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Abstract
Toroidal confinement, which has played a crucial role inmagnetized plasmas andTokamak physics, is
emerging as an effectivemeans to obtain useful electronic and optical response in solids. In particular,
excitation of surface plasmons inmetal nanorings by photons or electrons finds important
applications due to the engendered field distribution and electromagnetic energy confinement.
However, in contrast to the case of a plasma, often the solid nanorings aremultilayered and/or
embedded in amedium. The non-simply connected geometry of the torus results in surfacemodes
that are not linearly independent. A three-termdifference equationwas recently shown to arise when
seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017
Phys. Rev.B 95 165422). The reported generalized plasmon dispersion relations are here investigated
in terms of the involvedmatrix continued fractions and their convergence properties including the
determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes.We
also present the intricacies of the derivation and properties of theGreen’s function employed to solve
the three term amplitude equation that determines the response of the toroidal structure to arbitrary
external excitations.

1. Introduction

Avariety of particles are emerging in response to the needs of nanoscale functionality formodifying existing
material properties or for creating newproperties, see for example the editorial by Roco and Pinna [1]. Apart
from the complexity of thematerial at the atomic,molecular, and cluster scales, both the local geometry and size
of the particles have been shown to affect the response of single particles as well asmany particle systems. In
plasmonics [2], these experimental observations are frequently quite satisfactorily accounted for by theoretically
invoking nonretarded electrodynamics. The scattering properties of sub-wavelength structures can thus be
obtained in the quasi-static limit, where the field is primarily given by the scalar electric potential. For geometries
that permit analytical solutions, such calculations can reveal the resonance behavior of the nanoparticle surface
modes in response to electromagnetic excitation [3]. Therefore, surface plasmon dispersion relationsmay be
obtained for the nanoparticles so that experiments can be expedited ormeasurement results can be better
interpreted.

Recently, toroidal nanoparticles such asmetal and dielectric nanorings, have gained considerable attention
due to their potential use in trapping cold polarmolecules [4], levitating and trapping dielectric nanoparticles
[5], metamaterials [6–8], soft Coulomb interactions [9], light trapping in energy-harvesting devices [10], and
plasmonic nanoantennas [11].We here suffice by noting that ourmotivation for studying such structures
parallels that for the extensive investigation of cartesian thin film stratified systems for development of optical
filters, photonic band gapmaterials, andmetamaterials [12–15].With reference to theworks of Love on the
calculation of oscillatorymodes of a cold plasma [16, 17], the complete set of the dispersion relations of a single
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plasma ring in vacuum and its composite configurationswere recently [18] obtained in the quasi-static limit
from the separation of variables of the Laplace equation in the toroidal coordinate system, where the surface of a
torus is obtained byfixing the value of one of the coordinates. The aimof this article is to rigorously investigate
the analytical structure, existence, and convergence properties of the dispersion relations of a systemof
composite solid tori. Specifically, the derivation and properties of equations (28) and (29) in [18], obtained to
analyze a k-layered composite toroidal structurewith a single ormultiplemetal-dielectric interfaces, are
presented. In doing so, we consider the confocal toroidalmultilayers, shown infigure 1.We here note that for
concentricmultilayers, as graphically shown in [18], the Laplace equation is not separable [19]. This point was
not emphasized in [18], although the analytical treatment pertained to confocalmultilayers. The objective there
was the experimentally realizable nanostructures of current interest to nanoscience, where the fabrication of
multilayer nanorings is practically limited to singly or doubly coated rings such that the ratio of the coating
thicknesses to the core ring radius remains small. As a result, the deviation of the confocal rings from
concentricity remains negligible.

This article is organized as follows: in section 2, closely following the formulation in [18], we derive a
canonical vector three-term recurrence relation that implicitly contains the eigenvalue spectrum corresponding
to the quasi-static plasmonicmodes of a k-layered toroidal structure. Using a formal argument followed by a
rigorousmathematical proof, in section 3, we give the explicit forms of the plasmon dispersion relations for such
a geometry in terms ofmatrix continued fractions (MCFs) and present the determinant forms of the dispersion
relations to provide a numerical platform for determination of the resonance values of the involved dielectric
functions. In section 4, we introduce theGreen’s function for the solution of the three termdifference equation
for an arbitrary continuous toroidal charge distribution. As examples of the application of the analytical results,
we visualize the potential for some simple charge distributions. Concluding remarks are provided in section 5.

2.Model of a k-layered torus and the vector three-term recurrence relation

Amultilayered torus can be described as a solid toruswith toroidal surface m m= ,1 dielectric function ε1 and
minor radius r ,1 together with -k 1 sublayers of confocal toroidal shells, eachwith dielectric function εi, where
= ¼i k2, , (see figure 1). Thus, a single solid torus corresponds to k=1, with no sublayer between the torus

and the outsidemedium.With distances typically of the order of a fewnanometers between the layers embedded
in amedium, one can divide the space into +k 1 regions based on e e +, ..., ,k1 1 where εk+1 denotes the dielectric
function of the outsidemedium. Thefirst region corresponds to interior of the solid torus and is given by
m m .1 The remaining -k 1 toroidal shells, described by  m m m -i i 1 ( =i k2, ..., ), share the same focal

length awith the solid torus via the relations [20]

m m= = ( )R r a rcosh , sinh . 1i i i i i

Finally, the +( )k 1 th region, which lies outside the k-layered torus, is described by m m<0 k (see figure 1 for
the case k = 3).

Figure 1.The toroidal coordinates m h j( ), , of a point P in space is referred to symmetry axis z and polar axis r.C and ¢C are centers
of theminor cross-sections. F and ¢F are two foci that form the limiting points of a set of coaxial circles, where m = ¢( )PF PFlog and η
is the angle  ¢FPF with the range p[ ]0, 2 . The anglej is the azimuthal angle about the z axis. The composite toroid is generated by
rotating the circles shown by 180° about the z-axis withfixed focal length a. The coordinate mi defines the surface of a composite toroid
ofmajor andminor radiiRi and r ,i respectively, where the identity m=R r coshi i i holds. The scalar potential Fi and their associated
boundaries mi are labeled for typical values of m =cosh 51 , m =cosh 3.52 , and m =cosh 2.73 considered here.
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Recalling [16, 18] that in the toroidal coordinate system m h j( ), , shown infigure 1, solutions of the Laplace
equation are given by the harmonics:

m h m

m h m
=  

h j

h j

-

-

⎪

⎪

⎧
⎨
⎩

( ) ( )

( ) ( )
( )

f P

f Q
n m

, cosh e e

, cosh e e
, 0, 1, 2, ..., 2

n
m n m

n
m n m

i i

i i

1
2

1
2

where m h m h= -( )f , cosh cos , -P
n
m

1
2
and -Q ,

n
m

1
2
the so-called toroidal harmonics, denote the associated

Legendre functions offirst and second kind. It follows that one can use the general form:

åm h m

m

F =

+ h j
=-¥

¥

-

-

( ) [ ( )

( )] ( )

f C P

D Q

, cosh

cosh e e , 3

m n
mn n

m

mn n
m n m

,

i i

1
2

1
2

with constantsCmn andDmn to be determined, as a suitable ansatz for the scalar electric potential m h jF( ), , of a
toroidal structure.

