
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

July 2020

Network Function Virtualization In Fog Networks Network Function Virtualization In Fog Networks

Nazli Siasi
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Siasi, Nazli, "Network Function Virtualization In Fog Networks" (2020). USF Tampa Graduate Theses and
Dissertations.
https://digitalcommons.usf.edu/etd/8997

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.usf.edu%2Fetd%2F8997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Network Function Virtualization In Fog Networks

by

Nazli Siasi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Nasir Ghani, Ph.D.
Sylvia Thomas, Ph.D.

Zhuo Lu, Ph.D.
Mehran Mozaffari, Ph.D.

Adrian Jaesim, Ph.D.

Date of Approval:
July 3, 2020

Keywords: Virtual Network Function, Provisioning Problem, Fog Networks

Copyright c© 2020, Nazli Siasi

Acknowledgments

I would like to express my sincere appreciation to my mentor and advisor, Professor

Nasir Ghani, for his tremendous support, patience, encouragement and guidance during my

doctoral studies on the personal and technical sides. His great support not only gave me the

direction to march forward on the academic road but also helped me make a clear career

plan. I am deeply indebted to him for giving me the opportunity to work with his group

and for supporting me with teaching and research assistantships.

I would like to thank my dissertation committee members, Professor Sylvia Thomas,

Professor Zhuo Lu, Professor Mehran Mozaffari Kermani, and Professor Adrian Jaesim, for

their valuable feedback and guidance that improved this work. Special thanks to Professor

Chris Ferekides and the department staff for their support during the period of my graduate

studies at USF.

My former and current research colleagues, Dr. Adrian Jaesim, Dr. Diogo Oliveira, and

Aldin Vehabovic for their encouragement and collaboration.

Dedication

To my mom Faegheh, for her endless love, support and patience while being far from her

daughters,

To my dad Ali, for being my first teacher, for encouraging me to believe in myself, and

teaching me to pursue my passion and dreams and overcome whatever difficulties I may face

in life.

To my soulmate, my sister Shalaleh, for being my inspiration and encouraging me to go

on every adventure, especially this one, and to my brother-in-law Shahin, for his continuous

support.

To my grandparents Navab and Hossein, whom I promised to make proud by pursuing my

doctorate degree. I hope that I have fulfilled this promise to them and very much wish that

they were still alive today to share with me the celebration and the success of my studies.

Table of Contents

List of Tables iii

List of Figures iv

Abstract vi

Chapter 1: Introduction 1
1.1 Background 1
1.2 Motivations 3
1.3 Problem Statement 4
1.4 Proposed Work and Contributions 5

Chapter 2: Literature Survey 7
2.1 NFV Architectural Overview 7
2.2 Survey of NFV Resource Provisioning 10
2.3 Overview of Fog Computing 14
2.4 Survey of NFV Provisioning in Fog Computing 21
2.5 Survivability Design for NFV 23
2.6 Survivability Considerations for Fog Computing 26
2.7 Open Problems and Challenges 28

Chapter 3: SFC Provisioning in Fog-Cloud Networks 33
3.1 Architecture and Notation Overview 34

3.1.1 Physical Network Model 35
3.1.2 SFC Demand Model 36

3.2 Polynomial-Time SFC Mapping Schemes 36
3.2.1 Delay Minimization Approach (DM) 37
3.2.2 Load Minimization Approach (LM) 39

3.3 Algorithmic Complexity 39
3.4 Batch Sorting Strategies 40

3.4.1 Highest Bandwidth First (HBF) 41
3.4.2 Lowest Bandwidth First (LBF) 41
3.4.3 Highest VNF First (HVF) 41
3.4.4 Lowest VNF First (LVF) 42

3.5 Performance Analysis 42

i

3.5.1 SFC Mapping Results 44
3.5.2 Batch Sorting Results 46

Chapter 4: Pre-Provisioned SFC Protection 53
4.1 Polynomial-Time SFC Protection Schemes 53

4.1.1 Delay Minimization Protection (DM-P) Approach 55
4.1.2 Load Minimization Protection (LM-P) Approach 56

4.2 Performance Analysis 57

Chapter 5: Post-Fault SFC Restoration 63
5.1 Architecture and Notation Overview 64
5.2 Failed SFC Re-Mapping 65

5.2.1 End-to-End SFC Restoration 67
5.2.2 Intermediate SFC Restoration 68

5.3 Performance Analysis 69

Chapter 6: Conclusions 77
6.1 Summary of Research Findings 77
6.2 Extensions and Future Directions 80

References 81

Appendix A: Glossary of Terms 93

Appendix B: Variable Definitions 96
B.1 Chapter 3 96
B.2 Chapter 4 98
B.3 Chapter 5 99

