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Abstract

Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is
emerging as an effective means to obtain useful electronic and optical response in solids. In particular,
excitation of surface plasmons in metal nanorings by photons or electrons finds important
applications due to the engendered field distribution and electromagnetic energy confinement.
However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or
embedded in a medium. The non-simply connected geometry of the torus results in surface modes
that are not linearly independent. A three-term difference equation was recently shown to arise when
seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017
Phys. Rev. B95165422). The reported generalized plasmon dispersion relations are here investigated
in terms of the involved matrix continued fractions and their convergence properties including the
determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We
also present the intricacies of the derivation and properties of the Green’s function employed to solve
the three term amplitude equation that determines the response of the toroidal structure to arbitrary
external excitations.

1. Introduction

A variety of particles are emerging in response to the needs of nanoscale functionality for modifying existing
material properties or for creating new properties, see for example the editorial by Roco and Pinna [1]. Apart
from the complexity of the material at the atomic, molecular, and cluster scales, both the local geometry and size
of the particles have been shown to affect the response of single particles as well as many particle systems. In
plasmonics [2], these experimental observations are frequently quite satisfactorily accounted for by theoretically
invoking nonretarded electrodynamics. The scattering properties of sub-wavelength structures can thus be
obtained in the quasi-static limit, where the field is primarily given by the scalar electric potential. For geometries
that permit analytical solutions, such calculations can reveal the resonance behavior of the nanoparticle surface
modes in response to electromagnetic excitation [3]. Therefore, surface plasmon dispersion relations may be
obtained for the nanoparticles so that experiments can be expedited or measurement results can be better
interpreted.

Recently, toroidal nanoparticles such as metal and dielectric nanorings, have gained considerable attention
due to their potential use in trapping cold polar molecules [4], levitating and trapping dielectric nanoparticles
[5], metamaterials [6-8], soft Coulomb interactions [9], light trapping in energy-harvesting devices [10], and
plasmonic nanoantennas [11]. We here suffice by noting that our motivation for studying such structures
parallels that for the extensive investigation of cartesian thin film stratified systems for development of optical
filters, photonic band gap materials, and metamaterials [ 12—15]. With reference to the works of Love on the
calculation of oscillatory modes of a cold plasma [16, 17], the complete set of the dispersion relations of a single
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Figure 1. The toroidal coordinates (11, 7, () of a point Pin space is referred to symmetry axis zand polar axis p. Cand C’ are centers
of the minor cross-sections. Fand F’ are two foci that form the limiting points of a set of coaxial circles, where p = log(PF’/PF)and
is the angle ZFPF’ with the range [0, 27]. The angle ¢ is the azimuthal angle about the z axis. The composite toroid is generated by
rotating the circles shown by 180 about the z-axis with fixed focal length a. The coordinate y; defines the surface of a composite toroid
of major and minor radii R;and 7, respectively, where the identity R; = r; cosh y; holds. The scalar potential ®; and their associated
boundaries yi; are labeled for typical values of cosh y; = 5, cosh y1, = 3.5,and cosh 1; = 2.7 considered here.

plasma ring in vacuum and its composite configurations were recently [ 18] obtained in the quasi-static limit
from the separation of variables of the Laplace equation in the toroidal coordinate system, where the surface of a
torus is obtained by fixing the value of one of the coordinates. The aim of this article is to rigorously investigate
the analytical structure, existence, and convergence properties of the dispersion relations of a system of
composite solid tori. Specifically, the derivation and properties of equations (28) and (29) in [ 18], obtained to
analyze a k-layered composite toroidal structure with a single or multiple metal-dielectric interfaces, are
presented. In doing so, we consider the confocal toroidal multilayers, shown in figure 1. We here note that for
concentric multilayers, as graphically shown in [18], the Laplace equation is not separable [ 19]. This point was
not emphasized in [18], although the analytical treatment pertained to confocal multilayers. The objective there
was the experimentally realizable nanostructures of current interest to nanoscience, where the fabrication of
multilayer nanorings is practically limited to singly or doubly coated rings such that the ratio of the coating
thicknesses to the core ring radius remains small. As a result, the deviation of the confocal rings from
concentricity remains negligible.

This article is organized as follows: in section 2, closely following the formulation in [18], we derive a
canonical vector three-term recurrence relation that implicitly contains the eigenvalue spectrum corresponding
to the quasi-static plasmonic modes of a k-layered toroidal structure. Using a formal argument followed by a
rigorous mathematical proof, in section 3, we give the explicit forms of the plasmon dispersion relations for such
a geometry in terms of matrix continued fractions (MCFs) and present the determinant forms of the dispersion
relations to provide a numerical platform for determination of the resonance values of the involved dielectric
functions. In section 4, we introduce the Green’s function for the solution of the three term difference equation
for an arbitrary continuous toroidal charge distribution. As examples of the application of the analytical results,
we visualize the potential for some simple charge distributions. Concluding remarks are provided in section 5.

2.Model of a k-layered torus and the vector three-term recurrence relation

A multilayered torus can be described as a solid torus with toroidal surface pn = ,, dielectric function €, and
minor radius 7, together with k — 1 sublayers of confocal toroidal shells, each with dielectric function €;, where

i =2, ..., k(seefigure 1). Thus, a single solid torus corresponds to k = 1, with no sublayer between the torus
and the outside medium. With distances typically of the order of a few nanometers between the layers embedded
in amedium, one can divide the space into k + 1regionsbasedon g, ..., €11, where €, denotes the dielectric

function of the outside medium. The first region corresponds to interior of the solid torus and is given by
= ;. The remaining k — 1 toroidal shells, described by 11, < p < p;_; G = 2, ..., k), share the same focal
length a with the solid torus via the relations [20]

Ri =rcoshy;, a=rsinhpu, (1)

Finally, the (k 4 1)th region, which lies outside the k-layered torus, is described by 0 < p <, (see figure 1 for
the casek = 3).
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Recalling [16, 18] that in the toroidal coordinate system (1, 7, ¢) shown in figure 1, solutions of the Laplace
equation are given by the harmonics:

fwn) P’”,L(cosh 1) el eime
£ m) Q1 (cosh o) e ¢ =0 L A2 @
where f (1, ) = /coshp — cosn, P, and Q™ ,, the so-called toroidal harmonics, denote the associated
2 2
Legendre functions of first and second kind. It follows that one can use the general form:

o= f(/.L, n) Z [CmnP;nf%(COSh )

m,n=—0o0

+Dann,1(coshM)] inn gimg .

with constants C,,,,, and D,,,,, to be determined, as a suitable ansatz for the scalar electric potential ®(u, 1, @) ofa
toroidal structure.