After dividing the space into +k 1 regions, we denote the associated potential in each region by
F F +, ..., ,k1 1 respectively. The general formof the potential given by equations (2) and(3) implies

å åm h m

m

F =

+ h j
=-¥

¥

=-¥

¥

-

-

( ) [ ( )

( )] ( )

f C P

D Q

, cosh

cosh e e , 4

j
m n

mn n
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mn n
m n m

j

j i i

1
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1
2

where = +j k1, ..., 1. Since the toroidal harmonics m- ( )P cosh
n
m

1
2

and m- ( )Q cosh
n
m

1
2

become unbounded as

m  ¥ and m  0; respectively, wemust further set

= =+ ( )C D0 and 0, 5mn mn
k1 1

for all integersm and n.The continuity of the potential and the normal component of the electric displacement
field across each region gives the k2 -boundary conditions:

F = Fm m m m= + =∣ ∣ ( ), 6i i 1i i

e
m

e
m

¶F
¶

=
¶F

¶
=

m m m m=
+

+

=

 ( )i k
cosh cosh

, 1, , . 7i
i

i
i

1
1

i i

Note that for eachfixed j, equation (4) can bewritten as F = å F j· e ,j m j
m mi where F j

m is independent of the

azimuthal anglej.The completeness of the orthogonal system j{ }e mi implies that one can treat equations (6)
and(7) separately for each integerm (the potential field has rotational symmetry with respect to the z-axis).With
mmaintained fixed, wemay therefore suppress its notation in upcoming equations.Moreover, we adopt the
notations P ,n

i Q ,n
i f ,i Ci

n,D
i
n for m- ( )P cosh

n
m

i1
2

, m- ( )Q cosh
n
m

i1
2

, m h( )f ,i , Ci
mn, D ;mn

i respectively, and let ¢Pn
i, ¢Qn

i,

¢f
i
denote the derivatives ofPn

i ,Qn
i , fiwith respect to mcosh evaluated at m m= i.

Introducing the ´k 1 coefficient vectors

 = =
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and applying the boundary condition equation (6) implies

  = ( ), 9n n n n

with k×k bidiagonalmatrices n andn (see appendix A, equations (A.3) and (A.4)). Both of these bidiagonal
matrices have non-zero diagonal entries and hence are invertible. Thus, one can solve, for example, n in terms
of n as

  = - ( ). 10n n n n
1

The application of the second boundary condition equation (7) together with equation (10) gives the vector
three-term recurrence

  - + =+ - ( )R 0, 11n n n n1 1

for =   ¼n 0, 1, 2, , where

 = ( )J , 12n n n
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    = ¢ - ¢- -( ) ( )J E E , 13n n n n n n2
1

1
1

and

       = + - ¢ - ¢m
- - - - -( )( ) ( )R D E E E E . 14n n n n n n n n n2

1
1

1
2

1
1

1 1

For details regarding the algebraicmanipulations resulting in equations (9)–(14) and definitions of the k×k
matrices  ,n  ,n ¢ ,n ¢ ,n mD , E ,1 E ,2 see appendix A.

Since the normalmodes of the system are independent of the chosen set of coefficients, in our case the vector
 ,n one is naturally led to askwhether equation (11)would remain invariant with respect to a different choice of
a coefficient vector. This is a relevant question and needs to be addressed since the equation system (A.2) can be
represented using a different set of coefficient vectors than n and n given by equation (8).We show this
invariance under the extra feasibility assumption, which stems from the physical basis of the problem. To see
this, we generate a different set of coefficient vectors by rewriting equation (9) as:

+ + = + ++


    ( )C p C p D q D q , 15n n n
k

kn n n n
k

kn
2

1
1 1

1

where
 
p p, ...,n kn1 and

 
q q, ...,n kn1 denote the column vectors of n andn in equation (A.3), respectively. A

rearrangement of equation (15) can bewritten inmatrix form as:

  = ( ), 16n n n n

where the columns of the k×kmatrices n and n are a permutation of the set of k2 vectors
 { }p q, ...,n kn1 with

the possibility of a negative sign in case a vector has beenmoved fromone side of equation (15) to the another
side, and the coefficient vectors n and n consist of the corresponding coefficients for each chosen column
according to equation (15). Similar to equation (9), this is an alternative representation of equation (A.2). In
general, neither n nor n has to be invertible. However, in order to obtain the vector three-term recurrence, and
thus the dispersion relations, one should be able to solve one set of k variables, chosen from =

+{ }Cn
i

i
k

2
1 and

={ }Dn
i

i
k

1, in terms of the remaining k variables using the boundary condition equation (6). As a result, wemust
require that the rearrangement equation (16) is feasible; i.e., at least one of thematrices n or  ,n say  ,n is
invertible. In this case, we have   = - .n n n n

1 It is easily seen that n can be expressed as:

   = + ( ), 17n n n1 2

where1 and2 are diagonalmatrices with only zeros or ones in the diagonal such that + = I ,k1 2 the
identitymatrix. Substituting n in equation (17) gives

      = + =-( ) .n n n n n n1
1

2

Since the coefficients =
+{ }Cn

i
i
k

2
1 and ={ }Dn

i
i
k

1 are uniquely determined by the boundary condition equations (6)
and(7), so are the corresponding three-term recurrence relations. As a result, the substitution  =n n n in
equation (A.16) gives the vectorial three-term recurrence equation for  ,n which is easily seen to be reduced to
equation (11).Consequently, under the feasibility condition, equations (11) and(14) are the canonical vector three-
term recurrence relations for a k-layered toroidal structure.

Having solidified the formof equation (11), we close this section by considering the limiting case of
equation (14), whichwill be used throughout the rest of the paper. For the proof of theorem1, see appendix A.

Theorem1. Let Rn be defined as in equation (14), then

= m
¥

( )R Dlim . 18
n

n

Therefore for large n, the vector three-term recurrence relation

  - + =m+ - ( )D 0, 19n n n1 1

with constant diagonal coefficientmatrix mD , is decoupled in all of its variables, and consists of k scalar three-
term recurrences having the general form m- + =+ -A A A2 cosh 0,n i n n1 1 where, for each =i k1, ..., , the
roots of the corresponding characteristic equation is given by me .i Since m m> >... ,k1 all roots of the
characteristic equation for the vector three-term recurrence equation (19) are distinct with distinctmoduli. This
observation in the scalar case, i.e., k=1 in equation (11), implies the utilization of the classical results due to
Perron [21] and Pincherle [22] (see also [23]), which prove the convergence of the obtained dispersion relations
(see also [17]). Theorem 1plays the key role in providing the application of Perron–Pincherle type theorem for
themultidimensional case k 2 (see [24–26] for details).