Appendix C: Copyright Permissions 100

ii

List of Tables

2.1 Regular (non-survivability) service demands 30

2.2 Survivability service demands 31

2.3 Survivability requirements and initiative 32

3.1 Multi-layer fog network simulation parameters 42

iii

List of Figures

1.1 High level VNF architecture proposed by ETSI 2

2.1 High level VNFM architecture proposed by ETSI 8

2.2 Hypervisor versus container-based virtualization 13

2.3 Conventional hierarchical three-layer fog computing architecture 15

2.4 Hybrid fog-cloud architecture with fog nodes and fog cluster heads 16

2.5 Layered fog computing architecture 18

2.6 The 4-layer fog computing architecture for smart cities 19

3.1 Multi-layer fog network architecture 35

3.2 SFC demand request embedding example 37

3.3 Fog-based SFC mapping algorithm for a request, xr 43

3.4 SFC demand request blocking rate 45

3.5 Average end-to-end SFC delay (successful requests) 46

3.6 Average SFC cost (successful requests) 47

3.7 SFC demand request blocking rate, DM sorting scheme 48

3.8 SFC demand request blocking rate, LM sorting scheme 49

3.9 Average end-to-end SFC delay, DM sorting scheme (successful

requests) 50

3.10 Average end-to-end SFC delay, LM sorting scheme (successful requests) 51

3.11 Average SFC cost, DM sorting scheme(successful requests) 51

3.12 Average SFC cost, LM sorting scheme (successful requests) 52

4.1 SFC demand protection example 54

iv

4.2 Fog-based SFC protection mapping algorithm for a request, xr 60

4.3 Protected SFC demand request blocking rate 61

4.4 Average end-to-end SFC delay (primary, backup) 61

4.5 Average SFC cost (primary, backup) 62

5.1 Overview of post-fault restoration 64

5.2 Fog-based SFC restoration for failed demands (end-to-end, in-

termediate) 66

5.3 End-to-end SFC demand restoration example 67

5.4 Intermediate SFC demand restoration example 69

5.5 Number of failed requests for DM scheme 71

5.6 Number of failed requests for LM scheme 71

5.7 Restoration rate for DM-LBF scheme 73

5.8 Restoration rate for LM-LBF scheme 73

5.9 Average increase in delay of restored demands (DM-LBF scheme) 74

5.10 Average increase in delay of restored demands (LM-LBF scheme) 75

5.11 Average increase in cost of restored demands (DM-LBF scheme) 75

5.12 Average increase in cost of restored demands (LM-LBF scheme) 76

v

Abstract

The network function virtualization (NFV) paradigm uses commodity servers to imple-

ment “softwarized” networking capabilities and replace costly, proprietary hardware systems.

In particular a wide range of virtual network function (VNF) tasks can be implemented here,

including firewalls, load-balancers, encryption engines, address translation devices, domain

name servers, even routers and switches. NFV also enables a high-degree of service flexi-

bility, allowing operators to interconnect multiple VNFs to build highly-customized service

function chain (SFC) sequences for their clients. As a result these related technologies are

gaining widespread traction in enterprise and cloud-based settings, offering unprecedented

service agility and cost effectiveness. Researchers have also investigated a wide range of VNF

placement and SFC provisioning strategies to achieve various operator and client objectives.

Nevertheless, most studies on VNF placement and SFC embedding have only considered

operation across larger cloud-based settings. These infrastructures are comprised of large

core datacenter sites with abundant storage and computational resources. However cloud

computing is not well-suited for highly time-sensitive real-time services and applications,

i.e., with tight delay and delay-jitter requirements. Localized contextual data support is

also quite problematic, e.g., for services such as weather or traffic. In addition, cloud-based

services also increase traffic demands across the network along with vulnerability to remote

failures and outages. It is here that edge/fog computing paradigms offer much promise by

placing smaller storage and computing pools closer to the end-users. These designs can

vi

provide much lower service delays, improved localized information support, and reduced

network bandwidth overheads. Hence there is a growing need to extend NFV provisioning

by fully leveraging fog-based infrastructures to properly support stringent end-user service

needs. This remains a largely open problem area today.

Overall provisioning NFV services over fog-based networks imposes some key differences

versus cloud-based operation. Most notably, fog nodes have orders magnitude less resources

and capabilities in terms of storage, computation, and bandwidth interconnectivity. As a

result resource constraints become a critical factor, along with service delays. To address

these challenges, this research dissertation presents a detailed investigation of SFC provi-

sioning in NFV-enabled fog computing networks. Specifically, novel SFC mapping schemes

are developed for the fog domain by taking into account important client parameters, i.e.,

delay, bandwidth, node resources, and function dependency. Furthermore, several survivabil-

ity provisions are also presented to improve the reliability of these methods, i.e., including

pre-fault protection and post-fault restoration methodologies. Overall these contributions

provide a solid base from which to leverage NFV technologies at the network edge.

vii

Chapter 1: Introduction

The focus of this thesis dissertation is to investigate the application of network function

virtualization (NFV) technologies in edge/fog computing network domains. This topic area

is of key importance to various end-user service scenarios today. Hence this introductory

chapter presents a high-level background and introduction to the problem space and then

identifies the key motivating factors for this research work. The major contributions of the

dissertation are also presented along with an outline.

