Manu-

facturing & Service Operations Management

Herrmann, S., Schulte, F., Voß, S., 2014. Increasing acceptance of free-floating car sharing

systems using smart relocation strategies: a survey based study of car2go hamburg. In

International conference on computational logistics, Springer, pp. 151–162.

Hershberger, J., Suri, S., 2001. Vickrey prices and shortest paths: What is an edge worth? In

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, IEEE,

pp. 252–259.

Hoffman, K., Menon, D., van den Heever, S., Wilson, T., 2006. Observations and near-direct

implementations of the ascending proxy auction. Combinatorial Auctions pp. 415–450.

James, J., Lam, A.Y., Lu, Z., 2018. Double auction-based pricing mechanism for autonomous

vehicle public transportation system. IEEE Transactions on Intelligent Vehicles 3, 2, 151–

162.

81

http://dx.doi.org/10.2139/ssrn.3480725
http://dx.doi.org/10.2139/ssrn.3480725

James, J., Yu, W., Gu, J., 2019. Online vehicle routing with neural combinatorial optimiza-

tion and deep reinforcement learning. IEEE Transactions on Intelligent Transportation

Systems 20, 10, 3806–3817.

Kalakanti, A.K., Verma, S., Paul, T., Yoshida, T., 2019. Rl solver pro: Reinforcement

learning for solving vehicle routing problem. In 2019 1st International Conference on

Artificial Intelligence and Data Sciences (AiDAS), IEEE, pp. 94–99.

Kool, W., Van Hoof, H., Welling, M., 2018. Attention, learn to solve routing problems!

arXiv preprint arXiv:1803.08475

Kuo, A., Miller-Hooks, E., 2015. Combinatorial auctions of railway track capacity in verti-

cally separated freight transport markets. Journal of Rail Transport Planning & Manage-

ment 5, 1, 1–11.

Kurz, C.J., Li, G., Vine, D.J., 2016. The Young and the Carless? The Demographics of New

Vehicle Purchases. Technical report, Board of Governors of the Federal Reserve System

(US).

Kypriadis, D., Pantziou, G., Konstantopoulos, C., Gavalas, D., 2018. Minimum walking

static repositioning in free-floating electric car-sharing systems. In 2018 21st international

conference on intelligent transportation systems (ITSC), IEEE, pp. 1540–1545.

Lin, K., Zhao, R., Xu, Z., Zhou, J., 2018. Efficient large-scale fleet management via multi-

agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 1774–1783.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I., 2017. Multi-agent actor-

critic for mixed cooperative-competitive environments. In Advances in neural information

processing systems, pp. 6379–6390.

82

Milgrom, P., 2019. Auction market design: Recent innovations. Annual Review of Economics

11, 1, 383–405. https://doi.org/10.1146/annurev-economics-080218-025818.

Nazari, M., Oroojlooy, A., Snyder, L., Takác, M., 2018. Reinforcement learning for solving

the vehicle routing problem. In Advances in Neural Information Processing Systems, pp.

9839–9849.

Ofcom, 2011. Consultation on Assessment of Future Mobile Competition and Proposals

for the Award of 800 MHz and 2.6 GHz Spectrum and Related Issues. Technical report,

Annexes.

Oliehoek, F.A., Amato, C., et al., 2016. A concise introduction to decentralized POMDPs,

Vol. 1. Springer.

Olivares, M., Weintraub, G.Y., Epstein, R., Yung, D., 2012. Combinatorial auctions for pro-

curement: An empirical study of the Chilean school meals auction. Management Science

58, 8, 1458–1481.

Parkes, D.C., 2006. Iterative combinatorial auctions. MIT press.

Pekeč, A., Rothkopf, M.H., 2003. Combinatorial auction design. Management Science 49,

11, 1485–1503.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk: Online learning of social representa-

tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 701–710.

Poikonen, S., Golden, B., Wasil, E.A., 2019. A branch-and-bound approach to the traveling

salesman problem with a drone. INFORMS Journal on Computing 31, 2, 335–346.

Rassenti, S.J., Smith, V.L., Bulfin, R.L., 1982. A Combinatorial Auction Mechanism for

Airport Time Slot Allocation. The Bell Journal of Economics 13, 2, 402–417.

83

https://doi.org/10.1146/annurev-economics-080218-025818

Rothkopf, M.H., 2007. Thirteen reasons why the Vickrey-Clarke-Groves process is not prac-

tical. Operations Research 55, 2, 191–197.

Sadeghianpourhamami, N., Deleu, J., Develder, C., 2018. Achieving scalable model-free

demand response in charging an electric vehicle fleet with reinforcement learning. In

Proceedings of the Ninth International Conference on Future Energy Systems, pp. 411–

413.