3.Dispersion relations for a k-layered torus andMCFs

Whilemuch of the discussion on the relevance and applications of the charge density normalmodes of
nanorings have been covered recently [18], we here continue to provide some of the same equations for
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convenience.We start with the facts that the toroidal harmonics - ( )P z
n
m

1
2

and - ( )Q z ,
n
m

1
2

and their derivatives

with respect to z are symmetric in n, see the appendix in [16]. Therefore, it follows from equation (14) that
=-R Rn n holds for all =   ¼n 1, 2, .
The symmetric property of Rn together with substitutions:

     = + = - =- - ( )nand 0, 1, ... ,n n n n n n

transforms the bi-infinite vector three-term recurrence equation (11) into semi-infinite vector three-term
recurrences:

 - = ( )R
1

2
0, 201 0 0

  - + = =+ - ( )R n0, 1, 2, ..., 21n n n n1 1

and

 - = ( )R 0, 222 1 1

  - + = =+ - ( )R n0, 2, 3, ... 23n n n n1 1

Recall that for dispersion relation, our goal is not to seek solutions { }n and { }n for equations (20)–(23),
but to obtain a relation fromwhich the appropriate set of dielectrics and hence the normalmodes of the system
can be derived. In thewell-known cases of simply connected regions such as plane, sphere, spheroid, cylinder,
etc, the dispersion relations are derived from the requirement that the problemmust possess non-trivial
solution.Here, we do not consider the effects of any nonlinearities or losses in the system that are known to lead
to further diversification of the eigenmodes similar to the case of a lossymetallic nanowire [27]. This approach in
themore complicated case of a torus, signified by the above equations, fails to yield the desired dispersion
relations. To illustrate this idea and as thefirst natural attempt, one can express equations (20)–(23) as infinite
systemof linear equations:
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At this point, onemay be tempted to claim that equations (24) and(25) possess non-trivial solutions if the
determinants of the corresponding infinitematrices vanish identically, and thus obtaining the dispersion
relations. Statements similar to the above paragraph have appeared in [16, 28]. Unlike systemswith finite
dimensionswhere existence of nontrivial solutions are equivalent to the vanishing of the determinant of
coefficientmatrix of the system, such requirements are not necessarily valid in the infinite dimensional cases.
More details regarding the problemwith this approach is addressed in appendix B. Aswe shall see, the correct
approach is to employ the theory ofMCFs, which is closely related to the vector three-term recurrence relations.

First, note that equations (20)–(23) can bewritten as a single vector three-term recurrence:

  - + = =+ - ( )R n0, 2, 3, ..., 26n n n n1 1

with two initial conditions:

 - - =-( ) ( )R R2 0, 272 1 0
1

1

 - = ( )R 0. 282 1 1

The usage of the phrase ‘initial conditions’ is due to the fact that equation (26) can be cast into afirst order
nonlinearmatrix recurrence relation, where equations (27) and(28) serve as initial conditions, see
equations (30)–(32).

Next, suppose that the sequence of k×knonsingularmatrices { }Xn is a solution to thematrix three-term
recurrence:

- + = = ¼+ - ( )X R X X n0, 2, 3, . 29n n n n1 1

Assumingn constitutes a single columnof X ,n equations (27) and(28) imply the two initial conditions:

= -- ( )X X R
I

R
2 , 302 1

1
1

0
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=- ( )X X R , 312 1
1

1

where I denotes the k×k identitymatrix and the quotient of two k×kmatricesA andBwithBnon-singular
will be denoted by -≔A B B A1 throughout the rest of the paper.

Multiplying equation (29) from the right by -Xn
1 and definingVn by = +

-V X X ,n n n1
1 we get the following

first order nonlinearmatrix recurrence:

=
-

=- ( )V
I

R V
n, 2, 3, ..., 32n

n n
1

with = -V X X .1 2 1
1 Successive iteration of equation (32) yields

=
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-
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orwrittenmore compactly fromnowon as:

= - - -
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I
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33

n n
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2 3

Assuming the limit of the right-hand side of equation (33) exists as  ¥n , one gets

= - - -  ( )V
I
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I
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I

R
. 341

2 3 4

Utilization of the initial conditions equations (30) and(31) leads to the formal expressions:

- = - - - ( )R
I
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I
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R
2 , 351

0 2 3 4

= - - -  ( )R
I
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I
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R
. 361
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It turns out that one can show the following facts.

I. TheMCF

- - -  ( )I

R

I

R

I

R
37

2 3 4

converges and its (unique) limit is independent of any specific choice of the dielectric values e e e +, , ..., .k1 2 1

II. The convergence of theMCF(37) is equivalent to the existence of theminimal solution to thematrix three-
term recurrence equation (29).

The proof of the above statements is long and non-trivial and usesmany classical results in connection between
the theory of continued fractions and linear recurrence relations. For the sake of readability, we therefore have
moved the proof to appendix C.

Now, in light of the above results, it follows that equations (35) and(36) are indeed the dispersion relations
for the k-layered torus. Clearly since these equations can not hold simultaneously, we have two separate
dispersion relations. From themathematical point of view, however, there is no prior knowledge to assure either
of the initial conditions equation (27) or (28) generates aminimal solution.Nevertheless, in view of (II), one can
seek for those dielectric values e e e +, , ..., k1 2 1which satisfies either of the dispersion relation equations (35)
and(36). The two independent sets of k-tuples e e e +( ), , ...,mn mn k mn1 2 1 and e e e¢ ¢ ¢ +( ), , ...,mn mn k mn1 2 1 obtained
in this way are the eigenmodes of the system fromwhich the normalmodes can be calculated.

Since there is no exact analytical expression for theMCF equation (37), the exact solutionsmust be
calculated using numerical analysis. In order to examine the numerical structure of the dispersion relations
equations (35) and(36), we rewrite them as:

- - - - =

- - - - =
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andmake the following trivial observations:
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and

- - - - =
⎛
⎝⎜

⎞
⎠⎟ ( )R

I

R

I

R

I

R
det 0, 391

2 3 4

where R R R, , , ...0 1 2 are defined by equation (14).
In attempting tofind those e e +{ }, ..., k1 1 which solve equations (38) and(39), wemay also obtain

extraneous roots. Nevertheless, for numerical calculation, it is preferable toworkwith equations (38) and(39)
instead of equations (35) and(36) due to the fast convergence of determinant in comparison to anymatrix-
normmethod. To illustrate this, consider a sequence of 2×2matrices { }Fn whose asymptotic behavior for large
n is given by

- -


⎡
⎣⎢

⎤
⎦⎥

( )
F

n

n

e ln

0 1
.n

n 1

One can easily verify the zero limit by a few iterations of the determinants, while it will be utterly time-
consuming to verify this fact utilizing anymatrix-norm calculation. The situation described in the above
example is also generic in our case by identifying Fnwith the nth approximants (see equation (C.2) of the
MCF (37)).