1.1 Background

Network operators have traditionally used proprietary vendor-specific hardware and soft-

ware systems to build their physical networks and offer services to their end-user clients.

However these legacy setups exhibit a high degree of hardware-software dependency and

coupling, leading to a generalized lack of service flexibility and very costly and complex

upgrade cycles [1]. Given the increasing diversity of new networking services and the wide-

ranging quality of service (QoS) requirements of many users, these legacy setups are proving

to be an immense challenge today.

In light of the above, network designers and standards associations have evolved a new set

of paradigms for both the network control and data planes in and effort to streamline network

design and operation. Most notably, the software-defined networking (SDN) concept was

introduced several years ago to help centralize (condense) the networking control plane into

a centralized controller entity. This transition decouples the network data and control planes

and greatly reduces the complexity of switching devices, i.e., as they no longer have to run

1

Figure 1.1: High level VNF architecture proposed by ETSI

complex distributed protocols and maintain relative state synchronization. Instead network

switches can be replaced by much simpler data-plane devices which receive their forwarding

rules through a northbound interface (to the SDN controller). Indeed, SDN eliminates the

dependency on vendor-proprietary network control/provisioning software and offers immense

potential for developing customized networking applications, e.g., for traffic engineering,

survivability, security, management, billing, etc. As a result this technology is seeing wide

scale traction and deployment in datacenter, enterprise, and even larger metro/wide-area

networking domains.

Meanwhile NFV paradigms have also been evolved to advance the data plane and reduce

dependency/cost on vendor-specialized hardware switching and routing platforms. The main

idea behind this approach is to separate physical layer devices from the network functions

(NF) that they run. Namely, software-based virtual network functions (VNF) can now be

defined as application instances running on commodity commercial-off-the-shelf (COTS)

servers. Some key examples here include functions such as firewalls, network address trans-

2

lation (NAT) boxes, domain name service (DNS) servers, load-balancers, encryption engines,

even routers and switches, etc. Furthermore, multiple VNF instances can also be instantiated

and interconnected to build customized function sequences, thereby provisioning a wide range

of end-user client services, i.e., generally termed as service function chains (SFC). As such

NFV greatly lowers (even eliminates) the need for vendor-proprietary networking systems.

Furthermore VNF upgrades can also be done via software updates. Moreover client VNFs

can also be hosted beyond the enterprise in cloud-based datacenters offering unprecedented

scalability (economy of scale). Indeed such network “softwarization” is yielding immense

capital expenditure (CapEx) and operational expenditure (OpEX) savings [2].

1.2 Motivations

In light of the above developments, researchers have been investigating the use of SDN and

NFV paradigms to support modern network service demands. These efforts have ranged the

full spectrum, including provisioning algorithm design, testbed development, and even busi-

ness case analyses. In particular, most NFV provisioning studies have focused on VNF map-

ping or SFC (chain) embedding algorithms in generalized cloud-based networks [3]. Many

of these problems are classified as NP-hard, and hence a range of heuristic and optimization

schemes have been tabled.

Now the distributed cloud services model offers immense scalability and consolidation,

eliminating the need for costly on-site hardware and maintenance. As a result most SFC

studies have assumed abundant resource scalability at datacenter nodes. Nevertheless cloud-

based provisioning is generally problematic for time-sensitive (real-time) client services and

applications with tight delay and delay-jitter QoS requirements. Indeed most SFC embedding

studies do not consider end-user latency requirements or localized contextual information

needs. Moreover dispersed cloud-based infrastructures also increase traffic demands across

the network, along with vulnerability to remote failures and outages.

3

In light of the above, more refined edge/fog computing paradigms offer much promise

for NFV support [4],[5],[6]. Namely, fog computing is an evolution of cloud computing

that places smaller storage and computing pools closer to the user edge. The intent here

is to allow service providers to leverage these resources (with closer proximity to end-user

clients) to reduce service latency and also support more localized contextual information

needs. The latter capability is particularly relevant for mobile user services requiring access

to information on weather, traffic, peer locations, etc. Furthermore fog-based designs also

lower overall bandwidth usage requirements across the wider metro/core network.

However fog nodes have orders magnitude less resources than centralized cloud data-

centers, i.e., in terms of storage, computation, and bandwidth interconnectivity with other

nodes. Hence resource constraints become a critical factor when trying to provision ser-

vices in these environments. As a result many studies have looked at resource provisioning

in “hybrid” fog-cloud networks, e.g., including topics such as content placement, network

congestion, operational costs, network traffic engineering, and security, see studies in [7],[8].

