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Abstract

Service demand patterns for wireless networks are evolving with the technological devel-

opments in areas such as personal computing, unmanned vehicles, and internet-of-things,

where increasing mobile service demand is one of the significant challenges introduced. In

addition to these new intrinsic dynamics, natural disasters and societal upheaval are also

disrupting the conventional patterns of network demand. Situations like damaged infras-

tructure due to a natural disaster or large numbers of displaced people caused by political

strife and social upheaval demand flexible, rapidly deployable network architectures. The

increasing demands of next-generation communication services are straining the capabilities

of the traditional approach of the permanent deployments of fixed infrastructure, presenting

a need for novel approaches.

The availability of previously unprecedented data sources also brings data-driven ap-

proaches to the spotlight. Having access to large-scale longitudinal datasets of network user

behavior makes it possible to study and model user behavior which can then be used to

improve services provided to users.

This dissertation has its primary contributions in socially aware analysis of cellular net-

work usage data and developing methods for forming flexible aerial wireless network infras-

tructures in applications challenging for traditional infrastructure deployments. Specifically,

this dissertation first presents an investigation of the wireless network user data to generate

actionable intelligence that can guide policymakers and point out the changing demands of

wireless networks discovering user modalities outside the common user patterns and then
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explores the use of aerial platforms for rapid deployment of flexible wireless networks to

satisfy the mobility and reliability demands of the future wireless communications.

ix



Chapter 1: Introduction

This chapter provides a summary of the contributions presented throughout this disser-

tation. Demands and expectations from wireless networks have been evolving in the recent

years. Following the technological developments in areas such as personal computing, un-

manned vehicles, and internet of things (IoT) and shifting societal norms due to the ever

increasing number of services moving online and relying heavily on cellular phones for de-

livery creates a significant wireless service demand for increasingly more mobile users. The

increasing demands of the next generation communication services are straining the capa-

bilities of the traditional approach of the permanent deployments of fixed infrastructure,

presenting a need for novel approaches.

In addition to these new intrinsic dynamics, natural disasters are also disrupting the

conventional patterns of network demand. As an example, in the aftermath of Hurricane

Irma, Puerto Rico has lost its wireless infrastructure for an extended period. Scenarios like

this can benefit from flexible, temporary network deployments that can serve as a stop-gap

until the network infrastructure is restored. This can also be used to provide service in

remote areas with temporary or irregular service demand where a permanent infrastructure

investment is not practical.

Another significant source of perturbation in the network demand patterns is the dis-

placed populations of regions that have been in turmoil due to political strife and social

upheaval. Last decade has seen refugee numbers unprecedented in recent history. Ubiqui-

tousness of online information sources and services also means that cellular phone service is

a vital resource for the displaced populations. In fact, field reports indicate that refugees

1



often ask for phone chargers and cellular service before food and water [2]. Wireless ser-

vice demands for these displaced populations is likely to differ from the daily lives of local

populations. This calls for an investigation into the network usage and mobility patterns of

refugee users for satisfactory service coverage. Of course, refugee populations are not the

only group with diverging usage patterns compared to local populations and these studies

can be extended to any other group.

The primary goals of this dissertation then is to first understand the network usage and

mobility patterns of distinct cellular user groups and develop methods for rapidly deploying a

flexible mobile wireless network to cover scenarios where conventional network deployments

fall short.

1.1 Socially Aware Cellular User Mobility Analysis

Widespread adoption of cellular phones has made big longitudinal datasets of Call Detail

Records (CDR) available. Combined with the advances in big data analysis this has opened

many avenues of research and application [3]. Some of the fields that utilize CDR datasets

with example works are; public health with studies on how mobility effects infectious disease

spread [4, 5], development of new agent based models to explain disease migration [6], effects

of mobility during holidays and religious events on public health [7], a study of disease con-

tainment scenarios based on mobility [8], urban planning with studies on managing disasters

and resilience [9], data-driven utility infrastructure deployment plans [10], analysis of social

phenomena with studies on data-driven improved poverty mapping [11], detecting unusual

and emergency events [12], and mapping of real-world events and locations to people [13]. It

should be noted that often the availability of mobility models developed through the analysis

of CDR datasets is the main driving factor behind these works.

Availability of CDR datasets to researchers can also drive public good projects and help

researchers produce works that can be referenced by policymakers, as it has been demon-
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strated by the “Data 4 Good” challenges [14, 15]. In fact, this chapter has been originally

prepared for the “Data 4 Refugees” challenge [16, 17] that aimed to produce actionable data

to policy makers of The Republic of Turkey during the unprecedented flow of refugees into

the country. This chapter introduces the tools used in mobility analysis, and studies a real

CDR dataset collected from 50000 users over a year to highlight unique patterns of cellular

usage and mobility of refugee users and how they differ from non-refugee users. Our findings

suggest that refugee users are not well integrated into the local daily life through data-driven

observations. We uniquely apply Variable Higher-Order Networks to the mobility analysis

based on CDR data, which removes the first-order dependency introduced by more common

models following the Markov property to better represent the sequential trajectory data

necessary for mobility analysis.

While the original goal of this study is to provide actionable data for policy makers,

the work in this chapter has significant implications for the field of wireless networks as

well. First of all, the existence of accurate mobility models of users can significantly improve

network design and deployments especially for highly mobile user bases. Furthermore, the

findings suggesting the existence of a large group of refugee users that have differing cellular

traffic and mobility patterns create a unique challenge to provide coverage for groups that

do not follow the common local patterns, especially vulnerable populations such as refugees,

that may be present in the areas only temporarily. This indicates a demand for flexible,

temporary infrastructures that can be deployed rapidly.

1.2 Aerial Wireless Network Deployment

Usage of aerial platforms for wireless network deployment brings an additional degree

of freedom to network design that can answer the mobile heterogeneous traffic demand of

next the generation. They are also suitable for answering the challenges laid down in 1.1,

enabling quick, flexible, and temporary deployments. There are significant attempts from
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the industry towards aerial deployments as well, for example AT&T deployed it’s Flying Cell-

on-Wheels (COW) experimentally after Hurricane Maria in Puerto Rico to provide service

when terrestrial infrastructure was damaged.

In this chapter, the placement problem for multiple access points (APs) in full 3D is

presented and addressed. Placement problem on a 2D plane is a well studied problem,

however it’s extension to 3D is not trivial and there may not even be a direct extension

of these results [18]. The Kepler Conjecture, more informally known as the densest sphere

packing problem, is an analogue for this 3D placement problem and has only been formally

proved recently by a large team after remaining an open problem for 400 years [19].

Works in the literature have considered single [20, 21, 22, 23] or multiple [24, 25, 26]

UAV deployments, however these works follow optimization schemes that are not tractable

in full 3D and often make limiting assumptions to reduce the problem into a circle coverage

problem on a 2D surface which represents a more trivial problem.

This chapter presents a formulation for the genuine 3D placement of multiple low-altitude

short-range aerial APs directly, utilizing concepts from the analysis of random graphs, par-

ticularly Random Geometric Graphs (RGGs). An efficient and scalable sequential iterative

algorithm is then proposed as a practical solution for the optimal placement problem in 3D

against the rapidly increasing search space of AP locations as the number of APs increase.

Resulting individual optimization problems are solved utilizing evolutionary methods as the

unpredictable environment conditions and network dynamics make the gradient based meth-

ods unfeasible. Furthermore, a procedure to determine the adequate number of APs to be

deployed in the given area for the desired fraction of coverage is also presented. Detailed

agent based simulations with ray-tracing line-of-sight calculation shows that operating in full

3D is advantageous especially when avoiding obstacles and conforming to the environment

is crucial to get a good connection between the users and APs.
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1.3 Aerial Mobile Radio Access Network Design

The deployment scheme in 1.2 works on static snapshots of the system, and have strong

priors. In this chapter, these assumptions are relaxed towards a more practical system.

A flexible and rapidly deployable aerial radio access network (aRAN) is developed, which

will be crucial in both post-disaster communications and highly dynamic usage patterns of

humans and machines expected in the near future.

Operating in a dynamic environment with limited prior knowledge of the network and

user dynamics, tight closed loop of UAVs to implement an aRAN is a luxury. Following

this, designing trajectories for the UAVs to effectively serve user traffic results in a sig-

nificant challenge that is computationally unfeasible with the conventional methods in the

literature [27, 28].

In this chapter each UAV based aerial Access Point (aAP) is treated as an autonomous

mobile robot, and use Reinforcement Learning (RL) for the trajectory design control problem

of the aRAN. This addresses both the computational feasibility challenge by constructing

and iteratively improving policies, and the lack of prior information for user distribution and

traffic and mobility models via online estimation. While there are other works applying RL

to similar scenarios [29, 30, 31, 32], they suffer from slow converge, lack of consideration

towards fairness of service among users (potentially neglecting users that are not clustered

together), and in some cases significant prior information requirements.

We uniquely consider the aAPs that form the aRAN as collaborative agents. The problem

is modeled as a decentralized multi-agent trajectory control problem. State and reward for

the proposed adapted Q-learning based solution is carefully designed to take fairness of

service among users into account. The only prior information required by the system is the

number of users active in the operation area, significantly relaxing the prior information

requirements from Section 1.2.
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Another main contribution presented in this chapter is the development and investigation

of inter-agent communication schemes to facilitate improved collaboration among decentral-

ized agents. Three different levels of inter-agent communication are investigated to observe

the effects of the level of communication among agents.

1.4 Enhanced Multi-Agent Mobile Aerial RAN Deployment

Chapter 4 and works in the literature [33] focus on Markov Decision Process (MDP) based

approaches where policies are defined over atomic actions, and trajectories are built by a

sequence of many small actions. This results in very large search spaces, convergence rates

and early performances of the solutions. However, flight control of UAVs is an orthogonal

problem to optimization of service for users.

This chapter uniquely applies temporal abstraction and hierarchical RL to take advantage

of temporally-extended actions of varying lengths through a Semi-Markov Decision Process

(SMDP) approach. An algorithm inspired by the landmark-state methods [34, 35] for the

single-agent case is developed and then extended for multi-agent scenarios. The round-robin

inter-agent communication channel shown effective in Chapter 4 is utilized to pass control

messages between agents.

The final contribution of this chapter is to introduce a simple planning method that takes

advantage of the shared option set as a shared vocabulary together with limited inter-agent

communication to improve the decentralized multi-agent collaboration effectiveness towards

a single shared goal and reduce repeated-work.

1.5 Contributions

In this chapter, the main contributions of this dissertation is summarized. Specifically,

this dissertation;
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1. Uniquely employs variable high-order networks on modelling cellular user mobility from

a CDR dataset.

2. Introduces an iterative process to decompose the intractable Joint-Optimization prob-

lem arising from placement of multiple aerial access points in 3D into tractable inde-

pendent sequential placement problems.

3. Introduces a scheme that can prioritize service fairness among users in collaborative

multi-agent trajectory optimization problems for aRAN.

4. Develops a scheme to utilize inter-agent communications for decentralized multi-agent

collaboration in trajectory optimization problems for aRAN, and investigates the ef-

fectiveness of different levels of inter-agent communication.

5. Employs temporal abstraction and hierarchical RL to improve the convergence charac-

teristics of the collaborative multi-agent trajectory optimization with respect to fairness

problem for deploying an aRAN.

6. Employs the options framework for temporal abstraction to create a shared vocabulary

among decentralized agents that can be utilized to improve planning and collaboration

effectiveness.

1.6 Organization

This dissertations is organized as follows. Chapter 2 presents an analysis of a real Call

Detail Records (CDR) dataset comparing mobility and network usage patterns of refugee

users and non-refugee users, showing existence of groups with significantly different ser-

vice demands. Chapter 3 presents a method to deploy Aerial Wireless Networks in full

3D space and provides a tractable and scalable solution through a decomposition of the

joint-optimization problem into sequential individual problems. Chapter 4 then develops

7



a method to deploy a mobile aerial Radio Access Network and provides a Reinforcement

Learning based tractable solution to the trajectory design problem for multiple aerial Ac-

cess Points while significantly relaxing the prior information assumptions from 3. Chapter

5 further extends the work from Chapter 4 by incorporating a practical channel model and

interference. The significantly increased solution search space size and constraints resulting

from this extension is addressed by the utilization of temporal-abstraction and Hierarchi-

cal Reinforcement Learning. Finally, concluding remarks and future research directions are

presented in Chapter 6.

8



Chapter 2: Socially Aware Cellular User Mobility Analysis

Recent advances in technology enabling collection and analysis of very large datasets has

created new avenues of improvement in a large array of fields. For example, availability

of vast longitudinal datasets containing the Call Detail Records (CDR) of cellular mobile

network users has made it possible for extensive analysis and data driven models of human

mobility offering unique insights [36, 37].

Wireless networks can strongly benefit from accurate models of human mobility, with

some recent works starting to exploit available historical data [38]. Accurate mobility mod-

els for wireless networks can be exploited to improve coverage, capacity, and offloading

management offering reduced costs and improved quality of service.

Beyond improvements on conventional challenges, there are new challenges facing wireless

networks that can significantly benefit from more accurate mobility models and data driven

insights on human mobility. Recent social upheavals and political conflicts have displaced

people in unprecedented numbers in recent history. It has been documented that extensive

mobile and smart phone usage among displaced people and refugees for coordination and

communication among themselves as well as people they had to leave behind is common and

most refugees ask for charging and wireless data services before needs that may be considered

more vital such as food and water [2]. This creates a unique challenge within the context

of wireless networks to provide coverage to displaced and vulnerable populations who are

outside the common usage patterns wireless networks are often designed for.

In this chapter mobility networks, a significant tool in the analysis and modeling of human

mobility, is introduced. Furthermore, Variable Higher-Order Networks are introduced as a
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significant improvement over more common networks with first-order dependencies through

better representation of sequential trajectory data that is crucial for mobility. Finally a study

of real CDR dataset provided by a cellular carrier is presented with unique insights regarding

the cellular usage patterns of refugee users and how they may differ from non-refugee users,

and the unique contribution of the application of Variable Higher-Order Networks to the

cellular user data.