The obtained dispersion relation equations (38) and(39) are numerically validated to be in exact agreement
with the limiting case results regarding a single-layered torus.More precisely, we obtain the results of a single-
layered torus (see figure 3 in [18] or [28] and [16])using the dispersion relations (38) and (39) for a k-layered
torusmodel (here only k = 2 is provided)with the following limiting case justifications:

Case Limits Parameter setting Aspect ratio

1 e e=2 3  e- -1.5 11  m1.02 cosh 51

e = 12 m m=cosh 0.99 cosh2 1

2 e e=1 2  e- -1.5 11  m1.0098 cosh 4.952

e = 13 m m=cosh 1.01 cosh1 2

It should bementioned that the associated Legendre functions m- ( )Q cosh
n
m

i1
2

, m- ( )P cosh
n
m

i1
2

are numerically

evaluated using equation (8.703), equations (8.736-1)–(8.852-2) in [29] as initial seeds respectively for all values
ofμ. The rest of the associated Legendre function values are evaluated using equations (8.732-3), (8.732-2),
(8.731-3) and (8.731-4)(1) in [29].

Thus, having established the properties of the analytical and numerical approaches to obtaining the
generalized dispersion relations of the quasi-static normalmodes, we now aim to address the properties of the
surfacemodes that arise when the system is subject to electromagnetic perturbation.

4. TheGreen’s function approach

TheGreen’s function approachwas employed by Love [17] to solve for the quasi-static response of a dielectric
ring to an external uniform field. Unlike the homogenous difference equation (11), describing the normal
modes of themultilayer solid torus, the presence of a nonzero external field leads to a source term for the
difference equation that ultimately describes the potential distribution of the ring responding to the external
field. For a simple (uniform and isotropic) ring, Love obtained a three termdifference equationwith a source
term corresponding to an external uniform axialfield (see Love’s equation (2.13)). Love’s result was generalized
byGarapati et al [18] to obtain the response of a composite ring to arbitrary external fields created by discrete
multipolar charge distributions. This generalization however warrants further considerationwith respect to its
convergence properties. Here, extending this generalization to also account for continuous charge distributions,
we begin by considering a toroidal charge distributionwith density ρ that generates a potential Fap and expand

- ¢∣ ∣r r

1 in toroidal coordinates [30]:
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where e0 is the permittivity of free space,Θ is theHeaviside function, and m h jh h h, , are scale factors given by

m h
m

m h
= =

-
=

-
m h jh h

a
h

a

cosh cos
,

sinh

cosh cos
,

with m=a R coth .k The vectors r and ¢r ,where ¹ ¢r r , denote the positions of an arbitrary point in the space
and a charged particle, respectively. Superposing Fap with the exterior potential in equation (4) andfitting the
boundary conditions, we canwrite
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where = +j k1, ..., 1and dj k, denotes theKronecker deltawith generalized formofKmn computed through
equation (40) as
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-( ) ( ) ( )L L Qcosh cosh cosh
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. Replacing Fj in equation (4)with the one given by
equation (41) and introducing the k×kmatrix

 =
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( )

K

0

0
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m

mn

the boundary conditions equation (6) imply that for eachfixed =  m 0, 1, 2, ...,

    = +- [ ] ( ), 46n n n n n n
1

where, as in section 2, the indexm is suppressed in n
m and .n

m Next, applying the boundary conditions
equation (7), a similar procedure as illustrated in equations (A.5)–(A.10)with n in equation (10) replaced by
equation (46) gives the non-homogeneous three-term vector recurrence equation

     - + = - +m+ - + - ( )R D , 47n n n n n n n1 1 1 1

for =  n 0, 1, 2, ..., where

    = ¢ - ¢ -( ) ( )E E , 48n n n n n n2 2
1
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and

¢ =

¢
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( )

L
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k

All other used notations, except for n given by equation (46), are the same as those already introduced in
section 2.

Despite the fact that the explicit formof homogenous solutions for equation (47) is unknown, it is still
possible tofind an explicit expression forn with the aid of theGreen’s functions. Aswe shall see, the success of
Green’smethod ismostly due to the symmetric property of Rn and that the homogenous part of equation (47) is
of Poincaré-type, discussed in section 3.Ourmethod is the generalization of the one described in Love [17], see
also [31].

We beginwith the simple observation via a direct substitution that

 å=
=-¥

¥

( )G , 50n
N

n N N,

is the solution of equation (47) if one can find k×kmatricesn N, such that for eachfixed N , n N, satisfies the
three-termmatrix recurrence

   d d d- + = - +m+ - + - ( )R I D I, 51n N n n N n N n N n N n N1, , 1, , 1 , , 1

where =   ¼n 0, 1, 2, . For eachfixed N , wewrite equation (51)more explicitly as:

   - + = -+ - ( )R n N0, for 2, 52n N n n N n N1, , 1,

   - + = ++ - ( )R n N0, for 2, 53n N n n N n N1, , 1,

and

  - + = = -- - ( )R I n N, 1, 54N N n N N N N, 1, 2,

  - + = - =m+ - ( )R D n N, , 55N N n N N N N1, , 1,

  - + = = ++ + ( )R I n N, 1. 56N N n N N N N2, 1, ,

Suppressing the index N , the recurrence equation (53) can bewritten in the general form as

- + = ++ - ( )X R X X n N0, for 2. 57n n n n1 1

Now, consider theMCF

- - -
+ + +
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I
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I

R
. 58

N N N2 3 4

For  -N 1, the continued fraction equation (58) is the tail of theMCF equation (C.16); whereas, for < -N 1,
equation (C.16) is the tail of equation (58). In either case, convergence of theMCF equation (C.16) (see theorem
5) implies that equation (58) converges as well. By theorem 3, the three-term recurrence equation (57) has a
minimal solution. Lettingn N, denote thisminimal solution for  +n N 2, it follows from equation (C.20)
that

  = - - - ++
-

+ + +
 ( )I

R

I

R

I

R
n N, 1. 59n N n N

n n n
1, ,

1

1 2 3

To analyze equation (52), we consider the (backward)matrix three-term recurrence:

- + = = - -+ - ( )Y S Y Y n0, 2, 3, ..., 60n n n n1 1

with the initial condition =-
-Y Y C,1 0

1 whereC is a fixed non-singular k×kmatrix.Multiplying equation (60)
from the right by -Yn

1 and defining = -
-U Y Y ,n n n1

1 we arrive at the first order nonlinearmatrix recurrence:

=
-

= - - ¼+ ( )U
I

S U
n, 1, 2, . 61n

n n
1

Using a similar argument as in the proof of theorem3 (see appendix C), it follows that theMCF