After dividing the space into k + 1 regions, we denote the associated potential in each region by
D), ..., Py, respectively. The general form of the potential given by equations (2) and (3) implies

(I' £ m) Z Z [Cmn nfl(COSh,u)

m=—00 n=—00

+ D)., i1 (cosh p)]elei™, (4)
where j =1, ..., k + 1.Since the toroidal harmonics P , (cosh zz) and Q™ , (cosh ) become unbounded as
2 2
@ — ooand pu — 0; respectively, we must further set
Cl,=0 and Dtl'=o, 5)

for all integers m and n. The continuity of the potential and the normal component of the electric displacement
field across each region gives the 2k-boundary conditions:

(I)ilu:u,- = ¢'i+1|,u:,ula (6)
€ 8<I>, _ aq)1+1 , 1 — 1’ . k (7)
Ocosh i 19 cosh I

W= [ =

Note that for each fixed j, equation (4) can be writtenas & = 3-, @7 - el™?, where @' isindependent of the
azimuthal angle . The completeness of the orthogonal system {e”¥} implies that one can treat equations (6)
and (7) separately for each integer m (the potential field has rotational symmetry with respect to the z-axis). With
m maintained fixed, we may therefore suppress its notation in upcoming equations. Moreover, we adopt the
notations P, Q! fs Cl, D/ for pm 1(cosh w)> QM ! (cosh 1), f (1t;» M)> Chuns Dy respectively, and let P” Q)

" denote the derivatives of P,,, Q,,, f; with respect to cosh y evaluated at ;1 = ;.
! denote the derivati fPi, Q. f; with respect t h p evaluated at p = ;
Introducing the k x 1 coefficient vectors

ok D}
3 2
co=| ¢ | and D, =|P ®)
CI;+1 D.k
n n

and applying the boundary condition equation (6) implies
Pncn = anm ©

with k X kbidiagonal matrices B, and Q,, (see appendix A, equations (A.3) and (A.4)). Both of these bidiagonal
matrices have non-zero diagonal entries and hence are invertible. Thus, one can solve, for example, C,, in terms
of D, as

C, =P, 'Q,D,. (10)

The application of the second boundary condition equation (7) together with equation (10) gives the vector
three-term recurrence

WnJrl - Ran + anl = 0: (11)

forn = 0, +1, 42, ..., where
Wi = 1. Dy, (12)
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Jo = (PLEP," — QEQ,H Qs (13)

and
R, =D, + (B.EP,' — Q.EQ,)P,EP,"' — Q,EQ,H " (14)

For details regarding the algebraic manipulations resulting in equations (9)—(14) and definitions of the k x k
matrices B,, Q,, JP’;, @;, Dy, E, E, see appendix A.

Since the normal modes of the system are independent of the chosen set of coefficients, in our case the vector
D,, oneis naturally led to ask whether equation (11) would remain invariant with respect to a different choice of
a coefficient vector. This is a relevant question and needs to be addressed since the equation system (A.2) can be
represented using a different set of coefficient vectors than C, and D, given by equation (8). We show this
invariance under the extra feasibility assumption, which stems from the physical basis of the problem. To see
this, we generate a different set of coefficient vectors by rewriting equation (9) as:

Cibiy + -+ C By = Dadiy, + - + Dy, (15)
where ﬁln e ﬁkn and g, ..., g;, denote the column vectors of I}, and Q,, in equation (A.3), respectively. A
rearrangement of equation (15) can be written in matrix form as:
Su5: = TG (16)
where the columns of the k X k matrices S, and T, are a permutation of the set of 2k vectors {p,,,, ..., q,} with

the possibility of a negative sign in case a vector has been moved from one side of equation (15) to the another
side, and the coefficient vectors F, and G, consist of the corresponding coefficients for each chosen column
according to equation (15). Similar to equation (9), this is an alternative representation of equation (A.2). In
general, neither S, nor T, has to be invertible. However, in order to obtain the vector three-term recurrence, and
thus the dispersion relations, one should be able to solve one set of k variables, chosen from {C/} ¥*} and
{Di}*_|, in terms of the remaining k variables using the boundary condition equation (6). As a result, we must
require that the rearrangement equation (16) is feasible; i.e., at least one of the matrices S, or T,,, say S,,, is
invertible. In this case, we have 7, = S, 'T,G,. Itis easily seen that D, can be expressed as:

D, = D\/F, + D,G,, (17)

where D, and I, are diagonal matrices with only zeros or ones in the diagonal such that D; + I, = I, the
identity matrix. Substituting F,, in equation (17) gives

D, = (D;S,'T, + D) G, = LG

Since the coefficients { C!} ©*) and { D/} ¥_, are uniquely determined by the boundary condition equations (6)
and (7), so are the corresponding three-term recurrence relations. As a result, the substitution D, = L, G, in
equation (A.16) gives the vectorial three-term recurrence equation for G,, which is easily seen to be reduced to
equation (11). Consequently, under the feasibility condition, equations (11) and (14) are the canonical vector three-
term recurrence relations for a k-layered toroidal structure.

Having solidified the form of equation (11), we close this section by considering the limiting case of
equation (14), which will be used throughout the rest of the paper. For the proof of theorem 1, see appendix A.

Theorem 1. Let R, be defined as in equation (14), then
lim R, = D,. (18)

n—00
Therefore for large n, the vector three-term recurrence relation

Wis1 — DWW, + W,_1 =0, (19)

with constant diagonal coefficient matrix D, is decoupled in all of its variables, and consists of k scalar three-
term recurrences having the general form A, 1 — 2 cosh ;,A,, + A,_; = 0, where, foreachi = 1, ..., k, the
roots of the corresponding characteristic equation is given by e*#:. Since yi,> ... >y, all roots of the
characteristic equation for the vector three-term recurrence equation (19) are distinct with distinct moduli. This
observation in the scalar case, i.e., k = 11in equation (11), implies the utilization of the classical results due to
Perron [21] and Pincherle [22] (see also [23]), which prove the convergence of the obtained dispersion relations
(seealso [17]). Theorem 1 plays the key role in providing the application of Perron—Pincherle type theorem for
the multidimensional case k > 2 (see [24—26] for details).