2.1 Data-driven Analysis of Mobility through Networks

Study of human motion has a significant role in applications such as virology [39, 40, 41],

cyber-security on mobile devices [42], urban planning [43], and traffic forecasting [44]. With

the availability of data from cellular networks on mobility, estimated models of data-driven

human mobility models are also beginning to be a part of modern wireless network design [38].

Network science has been the driving tool in the study of human motion [45, 46]. When

combined with the large aggregate datasets and longitudinal studies, this has lead to impor-

tant recent findings showing that there indeed are underlying patterns that can be discovered

governing human mobility [36, 37]. Social contact networks of individuals also strongly in-

fluence their mobility, and availability of cellular carrier data that includes both location

thanks to data from cellular tower and the call detail records makes it possible to study the

connection between the mobility and social contact networks [47, 36].

A simple data-driven mobility network can be constructed by having each vertex represent

a distinct location and each directed weighted edge between vertices represent the strength

of the relationship between the vertex pairs. Edge weights can be realized as the probability

of moving from one vertex to the next, or the total number of connections between the

vertex pair from which the probabilities can be calculated [48, 49, 50, 51]. This network

captures the mobility relationship between locations. However, this simple model presented

here implicitly follows the Markov property where each state change only depends on the
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current state (vertex or location in this case) and the transition probability. This results in an

inability to capture information from sequential data of longer trajectories and longitudinal

studies. As a result, we investigate Variable Higher-Order networks [1, 52] and apply them

to cellular user mobility data.

2.1.1 Variable Higher-Order Networks [1]

Constructing networks directly from data by using the total number of connections for

each vertex pair as edge weights from sequential data of movement between locations [48] is

found commonly in the literature; studying urban movements of the people [50], interurban

traffic [49], and flights between airports [51]. This simple construction results in the implicit

assumption of Markov property where the transition to next state only relies on the current

state; i.e. first-order dependency. A significant loss of information for sequential data such

as movement trajectories, or data from longitudinal studies. A simple network of ports in

the international shipping network [1] seen in Figure 2.1 provides an illustrative example

of this first-order dependency. Which port a ship in Shanghai has originated from has no

effect on the probability of whether continuing on to Seattle or Los Angeles. This Markovian

dependency causes the information from higher order dependencies, such as common shipping

routes, to be lost. Higher-order network illustrated in Figure 2.2 is better able to capture

the sequential trajectory nature of the underlying data by introducing high-order nodes by

splitting the Singapore node into two nodes depending on the originating node [1].

It has been shown that Variable Higher-Order Networks improve modeling performance

in tasks of prediction, clustering, ranking [1], and anomaly detection [52].
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Figure 2.1: An illustrative first-order network of global ship movements. Due to the
implicit Markov assumption, a ship in Singapore has the same probability to continue to

Seattle or Los Angeles no matter where their origin port was.

2.2 Refugee Integration in Turkey: A Study of Mobile Phone Data for D4R

Challenge

2.2.1 Motivation

Unprecedented numbers of displaced refugees, caused by social upheavals and political

conflicts in recent history have overwhelmed the support systems in place for refugees and is

considered to be one of the most important humanitarian crises of our times. The situation

is especially critical for minors, as their experiences can have a direct influence over their

mental health and educational development [54, 55]. While significant work is being done by

governments and non-governmental organizations to alleviate some of these problems [56],

the current state of technology allows for additional unique opportunities for determining

the shortcomings and improving conditions not possible in the past.

Extensive mobile and smart phone usage by refugees for coordination and communication

among themselves as well as people they have left behind has been consistently reported by

officials and volunteers in the field. In fact, it has even been reported that most refugees ask

for charging and data services for their mobile phones before food or water, showing that

0This section has been previously published in [53]. Permission is included in Appendix A.
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Figure 2.2: Introducing high-order nodes to Figure 2.1. Ships port of origin is represented
in the high-order node for Singapore in the center, which enables to incorporate past

information for the prediction of next step and representing sequential trajectory data
more accurately.

they consider their mobile phones a vital tool for survival [2]. This phenomena allows for a

wealth of data, uniquely presented by the current state of communication technologies, that

can be leveraged.

In this work, we focus on two main issues: social integration and unemployment. We have

identified these issues as our main focus, given the nature and limitations of the provided

dataset. We have utilized the base station traffic data (Dataset1) for studying communi-

cation patterns, and coarse-grained mobility data (Dataset3) for studying individual and

aggregate movement patterns, with the goal of identifying markers of social integration and

unemployment.

2.2.2 Related Work

Human migration, both globally and locally, has been a common topic of study for scien-

tists in various fields [57, 58]. However, recent improvements in communication technologies
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and availability of mobile phone data have enabled studying movement of individuals in

urban areas. Recent studies on individual mobility data show that most individuals have a

predictable mobility pattern, where they travel between a relatively small number of loca-

tions regularly, such as their workplaces and accommodations [59, 60, 61].

Previous efforts on analyzing mobility patterns for past Data for Development(D4D)

challenges point out the importance of mobile phone data [62, 14]. Researchers have also

investigated the relationship between mobile phone usage and regional economic develop-

ment [63, 64]. Information on mobility data has also been used for predicting human behav-

ior [65] and daily pulse of cities [15, 66], studying transformation in metropolitan cities [67],

and development of vaccination strategies for disease prevention [68, 8, 6].

2.2.3 Dataset

Dataset is provided by Data for Refugees: The D4R Challenge on Mobility of Syrian

Refugees in Turkey. It includes anonymized mobile phone data of both refugee and non-

refugee user samples. Data is provided in 3 distinct datasets and further details on the

dataset can be found in the paper published by the organizers [16].

• Dataset1: Antenna traffic captures one year site-to-site traffic information on an

hourly intervals.

• Dataset2: Fine grained mobility dataset contains usage information for randomly

sampled accounts. Accounts selected for analysis resampled in every two weeks to

prevent security concerns.

• Dataset3: Coarse grained mobility information is one of the most valuable resources

to be able to study mobility of individuals. Trajectories of randomly selected refugees

and non-refugees contain locations of serving base station and time of record for 50,000

individuals.
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Figure 2.3: Visual representation of Dataset3. Illustrating dates where data exists or is
missing.

2.2.4 Limitations

Dataset provided includes data collected from only one major cellular carrier. Further-

more, three different identifiers are used to flag a user as a refugee when they are registering;

having an ID number given to refugees and foreigners in Turkey, registering with a Syrian

passport, or using special tariffs reserved for refugees. All three of these methods are noisy,

and there is no guarantee that a user flagged as a refugee is actually one. This implies that

statistics of this dataset may not necessarily generalize to national statistics and care should

be taken when inferring results from them.

There are significant gaps in the temporal data as well. Dates with missing data for

Dataset3 can be seen in Figure 2.3. As a result, first 6 months for Dataset3 is discarded for

reliable analysis of temporal features. This brings the total number of entries from 66,000,731

to 49,830,623, which is still sufficiently large for large scale data analysis.

Dataset2 provides incoming and outgoing traffic data for individual users. However,

traffic data is captured from different subsets of users for incoming and outgoing traffic.

This means that it is not possible to study both incoming and outgoing traffic patterns for

individual users in this dataset.
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2.2.5 Antenna Traffic Analysis

Monthly base station traffic information is valuable for studying overall usage patterns

of groups. For all the analyses found in this section, total activity between source and target

stations over the entire range of observation period is aggregated together in pairs. Pairs of

stations that has less than 10 activity records between them are filtered out since the effects

of these stations could be considered negligible.

Locations with most and least refugee activity is identified by the fraction of refugee traf-

fic over all traffic between every pair of stations. A histogram of the refugee traffic fractions

is presented in Figure 2.4. It is observed that there are base station pairs where at least 90%

of the total traffic involves refugees. Bimodal shape of the distribution indicates existence of

majority refugee and non-refugee station pairs, which may be a marker of geographical seg-

regation. Official refugee accommodation centers can be one explanation for the existence

of these refugee dominated base station pairs. The locations of Disaster and Emergency

Management Presidency (AFAD) Temporary Protection Centers1 (TPC) are show in Fig-

ure 2.6, together with the base station pairs that fall within top and bottom %10 percent

on Figure 2.4. It is observed that the TPCs are not sufficient to explain all of these refugee

dominated pairs, especially in central and western parts of the country.

Distances between base stations in these refugee and non-refugee dominated station pairs

are another topic of interest. Figure 2.5 shows the distribution of inter-pair distances of base

station pairs that are dominated by refugee and non-refugee activity respectively. It can be

observed from Figure 2.5 that the base station pairs dominated by refugee activity tend to

be closer to each other compared to their non-refugee dominated counterparts.

Geographical spread of majority refugee and non-refugee traffic can also be observed by

visualizing the traffic between base stations over a map. Figure 2.6 shows the traffic between

1Compiled on December 6th, 2018 from reports found in: https://www.afad.gov.tr/tr/2374/Barinma-
Merkezlerinde-Son-Durum
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Figure 2.4: Histogram of refugee activity density for pairs of stations.

the base stations that fall within the top and bottom 10% of Figure 2.4, respectively. Only

the voice call counts data is displayed on the maps for the sake of brevity, however both voice

call duration and SMS data also show very similar results. It can be observed from Figure 2.6

that, base station pairs with refugee dominated traffic are less spread out geographically, and

are mainly focused between certain centers of dense activity. On the other hand, non-refugee

dominated cellular traffic appears to be spread out much more evenly.

Since Istanbul is one of the largest metropolitan areas in the world, it merits a closer look.

Figure 2.7 displays the same data as Figure 2.6, only within the city limits of Istanbul. It

can be observed that, refugee dominated traffic is similarly less spread around. This divide

can most easily be observed on the Asian side of the city, where refugee dominated traffic is

lesser than its non-refugee dominated counterpart.

17



Figure 2.5: Distance distribution of refugee and non-refugee dominated base station pairs.

This difference between mobile phone usage behavior and geographical spread of mobile

phone traffic suggests a lack of social integration for refugee users. Figure 2.6 shows that

refugees are not in contact with a significant portion of the nation. This, together with the

bimodal nature of Figure 2.4 also suggests existence of spatial segregation, which will be

further investigated in the following sections.

2.2.6 Movement Analysis from Coarse-grained Mobility

Coarse-grained mobility data from Dataset3 provides high temporal resolution and conti-

nuity for each user. Therefore, it is especially suitable for the analysis of individual movement

patterns over time.
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Figure 2.6: Voice call traffic between base station pairs that fall within the top and
bottom 10% of Figure 2.5. Locations of AFAD Temporary Accommodation Centers are

marked with purple hexagons.

2.2.6.1 High-order Mobility Network Analysis

A user mobility network for both refugee and non-refugee users are constructed. Tradi-

tionally, mobility networks are constructed with a first-order assumption. This means that,

probability of a user moving to a certain node is assumed to be only dependent on the

current node they are in. It has been shown that this single order assumption is lacking in

representing complex mobility data [69]. Therefore, a variable order high-order network is
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Voice Call Top %10

Voice Call Bottom %10

Figure 2.7: Voice call traffic between base station pairs that fall within the top and
bottom 10% of Figure 2.4. Data is confined within the city limits of Istanbul.

generated for analysis in this section, using BuildHON+2 algorithm [70]. Table 2.1 provides

some details on the dataset and the constructed variable higher-order mobility networks.

Pagerank [71] is a widely used algorithm that is used to rank the importance of a node

in a network, calculated based on incoming and outgoing links to the node. Intuitively,

pagerank of a node in a mobility network will show how many paths include that node, and

how often users take these paths. A node with a high pagerank in a mobility network can be

2Software implementation: https://github.com/xyjprc/hon
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Table 2.1: The dataset and basic properties of the constructed variable higher-order
mobility networks.

Refugee Users Non-Refugee Users Total
Dataset

Data Points 20483496 29347127 49830623
Unique Users 33270 16597 49867
Unique Locations 663 847 925

Mobility Networks
Order (Node count) 11583 18243 N/A
Size (Edge count) 37934 59779 N/A

viewed as a hub that is visited by users from all over. Some good examples of high pagerank

nodes will be dense residential areas and public transportation transfer stations.

A visualization of district rankings over the generated variable high-order user mobility

networks, based on pagerank values, can be seen in Figure 2.8. First of all, we would

like to discuss how to interpret this figure. Calculated pagerank values are, by definition,

dependent on network properties such as size, and are used to compare nodes within the

same network. The mobility networks calculated are of different sized for the two groups, due

to some locations never being visited in the dataset, the pagerank values are not comparable

between these two networks. The intent of this figure is to compare the spatial distribution

of high-pagerank nodes from both networks, which can inform us about spatial segregation.

First observation that can be made is that the size of the mobility network for refugee

user mobility is smaller. This is because there are zones that are never visited by any refugee

users, meaning that refugee movement is confined to a more limited set of locations compared

to non-refugee users. Furthermore, regions of importance appear to be more spread out in

the non-refugee users mobility network, while important regions are more focused in smaller

regions for refugee users. Finally, while non-refugee users mobility network has several

distinct centers of high importance, network for refugee users is dominated by İstanbul.
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Figure 2.8: Visualization of district rankings based on pagerank values over high-order
user mobility networks.

Last two points merit a closer look into the districts within İstanbul, which is one of the

worlds largest metropolitan areas.