- - -
- - -

 ( )I

S

I

S

I

S
, 62

1 2 3

converges if and only if the (backward)matrix three-term recurrence equation (60)has aminimal solution.
Moreover, theminimal solutionYn satisfies
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for = - - ¼n 0, 1, 2, .
Nowgoing back to the three-term recurrence equation (52)with =S Rn n in equation (60), it follows from

the symmetric property of Rn that equation (62) is the same as - - -,I
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I
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R1 2 3
which is convergent. Thus,

with a similar argument presented for the case of equation (53), the three-term recurrence equation (52) has a
minimal solution. Lettingn N, denote thisminimal solution for  -n N 2, it follows from equation (63) that
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Next, we rewrite equations (59) and (64) as:

  = ++ + ( )A n N, 1, 65n N n n N1, 1 ,

  = -- - ( )B n N, 1, 66n N n n N1, 1 ,

where +An 1 and +Bn 1denote the right-hand sides of equations (59) and (64), respectively. Using equations (65)
and(66), we can substitute +N N2, and -N N2, with + +AN N N2 1, and - -BN N N2 1, , respectively, in
equations (56) and(54). Thus, we can solve for - ,N N1,  ,N N, and +N N1, from equations (54)–(56) to obtain:
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Now, for eachfixed n, onemay use equations (65)–(69) to obtainn from equation (50). Thus one can
finally calculate the ´k 1 vectors n and n from equations (12) and (46), respectively.

As a final remark regarding the utility of theGreen’s function, it is illuminating to consider the response of a
coated ring tomonopoles and dipoles. Other basic cases were treated recently [18].We consider a k-layered
vacuumbounded solid ring in the presence ofmonopoles and dipoles of charge qs at m h j= ( )r , ,s s s s0, 0, 0, 0,

outside the toroidal boundary m m m= >k s0, , with s counting the number of charges. The charge density
corresponding to a point charge qs at r s0, is

r d= -( ) ( )q r r , 70s s s0,

which in the toroidal coordinates reads
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Using equations (42), (70) and (71) one obtains
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with a1 considered as a scaling factor. Thus, the generalized formof the applied non-uniform external field as
in equation (40)may be given as
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Superposing Fap with the external potential in equation (4)we obtain
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for = +j k1, ..., 1.When specialized for k=1, that is, in case of a solid ring, equation (74) reduces to
equation (7) in [31], wherem runs from0 to¥.With rightly chosenKmn for each external charge in
equation (74), we present figures 2–4 showing the potential response of the composite (i.e., k= 2)nanoring to
an external nonuniform field of an electricmonopole, and a dipole emitter of charges qs located at r s0, outside the
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toroidal boundary m m m= > s2 0, . To validate the results, we also solved the Laplace equation computationally
usingfinite elementsmethod [32], as shown infigures 2–4. As can be seen, the results are in good agreement.

In case of an uniform field polarized along the z-axis, the generalized formof the applied external potential
may be given by (see [17])

Figure 2.Potential distribution representing the response of a composite nanoringwith m=a 0.0980 m, m =cosh 51 ,
m =cosh 3.52 ,  = -1.51 ,  = -32 , and  = 13 to a non-uniform field of an electricmonopole. (Top)The result is obtained via

equation (74)with s=1 by summation of poloidal and toroidalmodes for a coated ring. Computationally determined distribution
using FEM for confocal (Middle) versus concentric (Bottom) rings.Max (Min) signifies the highest (lowest) potential.
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0

Applying the principle of superposition as beforewe obtain equation (41) but withm=0 considered. As an
examplewe present figure 5which shows the potential distribution of a coated nanoring in an uniform fieldwith

Figure 3. Similar description as infigure 2 but with themonopole placed at an angle. Computationally determined distribution using
FEM for confocal (Middle) versus concentric (Bottom) rings.Max (Min) signifies the highest (lowest) potential.
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polarization parallel to the symmetry axis of the ringwhere in the vectors n and n are computed as discussed
in the paragraph following equation (69). For comparison, the potential distributions are provided for both
confocal and concentric rings, as shown infigure 5.Other relevant cases have been studied in [18].

In closing, regarding the experimental investigation of nanorings, currently within nanophotonics and
nanoplasmonics (typical length scale∼ few tens of nm), several (emerging) approaches have been reported for
fabrication of these structures [33–40]. Themainmethods include nanofabrication (electron beam lithography)
and chemical synthesis. Single rings, ring arrays, and in-fluid suspended rings (metallic and dielectric) have been
attempted. Considering the photon response of the rings, singly and possibly doubly coatedmetallo-dielectric
rings aremost conceivable, while it is unlikely that the number of coatings will exceedmuch beyond a few.

Figure 4.Potential distribution representing the response of a composite nanoringwith similar parameters as infigure 2 to a non-
uniform field of a dipole emitter located near the origin. (Top)The result is obtained via equation (74)with s= 1, 2 by summation of
poloidal and toroidalmodes for a composite ring. Computationally determined distribution using FEM for confocal (Middle) versus
concentric (Bottom) rings.Max (Min) signifies the highest (lowest) potential.
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Further, we note that typically, the coating thicknesses are only a fraction of theminor radius of the ring.
Therefore, for practical purposes, as also seen infigure 1, the deviation from full concentricity is negligible. This
is clearly seen also from the comparison of the computationally determined potential distributions for the
concentric rings versus those of the confocal rings as shown infigures 2–4.

5. Conclusion

While in general it is recognized that oscillations in the electronic charge density at toroidal interfaces occur at
frequencies that can be approximately obtained from the eigenvalues associatedwith the quasi-static boundary
value problem, the scalar three termdifference equation that arises when the scalar electric potential is required

Figure 5.Potential distribution representing the response of a compositemetal nanoringwith similar parameters as infigure 2 to a
uniform field polarized parallel to the ring symmetry axis. (Top)The result is obtained via equation (41)withm=0. Computationally
determined distribution using FEM for confocal (Middle) versus concentric (Bottom) rings.Max (Min) signifies the highest (lowest)
potential.
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to satisfy the boundary conditions across a single toroidal interface is seen to cause significant algebraic
complexity. The ‘three-term coupling’ is due to the quasi-separation of variables in toroidal coordinates while
attempting to solve the Laplace equation. This phenomenon is demonstrated in the coupling of the toroidal
coordinatesμ and η via the function f in equation (2). As a result, the generalization of the scalar three-term
difference equations to vector three-term recurrences was shown to be necessary to obtain the plasmon
dispersion relations in amultilayered toroidal structure. The structure of the nonretarded surface plasmon
dispersion relations for a generalmultilayer toroidal systemmay thus be studied following the convergence
properties of theMCFs and infinite determinants associatedwith the vector three-term recurrences. However,
contrary to the cases offinite dimensionalmatrices representing the underlying systemof equations, in the
toroidal case, as described here, it is reasonable not to simply assume that the vanishing of thematrix
determinant would guarantee nontrivial solutions. The convergence properties of the obtainedMCFs associated
with the vector three-term recurrence relation equations (20)–(23)were shown to provide a numerical platform
for computation of the eigenmodes using the determinant forms of the dispersion relations given by
equations (38) and (39). The presented results help facilitating numerical analysis of the plasmon dispersion for
specificmetals such as gold, silver and aluminumassembled, in conjunctionwith suitable dielectricmedia such
as silicon and quartz, into a complex nanoring. Equations (38) and(39) can be used to obtain the dependence of
the plasmon excitation frequency upon the aspect ratio of various nanorings, which enters via the frequency
dependence of the dielectric functions of the involvedmaterials. Thus, plasmon dispersion can be investigated in
arbitrarily coated toroidal nanoparticles (see also [18]). In addition to the normalmode calculation, the response
of a composite ring to arbitrary externalfields was shown to be attainable via convergentMCFs.
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AppendixA