3. Dispersion relations for a k-layered torus and MCFs

While much of the discussion on the relevance and applications of the charge density normal modes of
nanorings have been covered recently [ 18], we here continue to provide some of the same equations for

4
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convenience. We start with the facts that the toroidal harmonics P , (z) and Q" , (z), and their derivatives
2 2
with respect to zare symmetric in #, see the appendix in [16]. Therefore, it follows from equation (14) that
R_, = R,holdsforalln = 41, £2, ... .
The symmetric property of R, together with substitutions:
V=W, +W, and Z,=W,—- W, (n=0,1..),

transforms the bi-infinite vector three-term recurrence equation (11) into semi-infinite vector three-term
recurrences:

1
W — ERoyo =0, (20)
yn+l - Rnyn + yn—l - 07 n = 13 2) weey (21)
and
Z, — RZ, =0, (22)
Zyt — RuZp+ Zy1=0, n=23.. (23)

Recall that for dispersion relation, our goal is not to seek solutions {)),} and { Z,,} for equations (20)—(23),
but to obtain a relation from which the appropriate set of dielectrics and hence the normal modes of the system
can be derived. In the well-known cases of simply connected regions such as plane, sphere, spheroid, cylinder,
etc, the dispersion relations are derived from the requirement that the problem must possess non-trivial
solution. Here, we do not consider the effects of any nonlinearities or losses in the system that are known to lead
to further diversification of the eigenmodes similar to the case of a lossy metallic nanowire [27]. This approach in
the more complicated case of a torus, signified by the above equations, fails to yield the desired dispersion
relations. To illustrate this idea and as the first natural attempt, one can express equations (20)—(23) as infinite
system of linear equations:

1

Ry —1I o 0

2 Wi 0

—-I R -I 1= o) (24)
-1 R, —I . :

Rl —1 _Zl 0

I R —I Z[ _|o
-1 Ry —1I Z| |0 (25)

At this point, one may be tempted to claim that equations (24)and (25) possess non-trivial solutions if the
determinants of the corresponding infinite matrices vanish identically, and thus obtaining the dispersion
relations. Statements similar to the above paragraph have appeared in [16, 28]. Unlike systems with finite
dimensions where existence of nontrivial solutions are equivalent to the vanishing of the determinant of
coefficient matrix of the system, such requirements are not necessarily valid in the infinite dimensional cases.
More details regarding the problem with this approach is addressed in appendix B. As we shall see, the correct
approach is to employ the theory of MCFs, which is closely related to the vector three-term recurrence relations.
First, note that equations (20)—(23) can be written as a single vector three-term recurrence:

Xyir — RyXy+ Xyo1 =0, n=23, .., (26)

with two initial conditions:
X — (R — 2R H X = 0, 27)
X, — R =0. (28)

The usage of the phrase ‘initial conditions’ is due to the fact that equation (26) can be cast into a first order
nonlinear matrix recurrence relation, where equations (27) and (28) serve as initial conditions, see
equations (30)—(32).
Next, suppose that the sequence of k x k nonsingular matrices { X,,} is a solution to the matrix three-term
recurrence:
Xpi1 — RuXp 4+ Xp1 =0, n=2,3 ... (29
Assuming X, constitutes a single column of X,,, equations (27) and (28) imply the two initial conditions:
1

XX '=R —2—, (30)
0
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XX '=R, (31)

where I denotes the k x kidentity matrix and the quotient of two k x k matrices A and B with B non-singular
will be denoted by A/B := B™!A throughout the rest of the paper.

Multiplying equation (29) from the right by X, ! and defining V,, by V,, = X,,, X, ', we get the following
first order nonlinear matrix recurrence:

I
‘/1’171 e ——— n = 2) 3) ceey (32)
Rn - Vn
with V; = X, X; .. Successive iteration of equation (32) yields
I
Vi = —
R, —
Ry— —1
T Ra Wy
or written more compactly from now on as:
I 1 I
= (33)
R Rs Ry =V,
Assuming the limit of the right-hand side of equation (33) exists as n — 00, one gets
ol L 1. "
R R R
Utilization of the initial conditions equations (30) and (31) leads to the formal expressions:
R_adl L _ 1 _ 1 _ . o)
R R R Ry
I 1 I
R=—— —— — — .. (36)
R Ry R,
It turns out that one can show the following facts.
I. The MCF
LA S o
R R R4
converges and its (unique) limit is independent of any specific choice of the dielectric values g, &, ..., €11

I1. The convergence of the MCF (37) is equivalent to the existence of the minimal solution to the matrix three-
term recurrence equation (29).

The proof of the above statements is long and non-trivial and uses many classical results in connection between
the theory of continued fractions and linear recurrence relations. For the sake of readability, we therefore have
moved the proof to appendix C.

Now, in light of the above results, it follows that equations (35) and (36) are indeed the dispersion relations
for the k-layered torus. Clearly since these equations can not hold simultaneously, we have two separate
dispersion relations. From the mathematical point of view, however, there is no prior knowledge to assure either
of the initial conditions equation (27) or (28) generates a minimal solution. Nevertheless, in view of (II), one can
seek for those dielectric values g, &, ..., &1 which satisfies either of the dispersion relation equations (35)
and (36). The two independent sets of k-tuples (S E2mn> -o> Ekt 1) AN (€l Erpms -vos €;<+1mn) obtained
in this way are the eigenmodes of the system from which the normal modes can be calculated.

Since there is no exact analytical expression for the MCF equation (37), the exact solutions must be
calculated using numerical analysis. In order to examine the numerical structure of the dispersion relations
equations (35) and (36), we rewrite them as:

1 I I 1
“Rp— — — — — — — - =0

2 R1 Rz R3

I I I
R — — — — — — — ... =0,
R R R
and make the following trivial observations:
dflp - L L1 )_, 68)

2 R1 R2 R3
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and

det(R1 - Ri ———————— ) =0, (39)

where Ry, Rj, R, ... are defined by equation (14).

In attempting to find those {&, ..., €1} which solve equations (38) and (39), we may also obtain
extraneous roots. Nevertheless, for numerical calculation, it is preferable to work with equations (38) and (39)
instead of equations (35) and (36) due to the fast convergence of determinant in comparison to any matrix-
norm method. To illustrate this, consider a sequence of 2 x 2 matrices { F,} whose asymptotic behavior for large

e (nn)!
F”[o 1/n ]

One can easily verify the zero limit by a few iterations of the determinants, while it will be utterly time-
consuming to verify this fact utilizing any matrix-norm calculation. The situation described in the above
example is also generic in our case by identifying F,, with the nth approximants (see equation (C.2) of the
MCE (37)).