It can be seen from Figure 2.9 that, even within the city limits of İstanbul, mobility of

refugee users is still confined to focused and denser regions, as opposed to the almost evenly

spread out non-refugee users. For example, there is very little movement by refugee users

on the Anatolian side (on the right) of the İstanbul compared to non-refugee users. This

implies that starting out from any node in İstanbul on the refugee users mobility network,

there is a high probability of eventually ending up in this small high-pagerank area. It can

be inferred that, while refugees and non-refugees share the same urban public spaces, they

are segregated in their use of these spaces. This suggests that a significant portion of the
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Figure 2.9: A closer look into the districts within the city limits of Istanbul from
Figure 2.8.

refugee users are not integrated in the local social life. It can also be an indicator of differing

employment statistics and employment opportunities available to refugee users.

2.2.6.2 Inter-event Analysis

Data from incoming and outgoing traffic is combined for movement analysis, and every

time a location change for a user occurs it is marked as a transition event. A normalized

histogram for the transition event count of each user can be seen in Figure 2.10. This

figure shows that a refugee user is more likely to have a smaller number of transition events

compared to a non-refugee user.

The average time each user waits before a new movement event occurs can also be en-

lightening. A normalized histogram for inter-event time averaged for each user is provided in
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Figure 2.10: Histogram of transition events on log-log scale. Marks every time a user
changes locations.

Figure 2.11. This figure shows that a refugee user is more likely spend a shorter amount of

time at each location compared to a non-refugee user, moving more frequently. Figure 2.11

also shows a significant number of refugee users, with a mean inter-event time under 103

seconds, or 17 minutes. This can be explained by spending time in moving vehicles or

between regional borders, where transition-events can occur more frequently or with smaller

movements.

Distance traveled between each transition event will help paint a more complete picture

of the user movement, when combined with the previous results. A histogram of average

distance traveled by each user is given in Figure 2.12. This figure shows that a refugee user is

more likely to travel shorter distances between transition events compared to a non-refugee

user.

Finally, we will take a look at the size of the overall movement regions of each user. Move-

ment bounding-boxes are computed by calculating the smallest rectangle that encompasses
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Figure 2.11: Histogram of the average time elapsed between subsequent transition events
for each user.

the center coordinates of every region each user has visited over the observation period. The

geographical distance between diagonal corners of the bounding box is used as an indicator

of the size of the overall movement regions for each user. A histogram of this bounding-

box diagonal distances can be seen in Figure 2.13. This figure shows that a refugee user is

more likely to travel within a smaller region compared to a non-refugee user, confirming the

previous observations.

Looking at the results in this subsection, it will be possible to infer that refugee users move

more frequently in a smaller regions via short distances. Individual movement is expected

to be significantly regular, where a person frequently returns to a small number of anchor

locations, such as work and home [72]. These observations can suggest that refugee users

are more likely to be unemployed, or hold irregular jobs that require them to frequent larger

than usual number of locations.
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Figure 2.12: Histogram of mean distance traveled between subsequent transition events
for each user.

2.2.7 Discussion

In this work, mobile phone data belonging to refugee and non-refugee users have been

analyzed with a focus on discovering individual and aggregate mobility and connectivity

patterns. Since connectivity is linked with employment and social life, and human mobility

is very regular and dependent on a few frequented locations, such as places of work and

residence, any irregularities on these patterns can be interpreted as indicators of employment

and integration issues.

Connectivity analysis showed a divide between base station pairs that are servicing ma-

jority refugee and non-refugee traffic. It is also found that the distance of refugee connections

tends to be shorter. Visualization over a map also showed a much smaller geographical spread

of refugee traffic compared to its non-refugee counterpart. These observations suggest that

refugee and non-refugee users are segregated geographically and refugee users do not interact

with a significant portion of the nation.
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Figure 2.13: Histogram of mean distance traveled between subsequent transition events
for each user.

User mobility network analysis yielded the results that refugee users move around in

smaller regions, and movement of refugee users is less spread out compared to non-refugee

users. Focusing on a metropolitan area, Figure 2.9 showed that refugee movement is confined

in a smaller and denser area. This supports that, while the urban areas and public spaces

are available to both groups, use of these spaces is segregated. Furthermore, results from

inter-event analysis also support these findings, as they suggest that refugee users move more

frequently in smaller regions and with shorter distance steps.

Combining results from these analyses, it is possible to infer that refugee users are largely

not integrated into the local social life of the regions they reside in. It is likely that, this

integration issue is driven by the socioeconomic conditions and especially availability of

employment options, which focuses refugee users into areas where there is work available for

them. Providing suitable employment opportunities outside the current centers of focused

27



refugee activity can encourage and speed up the distribution of refugees more evenly within

the nation and facilitate their integration to the local societies.
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Chapter 3: Aerial Wireless Network Deployment

Aerial platforms bring a new dimension to wireless network design enabling highly reli-

able, cost-effective networks that can be easily deployed in areas otherwise inaccessible to

traditional approaches. Considering the mobile heterogeneous nature of the next generation

traffic demand, the mobility and availability brought by the use of aerial platforms represent

considerable advantages.

Industry is also quickly adapting aerial platforms in wireless networks; Alphabet’s LOON

and AT&T’s Flying Cell-on-Wheels (COW) are two of the high profile examples for providing

wireless service using aerial platforms. Alphabet’s Project WING and Amazon’s Air Delivery

on the hand are examples where aerial platforms act as user equipment subscribing to existing

networks.

Disaster recovery is another important application of aerial mobile wireless networks

to restore service to the areas struck by disasters and support ongoing relief efforts. As

an example, AT&T’s Flying COW have been experimentally deployed in Puerto Rico on

the aftermath of Hurricane Maria, providing service to the affected users while terrestrial

infrastructure is out-of-order.

Aerial platforms can be divided into two depending on their operation altitude; high

altitude platforms (HAPs) and low altitude platforms (LAPs) [33]. We should also note that

operations altitudes are highly dependent on local regulations, and relevant regulations must

be checked at the area of deployment.
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• High Altitude Platforms (HAPs) operate at altitudes of 17 km or higher, and are

often stationary. HAPs are in general much more difficult to deploy and are used as

long-term platforms.

• Low Altitude Platforms (LAPs) can operate at altitudes as low as several meters

and they are often limited to altitudes of a few kilometers. They generally posses

much higher mobility compared to HAPs and can be deployed much more easily and

temporarily. The name Unmanned Aerial Vehicle (UAV) often refers to low-altitude

aerial platforms.

3.1 Unmanned Aerial Vehicles (UAVs) in Aerial Wireless Networks

There are several main use cases of low altitude Unmanned Aerial Vehicles (UAVs) in

wireless network scenarios found in the literature, which will be explored in following sub-

sections [33].

3.1.1 Aerial Base Stations

Radio equipment mounted on UAVs can serve as basestations. Aerial base stations can

be used to support terrestrial networks in coverage and capacity, and provide this support

on demand with a quick deployment. This allows them to be used for temporary traffic

offloading during high-traffic events such as concerts [73, 74, 75]. Other potential uses of

aerial base stations include public safety networks [76], information dissemination in device-

to-device networks [77, 78] relaying taking advantage of the LoS dominated channel, and

IoT applications [79, 80, 81, 82].
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3.1.2 User Equipment

UAVs are employed in many different applications ranging from surveillance to delivery.

Reliable, low-latency communications are crucial to support the many applications of UAVs,

and one of the most practical ways to achieve this is UAVs subscribing to existing terres-

trial cellular communication networks [83]. Some application scenarios like surveillance will

also demand a high-throughput channel beyond the reliable, low-latency communications

necessary to control the UAVs.

3.1.3 Flying Ad-Hoc Networks (FANET)

FANETs can be employed to deliver service to areas where a traditional terrestrial net-

work deployment is not feasible thanks to their mobility and decentralized operation [84].

Other applications of FANETs include surveillance, disaster response, relaying, and remote

sensing [84, 85]. A FANET consisting of smaller UAVs also have advantages of scalability,

survivability, and cost advantages compared to a single, more complex UAV [86].

3.2 Presented Scenarios

We are uniquely considering low-power, short-range wireless Access Points mounted on

UAVs. These aerial Access Points (aAPs) do not have enough coverage to cover the entire

operation area at one point in time and therefore must stay mobile to satisfy the QoS

requirements of all users, creating an aerial Radio Access Network (aRAN) that is connected

to all users over time.

Before moving on to the problem of trajectory optimization for these mobile aAPs, we

are first tackling the sub-problem of static deployment. We provide a sequential optimization

method that makes the otherwise intractable joint-optimization problem of placing multiple

aAPs tractable.
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3.3 Efficient 3D Placement of Access Points in an Aerial Wireless Network

3.3.1 Introduction

Aerial platforms for wireless networks have been receiving a lot of attention recently as an

option to augment cellular networks for the demands of the next generation. High altitude

platforms deployed in stratosphere had been a popular option for researchers and private

companies alike to bring connectivity to regions lacking in infrastructure [88, 89]. Thanks

to the recent advancements in unmanned aerial vehicles (UAV), low altitude, mobile UAVs

have also started to be viable options for wireless network design to rapidly provide network

services in a wide range of scenarios [90, 91].

The use of aerial platforms makes altitude available as a new dimension to exploit, how-

ever efficient deployment of short range, low power aerial wireless networks in 3D space has

been only developed in a limited scope. While the placement of basestations on a 2D plane

is well studied, it is not trivial to extend the results from 2D to 3D, and a direct extension

may not even exist [18]. This 3D placement problem can be related to the densest sphere

packing problem, also known as the Kepler Conjecture, which has been formally proven very

recently by a large team after remaining as an open problem for 400 years [19]. There exists

a relevant body of previous research on the 3D deployment problem in the field of wireless

sensor networks [92], especially for underwater acoustic sensor networks [93, 94]. However,

the results from this field are not directly applicable due to deployment constraints and ap-

plication goals being significantly different compared to traditional wireless communication

networks.

Recent works have considered the use of UAVs as aerial basestations for cellular networks

under various scenarios. Cases are considered for a single UAV basestation [20, 21], backhaul

aware single UAV basestation [22], two UAV basestations with interference [24], arbitrary

1This section has been previously published in [87]. Permission is included in Appendix A.
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number of UAV basestations utilizing a joint heuristic optimization procedure [25] and opti-

mal transport theory [26], and cooperation between UAVs [95] exist. Another recent effort

considers a single UAV under realistic channel conditions [23]. In [96], small cell association

with flying network platforms for centralized radio access networks is explored. Assisting

public safety communications through UAV basestations is studied in [97]. However, most

of the previous works towards the 3D deployment simplify the problem to a circle coverage

problem on a 2D surface. This simplification is justified based on a stochastic air-to-ground

channel model [98], where the coverage area is modeled as a circle on the surface whose ra-

dius is dependent on the altitude, and area statistics. A recent study shows that this model

is insufficient in dense urban areas where the altitude of an aerial platform may be lower

than building heights [99].

Furthermore, the focus on cellular basestations places limits on the applicability of UAV

platforms, especially for a post-disaster scenario. For example, AT&T’s flying cell-on-wheels

(COW) that supplied services for the first time in the aftermath of Hurricane Maria in

Puerto Rico relies on a constant tether connection with ground for power. It should also

be highlighted that short-range communications will not only reduce the payload and bat-

tery demand on the UAVs, but will also lead to compatibility with a wider range of user

devices and provide better power efficiency for them. Under scenarios such as post disaster

recovery where infrastructure have failed, or bringing communication capabilities to areas

where there is no infrastructure in the first place, this can be an important consideration.

After major disaster events, such as earthquakes, tsunami, and hurricanes, serious damage

can be expected on power, communication and transportation infrastructure. Restoration of

these infrastructure can take a significant period of time and being able to rapidly establish

a communication network with minimal reliance to the pre-existing infrastructure can help

rescue and recovery efforts.
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In this work, we are proposing an initial formulation for the genuine 3D placement of

multiple low-altitude short-range aerial APs directly, utilizing concepts from the analysis of

random graphs. An efficient iterative algorithm is then proposed as a practical solution for

the optimal placement problem, that can respond to network dynamics and determine the

adequate number of APs. Finally, we provide results through an agent based simulation on

uneven terrain with mid- or high-rise buildings.

3.3.2 Formulation

In this section, we define the problem for efficiently placing APs in 3D space with the

goal of connecting existing users to a single communication network.

3.3.2.1 Network Architecture

In the considered network architecture, aerial 3D APs are deployed to provide users access

to a radio access network (RAN). Aerial 3D APs and the RAN together is named 3D-RAN.

3D-RAN can then forward data to an application server or any other data consumer through

a backhaul connection. This paper considers only the deployment of the aerial 3D APs, and

the RAN and backhaul connections are assumed to be available. We consider two different

types of nodes on the network, user devices and APs. Without loss of generality, all user

devices and APs are assumed to have identical communication specifications within their

respective groups. The maximum number of available APs is assumed to be provided as

a constraint. Initial locations of every user is assumed to be known. For the time being,

we temporarily do not take fading and interference into consideration and assume that all

antennas are isotropic, resulting in ideal spherical communication ranges. The radio access

for user devices is assumed to be an ideal multi-hop mesh network. Each AP is assumed to

a part of a 3D-RAN with backhaul infrastructure. It is assumed that every user is equipped

with a longer-range device such as WiFi, SMS, mobile Internet and/or a lower-power short-
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range device such as Bluetooth. A diagram of the proposed network architecture can be seen

in Figure 3.1.

3D-RAN

AP

AP

Figure 3.1: Diagram for the proposed network. AP designates 3D deployed aerial APs
providing access to a RAN, together denoted as 3D-RAN. Users are shown as silhouettes.

3.3.2.2 3D Graphical Model

Such an aerial wireless network can be represented by a graph toward our purpose.

Let M = {m1,m2, . . . ,mi, . . . ,mN} and B = {b1, b2, . . . , bi, . . . , bK} be the sets of ver-

tices, where mi and bi represent a user device node and an AP respectively. Let U =

{u1, u2, . . . , ui, . . . , uN+K} be the set of all vertices, where U = M ∪ B, meaning that
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ui is either a user node or an AP, and N and K are the total number of existing user

device nodes on the network and the total number of available APs, respectively. Let

C = {c1, c2, . . . , ci, . . . , cN+K} be the set of coordinates, where ci =

[
xi yi zi

]
is the

location of the vertex ui in the 3D cartesian coordinate space, ci ∈ <3.