In this section, we supply the details in obtaining the vector three-term recurrence equation (11) and give a proof
of theorem1.

First, we apply the boundary condition equation (6) for each =i k1, ..., ,which relates the coefficients
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Similarly, applying the boundary condition equation (7) for each = ¼i k1, , ,we obtain
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Collecting similar terms in equation (A.5) and using the facts that ¢ =f f1 2
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The existence of hcos in equation (A.6) prevents the use of the completeness argument for the system h{ }e ni

directly as in equation (A.2). However, since h = +h h-( )cos e e 2,i i one sees that the hcos term shifts the bi-
infinite sequence h{ }e ni to the left and right by one unit. Thus, applying thementioned unilateral backward and
forward shifts in equation (A.6) and substituting back + n n1 and - n n1 ,we can use the completeness
argument presented in equation (A.2) to obtain

e a

e a

e b

e b

- ¢ - ¢

- - ¢ - ¢

= - ¢ - ¢

- - ¢ - ¢

+ + - -

+
+

+ +
+

- -
+

+
+

+ +
+

- -
+

+ + - -

( )

( )

( )

( ) ( )

C P C P C

C P C P C

D Q D Q D

D Q D Q D , A.7

i n
i

n
i

n
i

n
i

n
i

n
i

i n
i

n
i

n
i

n
i

n
i

n
i

i n
i

n
i

n
i

n
i

n
i

n
i

i n
i

n
i

n
i

n
i

n
i

n
i

1 1 1 1

1
1

1 1
1

1 1
1

1
1

1 1
1

1 1
1

1 1 1 1

for each =  n 0, 1, 2, ..., and =i k1, ..., ,where

a m= ¢ + ( )P P2 cosh , A.8n
i

i n
i

n
i

b m= ¢ + ( )Q Q2 cosh . A.9n
i

i n
i

n
i

Using the notations introduced in equations (8), (A.3) and (A.4), one can rewrite equation (A.7) as

        ¢ - + ¢ = ¢ - + ¢+ + - - + + - - ( )E A E E B E , A.10n n n n n n n n n n n n1 2 1 1 2 1 1 1 1 1 1 1

for =  n 0, 1, 2, ..., where

 
 

= + ¢

= + ¢
m

m

⎪

⎪

⎧
⎨
⎩

( )
( )

( )
A D E

B D E

,

.
A.11

n n n

n n n

2

1

The k×k bidiagonalmatrices ¢n and¢n are defined by

¢ =

- ¢

¢ - ¢

¢ - ¢
 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

P

P P

P P

0

0

, A.12n

n

n n

n
k

n
k

1

2 2

¢ =

- ¢ ¢

- ¢ ¢

- ¢

- -
 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

Q Q

Q Q

Q

0

0

, A.13n

n n

n
k

n
k

n
k

1 1

1 1

and the k×k diagonalmatrices mD , E ,1 E2 are given by

m
m

m

=m


⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )D

2 cosh 0

2 cosh

0 2 cosh

, A.14

k

1

2
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e
e

e

e
e

e

= =

+

 

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥ ( )E E

0

0

,

0

0

. A.15

k k

1

1

2
2

2

3

1

Substituting equation (10) in (A.10) gives

   - - + =+ +
-

- -( ) ( )J A B J 0, A.16n n n n n n n n n1 1
1

1 1

where Jn is given by equation (13) as

    = ¢ - ¢- -( )J E E .n n n n n n2
1

1
1

Using equation (A.11), one can easily see

      - = - + m
- - -( )A B E E D J .n n n n n n n n n n

1
2

1
1

1

It follows now that the substitution

 = J ,n n n

transforms equation (A.16) into

  - + =+ -R 0,n n n n1 1

for =   ¼n 0, 1, 2, ,where

       = + - ¢ - ¢m
- - - - -( )( )R D E E E E .n n n n n n n n n2

1
1

1
2

1
1

1 1

This concludes the algebraic derivation of equation (11).
Proof of theorem1.
Let = +m

-R D U V ,n n n
1 where

   
   

= -

= ¢ - ¢

- -

- -

U E E

V E E

,

.

n n n n n

n n n n n

2
1

1
1

2
1

1
1

The theorem follows if we can show that -U V 0n n
1 as  ¥n . Since n andn are triangularmatrices, one

can obtain an explicit formula for their inverses and after some simple algebra, we get

e e

e e

e e

=

- <

- =

- >

+

+

+

⎧

⎨
⎪⎪

⎩
⎪⎪

[ ]

( )

( )

U

i j

i j

i j

if ,

if ,

if ,

n ij

Q

Q
i i

i i

P

P
i i

1

1

1

n
i

n
j

n
i

n
j

and

e e

e e

e e

=

- <

- =

- >

¢

¢ ¢

¢

+

+

+

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

[ ]

( )

( )

V

i j

i j

i j

if ,

if ,

if ,

n ij

Q

Q
i i

P

P
i

Q

Q
i

P

P
i i

1

1

1

n
i

n
j

n
i

n
i

n
i

n
i

n
i

n
j

where =i j k, 1, ..., . From the asymptotic forms of the associated Legendre functions (see appendix in [16]),
and their derivatives, using formulas (8.731-1)(1), (8.734-4), and (8.732-1) in [29], we have that for large n

¢ ¢m m m m- -   P Q P n Q ne , e , e , e .n
i n

n
i n

n
i n

n
i ni i i i

Thus for large values of n

e e
e e

e e

- <
- =

- >

m m

m m

- -
+

+
- -

+



⎧
⎨⎪

⎩⎪
[ ]

( )

( )
( )

( )

( )

U

i j

i j

i j

e if ,

if ,

e if ,

A.17n ij

n
i i

i i

n
i i

1

1

1

i j

j i

and

e e
e e

e e

- <
- =

- >

m m

m m

- -
+

+
- -

+



⎧
⎨⎪

⎩⎪
[ ]