Despite these contributions, the further study of NFV service provisioning in fog networks,

particularly SFC demands, has not been addressed in much detail. Indeed this is a relatively

new topic area with strong relevance to emerging service needs.

1.3 Problem Statement

To address the above challenges and concerns, this thesis focuses on the study of SFC

demand provisioning in fog computing networks. In particular there is a growing need to

develop new methodologies that take into account key end-user requirements for real-time

context-sensitive user services, i.e., including bandwidth throughput, end-to-end delay, and

function dependency (ordering). In addition these solutions must also incorporate critical

network operator concerns with regards to resource constraints and resource utilization.

Furthermore related solutions must provide rapid provisioning of incoming requests in a

4

scalable on-line manner in order to ensure practical real-world applicability. Finally, there is

critical need to improve the survivability of SFC demands across fog infrastructures, i.e., in

order to meet the service reliability needs of high-end users. Specifically a range of strategies

need to be investigated here for various fault scenarios, i.e., including pre-fault protection

strategies for single node/link faults and post-fault restoration methods.

1.4 Proposed Work and Contributions

In light of the above, this dissertation addresses the important emerging area of SFC

provisioning and survivability in fog networks. The main contributions of this work include

the following:

• Novel polynomial-time on-line heuristic algorithms for embedding SFC demands into

multi-layer fog infrastructures (including methods based upon delay and load mini-

mization).

• New pre-fault SFC demand protection heuristics to improve service survivability in

fog-based infrastructures, i.e., by handling the most prevalent case of single node or

link failures.

• Novel post-fault SFC restoration schemes to further improve the resource efficiency of

SFC demand survivability in fog networks (including methods based upon end-to-end

and intermediate recovery).

The rest of this thesis is organized as follows. First, Chapter 2 presents a detailed survey of

SFC provisioning for NFV with a focus on fog networks. Some NFV survivability methods are

also reviewed here. Next, Chapter 3 presents a novel heuristic framework for SFC embedding

in realistic two-layer fog infrastructures. Chapter 4 then addresses the critical topic of SFC

survivability in fog networks and augments the above solution to support pre-fault protection

5

of SFC demands (to overcome single node and link failures). Extending upon this, Chapter 5

considers complimentary post-fault SFC restoration strategies to achieve broader resiliency.

Finally, Chapter 6 summarizes the key research findings of this dissertation and presents

overall conclusions and promising areas for future study. Additional appendices also provide

a glossary of acronyms and listings of all key variables used in this thesis.

6

Chapter 2: Literature Survey

Cloud computing relies on large datacenters to support a diverse range of computational

needs for end-user applications. Nevertheless despite its immense scalability, this paradigm

is not well-suited for delay-sensitive services owing to the increased latencies of remote cloud

computing sites. In response network designers have evolved more specialized fog computing

paradigms to support real-time and localized service needs. At the same time emerging

technologies such as NFV are also leveraging the cloud to redefine modern data network

designs. Namely, atomic networking device functionalities are now being implemented in

software, helping streamline service provisioning and limit the need for specialized hardware

systems. Hence there is significant potential to deploy NFV-based capabilities in the fog

computing domain.

In light of the above, this chapter presents a detailed look at these key technology spaces.

Foremost, the NFV architecture is reviewed, along with a survey of research studies on VNF

placement and SFC mapping. Subsequently the fog computing concept is detailed along with

a review of recent work on NFV provisioning within such domains, i.e., including survivability

schemes. Some key open problem areas are then identified (based upon these surveys) in

order to properly motivate this research effort.

2.1 NFV Architectural Overview

As noted in Section 1.1, the main idea behind NFV is to extract atomic networking

functions and implement them in software on commodity servers (typically located in enter-

prise or cloud datacenter environments). Termed as VNFs, these entities can either be run

7

Figure 2.1: High level VNFM architecture proposed by ETSI

in virtualized hypervisor or dockers environments to implement key functionalities such as

firewalling, DNS lookups, caching, load balancing, QoS support, etc. Overall, NFV delivers

tremendous service flexibility and scalability and allows operators to rapidly deploy new

services comprised of customized VNF sequences, termed as SFCs. Moreover VNF upgrades

can also be done by using simple software updates as opposed to slow and costly hardware

upgrades [2].

The standardization of NFV is being led by the European Telecommunications Standards

Institute (ETSI), which published its first architectural specification in 2013. This standard

introduced the notion of a NFV infrastructure (NFVI) which includes all the hardware and

software components used for hosting VNF entities. Specifically the NFVI is segmented into

three layers, as shown in Figure 2.1 from [9]. In particular these are:

• Physical Layer (Layer I): This layer implements packet transmission and reception and

consists of hardware platforms interconnected by physical links, i.e., COTS servers,

networking switches and routers, and transmission links. These entities can be located

in larger core datacenters and/or edge and enterprise sites

8

• Intermediate Virtualization Layer (Layer II): This layer acts as bridge between the

physical and logical layers by mapping VNFs to underlying physical platforms. Namely,

Layer II consolidates VNF applications (Layer III) onto server machines running on

hardware server platforms (Layer I). This layer also leverages virtualization techniques

to decouple NF software from the hardware systems supporting computation, storage,

and networking functionalities (as opposed to dedicating devices to VNFs).