Let the arbitrary probability density function (PDF) fc(c) be the distribution that defines

the initial placement of the user nodesM in <3, giving the probability of a user node existing

at a coordinate c. Since full information is assumed on the initial location of every user, fc(c)

is assumed as known initially and remains the same during the execution of the placement

algorithm.

Let fvol(ui) define the volume that is within communication range for vertex ui in <3,

where the vertex represented by ui can communicate with any other vertex that exists within

fvol(ui). Communication volumes are assumed to be ideal spheres, and therefore fvol(ui) is a

sphere with the radii ri, where ri is the communication radius for vertex ui. Communication

volume then can also be written as fvol(ci, ri), which puts a sphere of radius ri centered on the

vertex coordinates ci. Since all users and APs are also assumed to be identical within their

groups, it can be further simplified to ri = rM,∀i =⇒ ui ∈ M and ri = rB,∀i =⇒ ui ∈ B

respectively.

Extending common ad hoc networking research [100, 101], let G be the modified random

geometric graph [102], where two vertices are connected by an edge if and only if one is within

the others communication volume, defined by the generative function RGG(U , fvol(ui)). Fig-

ure 3.2 depicts the modified 3D RGG and associated parameters that are used in this paper.

3.3.3 Optimization of 3D Placement

In this section, we explore the optimal 3D placement of APs. For K APs, this problem

can be represented as a search in 3K dimensional space, <3K . Combined with perturbations

such as environmental obstacles, network dynamics, and stochastic variables, a straight-
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Figure 3.2: A graphical visualization that shows vertices and edges for K = 1 and N = 3

forward solution becomes unfeasible even for modest values of K. Instead, we employ RGGs,

which lend itself well to wireless networks and historically have been used to solve similar

problems [100, 101], to make this 3D AP deployment problem more tractable.

The final goal of the 3D AP deployment optimization is to achieve radio access function-

ality with the smallest number of APs such that all user nodes on the ground of different

heights can connect to this 3D-RAN infrastructure. If it is not possible to connect all user
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nodes to this 3D-RAN, then the goal is to achieve the highest fraction of users connected

to the network with the available number of APs. Two nodes being connected with an edge

on the RGG G means that they can communicate with each other, according to the model

we have developed in the previous section. Therefore, the set of users that can connect to

the 3D-RAN infrastructure is equivalent to the user nodes, m ∈ M, that are connected to

the AP nodes, b ∈ B, in the RGG G. The goal function, g(B), therefore can be defined as

the fraction of user nodes that are connected to the given set of APs on the RGG G that

represents the wireless network.

Let path(ui, uj) be a simple path between ui and uj, denoting a sequence of edges and ver-

tices that connect ui and uj to each other, where every vertex on the path is distinct from each

other, and the length of the path is denoted by |path(ui, uj)|, defined as the number of edges

on the path. Let Qk,h be the set of user nodes, for which a path of length h, i.e. h-hops, exists

to the AP bk, defined as Qk,h , {mi : ∀i =⇒ path(mi, bk) exists where |path(mi, bk)| = h}.

Let H be the maximum number of hops permitted for a transmission, and QHk be the set of

all user nodes that are connected to bk with a path length of at most H. QHk can then be

written as

QHk ,
H⋃
h=1

Qk,h. (3.1)

Let NG(u) give the neighborhood of vertex u on graph G, which means that Qk,1 =

NG(bk). Therefore, (3.1) can be computed as

QHk =

(
H−1⋃
h=1

NG(Qk,h)

)
. (3.2)

Since the purpose of AP placement is to connect largest fraction of users nodes possible,

g(B) can be written as
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g(B) =
|
⋃K
k=1Q

H
k |

N
. (3.3)

We propose two approaches to optimize the goal function. First approach is the joint

optimization for all the APs at once, which is the most straightforward solution, albeit

impractical for large K. Second approach is making an assumption of considering placement

problem for each AP as mutually independent. We consider both cases in following sections

and start with calculating certain probabilities and graph properties that will be useful.

3.3.3.1 Formation of Optimization

This formulation uses the excellent research from [100] and [101] as a starting point. This

analysis considers a single-hop network, H = 1. Let ui be any vertex, ui ∈ U , placed at

coordinates ci. Let mj be any user node, mj ∈M, placed at coordinates cj according to the

PDF fc(c). Vertices ui and mj are connected with an edge if cj falls within the communica-

tion volume fvol(ui), or vice versa. Let fmaxvol(ui, uj) give the larger communication volume

between ui and uj, fmaxvol(ui, uj) , fvol(ck, rk),where k , arg maxi(ri, rj). Therefore, the

probability that an edge exists between an arbitrary vertex ui and a user mj can be written

as (3.4).

Pv(ui,mj) , P0(ui) =

∫∫∫
fmaxvol(ui,mj)

fc(c) dc (3.4)

Denote DB as the random variable representing the degree of an AP b ∈ B, where

DB ∈ {0, 1, . . . , N}. Probability that a given AP bi has the given degree DB = d can be

written as (3.5), and its expected degree µDB
(bi) can be written as (3.6).

P (DB = d | bi) =

(
N

d

)
P0(bi)

d(1− P0(bi))
N−d (3.5)
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E
{
DB | bi

}
, µDB

(bi) = (N)P0(bi) (3.6)

3.3.3.2 Joint Optimization

In this approach, locations of all APs are collectively considered at the same time as a

single joint optimization problem. Let the volume A∪ be the union of the communication

volumes of each AP, written as

A∪ ,
K⋃
i=1

fvol(bi). (3.7)

The goal function, expected fraction of nodes that are connected to any AP, can then be

written as

gjoint(B) =

∫∫∫
A∪

fc(c) dc. (3.8)

Let A∩ be the union of the intersection of the communication volumes of every AP pair,

denoting the volume where communication volumes overlap, defined as

A∩ ,
K⋃
i=1

K⋃
j=1
j 6=i

(fvol(bi) ∩ fvol(bj)) . (3.9)

It is possible to expand (3.8) by using (3.6) and (3.9) as

gjoint(B) =

(
K∑
i=1

µDB
(bi)

)
/N −

∫∫∫
A∩

fc(c) dc. (3.10)

Let Alim be the 3D volume that bounds the space under consideration, defined as the rect-

angular prism that is described by the ranges, {[xmin, xmax], [ymin, ymax], [zmin, zmax]}. Then,

the optimization problem can be stated as

40



maximize
B

gjoint(B)

subject to |B| = K,

ci ∈ Alim, ∀ui ∈ B.

(3.11)

(3.11) is hard to compute and thus proposed to be solved by an algorithmic optimiza-

tion method. Existence of unpredictable perturbations such as buildings, and the dynamic

nature of the users in the application environment makes calculation of a gradient unfeasi-

ble. Therefore, evolutionary optimization methods are employed for the solution of (3.11).

For this purpose, we have utilized particle swarm optimization [103]. More details about

computational optimization is provided in section 3.3.4. Please note that the optimization

problem in (3.11) is a search in 3K dimensional space. Therefore, even for modest values of

K, search space for joint optimization can be too large to reliably achieve global optimum

with evolutionary methods, and there is no guarantee of convergence. This convergence issue

is an important subject for future research and discussed in following sections.

3.3.3.3 Iterative Optimization

Joint optimization in the previous subsection is computationally challenging for even

modestly large values of K. When considering network dynamics such as varying communi-

cation channels, dynamic user traffic patterns, or varying number of available APs, K, the

desired optimization has to update the solution for each snapshot in time. Therefore, an

iterative optimization algorithm that reduces the search space significantly to meet practical

needs is developed to answer these challenges.

This approach assumes that the placement of each AP is an independent optimization

problem, and therefore they can be sequentially placed, one by one. While this may appear

to be a strong assumption, it is actually reasonable since all APs are connected to the same
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network infrastructure through the 3D-RAN, and the only goal considered in the context of

this paper is network connectivity.

Considering that the final goal is to achieve a rapidly deployed network with the highest

fraction of connected users possible, the goal function for the placement of an individual,

independent AP bi can be written as the fraction of nodes that are connected to the network

through bi:

gsingle(bi) = |QHi |/N. (3.12)

When the network is considered as single-hop, H = 1, (3.12) can also be expressed in

terms of the expected degree of the basestation node bi on the graph G, calculated as (3.6):

gsingle(bi) = (µDB
(bi)) /N = P0(bi), (3.13)

which makes the optimization problem to be solved for each node of the network that rep-

resent the independent APs ui ∈ B, where |B| = K and Alim is the boundaries in 3D space

that was defined previously for Joint Optimization, as

maximize
ui

gsingle(ui)

subject to ui ∈ B,

ci ∈ Alim.

(3.14)

Optimization problem for placing an individual, independent AP is given in (3.14). How-

ever, most practical problems require multiple APs, and therefore a procedure for placing

multiple APs is also necessary. We are proposing an iterative optimization procedure that

can be used to place any number of APs with the goal of maximizing the fraction of con-

nected users. This procedure can also respond to network dynamics by making corrections to
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positions of APs individually and sequentially. It can also be used to determine the adequate

number of APs, K, that achieves a desired fraction of connected users.

Let bi and bj be any two APs, bi, bj ∈ B, that are placed individually according to the

optimization problem (3.14). The sets of nodes that are connected to the network through

bi and bj are calculated as QHi and QHj respectively. QHi and QHj are not necessarily disjoint,

and in the case of a single unique solution for (3.14), they are equivalent. Since the final goal

of the procedure is to maximize the fraction of connected user nodes, there is no advantage in

connecting a single node to multiple APs, which aligns with the target application scenarios

such as post-disaster relief networks. Therefore, after each placement of an AP, the nodes

that are connected to the network through it can be safely removed from the network.

Let Gk be the RGG that represents the network when AP bk, ∀bk ∈ B, is being placed,

Gk , RGG(Uk, fvol(ui)). Let Uk here be the set of all vertices excluding the ones that

represent the user nodes that are connected to the network when AP bk, ∀bk ∈ B, is being

placed, defined as Uk , U \
(⋃k

i=1QHi−1

)
, initialized with QH0 = ∅.

Accordingly, optimization for K number of APs can be done by sequentially solving the

individual AP placement problem (3.14) for each AP bk, ∀bk ∈ B, on graph Gk. This guaran-

tees that a single user node is not connected to multiple APs, meaning that the elements of

the set {QHk : ∀k =⇒ k ∈ {1, 2, . . . , K}} are mutually disjoint. Practical concerns regard-

ing the optimization from Joint Optimization stand here as well, and therefore evolutionary

methods, particularly particle swarm optimization, are chosen again for optimization. The

following algorithm details this Sequential Placement procedure.

Next, an iterative algorithm that can update AP locations individually is developed for

responding to network dynamics. Since AP placements are assumed to be placed indepen-

dently and individually in a sequence, Sequential Placement procedure can be modified to

work iteratively, where each iteration starts from the previous iteration and recalculates the

position of each AP sequentially.
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Input: G,K
Output: B
1: B ← ∅
2: for all k ∈ {1, 2, . . . , K} do
3: bk ← solve for (3.14) on Gk

4: B ← B ∪ {bk}
5: end for
6: return B

Procedure 1: The Sequential Placement procedure.

Let Gn be the graph that excludes user nodes connected to the network at iteration

n, Gn , RGG(Mn ∪ B, fvol(u)), where Mn is the set of all user nodes excluding the user

nodes that are connected to the network at iteration n, Mn ,M\
⋃K
i=1QHi . Let bk ∈ B

denote the AP to be relocated. Iterative Update Process is done by first removing bk from

the graph Gn. This means that all the user nodes that were connected to the network

through bk, QHk , are returned back to the graph Gn. Let Gk
n be the graph that excludes user

nodes connected to the network at iteration n when relocating AP bk,∀bk ∈ B, defined as

Gk
n , RGG(Mk

n∪ (B\{bk}), fvol(u)). LetMk
n here be the set of all user nodes excluding the

user nodes that are connected to the network at iteration n when relocating AP bk,∀bk ∈ B,

defined as Mk
n ,Mn ∪QHk .

After the graph Gk
n is constructed, the single AP placement problem (3.14) for AP bk is

solved on this graph, and this is repeated for each AP sequentially. After a single pass over

the set of all APs, B, is done, a single iteration is completed. This process is then iterated

until a termination condition is reached or next snapshot arrives. Termination condition

can be chosen as when the solution stops improving through iterations, a given connectivity

goal, or a combination of them. Following algorithm details this process.

It is also possible to determine the adequate number of APs, K, by starting the algo-

rithm from a single AP, K = 1, and incrementing K one by one until the required network

connectivity is reached.
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Input: G
Output: B
1: n← 0
2: while true do
3: n← n+ 1
4: for all k ∈ {1, 2, . . . , K} do
5: B ← B \ {bk}
6: bk ← solve for (3.14) on Gk

n

7: B ← B ∪ {bk}
8: Update connections on G for B
9: if termination condition is met then
10: return B
11: end if
12: end for
13: end while

Procedure 2: The iterative update process.

3.3.4 Simulations

In this section, we present the simulation results for the two proposed methods for genuine

3D AP placement explained in the previous section, as well as the Joint Optimization method

with a 2D plane assumption where all APs are placed at the same altitude on a plane.