( )
( )

( )
( )

( )

( )

V

n i j

n i j

n i j

e if ,

if ,

e if ,

A.18n ij

n
i i

i i

n
i i

1

1

1

i j

j i

where =i j k, 1, ..., . Since m m>i j whenever <i j, it follows from equation (A.18) that all off-diagonal
elements ofVn approach zero. Therefore,Vn is nonsingular for large values of n.Moreover, equations (A.17)
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and(A.18) imply that V nU .n n Thus for sufficiently large n, we have - - ( )U V U nU C n,n n n n
1 1 for some

(constant)matrixC independent of n. Finally, the last estimate implies -U V 0.n n
1

Appendix B

Equations (24) and(25) are special cases of the infinite systemof linear equations

 = ( )A 0, B.1

where = =
¥[ ]A Aij i j, 0 is an infinitematrix consisting of blockmatrices Î ´Aij

k k and  = [ ], , ... T
0 1 is the

infinite unknown vector consisting of ´k 1 vectors = [ ]x x, ..., .n
n

k
n T

1 Letting =≔ [ ]A A ,n ij i j
n
, 0 the infinite

determinant is defined by

=
¥

( ) ( ) ( )A Adet lim det , B.2
n

n

provided such a limit exists, see [41–43]. Asmentioned earlier in section 3, statement such as: ‘equation (B.1)has
non-trivial solutions if and only if =( )Adet 0,’which also has appeared in [28, 44], does not hold for infinite
system in general. In fact, one canfind trivial examples where ( )Adet , described as in equation (B.2), may not
exist but the system still possesses non-trivial solutions, see [18]. On the other hand, one can show the validity of
the above statement under certain rather restrictive conditions. One such classic result (see Koch [45] and also
[41–43]) states that for a certain classof infinitematrices if themoduli of the off diagonal terms are square
summable and the infinite product of the diagonal terms converges absolutely, and if the vector is also square
summable, then ( )Adet exists and the infinite system equation (B.1) has a non-trivial solution if and only if

=( )Adet 0, seeDenk [42] for details. As it stands, neither of the infinite blockmatrices in equations (24)
and(25) belongs to the class. It should also be emphasized that we can not utilize the truncated system
method, see [46], where the infinitematrixA has to satisfy similar conditions to those of the class. Finally, we
note that a formal calculation of the determinants for infinitematrices in equations (24) and(25) based on the
definition equation (B.2) and the result regarding the determinant of afinite tridigonalmatrix [47] does not
imply the obtained dispersion relations. This justification, see [48], is beyond the scope of this paper and is
therefore omitted.

AppendixC

Here, we prove the claims (I) and (II) of section 3with regard to theMCF(37) and its relation to thematrix
three-term recurrence equation (29).

We start by assessing the convergence of equation (37). Recall that given two sequences of k×kmatrices
{ }An and { }B ,n whereBn are non-singular for large n, theMCF

+ + +  ( )A

B

A

B

A

B
, C.11

1

2

2

3

3

is said to converge to the k×kmatrixΩ if the sequence of approximants

+ + +≔ ( )F
A

B

A

B

A

B
, C.2n

n

n

1

1

2

2

converges in  ´ ,k k inwhich case we set W = + + + .A

B

A

B

A

B
1

1

2

2

3

3
Matrix Fn is called the nth approximant of

theMCF equation (C.1).
The classical approach to continued fractionswith the aid of the theory ofMöbius or linear fractional

transformations is also fruitful in treatingMCFs, see Ahlbrandt [24, 25] and references therein. In this paper,
however, we only consider and thus explain the portionwhich is relevant to our special case equation (C.1). So
letM be a nonsingular ´k k2 2 blockmatrix

 
 =

⎡
⎣⎢

⎤
⎦⎥ ( )M , C.3

where , ,  and are k×kmatrices. Thematrix linear fractional transformation  ´ ´T :M
k k k k with

the symbolM is defined by

 
 =

+
+

( ) ( )T W
W

W
. C.4M
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Note that wewill suppress the symbolM fromour notationwhenever it is understood. It is easily seen that

= + + +
+

◦ ◦ ( ) ( )S S S W
A

B

A

B

A

B W
... , C.5n

n

n
1 2

1

1

2

2

where thematrix linear fractional transformations Sn are given by

=
+

=( ) ( ) ( )S W
A

B W
n, 1, 2, ... , C.6n

n

n

with corresponding symbols

q =
⎡
⎣⎢

⎤
⎦⎥ ( )I

A B
0

. C.7n
n n

As a result, if we let

≔ ◦ ◦ ( )T S S S... , C.8n n1 2

then it follows from equation (C.5) that =( )T F0 ,n n the nth approximant of equation (C.1). Consequently, one
can define the convergence of theMCF equation (C.1) as

¥
( ) ( )Tlim 0 , C.9

n
n

provided that the above limit exists. This observation is important. In simple terms, since it is easily verified that
the composition of twomatrix linear fractional transformations, say ◦T TK L with corresponding symbolsK and
L, is again a linear fractional transformationTMwith the symbol =M LK , the definition ofTn in equation (C.4)
togetherwith equation (C.7) imply

 
 =

+
+

( ) ( )T W
W

W
, C.10n

n n

n n

with the symbol

 
 = = 

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥· · ( )M

I
A B

I
A B

0 0
. C.11n

n n

n n n n 1 1

Now,we can give an alternative definition for the convergence of theMCF equation (C.1). Suppose { }n and
{ }n are given by equation (C.11). TheMCF equation (C.1) is said to converge if n is nonsingular for large n
and


 Î

¥

´ ( )lim . C.12
n

n

n

k k

Writing equation (C.11) in terms of the introduced notations, we get

q= =- ( )M M M Iwith , C.13n n n 1 0

which shows the connection between the theory of continued fractions and linear recurrence relations. To see
this, we rewrite equation (29) into afirst order recurrence system

= -+

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )X

X
I

I R
X
X

n
0

, 2. C.14n

n n

n

n1

1

Now if we denote the ´k k2 2 blockmatrix in equation (C.14) by qn defined as in equation (C.7); i.e.

q = -
⎡
⎣⎢

⎤
⎦⎥ ( )I

I R
0

, C.15n
n

we are implicitly considering theMCF equation (37)with = -A In and =B R ,n n i.e.

- - - - · ( )I

R

I

R

I

R
C.16

2 3 4

Beforewe can show the connection between equations (C.16) and (C.14), we need some definitions. Two
solutionsXn andYn of equation (29) are said to be linearly independent if theirWronskian (orCasoratian) is
nonsingular; that is, the ´k k2 2 matrix

⎡
⎣⎢

⎤
⎦⎥ ( )X Y

X Y
, C.170 0

1 1

is nonsingular (see [24] for details).