Santos, A.G., Cândido, P.G., Balardino, A.F., Herbawi, W., 2017. Vehicle relocation problem

in free floating carsharing using multiple shuttles. In 2017 IEEE Congress on Evolutionary

Computation (CEC), IEEE, pp. 2544–2551.

Schulte, F., Voß, S., 2015. Decision support for environmental-friendly vehicle relocations in

free-floating car sharing systems: The case of car2go. Procedia CIRP 30, 275–280.

Shi, J., Gao, Y., Wang, W., Yu, N., Ioannou, P.A., 2019. Operating electric vehicle fleet

for ride-hailing services with reinforcement learning. IEEE Transactions on Intelligent

Transportation Systems

Shoup, D.C., 2005. The High Cost of Free Parking, Vol. 206. Planners Press Chicago.

Smet, P., 2021. Ride sharing with flexible participants: a metaheuristic approach for large-

scale problems. International Transactions in Operational Research 28, 1, 91–118. https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12737.

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural net-

works. In Advances in neural information processing systems, pp. 3104–3112.

Sykora, Q., Ren, M., Urtasun, R., 2020. Multi-agent routing value iteration network. In

International Conference on Machine Learning, PMLR, pp. 9300–9310.

84

https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12737
https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12737

Takalloo, M., Bogyrbayeva, A., Charkhgard, H., Kwon, C., . Solving the winner determina-

tion problem in combinatorial auctions for fractional ownership of autonomous vehicles.

International Transactions in Operational Research n/a, n/a. https://onlinelibrary.wiley.

com/doi/pdf/10.1111/itor.12868.

UPS, 2021. UPS Flight Forward Drone Delivery. https://www.ups.com/us/en/services/

shipping-services/flight-forward-drones.page. Accessed: 2021-03-10.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polo-

sukhin, I., 2017. Attention is all you need. In Advances in neural information processing

systems, pp. 5998–6008.

Vickrey, W., 1961. Counterspeculation, auctions, and competitive sealed tenders. The

Journal of Finance 16, 1, 8–37.

Vinyals, O., Bengio, S., Kudlur, M., 2015a. Order matters: Sequence to sequence for sets.

arXiv preprint arXiv:1511.06391

Vinyals, O., Fortunato, M., Jaitly, N., 2015b. Pointer networks. arXiv preprint

arXiv:1506.03134

Volkswagen, 2021. I have got 1,500 cars here in Berlin. https://www.volkswagenag.com/en/

news/stories/2019/06/ive-got-1500-cars-here-in-berlin.html. Accessed: 2021-02-24.

Wang, X., Agatz, N., Erera, A., 2018. Stable matching for dynamic ride-sharing systems.

Transportation Science 52, 4, 850–867.

Wang, Z., Sheu, J.B., 2019. Vehicle routing problem with drones. Transportation research

part B: methodological 122, 350–364.

Weikl, S., Bogenberger, K., 2013. Relocation strategies and algorithms for free-floating car

sharing systems. IEEE Intelligent Transportation Systems Magazine 5, 4, 100–111.

85

https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12868
https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12868
https://www.ups.com/us/en/services/shipping-services/flight-forward-drones.page
https://www.ups.com/us/en/services/shipping-services/flight-forward-drones.page
https://www.volkswagenag.com/en/news/stories/2019/06/ive-got-1500-cars-here-in-berlin.html
https://www.volkswagenag.com/en/news/stories/2019/06/ive-got-1500-cars-here-in-berlin.html

Weikl, S., Bogenberger, K., 2015. A practice-ready relocation model for free-floating car-

sharing systems with electric vehicles–mesoscopic approach and field trial results. Trans-

portation Research Part C: Emerging Technologies 57, 206–223.

Wen, J., Zhao, J., Jaillet, P., 2017. Rebalancing shared mobility-on-demand systems: A re-

inforcement learning approach. In 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), IEEE, pp. 220–225.

Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Machine learning 8, 3-4, 229–256.

Wing, 2021. Wing delivers library books to students in Virginia. https://blog.wing.com/

2020/06/wing-delivers-library-books-to-students.html. Accessed: 2021-03-10.

Zhang, A., Kang, J.E., Kwon, C., 2020. Generalized stable user matching for autonomous

vehicle co-ownership programs. Service Science 12, 2-3, 61–79. https://doi.org/10.1287/

serv.2020.0257.

Zhang, B., Yao, T., Friesz, T.L., Sun, Y., 2015. A tractable two-stage robust winner determi-

nation model for truckload service procurement via combinatorial auctions. Transportation

Research Part B: Methodological 78, 16–31.

Zhao, J., Mao, M., Zhao, X., Zou, J., 2020. A hybrid of deep reinforcement learning and local

search for the vehicle routing problems. IEEE Transactions on Intelligent Transportation

Systems

Zhao, M., Li, X., Yin, J., Cui, J., Yang, L., An, S., 2018. An integrated framework for

electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model

formulation and lagrangian relaxation-based solution approach. Transportation Research

Part B: Methodological 117, 542–572.