3.3.4.1 Setup

Simulation environment boundaries are limited to a unit cube. Within this unit cube, two

kinds of perturbations are placed. First, ground surface is arbitrarily modified to represent

possible geographical features that may effect user height. After that, rectangular prisms

are placed arbitrarily to represent buildings and other obstacles that could limit LoS. It was

assumed earlier that if there is LoS between two nodes within range, they can communicate

with each other. If LoS is obstructed between two nodes, then they can not communicate,

regardless of the distance. We post this constraint on purpose as the path exponents are high

for many post-disaster scenarios. LoS between nodes is determined through ray casting in

3D. N number of users are distributed uniformly on the environment surface, while holding
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out a fraction of users, nb to place within buildings to achieve more realistic user densities

around buildings. Figure 3.3 shows the simulation stage with APs deployed, for N = 400

and nb = 0.375. Users that end up within a building are placed uniformly on its viable

surfaces to avoid users encased within perturbations.

3.3.4.2 Experiments

Simulations are done for placement of K = {4, 9, 16} number of APs, with normalized

communication ranges rB, in the range [0.075, 0.3] with the increments of 0.025. Therefore,

a total of 30 simulations are done for each method. Local Best Particle Swarm Optimiza-

tion implementation PySwarms [104] software module is used as the optimizer, with 1000

particles and 50 iterations for each optimization problem, with following hyperparameters:

cognitive parameter c1 = 0.5, social parameter c2 = 0.3, inertia w = 0.4, neighbors kn = 10,

and L2 norm for determination of nearest neighbors. Figure 3.4 summarizes the results for

these simulations. The iterative method is generally more successful, and the superior per-

formance is especially notable for smaller communication ranges where utilization of the 3D

placement becomes more crucial to be able to avoid obstacles. It should be stated that Joint

Optimization in 3D was expected to perform at least as well, or better than the Iterative

Optimization in 3D. The lacking performance can be explained by the very large size of the

search space for joint optimization, which makes reaching the global optimum much harder

compared to the much smaller individual optimization problems that are solved by the iter-

ative method. Figure 3.3 shows the final placement on the simulation environment by the

Iterative Optimization in 3D and Joint Optimization with 2D plane assumption methods,

for K = 16 and rB = 0.125. How genuine 3D placement takes advantage of the altitude

dimension can be observed in this figure.

Selection of the adequate number of APs, K, is also simulated on the same simulation

stage for a number of AP communication range values for single-hop networking, H = 1.
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Figure 3.5 shows the results, where the adequate value of K for a given connected user

fraction can be determined by stopping after the desired user connectivity is reached.

3.3.5 Conclusion

We have presented a formulation for the AP placement in genuine 3D problem based on

the analysis of RGGs. An iterative algorithm is developed to alleviate the issue of rapidly

increasing search space of AP locations as the number of APs increase. An evolutionary op-

timization method is utilized for the individual optimization problems as the unpredictable

nature of the environment and network dynamics makes gradient based methods unfeasible.

Proposed Iterative Optimization in 3D algorithm can find effective placements for APs in

3D space, respond to network dynamics with sequential small updates and determine the

adequate number of APs for the desired coverage. Agent based simulation results, with

consideration to uneven terrain and LoS blocking obstacles, have shown that the deploy-

ment locations produced by the proposed Iterative Optimization method in 3D are effective,

especially for larger numbers of available APs with short range, where avoiding obstacles

presented by the environment and conforming to the ground surface height changes are

especially crucial.
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(a) 2D-Joint

(b) 3D-Iterative

Figure 3.3: Final placement for (a) Joint Optimization with 2D plane assumption and (b)
Iterative Optimization in 3D methods, K = 16 and rB = 0.125. Blue spheres are APs and

connections are denoted by blue lines. The difference for genuine 3D placement can be
clearly observed.
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(b) K = 9, H = 1, rM = 0
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(c) K = 16, H = 1, rM = 0
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(d) K = 9, H = 2, rM = 0.035
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(e) K = 16, H = 2, rM = 0.035

Figure 3.4: Simulation results comparing Joint Optimization with 2D plane assumption
(2D-Joint), Joint Optimization in 3D (3D-Joint) and Iterative Optimization in 3D

(3D-Iterative) methods. Showing connected fraction of users versus AP communication
range where H is the number of hops permitted, rM is the range of the short-range

user-to-user link, K is the number of available APs, and rB is AP communication range.
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Figure 3.5: Number of APs, K, versus connected node fraction. Different traces are
provided for varying AP communication ranges, rB. The adequate value of K can be

determined by looking up when the trace crosses the desired level of node connectivity.
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Chapter 4: Aerial Mobile Radio Access Network Design

4.1 Introduction

Advances in unmanned aerial vehicles (UAVs) suggest new application scenarios for mo-

bile communications and possibilities to establish flexible radio access networks (RAN) and

thus wireless infrastructure [28, 105]. Flexible and rapid deployment of an aerial RAN

(aRAN) is critical to post-disaster communications and, in the near future, highly dynamic

usage patterns of humans and machines. Alphabet’s Project Loon and AT&T’s flying cell-

on-wheels (COW) are some experimental attempts to bring connectivity to areas without

the traditional infrastructure. The latter example has been deployed in Puerto Rico in the

aftermath of Hurricane Maria.

Most common applications of UAV based wireless networks consider UAVs as aerial

basestations for augmenting existing cellular infrastructure. Research have been done on

both a single UAV basestation [20, 21], and multiple UAVs [95, 87]. However, these works

deal with static deployments and follow traditional optimization approaches with impractical

priors such as known user locations.

An aRAN consisting of UAV aBSs or aerial access points (aAPs) must deal with a highly

dynamic operating environment with limited knowledge of network and traffic dynamics,

where requfirements of tight closed loop control can be considered a luxury. Consequently,

the trajectory design of aAPs in the aRAN to effectively serve user traffic faces a criti-

cal challenge that is computationally unfeasible [27, 28]. A disruptive approach is to treat

2Material from this chapter has been adapted to a manuscript and submitted to Wireless Communication
Letters for potential publication.
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maneuvering of an aAP as an autonomous mobile robot, which suggests employing Rein-

forcement learning (RL) for the trajectory design problem of a mobile UAV-based aRAN.

RL in particular is suitable for controlling agents in scenarios where prior information is

limited and the agent has to explore to gain further information and exploit the current in-

formation it has. There are works in the literature that tackle the trajectory design problem

of mobile UAV based networks for augmenting existing cellular networks through aerial base

stations; [29] provides a Q-Learning based approach for a static scenario where the best-case

agent presented takes 27000 episodes to learn on a 2 user case, [30] presents a Q-Learning

based approach that attempts to compensate for simulated user movement, and [31] presents

another Q-Learning approach that takes advantage of Twitter data to predict user move-

ments whose initial locations are assumed to be known a priori. [32] presents a case for a

single-cell UAV network, however they assume all user locations are static and known a

priori. There is also a particular limitation all of these approaches share where they aim to

optimize the sum of metrics over all users, which will likely result in ignoring the fairness of

service among users and neglecting remotely located users that an aRAN must cover.

In this work we present a solution for quickly building an aerial communication infras-

tructure for a dynamic network of mobile users where aAPs are the only method of radio

access. Highly dynamic nature of the network and the lack of user traffic and mobility mod-

els make the control of the trajectories for aAPs unfeasible following traditional trajectory

optimization approaches, and we therefore approach this challenge by modeling it as a RL

problem. Building the entire infrastructure as opposed to simply augmenting existing cellular

infrastructure with aerial basestations is challenging because any users that are not reached

by the aerial APs will receive no service at all, since there is no alternate infrastructure to

fall back on. We take fairness of service among users into account through careful design of

state and reward. Another important challenge is achieving a rapid deployment and quickly

bringing service to the area which is represented by the model’s convergence speed. We
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take advantage of the symmetries in the state-action space to its size 5-fold, significantly

increasing the sample efficiency utilizing after-states. We also uniquely develop a scheme to

incorporate wireless communication among collaborative aAPs, which is crucial in effectively

coordinating multiple aAPs towards a single shared goal. We require only the total number

of users in the area as prior information, as opposed to the impractical requirements of exact

locations or distributions of all users as in prior art. Finally, we present simulation results

for a range of scenarios.

4.2 Network System Architecture

Aerial	RAN
aAP-1

aAP-2

Figure 4.1: A diagram of the system model with two aAPs in operation, forming the
aRAN.
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Figure 4.2: Timing diagrams of the communication links. (a) Timing diagram of the
round-robin communication between aAPs. (b) Timing diagram of the communication
between aAPs and users, where sensing represents general information collection about

user traffic and polling represents a reservation-based multiple access mechanism.

Among diverse application scenarios, an aRAN generally serves an area without an ade-

quate communication infrastructure. Assuming all aAPs are connected to backhaul through

a reservation-based wireless access protocol, a flight control mechanism attached to the back-

haul network monitors the battery lifetime and can call back an aAP before its battery dies

out and send out a substitute aAP following a UAV swapping scheme [106]. This call back

is realized by sending a control signal at the end of an episode. After a possible pilot tour to

estimate the total number of users, the service area of the aRAN is discretized into N ×N

square grids. The aRAN is assumed synchronized in time-slots.
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To focus on the trajectory design for an aRAN of multiple aAPs, for the purpose of

feasibility to a broad range of wireless communication systems, we adopt the communication

system model illustrated by Figure 4.1 that involves three kinds of multiple-access commu-

nications. (i) Air-interface between an aAP and users in a grid: Given a reservation-based

multiple access, one unit of service is abstractly defined as the service that one user receives

from an aAP in one time-slot. As illustrated in Figure 4.2b, at the beginning of each time-s-

lot aAPs sense the traffic demand in their grid, and then poll the users within the grid.

Only one aAP operates in each grid at one time and the interference from neighboring grids

is assumed to be negligible, while polling here represents a general reservation-based mul-

tiple access such as the IEEE 802.11 mechanism [107]. (ii) Backhaul network and aAPs of

aRAN: We assume that each aAP is connected to a backhaul network infrastructure (or core

network), which may be a direct satellite connection or a ground BS connected to a back-

bone network. The multiple access between aAPs and backhaul network is assumed to be

a reservation-based mechanism with reliable wireless communication between each aAP and

the backhaul. (iii) Inter-Communication between two aAPs: Leveraging the communication

between backhaul and any aAP, two-hop communication ensures that inter-communication

between two aAPs is equivalent to a “dedicated” (i.e. reserved) channel in a round-robin

manner such that at each time-slot one aAP multicasts its control message to all other

aAPs [108] as illustrated in Figure 4.2a, where the control message may contain the most

recent state, action, and the resulting state and reward under a latency constraint.

A user is flagged as served when they receive one unit of service, and the flags are reset

when all the users are flagged as served. Without loss of generality, the service requirements

(such as QoS) of all users are assumed equivalent.
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4.3 Reinforcement Learning

In this section, we will provide a brief summary of reinforcement learning, and particularly

the Q-Learning algorithm that will be employed in the proposed solution.

As opposed to supervised and unsupervised learning paradigms where data is provided to

the model for training, reinforcement learning attempts to solve problems where there is no

previous information available and an agent must learn by interacting with an environment

through actions and observing the results of these actions, which can be more formally

defined as the optimal control of an incompletely known Markov decision processes [109].

To have a well defined reinforcement learning problem; agent, environment, interaction

between them, and a goal for the agent must be defined. Agent acts on the environment

by choosing an action a from a space of all actions A, considering their state s following a

policy π(s), and receives information from the environment in the form of an updated state

variable s+1 that represents the new state of the agent after the action a, a reward signal

R(s, a) that represents the contribution of the chosen action towards the goal, and a value

function that gives the expected total reward from the new state s+1, representing the long

term rewards that can be achieved starting from that state [109].

Learning to act towards a specific goal is often facilitated by estimating a state-action

value function Q(s, a). Value here represents the expected total reward by taking action a

from state s. This estimated state-action value function can be realized by tabulating all the

state-action pairs and their estimated values, or by function approximators such as neural

networks.

Next, we need to determine which reinforcement learning method is suitable. As we have

mentioned earlier, main challenges of this problem is the lack of an environment model and

the dynamic nature of the network. Lack of a model can be addressed by using a model-

free method, and a dynamic environment will require a method that works online, in small
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incremental steps. Time Difference (TD) learning is a family of model-free reinforcement

learning methods that are naturally implemented as online algorithms, meaning that they

update their estimations after every step and learn in an incremental fashion. This makes it

possible to follow and adapt to the changes in the environment as they are happening with

small updates to the estimated models.

Time Difference learning methods can be divided into two categories as on-policy and

off-policy methods. On-policy methods estimate the value function Qπ(s, a) for the policy π

that is being followed. Off-policy methods, on the other hand can estimate the state-action

value function for an arbitrary policy, unrelated to the policy π agent is following. Off-

policy methods are particularly desirable for non-stationary scenarios as making sub-optimal

decisions are necessary for the constant exploration to track the changes in the environment

and adapt to them. Following an on-policy method, these sub-optimal decisions will result

in estimation of a sub-optimal state-value function. Q-Learning is a popular algorithm that

is widely studied and used for implementing off-policy TD learning. It estimates the optimal

state-action value function directly regardless of the policy being followed [109]. This makes

it possible to explore as much as necessary without degradation of the estimated state-value

function.

4.3.1 Q-Learning

Q-Learning is an algorithm that is used to implement off-policy time-difference learning

[110]. Off-policy here means that the learned action-value function Q(s, a) estimates the

optimum action-value function, regardless of the particular policy being followed. If the

state at time t is st and the action at is taken from this state, (4.1) gives the update formula

used to estimate the new value for the state-action pair at time t, Q+1(st, at).

Q+1(st, at) = Q(st, at) + α[R(st, at) + γmax
a
Q(st+1, a)−Q(st, at)] (4.1)
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Here 0 < α < 1 is the step-size parameter that determines the speed of learning, and

0 < γ < 1 is the discount factor that determines how much weight is given to future

rewards against immediate rewards. These two parameters should be tuned carefully to

ensure a timely convergence to a good solution. It has been proven that the estimated

state-action value function Q(s, a) will converge to the optimal state-action value function

with probability 1 given that all state-action pairs are visited infinitely, and the step-size

parameter is reduced over following stochastic approximation conditions [109]. However, this

convergence condition is not practical for a non-stationary environment, since we would like

to have the estimated Q function track changes in the environment.