• Logical Layer (Layer III): This layer consists of various service functions and is con-

trolled by a VNF manager (VNFM). The logical layer processes service function re-

quests (SFRs) by assigning them to one or more service functions with various tasks and

capacities. Service chaining is also supported by combining several coexisting VNFs

to build a service. Namely chaining defines connectivity and execution sequences (de-

pendency) between service functions via forwarding graphs. Note that VNF instances

do not need to be aware of virtualization environments or physical layer devices.

Overall NFV can implement a wide range of control and data plane functions across mul-

tiple networking technology domains, e.g., such as enterprise, datacenter, cellular, wireless

sensor, IoT, vehicular, etc. For example, some key enterprise-level functions can include

virtual firewalling, virtual routing and switching, address translation, load balancing, moni-

toring, billing, etc. Meanwhile, NFV-based solutions are also being considered for emerging

5G network architectures which define a functional decomposition between remote radio

head (RRH) and baseband unit (BBU) systems. Specifically, BBU functionalities can be

implemented via VNFs running at datacenter sites to support functions such as mobility

management, session and policy management, serving gateways (SGW), and packet data

network gateways (PGW). To date a wide range of technical studies have looked at NFV

provisioning concerns, and some of these are now detailed.

9

2.2 Survey of NFV Resource Provisioning

One of the main considerations in NFV provisioning is the placement of VNFs onto

physical infrastructures. Accordingly, researchers have investigated the problem of mapping,

or embedding, network functions over underlying datacenters where the key resources include

server memory, processing compute power, and link bandwidth. Now the VNF embedding

problem is NP-hard [10] and is of similar complexity to the virtual network embedding (VNE)

problem. Meanwhile a related but more challenging NFV problem is the embedding of service

chains, i.e., SFC provisioning problem. Namely a SFC consists of a sequenced interconnection

of multiple VNFs, typically mapped onto different datacenters, to deliver an end-to-end client

service. In general SFC provisioning is also classified as NP-hard [11] but is more complex

than VNE, i.e., since it requires both setup of a virtual infrastructure (NFVI) and embedding

of VNFs across nodes. In response researchers have proposed a range of SFC provisioning

solutions. Consider some further details here.

Overall SFC provisioning is a well-studied problem and involves two key steps, i.e., VNF

mapping and connection routing. Accordingly, most schemes can be classified as either static

or dynamic. Namely the former assume that the full set of incoming demands is known in

advance (a-priori) and proceed to map them in an off-line manner using optimization-based

methods. Meanwhile the latter assume that demands arrive in a random “on-demand” man-

ner and use faster heuristics type methods. Although dynamic strategies are better suited for

real-world settings, these methods pose added challenges in terms of resource efficiency, i.e.,

since future demands are not known. Overall most SFC provisioning algorithms are designed

to achieve a particular provisioning objective. For example this can include minimizing cer-

tain quantities (such as resource utilization, deployment cost) or maximizing other quantities

(such as available resources, carried load, reliability, energy efficiency). Various studies are

now reviewed, and interested readers are also referred to surveys in [12],[13],[14],[15].

10

The work in [16] proposes a resource allocation architecture for jointly solving the VNF

mapping and connection routing sub-problems. Here the authors implement initial resource

allocation followed by global resource re-allocation with the aim of minimizing energy con-

sumption (while considering delay and server utilization). VNF placement is then formulated

as an integer linear programming (ILP) problem for smaller network sizes, and a series of

on-line and off-line (near-optimal) heuristics are also proposed for handling larger scenarios.

Overall findings show fast execution times with the latter schemes, i.e., sub-second ranges

for the scenarios tested. Meanwhile [17] investigates SFC provisioning and tables an ILP

optimization model for VNF placement across geographically-distributed clouds. This work

also tries to minimize response times and incorporates other constraints such as deployment

cost and energy consumption. Also, [18] looks at joint VNF placement and routing of ser-

vices with traffic engineering constraints. Namely a detailed ILP model is presented along

with a greedy heuristic to maximize the number of satisfied VNFs, i.e., while minimizing

VNF setup and routing costs. Load balancing is also done by incorporating link capacity

constraints. Results show that both methods increase the number of satisfied VNFs without

overloading links.

Many studies have also looked at dynamic on-line SFC placement strategies. For exam-

ple, [19] proposes a mixed ILP (MILP) formulation to perform VNF placement and path

routing of a single incoming demand. The objectives here are to reduce network delays and

lower resource utilization at nodes and links. Although the computational complexity of

the optimization model grows exponentially with the number of flows, this scheme can still

handle a notable number of demands since it performs incremental (on-line) provisioning.