The obtained dispersion relation equations (38) and (39) are numerically validated to be in exact agreement
with the limiting case results regarding a single-layered torus. More precisely, we obtain the results of a single-
layered torus (see figure 3 in [18] or [28] and [16]) using the dispersion relations (38) and (39) for a k-layered
torus model (here only k = 2 is provided) with the following limiting case justifications:

nis given by

Case Limits Parameter setting Aspect ratio

1 & =& —-15<g< -1 1.02 < coshyyy < 5
=1 cosh j1, = 0.99 cosh y;

2 a=8& -15<g< -1 1.0098 < cosh p, < 4.95
g=1 cosh ft; = 1.01 cosh 1,

It should be mentioned that the associated Legendre functions Q" 1 (cosh 11,), P;'i% (cosh ;) are numerically
evaluated using equation (8.703), equations (8.736-1)—(8.852-2) in [29] as initial seeds respectively for all values
of u1. The rest of the associated Legendre function values are evaluated using equations (8.732-3), (8.732-2),
(8.731-3) and (8.731-4)(1) in [29].

Thus, having established the properties of the analytical and numerical approaches to obtaining the
generalized dispersion relations of the quasi-static normal modes, we now aim to address the properties of the
surface modes that arise when the system is subject to electromagnetic perturbation.

4. The Green’s function approach

The Green’s function approach was employed by Love [17] to solve for the quasi-static response of a dielectric
ring to an external uniform field. Unlike the homogenous difference equation (11), describing the normal
modes of the multilayer solid torus, the presence of a nonzero external field leads to a source term for the
difference equation that ultimately describes the potential distribution of the ring responding to the external
field. For a simple (uniform and isotropic) ring, Love obtained a three term difference equation with a source
term corresponding to an external uniform axial field (see Love’s equation (2.13)). Love’s result was generalized
by Garapati et al [ 18] to obtain the response of a composite ring to arbitrary external fields created by discrete
multipolar charge distributions. This generalization however warrants further consideration with respect to its
convergence properties. Here, extending this generalization to also account for continuous charge distributions,
we begin by considering a toroidal charge distribution with density p that generates a potential ®,;, and expand

in toroidal coordinates [30]:

1
[r—r'|
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/ff p(r) o dp iy

2T

47T€0
2T

. fGs e, n's @)
n'= =
X i i Hmneim(@—ga’)ein(n—n’)
n=-—00 m=—00
X hyhyhgydp/de’dn,
I'(n—m+1/2)
T(n+m+1/2)
X [O(u — p) Q" 1 (cosh )Py 1 (cosh pi')

Hy,=H_,, = (_ )

+ O — P 1 (cosh ) Q" 1 (cosh )], (40)
where ¢ is the permittivity of free space, © is the Heaviside function, and h,,, h,, h, are scale factors given by
hy—hy— — % p, —_asinhp
cosh 1 — cosn cosh it — cosn

with a = R/ coth y,. The vectors r and r/, where r == r’, denote the positions of an arbitrary point in the space
and a charged particle, respectively. Superposing ®,,, with the exterior potential in equation (4) and fitting the
boundary conditions, we can write

= f(wn Y, > [ChPi(coshp)

Mm=—00 n=—00

+ D), Q)" 1 (cosh 1)

+ 8+ tKmn L,y 1 (cosh )] e™eime, (41)
where j = 1, ..., k + 1and §; s denotes the Kronecker delta with generalized form of K,,,,, computed through
equation (40) as

1 2m 2 00
K = — f f f fF's !)pG!s n's @) Hun,
4y Jo 0 w
x (—1yme~im'e=ime'y by dp'dn'dy!, (42)
with
Tn—m+1/2)

Hynyw = Hoyppr = Py (cosh %) (43)

C(n+m+1/2)
andwhere L™ , (cosh y1) = L™ (cosh j1) = Q™ , (cosh y). Replacing ®; in equation (4) with the one given by
2 2 2
equation (41) and introducing the k x k matrix

0 0
Ky=| "o | (44)
0 Lk
and the k x 1 vector
0
Kr=1 6 | (45)
Kinn

the boundary conditions equation (6) imply that for each fixed m = 0, +1, +2, ...,
C, =P, '[Q,D, + K,K,], (46)

where, as in section 2, the index m is suppressed in K/ and /C}'. Next, applying the boundary conditions
equation (7), a similar procedure as illustrated in equations (A.5)—(A.10) with C, in equation (10) replaced by
equation (46) gives the non-homogeneous three-term vector recurrence equation

Wn+l — R W, + Wy = Vn+1 - Dan + Vet (47)
forn =0, &1, £2, ..., where
= (K}E, — P,EP, 'K K, (48)
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and

' 0 . (49)
0 L/k

n

K/ =

All other used notations, except for C, given by equation (46), are the same as those already introduced in
section 2.

Despite the fact that the explicit form of homogenous solutions for equation (47) is unknown, it is still
possible to find an explicit expression for W, with the aid of the Green’s functions. As we shall see, the success of
Green’s method is mostly due to the symmetric property of R,, and that the homogenous part of equation (47) is
of Poincaré-type, discussed in section 3. Our method is the generalization of the one described in Love [17], see
also [31].

We begin with the simple observation via a direct substitution that

Wn: Z Gn,NVNy (50)
N=—00

is the solution of equation (47) if one can find k x kmatrices G, y such that for each fixed N, G, y satisfies the
three-term matrix recurrence

Guyin — RiGun + Gy N = v ld — SuNDy + Onn—il, (51)
wheren = 0, +1, 42, .... Foreach fixed N, we write equation (51) more explicitly as:
Gprin — RGN+ G,y n=0, for n<N-—2, (52)
Guirin — RGN+ G, n=0, for n>N+2, (53)
and
Gnn — RiGn-1n + Grnon =T, n=N-1, (54)
Gnyin — RiGy N + Gy v = =Dy, n=N, (55)
Gn+2n — RiGNyin + Gyn =1, n=N+1 (56)

Suppressing the index N, the recurrence equation (53) can be written in the general form as
Xpi1— R X, +X,1=0, for n>N-+2. (57)
Now, consider the MCF
I I I

RN+2 RN+3 RN+4

e (58)

For N > —1, the continued fraction equation (58) is the tail of the MCF equation (C.16); whereas, for N < —1,
equation (C.16) is the tail of equation (58). In either case, convergence of the MCF equation (C.16) (see theorem
5) implies that equation (58) converges as well. By theorem 3, the three-term recurrence equation (57) hasa
minimal solution. Letting G,, y denote this minimal solution for n > N + 2, it follows from equation (C.20)
that

_ I I I
Gn+1,NGn,}v = - - — 5 nZ2N+ 1L (59)

Rn+1 Rn+2 Rn+3

To analyze equation (52), we consider the (backward) matrix three-term recurrence:
Yn+1 - SnYn+ Yn—l: 0) n= *2> *3) [XXS) (60)

with the initial condition Y_;Y; ! = C, where Cis a fixed non-singular k x k matrix. Multiplying equation (60)
from the right by Y,, ' and defining U, = Y,,_,Y, !, we arrive at the first order nonlinear matrix recurrence:

I
Upr1=——, n=-1,-2,.... 61
n+1 S,, — Un ( )
Using a similar argument as in the proof of theorem 3 (see appendix C), it follows that the MCF
I I I

S S S (62)

converges if and only if the (backward) matrix three-term recurrence equation (60) has a minimal solution.
Moreover, the minimal solution Y,, satisfies
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Y, Y, = — - — 63
1 S (63)

forn =0, -1, =2, ....