4.4 Collaborative Multi-Trajectory by RL

The main objective is to formulate the trajectory control of multiple aAPs that fairly

prioritizes users based on limited a priori information about the total number of users in

the area, which differs from existing literature requiring exact locations of users and their

mobility models [95, 87]. The state-action value function Q(s, a) is implemented via tab-

ulation. We first adopt a basic Q-Learning approach for a single-agent scenario, and then

present a modified Q-learning solution suitable for a dynamic wireless network with mobile

users through state design and reward shaping, and the use of after-states. It is then further

modified for multi-agent scenarios with an arbitrary number of aAPs through decentralized

inter-agent collaboration where each agent executes its policy independently, and effective

collaboration relies on inter-AP communication.

The trajectory of a single aAP can be controlled by basic Q-learning as follows.
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4.4.1 State

State variable s for aAP is defined as the grid coordinates of the aAP, s =

[
c

]
, where

c =

[
x y z

]
.

4.4.2 Action Set

Without loss of generality, action setA of the aAP is limited to 5 actions, moving forward,

backward, left, right, and flying in place, by fixing the altitude z.

4.4.3 Policy

To balance exploration of new information with exploitation of current information, an

ε-greedy approach is used, which uniformly samples an action from A with the probability

ε, and takes a greedy action otherwise, as (4.2).

π(s) =


argmaxaQ(s, a), with probability 1− ε

random action a, with probability ε

(4.2)

4.4.4 Reward

We can capture the goal of the system in a straightforward manner by providing a positive

reward for finding users, and a negative reward for any other action. As Q-Learning adapts

a policy to maximize the total expected reward, aAPs will learn the shortest path to users.

Exact values of positive and negative reward are relevant relative to each other, as actions are

chosen through comparison of state-action value estimates Q(s, a), which give the estimated

total reward for each action a from state s. The fraction of positive to negative reward can

effect the convergence speed, and we chose the values as +1 and −1 following empirical tests.
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In each time-slot, the environment provides a reward of +1 if aAP is in the same grid

with users, and −1 otherwise. This leads agents to follow the shortest known path to users

in order to maximize the reward. Let ‖·‖p be the p-th norm. Let U be the set of users in

the same grid as the aAP. Let ω =

[
ωi

]
where ωi = 1

|U | if |U | 6= 0 and ωi = 0 if |U | = 0.

R(s, a) = 2 ‖ω‖1 − 1 (4.3)

4.4.5 Learning Parameters

The agent presented in this sections is based on formulation of the trajectory control

problem into a standard Q-Learning problem, and as such, it has the same convergence

characteristics as Q-Learning detailed in the previous section; for a stationary environment,

the state-action value function Q(s, a) of the agent will converge to the optimal action-

value function with probability 1 given that all state-action value pairs are visited infinite

times, and the step-size parameter is reduced appropriately. However, the scenario we are

interested in is non-stationary, and therefore we would like to give a higher weight to more

recent observations to be able to better track the changes in the environment. A common

and practical way of achieving this is setting the step-size parameter α as a constant, which

results in the decaying of older observation weights exponentially [109].

Discount factor γ determines how much weight is placed in future rewards, as opposed

to immediate rewards. When discount factor is set γ = 0, only immediate rewards are taken

into account, and potential for future rewards is disregarded. Suitable values for γ depend

on the scenario, and must be selected carefully according to the application at hand.

Selection of values for hyperparameters is still an open problem, and they are tuned

empirically in practice. We have tuned our parameters following an empirical grid-search

over these variables repeated for K = 1, 2, 3, 4 number of agents. Grid-search is conducted

by evaluating performance of all parameter 3-pairs for increments of 0.1 for α and γ, and
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Figure 4.3: Average episode lengths (smaller is better) of a grid-search over parameters α
and γ for fixed ε = 0.15 and following number of agents; (a) 1, (b) 2, (c) 3, (d) 4.

an increment of 0.05 for ε. Figure 4.3 illustrates one example step of this search for 0.1

increments of α and γ, and ε = 0.15. Based on this selection process we chose a single

parameter set of α = 0.7, γ = 0.6, and ε = 0.15 because they performed relatively well for

all 4 test cases. We should also state that we are intentionally tuning parameters coarsely

on a randomized environment. The scenario we are interested in assumes that environment
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conditions are unknown beforehand, and therefore it is not reasonable to fine-tune parameters

to a specific environment.

4.4.6 Proposed Agent

The basic Q-Learning agent is insufficient to handle the non-stationary reward structure

arising from the dynamic environment of mobile users and decentralized aAPs, and enhance-

ment is required to fit a dynamic aerial wireless network scenario. Furthermore, the basic

Q-learning approach tends to overlook minor traffic and isolated users, creating a concern

of fairness in service. We therefore amend the state and modify the reward to handle the

non-stationary rewards and introduce a prioritization scheme that can serve all users fairly

through system design, and incorporate after-states to take advantage of the symmetries

in the state-action space and reduce its size in 5-fold, significantly improving the sample

efficiency.

4.4.6.1 State Variable Design

A vector of binary variables that hold the status information for each user, g, designating

which users have been satisfactorily served so far within an episode is added to the state

variable s. The user status vector is defined as g =

[
gk

]
, k ∈ [1, K] where K is the total

number of users and the user status flag gk is defined by (4.4).

gk =


0, if user k received one unit of service in episode

1, otherwise.

(4.4)

This vector serves as a memory of users that have been served so far within the episode,

which is also incorporated to the reward to encourage seeking unserved users. The amended

state variable then becomes s =

[
c g

]
.
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4.4.6.2 Reconstruction of Reward

We would like to encourage fairness of service among users by rewarding agents for finding

unserved users within that episode. This is achieved by modifying the reward so that once

an agent receives a reward for a user k setting its status flag gk = 0 as served, there will be

no further positive reward for serving that user until all other users are served and episode

is concluded. With this modifications, aAPs will be required to find all users and serve them

regularly to maximize total expected reward, and each user will receive equal amount of

service within that period. This aspect of reward is achieved through the incorporation of

user status vector g defined as (4.4), which serves as memory of users that have been served

so far.

Let |·| be the set cardinality. Let U ′
be the set of unserved users in the same grid as

aAP. Let ω′ =

[
ω′i

]
where ω′i = 1

|U ′| if |U ′| 6= 0 and ω′i = 0 if |U ′ | = 0. Modifying (4.3),

reconstructed reward is given by (4.5).

R(s, a) = 2ω′Tg − 1 (4.5)

The memory provided by g is incorporated to the reward through the vector multipli-

cation ω′Tg. If there is at least one unserved user in the same grid as the aAP, the vector

multiplication will be ω′Tg = 1, and if there are no unserved users ω′Tg = 0. The reward

(4.5) leads to a reward of +1 if there are any unserved users in the grid and −1 if there are

no unserved users in the grid. This encourages aAPs to seek out unserved users to maximize

reward.

Directly capturing the goal in a simple reward instead of using proxies or complex reward

functions is desirable to avoid reward-hacking or wireheading problems [109, 111], where

agents find an undesirable or unexpected way to receive rewards resulting in unintended

behavior that does not contribute toward the goal. Our reward simply provides +1 for
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finding unserved users, and −1 otherwise. This means that the only way to continuously

receive positive reward is to find unserved users.

4.4.6.3 After-states

There are 5 separate actions in the action-set of the aAP, which means there are 5 state-

action pairs that can move an aAP to the same internal grid coordinate c. Since the state

only includes the current coordinate, it is possible to take advantage of this symmetry and

replace the state-action pair (s, a) with the after-state sa, where sa =

[
ca g

]
. Here ca

indicates the resulting coordinate after taking the action a and g is the user status vector.

4.4.7 Multi-Agent Scenario

With the terminology we are adopting, multiple agents working towards a common goal

can be achieved via cooperation with centralized execution or collaboration with decentral-

ized execution. Centralized execution implies there is a central controller that has access

to all the information of all agents, or in other words the global reference, and only the

central controller can execute the learned policy. In a pure cooperative system, agents can’t

operate when their communication link with the central controller is down. This requires

extremely reliable and ultra-low latency communication between the central controller and

all the agents just for the control messages to the agents rather than serving actual data

traffic. This is a strong requirement that is not very practical for mobile aerial wireless

networks in general due to reliability constraints. Since aRAN aims at forming a flexible,

dynamic, and scalable wireless infrastructure that can be quickly deployed in an unknown

environment, we therefore consider collaborative aAPs with decentralized policy execution.

In this case, there is no central controller but instead each agent keeps their own private

references. Each agent also learns their own policy and executes this policy on their own,

meaning that each aAP follows the algorithm described in subsection 4.4.6 individually.
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We further explore the effects of the level of communication between aAPs on collabora-

tion by implementing three possible inter-agent communication schemes. Private references

of each agent is likely to lack information compared to the global reference, and this dif-

ference causes a loss of performance for collaboration compared to cooperation. However,

decentralized agents can attempt to bridge this information gap by exchanging information

with each other through inter-agent communication whenever available. The level of inter-

agent communication is a deciding factor in how effective this attempt will be, and that is the

reason we are implementing three schemes with different levels of inter-agent communication

to explore this factor. The messages agents share with each other include their current state,

action, reward received from the environment, and the post-action state. This is the entire

observation of an agent, and it can be used to learn from other agents’ experience and update

the local policy accordingly through 4.1. This enables agents to incorporate information on

parts of the state-action space they have never explored into their policies and therefore their

decisions.

Let V = {vi}, |V| = M , be the set of M aAPs where vi represents aAP i. State variable

of vi is represented by si =

[
ci gi

]
where ci is the coordinates and gi is the user status

vector belonging to vi. The state-action value function is represented by Qi(sa). The private

reference of vi consists of Qi(sa) and gi. Each aAP vi ∈ V operates decentralized, following

the single-agent algorithm in Section III-B and executing the policy learned through Qi(sa)

individually.

4.4.7.1 Multiple-Access Communication

This case represents the situation when there is a practical communication channel be-

tween aAPs. Messages between aAPs are communicated multi-cast through a dedicated

round-robin connection explained previously where messages arrive with a time delay, as

demonstrated in Figure 4.2a. The practical implication of this is that these messages arrive
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Figure 4.4: System diagram for multi-agent collaboration under the Multiple-Access
Communication scheme for two aAPs. For aAPi, si is the current state, ai is the action, ri
is the reward received for action ai, and s+

i is the new state resulting from action ai. Each
aAP follow the algorithm described in subsection 4.4.6.

delayed. This means while aAPs have access to the state, action, and reward information

of other aAPs, the information they receive is already stale. This prevents aAPs from oper-

ating on the global reference and each aAP has to operate on their own private references,

however, in this case aAPs receive delayed information they can use to improve their private

references. Each aAP has their private references, Qi(sa) and gi, as well as the delayed ob-

servations from other aAPs under this scheme. Relying on the limited latency of inter-aAP

communication within the operation time scale of the system and expecting the inaccuracies

caused by the latency to be small, we update the private references of each aAP vi by treating

received messages as nearly real-time. This is achieved by updating user status vector gi and

updating Qi(sa) following (4.1) with the received observation. This consists of (i) merging

the received status vector gi with all the received status vectors from other aAPs gj, j 6= i,
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where gi and gj are merged by taking their Hadamard (elementwise) product gi�gj and (ii)

backing up the individual state-action value functions Qi(sa) with state, action, and reward

information received from other aAPs.

4.4.7.2 Naive Estimation

Figure 4.5: System diagram for multi-agent collaboration under the Naive Estimation
scheme for two aAPs (no inter-agent communication). The only connection between aAPs

is through the environment. For aAPi, si is the current state, ai is the action, ri is the
reward received for action ai, and s+

i is the new state resulting from action ai. Each aAP
follow the algorithm described in subsection 4.4.6.

This represents the case with no inter-agent communication. However, even with no

explicit message passing between aAPs, their actions cause changes in the environment. aAPs

can collaborate by observing the results of each others actions through rewards received from

the environment, which is realized as an estimation of expected value within the state-action

value function Q(sa) through Q-Learning. These observations act as an implicit channel of
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communication between aAPs, which can lead to effective partitioning of a shared goal as

aAPs will estimate low value through their state-action value function Qi(sa) in areas where

other agents are active due to low rewards. Naive estimation is named after aAPs trusting

their observations as if they represent the global reference with no way to validate through

inter-agent message passing. In this case, each aAP operates on their own private references

as they have no way of directly sharing their references with each other, meaning that each

aAP operates on a separate state-action value function Qi(sa) and user status vector gi both

of which may have different and out-of-date values. These inaccurate values may cause aAPs

to take suboptimal actions with regards the global reference, potentially resulting in multiple

agents acting towards the same user, reducing effectiveness of collaboration. This scheme

also reduces the learning speed as aAPs miss the opportunity to learn from the observations

of other aAPs. Figure 4.5 illustrates this scheme. It can be seen that the only connection

between agents is indirectly through the environment.

4.4.7.3 Ideal Communication

Having an ideal (real-time and error-free) channel between aAPs represents the best-case

inter-aAP communication, where all aAPs have access to exactly the same information at

all times. Since all aAPs have access to each others state, action, and reward information

real-time, they are able to operate on a global reference. Practically, this means they share

a single state-action value function Q(sa) and user status vector g and the only difference

between states sa is the individual locations of aAPs, as seen in (4.6). This means all agents

have access to most up-to-date information and won’t take suboptimal actions with regards
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Figure 4.6: System diagram for multi-agent collaboration under the Ideal Communication
scheme for two aAPs. For aAPi, si is the current state, ai is the action, ri is the reward
received for action ai, and s+

i is the new state resulting from action ai. Each aAP follow
the algorithm described in subsection 4.4.6.

to the global reference due to stale information. Figure 4.6 illustrates this scheme.