Results also confirm adequate reduction in network link and node utilization. Meanwhile

[20] presents an on-line solution that tries to maximize the number of satisfied requests using

a competitive ratio. Namely this ratio is defined as the worst-case ratio between the cost

of the solution found by the algorithm and that of the optimal solution. Results indicate

11

that the proposed on-line algorithm is asymptotically optimal in case of deterministic and

randomized situations (lower bounds for an off-line approximation are also studied, and an

ILP formulation is presented to show that the problem is NP-complete). Additionally, [21]

proposes an on-line solution for SFC mapping and scheduling in which VNFs can share a

single VM. Several greedy algorithms are proposed based upon various criteria, e.g., VNF

processing times, available buffer sizes at nodes, etc. A competing local Tabu search (TS)

algorithm is also used to iteratively improve upon a randomized initial solution. Findings

show that the latter scheme gives slightly better results. Nevertheless this study does not

consider link delays and bandwidth availability on links. In other work, [22] presents an

on-line heuristic for dynamic provisioning and placement of multiple concurrent VNFs in

datacenters in smaller intra-campus settings. The objective here is to find a tradeoff be-

tween the requested number of instances of each VNF to provision and their deployment

and operational costs. Accordingly two solutions are proposed, i.e., for single and multiple

SFCs. In the former a randomized algorithm is presented to achieve a competitive ratio by

taking into account available server resources and current traffic rates. Meanwhile a mini-

mal weight matching algorithm is used in the latter scheme to minimize deployment cost by

avoiding frequent VNF deployment at datacenters.

Various studies have also looked at network latency and delay in SFC provisioning for

time-sensitive services. For example [23] uses real-world measurements to incorporate net-

work latency for VNF placement. The goal here is to minimize delay and required lead

times for allocating VNFs to a VM (versus simply mapping to hosts based upon available

resources). Results confirm reduced delays (versus some best-fit and first-fit heuristics) as

well as reduced VNF lead times. The authors in [24] also detail a dynamic VNF placement

heuristic that accounts for network capacity and tries to reduce response times for SFC re-

quests. However this work only considers transmission delays, which tend to dominate in

larger core clouds or multi-cloud settings, i.e., and not other queuing and processing delays.

12

Another delay-aware heuristic is also outlined in [25] for VNF placement in large infras-

tructures with static demands. The goal here is to minimize the number of mapped VNF

instances in order to ensure that end-to-end SFC latency constraints are met. Note that

end-to-end delay is considered as the sum of all path delays and processing times, including

link transmission delays and VNF processing delays. Finally, [26] studies VNF placement for

different applications with a focus on end-to-end delay guarantees. Namely, a mixed-integer

quadratically constrained program (MIQCP) formulation is developed to model the linear

dependency between the amount of resources allocated to a VNF and its processing delay.

However this work lacks scalability as it only treats a small number of demands.

Figure 2.2: Hypervisor versus container-based virtualization

Other studies have also looked at dynamic SFC provisioning. For example [27] outlines a

VNF dependency-based SFC routing and mapping scheme. Namely container-based environ-

ments are leveraged to improve utilization and lower cost, Figure 2.2 from [27]. The scheme

performs batch SFC mapping of demands with functional dependencies between VNFs and

uses shortest path routing to reduce SFC delays. Overall results show improved performance

over VM hypervisor-based mappings. Additionally [28] also demonstrates SFC orchestration

in SDN-controlled environments, i.e., including dynamic VNF selection and intent-based

13

traffic steering. Namely SFC requests (with differing bandwidth and latency requirements)

are send to a chain optimizer module which runs a CPLEX solver to compute mappings to

minimize end-to-end latency. These results are then sent for instantiation over a set of cloud

domains. Finally researchers have also studied “dynamic” SFC chains where VNF sequences

can vary with time, e.g., to support potential scenarios such as video streaming, autonomous

vehicle applications, etc [29]. Clearly these types of SFC demands pose even more challenges

for service providers trying to optimize network resource allocation.

Overall most of the above NFV studies assume that VNFs will be hosted in cloud-based

server environments. As noted earlier, the distributed cloud model offers immense scala-

bility and consolidation, eliminating the need for costly on-site hardware and maintenance.

Accordingly nearly all SFC schemes assume abundant resource capacities at underlying dat-

acenter nodes. Despite these saliencies, cloud-based NFV architectures are problematic for

real-time end-user services and applications with tight delay and delay-jitter requirements.

In general most SFC studies do not consider end-user latency requirements or localized

contextual information needs when performing SFC embedding. Moreover highly-dispersed

cloud infrastructures will also increase the likelihood of service vulnerability to distant fail-

ure and outage events. It is here that modified fog computing paradigms [30] offer much

promise, as discussed next.