Now going back to the three-term recurrence equation (52) with S, = R, in equation (60), it follows from
the symmetric property of R, that equation (62) is the same as RLI - RLZ - R% — ---,which is convergent. Thus,
with a similar argument presented for the case of equation (53), the three-term recurrence equation (52) hasa
minimal solution. Letting G,, 5 denote this minimal solution for n < N — 2, it follows from equation (63) that

anl,NG;,}\]: r_r 1 - n<N-1L (64)
Rn—l Rn—z Rn—a

Next, we rewrite equations (59) and (64) as:
Grn=211Gun, n2=2N+1, (65)
Gn1n =BGy, n<N- 1, (66)
where 2, 1 and *B,, | denote the right-hand sides of equations (59) and (64), respectively. Using equations (65)

and (66), we can substitute Gy 1, y and Gy_, y with Ay .Gy 11y and By, Gy _ 1 N, respectively, in
equations (56) and (54). Thus, we can solve for Gy_1 n, Gy N, and Gy, 1,n from equations (54)—(56) to obtain:

D, — Rn

Gn-1,8y = Bn-1 , (67)
Ry — Any1— By
D,— A — By_
Gay = 2+ (68)
Ry — Any1— By
D, — R
Gnyin = An ) ol (69)

Ry — Any1— Byt

Now, for each fixed #, one may use equations (65)—(69) to obtain W, from equation (50). Thus one can
finally calculate the k x 1vectors D, and C, from equations (12) and (46), respectively.

As a final remark regarding the utility of the Green’s function, it is illuminating to consider the response of a
coated ring to monopoles and dipoles. Other basic cases were treated recently [18]. We consider a k-layered
vacuum bounded solid ring in the presence of monopoles and dipoles of charge g, at ro s = (4 ;> 1y »» ©0.5)
outside the toroidal boundary y1 = 1, > p, , with s counting the number of charges. The charge density
corresponding to a point charge g, at ry ; is

Py = q,6(r — o), (70)
which in the toroidal coordinates reads
o(r — xo) = O[h,(u — p)ldlhy(n — n1dlh,(p — ¥yl

1
= o 80 = 18 — ) o

Using equations (42), (70) and (71) one obtains

L4

Kmn,s S —
4megEry1 A

(— D" (0.0 10,0 Hnnsg, X € hse 105 (72)

with 1/a considered as a scaling factor. Thus, the generalized form of the applied non-uniform external field as
in equation (40) may be given as

Dy = F( )Y D2 Kunel 1 (cosh peeins. (73)

s mn=—00

Superposing ®,, with the external potential in equation (4) we obtain

O=f(md. Y. [ChusPyy(cosh p)e ™

s mn=—00

—im j m
X e MPos | Drjnn,sQn—z

+ 8jk+1Kimn oLy 1 (cosh )] eiMeime, (74)

iz .
1 (cosh 1) e "™ e imey

for j =1, .., k + 1.When specialized for k = 1, thatis, in case of a solid ring, equation (74) reduces to
equation (7) in [31], where m runs from 0 to 0o. With rightly chosen K,,,, for each external charge in

equation (74), we present figures 2—4 showing the potential response of the composite (i.e., k= 2) nanoringto
an external nonuniform field of an electric monopole, and a dipole emitter of charges g;located at r, ; outside the

10
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Figure 2. Potential distribution representing the response of a composite nanoring with a = 0.0980 yum, cosh y; = 5,
cosh pi, = 3.5, = —1.5, ¢, = —3,and €3 = 1toanon-uniform field of an electric monopole. (Top) The result is obtained via

equation (74) with s = 1 by summation of poloidal and toroidal modes for a coated ring. Computationally determined distribution
using FEM for confocal (Middle) versus concentric (Bottom) rings. Max (Min) signifies the highest (lowest) potential.

toroidal boundary 1 = p, > p, .. To validate the results, we also solved the Laplace equation computationally
using finite elements method [32], as shown in figures 2—4. As can be seen, the results are in good agreement.
In case of an uniform field polarized along the z-axis, the generalized form of the applied external potential

may be given by (see [17])

11
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Figure 3. Similar description as in figure 2 but with the monopole placed at an angle. Computationally determined distribution using
FEM for confocal (Middle) versus concentric (Bottorn) rings. Max (Min) signifies the highest (lowest) potential.

Dy = () D KyQuore™, (75)
n=-—o0
where
K, = Mn 76)
17T

Applying the principle of superposition as before we obtain equation (41) but with m = 0 considered. As an
example we present figure 5 which shows the potential distribution of a coated nanoring in an uniform field with

12
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Figure 4. Potential distribution representing the response of a composite nanoring with similar parameters as in figure 2 to a non-
uniform field of a dipole emitter located near the origin. (Top) The result is obtained via equation (74) with s = 1, 2 by summation of
poloidal and toroidal modes for a composite ring. Computationally determined distribution using FEM for confocal (Middle) versus
concentric (Bottom) rings. Max (Min) signifies the highest (lowest) potential.

polarization parallel to the symmetry axis of the ring where in the vectors C,, and D, are computed as discussed
in the paragraph following equation (69). For comparison, the potential distributions are provided for both
confocal and concentric rings, as shown in figure 5. Other relevant cases have been studied in [18].

In closing, regarding the experimental investigation of nanorings, currently within nanophotonics and
nanoplasmonics (typical length scale ~ few tens of nm), several (emerging) approaches have been reported for
fabrication of these structures [33—40]. The main methods include nanofabrication (electron beam lithography)
and chemical synthesis. Single rings, ring arrays, and in-fluid suspended rings (metallic and dielectric) have been
attempted. Considering the photon response of the rings, singly and possibly doubly coated metallo-dielectric
rings are most conceivable, while it is unlikely that the number of coatings will exceed much beyond a few.

13
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Figure 5. Potential distribution representing the response of a composite metal nanoring with similar parameters as in figure 2 to a
uniform field polarized parallel to the ring symmetry axis. (Top) The result is obtained via equation (41) with m = 0. Computationally
determined distribution using FEM for confocal (Middle) versus concentric (Bottom) rings. Max (Min) signifies the highest (lowest)
potential.