86

https://blog.wing.com/2020/06/wing-delivers-library-books-to-students.html
https://blog.wing.com/2020/06/wing-delivers-library-books-to-students.html
https://doi.org/10.1287/serv.2020.0257
https://doi.org/10.1287/serv.2020.0257

Appendix A: Copyright Permission for Chapter 2

5/5/21, 1:25 PMRightsLink Printable License

Page 1 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

May 05, 2021

This Agreement between Aigerim Bogyrbayeva ("You") and John Wiley and Sons ("John
Wiley and Sons") consists of your license details and the terms and conditions provided by
John Wiley and Sons and Copyright Clearance Center.

License Number 5062600640179

License date May 05, 2021

Licensed Content
Publisher John Wiley and Sons

Licensed Content
Publication International Transactions in Operational Research

Licensed Content
Title

An iterative combinatorial auction design for fractional ownership of
autonomous vehicles

Licensed Content
Author Aigerim Bogyrbayeva, Mahdi Takalloo, Hadi Charkhgard, et al

Licensed Content
Date Nov 11, 2020

Licensed Content
Volume 28

Licensed Content
Issue 4

87

5/5/21, 1:25 PMRightsLink Printable License

Page 2 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

Licensed Content
Pages 25

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be
translating? No

Title An iterative combinatorial auction design for fractional ownership of
autonomous vehicles

Institution name University of South Florida

Expected presentation
date May 2021

Requestor Location

Aigerim Bogyrbayeva
14618 Grenadine Dr
apt 6

TAMPA, FL 33613
United States
Attn: University of South Florida

Publisher Tax ID EU826007151

Total 0.00 USD

88

5/5/21, 1:25 PMRightsLink Printable License

Page 3 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,

89

5/5/21, 1:25 PMRightsLink Printable License

Page 4 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU.

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY

90

5/5/21, 1:25 PMRightsLink Printable License

Page 5 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New

91

5/5/21, 1:25 PMRightsLink Printable License

Page 6 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

92

5/5/21, 1:25 PMRightsLink Printable License

Page 7 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

93

5/5/21, 1:25 PMRightsLink Printable License

Page 2 of 7https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisher…9d0-441e-4a5e-8d61-7182de78061c%20%20&targetPage=printablelicense

Licensed Content
Pages 25

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be
translating? No

Title An iterative combinatorial auction design for fractional ownership of
autonomous vehicles

Institution name University of South Florida

Expected presentation
date May 2021

Requestor Location

Aigerim Bogyrbayeva
14618 Grenadine Dr
apt 6

TAMPA, FL 33613
United States
Attn: University of South Florida

Publisher Tax ID EU826007151

Total 0.00 USD

94

Appendix B: Copyright Permission for Chapter 3

95

96

	Optimization and Machine Learning Methods for Solving Combinatorial Problems in Urban Transportation
	Scholar Commons Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Combinatorial Auction with Bidder-defined Items for Fractional Ownership of Autonomous Vehicles
	Introduction
	Unique Challenges and Contributions
	Outline

	The Auction Design for Fractional Ownership of AVs
	Auction Setting
	The Clock Stage
	Ask Price Calculation
	Activity Rules for the Clock Stage

	The Supplementary Stage
	Winner Determination Problem for the Fractional Ownership CCA

	Payment Rules
	Proxy Payments
	VCG Payments
	Core-Selecting Payments

	User Agents in the CCA for Fractional Ownership of AVs
	Bidding Strategies in the Clock Stage
	Automatic Package Generation in the Supplementary Stage

	Numerical Experiments and Case Studies
	Managerial Insights

	A Reinforcement Learning Approach for Rebalancing Electric Vehicle Sharing Systems
	Introduction
	Related Work
	Problem Statement and Formulations
	Network
	 Multi-shuttle Routing as MDP

	Reinforcement Learning Model
	The FFEVSS Simulator
	EV Relocation Decisions
	A Sequence-to-sequence Model for the Shuttle Routing Problem
	Reward Function
	Training Algorithm

	Computational Studies
	Data Generation and Configurations
	RL Agents and Benchmarks
	Results on Random Instances
	Results on the Amsterdam Cases

	Hybrid Model for Solving Travelling Salesman Problem with Drone
	Introduction
	Related Work
	TSPD
	RL for Combinatorial Optimization Problems

	The Hybrid Model
	Encoder
	Decoder

	The Central Controller for Routing
	Computational Experiments
	Data Generation and Configurations
	Benchmarks and RL Methods
	Results

	Conclusions and Future Research Directions
	References
	Appendix A: Copyright Permission for Chapter 2
	Appendix B: Copyright Permission for Chapter 3