2.3 Overview of Fog Computing

Edge computing is a distributed networking paradigm which hosts smaller computation

and storage pools at multiple dispersed edge locations [5]. By and large this concept is a

non-trivial extension of the cloud, and hence researchers have proposed further variants such

as fog computing [6] and virtual cloudlets [31]. In particular fog computing was originally

proposed by Cisco [4] to address the shortcomings of cloud-based architectures, mainly delay-

related QoS requirements [32]. This paradigm is ideal for handling a larger number of edge

14

Figure 2.3: Conventional hierarchical three-layer fog computing architecture

devices with limited energy resources, e.g., such as sensors and smartphones. Fog computing

is also very suitable for more localized application support as well as IoT application scenarios

with a large number of sensor nodes.

To date, several reference architectures have been proposed for fog computing. Most of

these designs assume a three-layer hierarchical setup, termed as the conventional architecture,

as shown in Figure 2.3 [33]. In particular, this architecture consists of the following layers:

• Terminal layer: This layer is the closest to the end-users and consists of terminal

devices such as mobile phones, sensors, smart vehicles, and specialized IoT devices. In

general these devices are geographically distributed and responsible for sensing data

(about physical objects or events) and transmitting this information to upper layers

for further processing and storage [34]. Terminal layer devices can also be connected

to one or more fog nodes through various types of wireless access networks, e.g., such

as cellular, wireless local area, wireless personal networks (ZigBee), etc.

• Fog computing layer: This layer serves as an intermediary layer between terminals

and large cloud datacenters and consists of multiple fog nodes. These nodes have

15

Figure 2.4: Hybrid fog-cloud architecture with fog nodes and fog cluster heads

much smaller resources pools than cloud (or enterprise) datacenters and are also in-

terconnected through intermediate networking devices, e.g., such as routers, gateways,

switches, access points, base stations, etc. Hence terminal devices communicate and

connect with fog nodes to obtain services (such as computing, storage, and data trans-

mission). Fog nodes also use IP routing infrastructures to interconnect/integrate with

larger cloud datacenters offering more scalable services support. Now in the generalized

case, fog nodes can also be static or mobile [35].

• Cloud layer: This layer is composed of large datacenter sites hosting massive numbers

of high-end storage and compute servers. These sites can be further interconnected

via high-bandwidth routing networks and network virtualization software to provide

seamless fabrics. Overall the cloud layer provides extensive computational scalability

and long-term data storage capabilities. As a result many different end-user services

and applications have already migrated to the cloud in recent years.

16

Leveraging from the above, others have also proposed some modified four-layer fog-cloud

architectures by adding more selectivity at the fog layer. For example, Figure 2.4 from [36]

shows a sample architecture with two fog-based layers. Namely regular fog nodes (on the

lower layer) interface with terminals in Layer I and are designed to support VNF demands

with lower processing requirements. Meanwhile larger fog cluster heads (on the upper layer)

support higher capacity VNF processing needs and also interface with cloud datacenters.

Further alternative fog models have also been proposed. For example, [37] outlines a

detailed “top-to-bottom” layered design comprising of six layers, Figure 2.5. At the lowest

level, the physical and virtualization layer is composed of physical terminals and virtual

nodes. Above this a monitoring layer is defined to handle requested tasks/functions and

monitor energy consumption. Meanwhile the pre-processing layer manages data manage-

ment related tasks (such as analysis, filtering, reconstruction, and trimming). Overlying

the pre-processing layer is a temporary storage layer which hosts data for limited time in-

tervals for the purposes of distribution, replication, and re-duplication. A security layer is

also defined to perform critical functions such as data encryption/decryption, privacy, and

integrity checking. Finally, the highest transport layer is responsible for sending data to the

cloud. Another specialized fog computing architecture is also outlined in [38], as per Figure

2.6. This framework is designed for smart cities (with a large numbers of infrastructure

components and services) and specifies four layers, i.e., physical sensors, upper and lower

fog layers, and cloud. Specifically lower fog layer nodes receive raw data from the physical

sensors, whereas upper fog layer nodes provide intermediate computation. Overall this four

layer fog architecture can provide rapid response times at the neighborhood, community,

and city-wide levels.

In general fog computing offers a wide range of benefits including:

• Reduced service delays: Processing user services locally at edge nodes, instead of at

core datacenters, can greatly lower round-trip times for time-sensitive applications.

17

Figure 2.5: Layered fog computing architecture

Some sample edge processing tasks can include computation, data storage, request

redundancy removal, etc. For example high-demand content can be pre-fetched and

cached at fog nodes.

• Improved bandwidth efficiency: Since fewer computations are relayed to the cloud,

fog computing also lowers the amount of traffic (and resource utilization) across larger

metro and wide-area core networks. This reduction is a key advantage as traffic volumes

continue to scale over time.