Further, we note that typically, the coating thicknesses are only a fraction of the minor radius of the ring.
Therefore, for practical purposes, as also seen in figure 1, the deviation from full concentricity is negligible. This
is clearly seen also from the comparison of the computationally determined potential distributions for the
concentric rings versus those of the confocal rings as shown in figures 2—4.

5. Conclusion

While in general it is recognized that oscillations in the electronic charge density at toroidal interfaces occur at
frequencies that can be approximately obtained from the eigenvalues associated with the quasi-static boundary
value problem, the scalar three term difference equation that arises when the scalar electric potential is required

14
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to satisfy the boundary conditions across a single toroidal interface is seen to cause significant algebraic
complexity. The ‘three-term coupling’ is due to the quasi-separation of variables in toroidal coordinates while
attempting to solve the Laplace equation. This phenomenon is demonstrated in the coupling of the toroidal
coordinates p and 7 via the function fin equation (2). As a result, the generalization of the scalar three-term
difference equations to vector three-term recurrences was shown to be necessary to obtain the plasmon
dispersion relations in a multilayered toroidal structure. The structure of the nonretarded surface plasmon
dispersion relations for a general multilayer toroidal system may thus be studied following the convergence
properties of the MCFs and infinite determinants associated with the vector three-term recurrences. However,
contrary to the cases of finite dimensional matrices representing the underlying system of equations, in the
toroidal case, as described here, it is reasonable not to simply assume that the vanishing of the matrix
determinant would guarantee nontrivial solutions. The convergence properties of the obtained MCFs associated
with the vector three-term recurrence relation equations (20)—(23) were shown to provide a numerical platform
for computation of the eigenmodes using the determinant forms of the dispersion relations given by

equations (38) and (39). The presented results help facilitating numerical analysis of the plasmon dispersion for
specific metals such as gold, silver and aluminum assembled, in conjunction with suitable dielectric media such
as silicon and quartz, into a complex nanoring. Equations (38) and (39) can be used to obtain the dependence of
the plasmon excitation frequency upon the aspect ratio of various nanorings, which enters via the frequency
dependence of the dielectric functions of the involved materials. Thus, plasmon dispersion can be investigated in
arbitrarily coated toroidal nanoparticles (see also [18]). In addition to the normal mode calculation, the response
of a composite ring to arbitrary external fields was shown to be attainable via convergent MCFs.
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Appendix A

In this section, we supply the details in obtaining the vector three-term recurrence equation (11) and give a proof
of theorem 1.

First, we apply the boundary condition equation (6) foreach i = 1, ..., k, which relates the coefficients
(Cl} 22 and {D;} -, via
> (CoPy+ DyQue™ = Y~ (Cy'Py+ DyFQ) e, (A.1)
n=—00 n=-—o00

The completeness of the system {e!"7} implies that, for each fixed #, the corresponding coefficients on both sides
of equation (A.1) must agree; i.e.,

C,Pi+ D,Qi = C,"'Py + Di'Qy, (A.2)
foreachn = 0, +1, £2,...andi = 1, ..., k with valuesin equation (5) considered. Using the k x 1-vectors C,
and D, given by equation (8), one can rewrite equation (A.2) as
]P)ncn - Qan

with k x kbidiagonal matrices P, and Q, defined by

-p! 0
S , (A3)
0 . P,’;‘ —pk
Q: Q 0
Q.= i ko1 gkt (A.4)
0 —Qf
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Similarly, applying the boundary condition equation (7) foreach i = 1, ..., k, we obtain
€i Z [Crll(flp;:l + P’ifz/) + Dill(.lerl,l + Q’ll.fi/)]eim]
n=-—oc

=cin1 Y, [CIUAPY + PifD] + Dy (£.Q) + QI x e,

n=-—00

KV Garapati etal

(A.5)

Collecting similar terms in equation (A.5) and using the facts that fi/ =1 / 2f,and fi2 = cosh j1; — cosn, we

obtain

3 {eil2(cosh y; — cosm) P, + PiC}

n=—o0

— &iy1[2(cosh j1; — cosm) Pl + PICI}eim

= Y {eir1[2(cosh y; — cos mNQL + QiDjH!

n=—oQ

— &;[2(cosh p; — cosm) QL 4+ QI1D;}eim,

(A.6)

The existence of cos 77 in equation (A.6) prevents the use of the completeness argument for the system {e"}
directly as in equation (A.2). However, since cos 77 = (el + e~") /2, one sees that the cos 1) term shifts the bi-
infinite sequence {e"} to the left and right by one unit. Thus, applying the mentioned unilateral backward and
forward shifts in equation (A.6) and substitutingback n 4+ 1 — nandn — 1 — n, we can use the completeness

argument presented in equation (A.2) to obtain
CICHOED ARTGHEESS ARToH
- 5i+1(0‘f1cri+l - Péirlcfiﬂ - P;;i—lcfiﬂ
=i (3,0 = QLD - QLD
— &i(ByD; — Qi Diyy — Q4D ),
foreachn = 0, 1, £2, ..,andi =1, ..., k, where
ol = 2cosh ;P! + Pi,
B8) = 2cosh1;Q;" + Q.
Using the notations introduced in equations (8), (A.3) and (A.4), one can rewrite equation (A.7) as

P, B> oyt — AuCy + Pp_E> Cuy = Q) \Ey Dyiy — B,Dy + Q),_,E Doy,

forn =0, 1, £2, ..., where

Ay =@+ DMP;) E,,
Bn - (Qn + D}l@;) El-

Thek x kbidiagonal matrices P}, and Q/, are defined by

1
—P! 0
2 2
P = P —P ’
0 pk —plk

7Q/.k—1 Q/k-1p
n n

0 —Q)f
and thek x kdiagonal matrices D, E;, E; are given by

2 cosh p, 0
2cosh 1,

0 2 cosh 1

(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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& &3

o

0 Ek
Substituting equation (10) in (A.10) gives
]n+1Dn+1 - (AnP;lQn -

where J, is given by equation (13) as

Bn)Dn + ]nflpnfl =0,

KV Garapati etal
0
(A.15)
€k+1
(A.16)

Jo = P,EP, — Q,EQ,HQ,

Using equation (A.11), one can easily see

AP,'Q, — B, = (BEP,' — Q.EQ,HQ, + Dy,

It follows now that the substitution
Wn = ] n Dm

transforms equation (A.16) into

Wn+1 - Ran + anl =0,

forn =0, +1, £2, ..., where

R, =D, + (BEP,' — Q.EQ,)(P,EP,' — Q,EQ,H".