Qi(sa) = Q(sa), ∀i where vi ∈ V (4.6a)

gi = g, ∀i where vi ∈ V (4.6b)

si =

[
ci g

]
,∀i where vi ∈ V (4.6c)

It is important to note that while all aAPs operate on a shared global reference, where each

observation is used to update the shared state-action value function Q(sa), the learned policy

is executed in a decentralized manner by each individual aAP.
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4.5 Simulations

Simulations proceed on a 13× 13 grid. Initial locations of users are distributed following

a 2D Spatial Poisson Point Process where each point placed by the point process represents

one user, and intensity parameter is λ = 0.1. Users are placed using the following simple

procedure.

Let N be the one side of a square simulation area, N = 13. Let S represent the entire

bounded simulation area, where |S| = N ×N .

1. Sample the number of points within the area S by calculating Poisson(|S|λ)

2. Place the calculated number of points within the area S, distributed uniformly.

Therefore, the expected number of points (or users) within the entire simulation area S is

given by |S|λ and user density is λ users
grid

.

The learning rate and discount factor for Q-Learning are set to α = 0.7 and γ = 0.6, and

the exploration probability for the ε-greedy policy is set to ε = 0.15, determined empirically

following a coarse grid-search. Figure 4.7 illustrates a sample episode. Simulations are

repeated for 2 and 4 aAPs with three inter-agent communication schemes: multiple-access,

ideal, and naive estimation with no explicit communication between aAPs at all. Simulations

proceed in two scenarios: (i) aAPs operating in an environment where user locations are fixed

to demonstrate convergence characteristics of the algorithm, (ii) trained aAPs operating in

a non-stationary environment, where a random user moves randomly to one of the adjacent

grid squares, both sampled uniformly at the end of each episode with a probability of p = 0.1

to show the dynamics in aRAN. All presented results are averaged over 100 randomized runs.

Figure 4.8 shows the episode lengths to serve all users against episode the number in a

stationary environment to display convergence characteristics. Naive estimation eventually

converging to a similar performance with the other schemes shows that it can partition tasks
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Figure 4.7: An illustrative episode showing the environment and aAP trajectories.
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Figure 4.8: Episode lengths when aAPs are operating in a stationary environment
showing convergence. Averaged over 100 runs.

effectively in a static environment. Delayed information from multiple-access inter-agent

communications have relatively little effect as we expected, since the inter-aAP commu-

nication delays from the round-robin are small in the general time scale of the system.
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Particularly, inter-aAP communication improves the convergence speed by enhancing the

RL and this collaborative multi-agent system of aRAN.
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Figure 4.9: Episode lengths when users can move, showing ability to adaptively track
changes in the environment. Averaged over 100 runs.

Figure 4.9 shows the length of episode vs. episode number for aAPs operating in a non-

stationary environment, which demonstrates the capability of tracking dynamic changes.

More aAPs operating in the environment and inter-aAP communication enhances adapt-

ability to traffic dynamics. Naive estimation scheme shows the worst performance, as it

has the worst convergence rate as seen in Figure 4.8. The demand for the effective re-

convergence of the RL algorithms in a highly dynamic environment is met thanks to the

improved convergence characteristics of the proposed RL scheme.

As for fairness, we are employing a RL based solution where we designed our RL sys-

tem carefully to achieve fair trajectories without any analytical guarantees towards fairness.

Therefore we present the results from our simulations to demonstrate the achieved fairness.

Figure 4.10 shows the distribution of the total service each user receives within 250000 time-

slots from 4 aAPs, which as expected is uniform among users. This is because aAPs are not

rewarded for providing more than 1 unit of service per episode to a user, therefore they learn

not to serve more than 1 unit of service per user within an episode.
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Figure 4.10: Total service each of the 14 users receives in 250000 time-slots from 4 aAPs,
under each inter-aAP communication scheme.

4.6 Conclusions

Establishing an aRAN for flexible, dynamic, rapidly deployed wireless infrastructures

under a dynamic operating environment without proper models and insufficient traffic infor-

mation fundamentally differs from traditional wireless network design. We successfully, and

more practically, develop effective trajectories for multiple decentralized collaborative aAPs

to form an aRAN in dynamic operating environments by adapting RL and introducing a

novel learning scheme which can exploit inter-agent communication and empirically ensure

fairness of service among users.
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Chapter 5: Enhanced Multi-Agent Mobile Aerial RAN Deployment

5.1 Introduction

Work presented in Chapter 4 models the trajectory optimization problem for multiple

decentralized aerial Access Points (aAP) forming an aerial Radio Access Network (aRAN) as

a Reinforcement Learning problem. Each agent follows a Markov Decision Process (MDP)

defined over atomic actions of small movements where trajectories are built incrementally at

each step through sequential decision over atomic actions.

Works in the literature focus on the control of the UAV trajectories thorough atomic

actions [33] as well. However, flight control of a UAV to move it from a coordinate to

another is an orthogonal problem to service optimization for the users. In this chapter it is

assumed without loss of generality that a flight controller exists to take the UAVs to a given

coordinate through the shortest path when these temporally extended actions are called.

Building trajectories incrementally, one atomic action at a time also introduces challenges

in decentralized collaboration among agents. Even if agents have access to an inter-agent

communication channel as in Subsection 4.4.7, they can’t announce their future trajecto-

ries to other agents unless a computationally expensive long-horizon planning algorithm is

employed by each agent individually which limits the scalability over the number of agents,

resulting in duplicate work and reduced collaboration efficiency.

Temporal Abstraction is a method that allows agents to learn and follow a policy over

temporally-extended actions of varying lengths. This violates the first-order dependency

property of MDPs, resulting in a Semi-Markov Decision Process (SMDP) [112, 113, 114].
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However many RL methods such as Time-Difference Learning and Q-Learning can also be

defined over SMDPs [115].

In this chapter a method for collaborative trajectory optimization of multiple decentral-

ized aAPs forming an aRAN is developed. We demonstrate improved convergence char-

acteristics with the application of temporal abstraction within the options framework for

rapid deployment, following a method inspired by the landmark-state methods [34, 35]. Op-

tions framework is then further utilized to improve decentralized multi-agent collaboration

towards a shared goal by maintaining a set of temporally-extended actions to be used as a

shared vocabulary to achieve effective and scalable decentralized planning under bounded

inter-agent communication.

5.2 Network System Architecture

This chapter follows the same generally applicable abstracted system architecture pre-

sented in Section 4.2, with an important modification to the air interface between an aAP

and users.

5.2.1 Modified Air Interface Between aAPs and Users

Given a reservation-based multiple access scheme, one unit of service is abstractly defined

as the service that one user receives from an aAP in one time-slot. Sensing and communi-

cation range of aAPs are defined as a 3 × 3 region with aAP in the center. As illustrated

by the time-diagram given in Figure 4.2b, at the beginning of each time-slot aAPs sense the

traffic demand in their 3× 3 service range, and then poll all the sensed users within range.

The one unit of service achievable in one time-step is shared uniformly by all the users

within range, each receiving an equal fraction of it. If one user is within the service range of

multiple aAPs, it associates with only one aAP, breaking ties randomly. Polling here repre-

75



aAP

Covered
User

Uncovered
User

Coverage
Area

Figure 5.1: A diagram illustrating the 3× 3 service range.

sents a general reservation-based multiple access such as the IEEE 802.11 mechanism [107].

Figure 5.1 illustrates this service area.

5.3 Background

In this section, tools employed in the development of the proposed method; temporal

abstraction, SMDPs, and the options framework are introduced.

5.3.1 SMDPs and Temporal Abstraction

Semi-Markov Decision Processes (SMDP) [112, 114, 113] are extensions of Markov Deci-

sion Processes (MDP) to model continuous-time discrete event systems where actions take

variable amounts of time to model temporally-extended courses of action [115]. Figure 5.2

illustrates the difference by depicting state trajectories of an MDP and an SMDP over time.
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Figure 5.2: An illustrative example of state trajectories over time for; (a) an MDP and
(b) an SMDP. The state trajectory of the MDP is comprised of small (atomic)

discrete-time transitions. In comparison, the state trajectories of the SMDP is comprised of
larger, continous-time transitions. Adopted from [115].

The state trajectory of the MDP as seen in Figure 5.2a is comprised of small (atomic)

discrete-time transitions while that of the SMDP as seen in Figure 5.2b is comprised of

larger, continuous-time transitions.

Temporally-extended actions can span different ranges of time scales. Throughout our

daily lives we make many decisions over temporally-extended actions. For example, deciding

what to cook for dinner requires consideration towards what ingredients are available, skill
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level, dietary restrictions of the diners, and so on. After making the decision to cook, the

temporally-extended action of cooking involves many smaller steps such as opening the fridge

door, gathering and preparing ingredients, turning the stove on, and so on. Each of these

steps are also made up of a sequence of smaller steps, down to the most minute detail like

individual muscle contractions. Temporal abstraction provides a way to handle such multiple

overlapping time scales and it’s exploration in AI literature goes as far as 1970s [115].

5.3.2 Options

Time State

Figure 5.3: An illustrative example of state trajectories over time for and MDP over
options. Options enable the MDP to take advantage of both small, discrete actions and

large, continuous-time actions. Adopted from [115].

Options enable incorporating temporal abstraction into the RL framework in a general

and natural way [115, 116].

Let ht,T = st, at, rt+1, at+1, . . . , rT , sT be the history sequence between times t ≤ T and

T . Let ρ be the set of all possible histories given a Markov Decision Process. An option

ω = 〈I, π, β〉 is defined by an initiation set I ⊆ S, policy π : ρ×A →
[
0, 1

]
, and termination

condition β : ρ →
[
0, 1

]
. An option ω is available in a state s if and only if s ∈ I. If ω is

chosen at state st, next action at is determined following policy π(st, ·). Following action at,
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the environment then transitions into st+1, and ω is terminated following the termination

condition with probability β(ht,t+1). If not terminated, following actions are kept being

chosen following the policy π, until the termination condition is satisfied. Options as defined

here are called semi-Markov, because they depend on the history sequence ht, T , rather

than only the current state as Markov condition is defined. Policy π of an option ω can be

defined as a sub-goal, and can be learned over the limited state-space defined by initiation

set I and termination condition β following RL methods [115]. Figure 5.3 illustrates a state

trajectory for an MDP over options, taking advantage of both atomic (filled in dots) and

temporally-extended (empty dots) actions seen in Figure 5.2.

It is also shown that the use of options can improve the convergence rate of RL tasks [115,

117, 116]. Furthermore, for decentralized multi-agent scenarios with a shared goal, they

provide a shared vocabulary of temporally-extended tasks that can be used to plan and

collaborate effectively with limited inter-agent communication.

5.3.3 Hierarchical RL

Hierarchical RL can be utilized to separate the higher-level planning of which users

or areas to serve and in what order, and the lower-level execution of this plan through

the control of agents over atomic actions. Figure 5.4 provides a simple example of such a

system, where the higher-level controller executes the planning and strategizing over the set

of temporally extended actions and the lower-level controller handles the execution of the

temporally-extended actions decided by the higher-level controller.

As it was stated in the Subsection 5.3.2, an option ω can be defined with a sub-goal, and a

policy can be learned over the limited state-space defined by initiation set I and termination

condition β following RL methods to achieve this sub-goal. This learning of policies to

achieve the sub-goals over the set of primitive (atomic) actions is the lower-level execution

part of the hierarchical model, whereas the higher-level planning part of the Hierarchical
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Environment

Temporally-extended	
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Temporally-extended	
rewards

Atomic	decisionsAtomic	rewards

Figure 5.4: System diagram illustrating a simple hiearchical RL system. Higher level
controller strategizes over the available set of temporally-extended actions, while the

lower-level controller handles the interaction with the environment and the execution of the
decisions made by the higher-level controller.

RL controller is the over-arching policy learned over the option set. Literature shows that

standard RL methods such as TD-learning and Q-learning can be defined for SMDPs and

applied over options [115, 116]. It should be noted that convergence guarantees in this case
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apply to the optimal policy over the option set, which may be inferior to the optimal policy

over the primitive action set [115, 116].

Looking again the the Figure 5.4, the higher-level controller represents the planner applied

over options, while the lower-level controller represents the policies and RL controllers in

place to achieve the individual sub-goals of options.

5.4 Proposed Algorithm

In this section, first the aAP trajectory optimization is proposed as a SMDP with the

use of the options framework for a single agent. Then a method to facilitate collaboration

among decentralized agents following the single agent model utilizing limited inter-agent

communication is presented.

5.4.1 Single Agent Model

In order to be able to model the single-agent problem as a SMDP and take advantage

of temporal abstraction, a set of options each with their own initiation sets, policies, and

termination conditions, and a policy over this option set is defined. Figure 5.5 illustrates such

a system, where the policy defined over options, πΩ, determines ωt, the option to execute at

time t. Then the chosen option ωt is executed following its policy πωt defined over atomic

actions, interacting with the environment directly. When the option ωt terminates following

its termination condition βωt , the reward for executing it is calculated and used to update

the policy over options πΩ. Therefore, πΩ is only updated after every option execution

terminates, not after every atomic action.

Policy over options, πΩ, is learned online following Q-Learning. State, action set, execu-

tion policy, and reward must be determined to define a functional Q-Learning system. As

this is the policy over options, action set is replaced by the option set, and state and reward

are not the atomic state and reward, but instead are defined over their atomic counterparts.
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Figure 5.5: Diagram of the proposed system, learning a policy over options. πΩ is the
policy over options, determining which option to execute at time t, ωt. The chosen option
πω then interacts with the environment, where at is the atomic action determined by πω, rt

is the reward received from at, and st is the state after executing at.