Definition 1.A solution Xn of thematrix three-term recurrence equation (29) is calledminimal if the following
conditions hold.
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1.X1 is nonsingular,

2. If Yn is a solution of equation (29) such that Xn and Yn are linearly independent, then Yn is nonsingular for
large values of n and

=
¥

X

Y
lim 0.

n

n

n

Our definition ofminimality is based on the notion of recessive solution of equation (C.14) introduced in [49]
(see also [24]), where it is shown that a recessive solution is unique up tomultiplication by a constantmatrix. As a
result, one could call ‘aminimal solution’ by ‘theminimal solution’. For the purpose of this paper, both
terminologies are acceptable andwewill not pursue this issue any further.We are now in the position to show
the connection between continued fractions and recurrence relations.

Theorem2. If thematrix three-term recurrence equation (29) has aminimal solution X ,n then theMCF
equation (C.16) converges and its limit is given by- -X X .2 1

1

Proof. LetYn be a solution of equation (29) such thatXn andYn are linearly independent and put

=
+ +

⎡
⎣⎢

⎤
⎦⎥ ( )X Y

X Y
Z . C.18n

n n

n n1 1

It follows from equation (C.14) that Zn satisfies

q= =- nZ Z , 2, 3, ...,n n n 1

where qnʼs are given by equation (C.15). Successive iteration of the above recurrence gives

q q q= =- MZ Z Z... ,n n n n1 2 1 1

where in the last equality we have used equation (C.11). It is clear that q =det 1n for all n. SoMn is nonsingular.
This observation is important as the symbol of a linear fractional transformation is implicitly assumed to be
nonsingular.

SinceXn andYn are linearly independent, Z1 is nonsingular. This implies that we can solveMn from the last
equality as

= - ( )M Z Z . C.19n n 1
1

SinceXn isminimal,X0 is nonsingular. Therefore, we canwrite an explicit formula for -Z0
1 as

=
+ -

-
-

- - - - - -

- - -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

X X Y S X X X Y S

S X X S
Z ,1

1 1
1

1
1

1
1

2 1
1

1
1

1
1

1
2 1

1 1

where the nonsingularmatrix = - -S Y X X Y2 2 1
1

1 is called the Schur complement ofX1 in Z ,1 see [50], p227.
Denoting the first row of -Z1

1byU andV and using the expression forMn from equation (C.11), the equalty
equation (C.19) yields

 
  =

-+ +
- - -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

X Y
X Y

U V

S X X S
.n n

n n

n n

n n1 1
1

2 1
1 1

As a consequence




= -
= +

+ +
- -

+ +
-

X U Y S X X

X V Y S

,

.
n n n

n n n

1 1
1

2 1
1

1 1
1

For large values of n,Yn is nonsingular. Therefore, the last equality gives

 = ++
-

+
-

+
-Y Y X V S .n n n n1

1
1

1
1

1

Since S is nonsingular and +

+
0,X

Y
n

n

1

1
we have that +

-Yn n1
1 and thus n are nonsingular for large n.Moreover,


 =

-

+
 -

- -

-
-

+

+

+

+

U S X X

V S
X X .n

n

X

Y

X

Y

1
1 0

1

1
2 1

1

n

n

n

n

1

1

1

1

This completes the proof. ,

We shouldmention that theorem 2 is a generalization of the classic Pincherle’s theorem [22], and the proof
provided here essentially follows the one given in [26], see theorem 2.1. In fact the converse of theorem 2 also
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holds.More precisely, if theMCF equation (C.16) converges, then there exists a solution of equation (C.14), say
Zn as in equation (C.18), such that both Z0 andX0 are nonsingular,Yn is nonsingular for large n, and

=¥lim 0.n
X

Y
n

n
Such a Zn is called a fundamental system of solutions of equation (C.14). In our case, it is easily

seen that the definition ofminimality and fundamental systemof solutions are equivalent. Therefore, one can
state the following extension of theorem2 (see also [26], theorem2.1).

Theorem3.TheMCF equation (C.16) converges if and only if thematrix three-term recurrence equation (29) has a
minimal solution.Moreover, theminimal solution Xn satisfies

= - - - = ¼+
-

+ + +
 ( )X X

I

R

I

R

I

R
n, 1, 2, . C.20n n

n n n
1

1

1 2 3

Wenote that equation (C.20) follows from equation (32) together with the convergence of theMCF
equation (C.16). The full version of this theorem is not needed for this part; however, in section 4, the converse
of theorem3 and the identity equation (C.20)play crucial roles in obtaining theGreen’s function for an arbitrary
applied external potentialfield.

At this point, we have only been able to show that the convergence of the continued fraction equation (C.16)
is equivalent to the existence of aminimal solution for equation (29). The next theorem is a combination of
original results given by Perron [51],Máté andNevai [52], and completes this picture. For the full version of this
theorem see [26].

Theorem4.Consider the first order recurrence

q= =- ( )Z Z n, 2, 3, ..., C.21n n n 1

where Î ´Z ,n
k k2 q Î ´ ,n

k k2 2 and all qn’s are nonsingular. If q q=¥limn n and if all eigenvalues of θ are
different inmodulus, then equation (C.21) has a fundamental system of solutions.

Wepoint out that the recurrence equation (C.21)with the property q q=¥limn n is said to be ofPoincaré-
type and the correspondingMCF is called limit periodic. In view of theorem 4,we can give our last theoremof this
section, which concludes whatwe ought to show.

Theorem5.TheMCF equation (C.16) converges.Moreover,

= - - -- X X
I

R

I

R

I

R
,2 1

1

2 3 4

where Xn denotes aminimal solution of equation (29).

Proof. First of all we have q =det 1n for all n 2, asmentioned in theorem2. So all qn are nonsingular. Next, in
view of theorem1,we have

q = -  -  ¥
m

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

I
I R

I
I D n

0 0
as .n

n

Denoting the above limitingmatrix by q, the characteristic polynomial of θ is given by

q l
l

l- =
-
- -m

⎡
⎣⎢

⎤
⎦⎥( )I

I I
I D Idet det .

Since I and l-mD I commute, we canwrite

q l l l

l l

- = - - +

= - +
m

m

( ) (( )( ) )
( )

I I D I I

I D I

det det

det .2

Using the fact that mD is a diagonalmatrix, see equation (A.14), the above expression gives

q l l m l- = - +
=

( ) ( )Idet 2 cosh 1 .
j

k

j
1

2

Each factor of the above product has two distinct zeros me j and m-e .j Since mjʼs are all distinct, it follows that the
k2 eigenvalues of q, given by m m m m- -{ }e , e , ..., e , e ,k k1 1 are all different inmodulus. In view of theorem 4,we
conclude that the recurrence relation equation (C.21) has a fundamental systemof solutions Z ;n or equivalently,
thematrix three-term recurrence equation (29) has aminimal solution X .n Therefore, the proof follows froman
application of theorem2. ,
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