This concludes the algebraic derivation of equation (11).
Proof of theorem 1.
LetR, = D, + U,V, ', where

Un = PnEZ]P);1 - QnElQ;I)
v, =P/ E,P,' — Q.EQ,".

The theorem follows if we can show that U, V,; ! — 0asn — 0. Since B, and Q,, are triangular matrices, one
can obtain an explicit formula for their inverses and after some simple algebra, we get

Q! . .
@(&'H —¢gy if i<},

[Un]ij =136Gi+1 — & if

= j)

P} . . .
E(5i+1 —¢g) if i>},
n

and
Ll =) f
Wil =1 % 1 — Le if
Ben—=) f

i <j,
i = j

i>],

where i, j = 1, ..., k. From the asymptotic forms of the associated Legendre functions (see appendix in [16]),
and their derivatives, using formulas (8.731-1)(1), (8.734-4), and (8.732-1) in [29], we have that for large n

Pl e, Qi v e, P~ pettt, Q)F o e,

Thus for large values of n
e " (g — &) if
€it1 — & if

e MU (g — &) if

[Un ]1] =

and

ne "W (i — &) if
[Va]i = {n(Ei — ) if

ne "Wk (gi ., — &) if

i<,
i=j
i>],

(A.17)

i<j,
i=j,
i> ],

(A.18)

wherei, j =1, .., k.Since y; > p; whenever i < j, it follows from equation (A.18) thatall off-diagonal
elements of V,, approach zero. Therefore, V,, is nonsingular for large values of n. Moreover, equations (A.17)
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and (A.18)imply that V,, =~ nU,. Thus for sufficiently large 1, we have U, V,, ! ~ U, (nU,)~' ~ C/n, for some
(constant) matrix C independent of 7. Finally, the last estimate implies U, V,, ' — 0.

AppendixB
Equations (24) and (25) are special cases of the infinite system of linear equations
AX =0, (B.1)

where A = [A;]5_ is an infinite matrix consisting of block matrices A;; € Ckxkand X = [X}, A, ...]T isthe
infinite unknown vector consisting of k x 1vectors X, = [x/", ..., x{']". Letting A, := [A,-j];fj:(), the infinite
determinant is defined by

det(A) = lim det(A,), (B.2)

n—oo

provided such a limit exists, see [41-43]. As mentioned earlier in section 3, statement such as: ‘equation (B.1) has
non-trivial solutions ifand only if det(A) = 0,” which also has appeared in [28, 44], does not hold for infinite
system in general. In fact, one can find trivial examples where det(A), described as in equation (B.2), may not
exist but the system still possesses non-trivial solutions, see [ 18]. On the other hand, one can show the validity of
the above statement under certain rather restrictive conditions. One such classic result (see Koch [45] and also
[41-43]) states that for a certain class M of infinite matrices if the moduli of the off diagonal terms are square
summable and the infinite product of the diagonal terms converges absolutely, and if the vector X’ is also square
summable, then det(A) exists and the infinite system equation (B.1) has a non-trivial solution if and only if
det(A) = 0, see Denk [42] for details. As it stands, neither of the infinite block matrices in equations (24)

and (25) belongs to the class M. It should also be emphasized that we can not utilize the truncated system
method, see [46], where the infinite matrix A has to satisfy similar conditions to those of the class M. Finally, we
note that a formal calculation of the determinants for infinite matrices in equations (24) and (25) based on the
definition equation (B.2) and the result regarding the determinant of a finite tridigonal matrix [47] does not
imply the obtained dispersion relations. This justification, see [48], is beyond the scope of this paper and is
therefore omitted.

Appendix C

Here, we prove the claims (I) and (II) of section 3 with regard to the MCF (37) and its relation to the matrix
three-term recurrence equation (29).

We start by assessing the convergence of equation (37). Recall that given two sequences of k x k matrices
{A,}and {B,}, where B, are non-singular for large n, the MCF

A A A
i S ST (C.1)
B, B, B3
is said to converge to the k x k matrix 2 if the sequence of approximants
A A A,
Ew=L 4+ 22 4. 4 21 (C2)
B, B, B,

converges in C**¥, in which case we set ) = % + % + % + ---.Matrix F,, is called the nth approximant of
the MCF equation (C.1). 1 : ’

The classical approach to continued fractions with the aid of the theory of M6bius or linear fractional
transformations is also fruitful in treating MCFs, see Ahlbrandt [24, 25] and references therein. In this paper,
however, we only consider and thus explain the portion which is relevant to our special case equation (C.1). So
let M be anonsingular 2k x 2k block matrix

[c b
Mf[A B], (C.3)

where A, B, Cand Darek x kmatrices. The matrix linear fractional transformation Ty, : Ck*k — Ck*k with
the symbol M is defined by
WwC + A

Ty (W) = .
vV = DT B

(C.4)
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Note that we will suppress the symbol M from our notation whenever it is understood. It is easily seen that

A A A,
S1 08 0 nS(W)y="4 24— (C.5)
B B, B, + W
where the matrix linear fractional transformations S,, are given by
An
SW)=———, (n=12,..), (C.6)
B, + W
with corresponding symbols
0 I
0, = [An Bn:l‘ (C.7)
Asaresult, if welet
T,:=8080..5, (C.8)

then it follows from equation (C.5) that T;,(0) = F,, the nth approximant of equation (C.1). Consequently, one
can define the convergence of the MCF equation (C.1) as
lim T;(0), (C9)

n—oo

provided that the above limit exists. This observation is important. In simple terms, since it is easily verified that
the composition of two matrix linear fractional transformations, say Ty o T; with corresponding symbols K and
L, is again a linear fractional transformation T, with the symbol M = LK, the definition of T}, in equation (C.4)
together with equation (C.7) imply

T.w) = Vit A 10
wD, + B,
with the symbol
(G Du| _[O0 I 0 I
Mn_[An Bn]_[An Bn] [A1 Bl]' (C.11)

Now, we can give an alternative definition for the convergence of the MCF equation (C.1). Suppose { A, } and
{B, } are given by equation (C.11). The MCF equation (C.1) is said to converge if B, is nonsingular for large n
and

lim Ay € Ckxk, (C.12)

n—oo n

Writing equation (C.11) in terms of the introduced notations, we get
M, =0,M,;, with My,=1, (C.13)

which shows the connection between the theory of continued fractions and linear recurrence relations. To see
this, we rewrite equation (29) into a first order recurrence system

[XXL] - [_OI é][xx“] n>2 (C.14)
Now if we denote the 2k x 2k block matrix in equation (C.14) by 6, defined as in equation (C.7); i.e.
O, = [_OI é] (C.15)
we are implicitly considering the MCF equation (37) with A, = —I'and B, = R, 1.e.
7RL27RL37RL47““ (C.16)

Before we can show the connection between equations (C.16) and (C.14), we need some definitions. Two
solutions X, and Y,, of equation (29) are said to be linearly independent if their Wronskian (or Casoratian) is
nonsingular; that is, the 2k x 2k matrix

Xo Y

[ 0 0], (C.17)

X %
is nonsingular (see [24] for details).