5.4.1.1 Option Set

The option set O is defined over the atomic actions set for the aAP. Without loss of

generality, the atomic action set A of the aAP is limited to 5 actions, moving forward,

backward, left, right, and flying in place; A = {forward, backward, left, right, in-place}.
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The atomic state sω under the option is defined as the coordinates c of the aAP, s =

[
c

]
,

where c =

[
x y z

]
. Within the context of this chapter, the height z is fixed to a constant

value.

Inspired by the landmark-state approaches [34, 35], we create the option setO by dividing

the operation area into uniform non-overlapping zones, or pseudo-cells. The center of each

pseudo-cell is determined as a landmark-state s′ω, and the option set consists of an option for

every landmark-state that moves the agent to its coordinates following the shortest path. It

should be noted that while it would be possible to learn the policies of options by defining

reaching landmark-states as sub-goals as explained in Section 5.3.3, within the context of this

chapter the option policies are deterministic and the flight control of the agent is assumed to

be handled by a separate flight controller. Termination conditions βω for these options are

defined as reaching the landmark-state. Figure 5.6 illustrates the pseudo-cell division and

landmark-state assignment process with a pseudo-cell size of 3× 3 grid tiles.

Let s′ωi
be the i-th landmark-state, and πωi

be the deterministic policy for the i-th

option that corresponds to the i-th landmark-state. πωi
selects the next atomic action a ∈ A

that brings the aAP to the coordinates of s′ωi
following the shortest path. When multiple

shortest-paths exist, ties are broken randomly. πωi
is then defined as:

πωi
(sω) = next action a on the shortest path from sω to s′ωi

, (5.1)

and the termination condition for the i-th option, βω,i is given by:

βωi
(sω) =


1, if sω = s′ωi

,

0, otherwise.

(5.2)
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Landmark
State

Pseudo-cell
Border

Figure 5.6: An illustration of the division of zones and landmark-states. The available
area is divided into uniform non-overlapping sections of 3× 3 grid tiles, and the center of

each section is determined as a landmark.

Transitions between pseudo-cells are limited to spatially neighboring cells, focusing the

state-space exploration to connected trajectories. This limitation is implemented through

initiation sets, where the initiation set for the i-th option, Iωi
, only includes the neighboring
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zones (i.e. sharing a side) with the i-th zone represented by the option ωi. A relaxation to

this constraint will be introduced in Section 5.4.3.2 with the multi-agent extension.

5.4.2 State

The state over options sΩ is defined similarly to state defined in Section 4.4.6.1, with an

abstraction that replaces the individual coordinates of the agent c

[
x y z

]
with a higher

level variable cΩ that is defined as the index i of the landmark state s′ωi
that belongs to the

zone agent is currently in. The state over options is then defined as:

sΩ =

[
cΩ g

]
, (5.3)

where cΩ is the index of the zone that includes c and g is the user status vector that has

been defined in Section 4.4.6.1.

5.4.2.1 Policy

To balance the exploration of new information with exploitation of current information,

an ε-greedy approach is used, which uniformly samples an option from OsΩ
with the proba-

bility ε, and selects the option greedily otherwise. OsΩ
here represents the subset of O which

only includes options ωi where sΩ is in their initiation sets Iωi
.

5.4.2.2 Reward

Reward used here is an extension of the reward explained in Section 4.4.6.2 for a policy

over option set O. Reward for executing option ω is given by subtracting the number of

time-steps it took to execute the option from the total number of users whose traffic demand

were satisfied within the option. Let |·| be the set cardinality. Let U ′
be the set of unserved

users that have been served by the aAP during the execution of option ω, and Tω be the
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number of time-steps it took to execute the option ω. A user being served within an option

is determined by the change of its user service status flag defined by 4.4 to satisfied. Reward

for executing option ω is given by:

R(sΩ, ω) = |U ′| − Tω. (5.4)

5.4.3 Decentralized Multi-Agent Collaboration

Each agent individually follows the single-agent model described in Section 5.4.1, follow-

ing their local references (information available to them locally) as they are decentralized.

Agents improve their local references by sharing small control messages with each other.

Making use of the options framework in this model means that all the agents have the same

option set O. This shared option set can be utilized as a shared vocabulary, and with

the introduction of inter-agent communication, to improve the decentralized collaboration

efficiency by reducing the amount of repeated work.

5.4.3.1 Inter-Agent Communication

Inter-agent communication occurs on a round-robin multiple-access channel as described

in Section 4.4.7. It has already been shown in Chapter 4 that this round-robin channel

is nearly as effective as an ideal communication channel when it is used to share control

messages between agents to coordinate.

Agents multi-cast a control message to all other agents every time they terminate an

option. This control message includes the observation of the agent for the recently con-

cluded option, and the next option they will be executing. The observation consists of the

initiating state, option executed, reward received from the environment, and the terminating

state. Together with the next option, this is all the information necessary to backup un-

der Q-Learning, allowing agents to synchronize their policies with limited communication.
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Announcing the next option that will be executed to all the other agents also provides an

opportunity for improved planning.

The control messages shared between agents are small, and they are shared infrequently

as they are only shared when an option is terminated. Following this, and the results from

Chapter 4, it is assumed within this chapter that the control messages arrive without delay.

5.4.3.2 Decentralized Planning and Collaboration

A simple planning method with a single-step horizon is adopted to improve the collabora-

tion efficiency taking advantage of the limited inter-agent communication and shared option

sets. The shared control messages mean that each agent knows the options all other agents

are working towards executing. This information can be utilized by removing the options

that are being executed by other agents from the set of available options the decision is based

on. Let · \ · be the set exclusion operator and Oo be the set of options that are currently

being executed by agents. The set of free options O′ is then defined as:

O′ = O \ Oo. (5.5)

Furthermore, if there are no viable options in O′ following the spatial-neighborhood con-

straint explained in Section 5.4.1.1, this constraint will be removed and the agent can chose

the next option from the entire free option set O′. This allows agents to leave heavily served

ares of the environment quickly and serve other sections that are possibly being underserved.

An important advantage of this simple planning method is that it does not require constant,

reliable communication between agents. It can exploit inter-agent communication when it

is available, however when inter-agent communication is unavailable as it can be expected

intermittently in the field, it can still make a decisions based solely on the agents experiences.
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5.5 Simulations

Simulations proceed on a 15 × 15 grid. The size of the service areas of aAPs are set as

3× 3. Initial locations of users are distributed following a 2D Spatial Poisson Point Process

where each point placed by the point process represents one user, and intensity parameter

is λ = 0.1, where the expected number of users is given by (15× 15)λ = 22.5.

(a) (b)

Figure 5.7: An illustrative episode showing the environment and aAP trajectories for;
(a)MDP and (b)SMDP approaches.

The learning rate and discount factor for Q-Learning are set to α = 0.7 and γ = 0.6

determined empirically as in to Chapter 4. As we are exploring the case with static users,

therefore the exploration probability for the ε-greedy policy is set to ε = 0.01 and further

exploration is encouraged by using an optimistic Q initialization scheme [109], setting the

initial Q values as Qo = 1. Simulations are repeated for 2, 4 and 6 aAPs, comparing the

SMDP approach explained in this chapter with the MDP based Ideal Communication case

from Chapter 4 as a benchmark. Figure 5.7 illustrates two sample episodes for 2 agents

following each of the two approaches. All presented results are have been averaged over 50

randomized runs.
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Figure 5.8 shows the episode lengths to serve all users against episode the number in a

stationary environment to display convergence characteristics. It is seen that for all cases the

introduction of temporal abstraction and hierarchical RL have significantly improved the con-

vergence rate and the early worst-case episodes. Furthermore, the simple planning method

introduced in Section 5.4.3.2 have also improved the collaboration efficiency of the decen-

tralized agents. As the number of agents increase the divide between two approaches gets

wider, further supporting improved collaboration since increased number of agents means a

higher chance of repeated work. Readers should be reminded that both approaches utilize

the same level inter-agent communication, and these improvements are not a result of having

access to more information.

5.6 Conclusions

This chapter presented a method for decentralized multi-agent trajectory optimization of

aAPs to form an aRAN. Convergence rate and early performance is crucial for such a system

to reduce the training time and start serving users as quickly as possible. The proposed

SMDP based approach utilizing temporal-abstraction and hierarchical RL have significantly

improved the convergence characteristics compared to a MDP based approach that operates

over atomic actions, which is the common approach in literature for this problem. To the

best of authors knowledge, this is the first work applying temporal-abstraction to the aerial

wireless network deployment problem. Furthermore, a simple planning method is proposed

to improve decentralized collaboration efficiency taking advantage of the shared option set

and limited inter-agent communication. Simulation results verify that the proposed method

improves the effectiveness of collaboration by reducing the amount of repeated work, and

the effect size increases with the increasing number of agents.

89



0 2000 4000 6000 8000 10000
Episode

50

100

150

200

250

Ep
iso

de
 le

ng
th

6 Agents

50

100

150

MDP SMDP

0 2000 4000 6000 8000 10000
Episode

100

200

300

Ep
iso

de
 le

ng
th

4 Agents

100

200

MDP SMDP

0 2000 4000 6000 8000 10000
Episode

100

200

300

400

500

600

Ep
iso

de
 le

ng
th

2 Agents

100

200

300

MDP SMDP

Figure 5.8: Convergence results for MDP and SMDP approaches for; 6,4, and 2 agents.
Significantly improved convergence characteristics and improved collaboration efficiency as

the number of agents increase can be observed.
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Chapter 6: Concluding Remarks and Future Research

In this chapter concluding remarks regarding the previous chapters is presented, and

future research plans and directions are detailed.

6.1 Concluding Remarks

This dissertation has its major contributions in both the socially aware analysis and the

development of wireless network infrastructures for the applications that are challenging

for traditional infrastructure deployments. Specifically, this dissertation first presents an

investigation of the wireless network user data to generate actionable intelligence that can

guide policy makers and point out the changing demands of wireless networks discovering user

modalities outside the common user patterns, and then explores the use of aerial platforms for

rapid deployment of flexible wireless networks to satisfy the mobility and reliability demands

of the future wireless communications.

Chapter 2 studies a novel Call Detail Record dataset that includes data from refugee

and non-refugee users focusing on discovering mobility and connectivity patterns for both

individuals and the aggregate. Connectivity among users is tightly coupled with their social

lives and employment status, and user mobility is very dependent on places of residence and

employment, where these patterns can serve as markers of employment and social integration

issues for the refugee users. Seeing distinct divergences in both connectivity patterns where

refugee users interact with a much smaller portion of the nation, and mobility patterns where

refugee users appear to be spatially segregated and move much more frequently and in shorter

steps, suggest that refugee users are not very well integrated into the local social life and
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may have less stable employment options. These results are also relevant for wireless network

design, as they suggest existence of large groups whose connectivity needs significantly differ

from the local population network infrastructures are often designed for.

Chapter 3 approaches the AP placement in genuine 3D problem for aerial wireless net-

work deployment from the perspective of random graphs, particularly Random Geometric

Graphs (RGGs). After the formulation of the optimization problem with the help of RGGs,

an iterative algorithm that decomposes the intractable joint-optimization problem of AP

positions into a sequence of individual optimization problems is developed. A procedure to

determine the adequate number of APs for a desired level of connectivity is also presented.

Detailed agent-based simulations showed that operation in full 3D space provides significant

improvements specifically when avoiding obstacles to achieve line-of-sight and conforming to

the environment are important, and the proposed iterative optimization scheme can effec-

tively find good placements.

Chapter 4 presents a method to form a flexible, dynamic, and rapidly deployed wireless

infrastructure through the formation of an aerial RAN. This method significantly relaxes

the prior information assumptions from Chapter 3 and majority of prior art by requiring

no models on traffic and user mobility and no prior knowledge of the user distribution, and

the resulting problem differs from the traditional wireless network design fundamentally. A

reinforcement learning based solution to control the trajectories of multiple decentralized

collaborative aerial APs with a learning scheme that can exploit inter-agent communication

to achieve effective collaboration is developed to form an aerial RAN operating over dynamic

environments. This solution also uniquely considers the fairness of service among users, and

is designed and empirically shown to provide equal service to all users.

Chapter 5 presents a method that extends the work from Chapter 4 to significantly

improve the convergence characteristics and multi-agent collaboration effectiveness as con-

vergence rate and early performance is crucial for such a system to reduce the training time
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and start serving users as quickly as possible. A SMDP based approach utilizing temporal-

abstraction and hierarchical RL that significantly improves the convergence characteristics

is presented. The incorporated option set is then further utilized together with limited inter-

agent communication to improve the effectiveness of decentralized multi-agent collaboration

by providing agents a shared set of temporally-extended tasks that can be used as a shared

vocabulary to coordinate. This chapter shows that a SMDP approach can bring us closer to

a practically applicable system.

6.2 Future Research

Future research will focus on the modeling of aAPs as decentralized agents in a multi-

agent system. One significant challenge is taking advantage of bounded/opportunistic inter-

agent communication for the purposes of effective collaboration for decentralized agents. In

practical systems, an inter-agent channel between all agents is unlikely to be present, which

puts emphasis on being able to take advantage of inter-agent communication opportunisti-

cally whenever it is available. This also requires being able to plan with partial information

of the system, as having all agents in communication with each other at every instance of

planning is also not practical.

Another important challenge is handling stochastic/unreliable observations from the envi-

ronment. Throughout this dissertation, the observations agents receive from the environment

have been assumed to be accurate. However these observations can have many sources of

error from sensor reliability to communication errors. Modeling and handling of these errors

are crucial for a system to operate reliably.

One more avenue of potential improvement is through transfer learning and skill transfer.

Training agents beforehand in a way they can generalize the learned policies to unknown

environments quickly can significantly improve the deployment time necessary until the

aRAN starts to provide a satisfactory level of service.
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A final direction for future research is Federated Learning, where each decentralized

agent contributes their individual experiences to improve a single shared model whenever

communication with a centralized control center is available which can bring the advantages

of centralized agents without the stringent communication requirements.
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