Definition 1. A solution X,, of the matrix three-term recurrence equation (29) is called minimal if the following
conditions hold.
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1. X, is nonsingular,

2.1f Y, is a solution of equation (29) such that X, and Y, are linearly independent, then Y, is nonsingular for
large values of nand

. X
lim =2 = 0.
n—oo Yn

Our definition of minimality is based on the notion of recessive solution of equation (C.14) introduced in [49]
(see also [24]), where it is shown that a recessive solution is unique up to multiplication by a constant matrix. As a
result, one could call ‘a minimal solution’ by ‘the minimal solution’. For the purpose of this paper, both
terminologies are acceptable and we will not pursue this issue any further. We are now in the position to show
the connection between continued fractions and recurrence relations.

Theorem 2. Ifthe matrix three-term recurrence equation (29) has a minimal solution X,,, then the MCF
equation (C.16) converges and its limit is given by — X, X, .

Proof. Let Y, be asolution of equation (29) such that X,, and Y,, are linearly independent and put

X, Y,
Z, = " " C.18
[Xnﬂ Ynﬂ] ©18)

It follows from equation (C.14) that Z,, satisfies

Zn = 9,,Zn,1, n = 2, 3, weey
where 6,’s are given by equation (C.15). Successive iteration of the above recurrence gives

Zn = 9,10,1,1 9221 = MﬂZI,
where in the last equality we have used equation (C.11). Itis clear that det §, = 1for all n. So M,, is nonsingular.
This observation is important as the symbol of a linear fractional transformation is implicitly assumed to be
nonsingular.

Since X, and Y,, are linearly independent, Z, is nonsingular. This implies that we can solve M,, from the last
equality as
M, =Z,Z;". (C.19)
Since X,, is minimal, X, is nonsingular. Therefore, we can write an explicit formula for 20—1 as
oo |5 XUHSTRXT X s
—SIX X! s-!

where the nonsingular matrix S = Y, — X, X; 'Y, is called the Schur complement of X, in Z,, see [50], p 227.
Denoting the first row of Z; ' by Uand V and using the expression for M,, from equation (C.11), the equalty

equation (C.19) yields
C. D] | X» Y, U Vv
A, B, [ X1 Yo||-S20x s

A, =X, U — Y0 STIX5X
B, = XyV + Y, S7L

Asa consequence

For large values of n, Y,, is nonsingular. Therefore, the last equality gives
Y, '\B, =Y, X,V + SL
Since Sis nonsingular and % — 0, wehave that Y, !, B, and thus B, are nonsingular for large 1. Moreover,
n+1

Xut1 _ -1 —1
An _ Y U S XIXO —1
_— = — —XzXl .
Bn §n+l V + S*l

n+1

This completes the proof. O

We should mention that theorem 2 is a generalization of the classic Pincherle’s theorem [22], and the proof
provided here essentially follows the one given in [26], see theorem 2.1. In fact the converse of theorem 2 also
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holds. More precisely, if the MCF equation (C.16) converges, then there exists a solution of equation (C.14), say
Z, as in equation (C.18), such that both Z, and X, are nonsingular, Y, is nonsingular for large n, and
lim,, % = 0.Such a Z,, is called a fundamental system of solutions of equation (C.14). In our case, it is easily

seen that the definition of minimality and fundamental system of solutions are equivalent. Therefore, one can
state the following extension of theorem 2 (see also [26], theorem 2.1).

Theorem 3. The MCF equation (C.16) converges if and only if the matrix three-term recurrence equation (29) has a
minimal solution. Moreover, the minimal solution X, satisfies

I I I
XpX, ' = — - — ey, n=1,2,... (C.20)

Rivi Ruva Ruys

We note that equation (C.20) follows from equation (32) together with the convergence of the MCF

equation (C.16). The full version of this theorem is not needed for this part; however, in section 4, the converse
of theorem 3 and the identity equation (C.20) play crucial roles in obtaining the Green’s function for an arbitrary
applied external potential field.

At this point, we have only been able to show that the convergence of the continued fraction equation (C.16)
is equivalent to the existence of a minimal solution for equation (29). The next theorem is a combination of
original results given by Perron [51], Maté and Nevai [52], and completes this picture. For the full version of this
theorem see [26].

Theorem 4. Consider the first order recurrence
Zy=06,Z,_1, n=2,3, .. (C.21)

where Z,, € C**k 0, € C**2% and all 0,’s are nonsingular. If lim,, . 0, = 0 and ifall eigenvalues of 0 are
different in modulus, then equation (C.21) has a fundamental system of solutions.

We point out that the recurrence equation (C.21) with the property lim,,_, .8, = 6 is said to be of Poincaré-
type and the corresponding MCF is called limit periodic. In view of theorem 4, we can give our last theorem of this
section, which concludes what we ought to show.

Theorem 5. The MCF equation (C.16) converges. Moreover,

where X,, denotes a minimal solution of equation (29).

Proof. First of all we have det 6, = 1foralln > 2, as mentioned in theorem 2. So all 6, are nonsingular. Next, in

view of theorem 1, we have
0 — 0 I . 0 I .
"=|_1 R, I D, as n — oo.

Denoting the above limiting matrix by 6, the characteristic polynomial of # is given by

— A 1
det(@ — M) = det[ 7 D, - )\I]'

Since Iand D, — M commute, we can write
det(0 — AI) = det((—AD(D, — AI) + I)
= det(N] — AD, + I).

Using the fact that D), is a diagonal matrix, see equation (A.14), the above expression gives

k
det(@ — \) = [] (¥ — 2cosh B A+ D).
j=1

Each factor of the above product has two distinct zeros e/ and ™. Since 1;’s are all distinct, it follows that the
2k eigenvalues of 6, given by {e"#1, ef4, ..., e #, et+}, are all different in modulus. In view of theorem 4, we
conclude that the recurrence relation equation (C.21) has a fundamental system of solutions Z,; or equivalently,
the matrix three-term recurrence equation (29) has a minimal solution X,,. Therefore, the proof follows from an
application of theorem 2. O
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