• Lower energy/power consumption: Reduced data transfer across large network domains

also yields sizeable energy savings. This reduction enhances the migration to green

networks and notably lowers operational costs. Accordingly some studies indicate 40%

lower energy consumption versus traditional cloud setups [39].

• Increased reliability: Service reliability can be modeled as inversely proportional to the

number of systems utilized. Given the closer proximity of fog nodes to end-users, asso-

ciated traffic flows will now traverse much fewer links, switches/routers, and processing

nodes. Hence fog-based service reliability will generally be higher.

18

Figure 2.6: The 4-layer fog computing architecture for smart cities

• Improved coverage and mobility support: Proper deployment of fog nodes at strategic

locations can help improve service quality for mobile end-users, e.g., along highways

and roadways, on cellular base stations, on museum floors, in subway stations or other

points of interest, etc. In particular user response times can be greatly reduced for

highly-mobile terminals on moving platforms. Furthermore fog node themselves can

also be mobile or static.

• Location awareness: Location tracking (either active or passive) can be used to provide

a high degree of localized contextual information. Indeed this data is vital for certain

end-user services and applications, e.g., such as weather or vehicular traffic mapping.

Many IoT applications are also dependent on localized data [34].

• Traffic aggregation: In certain use case scenarios, correlated sets of data from a group

of end-users can be processed by a reduced number of fog nodes. Similarly cloud

datacenters can also forward highly-correlated traffic to specific fog nodes for localized

19

processing and distribution. This aggregation helps reduce the volume and routes of

data flow across the network [40],[41].

• IoT applications support: IoT deployments continue to grow across a wide range of

sectors. As are result distributed location-aware fog architectures are being used to

manage large numbers of sensors generating constant data streams (which are difficult

to transfer to centralized cloud sites). Some typical application scenarios here include

environmental monitoring, power grid management, water treatment, and automatic

traffic management, etc [42].

• Improved security: Fog nodes can also enhance the overall security posture of ser-

vice providers. Namely multiple dispersed nodes provide more sites for implementing

critical distributed security functions, e.g., such as access control, encryption, intru-

sion detection/protection, etc. Fog setups can also lower the risks associated with

system-wide upgrades as compared to traditional setups using complex/slower over-

the-air (OTA) firmware updates. Instead one only needs to update the algorithms or

micro-applications running on fog servers [35].

Despite the above saliencies, fog nodes generally have (orders magnitude) less storage,

computing, and bandwidth resources as compared to cloud datacenters. Hence resource

constraints become a critical factor when provisioning services in these environments. As a

result network designers have also proposed hybrid fog-cloud architectures to leverage the

benefits of both paradigms. In particular a range of research problems have been studied

here, including content placement, network congestion and traffic engineering, and security,

see studies in [7],[8].

However the increasing prevalence of network softwarization and virtualization paradigms

is facilitating new capabilities in the fog. Specifically SFC enables rapid provisioning of

customized delay- and context-sensitive services at much lower price points. Nevertheless

20

the re-application of existing cloud-based SFC provisioning algorithms (Section 2.2) in the

fog domain is problematic for several key reasons. Foremost, the assumption of abundant

resource pools does not hold for constrained fog nodes. The lack of latency parameters in

most SFC provisioning algorithms also limits their ability to leverage the tiered nature of fog-

based setups for delay-sensitive users. As a result recent studies have started to investigate

more specialized SFC provisioning algorithms for the fog domain. This is a relatively new

area and a few related works are surveyed here, see also Table 2.1.

2.4 Survey of NFV Provisioning in Fog Computing

Researchers are starting to introduce NFV-based concepts in the fog domain. For exam-

ple, an earlier study in [43] proposes a platform as-a-service (PaaS) architecture to support

applications in hybrid cloud-fog settings. However this effort only considers a single VNF

type and does not implement VNF placement in the fog layer. Meanwhile the authors in

[44] study healthcare IoT application support across components spanning the cloud and fog

domains. Nevertheless this work only focuses on mechanisms for control, signaling, and data

interfaces between the cloud and fog domains, i.e., and not detailed provisioning algorithms.

A more detailed study on resource provisioning for IoT applications in the fog is presented

in [45]. Here the authors develop an optimization model that takes into account applications

response times, application deadline violations, and resource heterogeneity. This work also

applies the concept of fog colonies with micro-datacenters composed of an arbitrary number

of fog nodes, i.e., to decentralize processing network overheads and multi-cloud deployment

costs. The formulation is solved using greedy first-fit heuristic and genetic algorithms to

show reduced communication delays and improved resource utilization. Also, [46] details

two greedy heuristics to efficiently map application services to fog nodes and minimize cost.

The first scheme prioritizes the deployment of high-demand services on fog nodes and releases

21

low-demand services, whereas the second scheme focuses on increasing revenue. However this

work only considers a single arriving request and lacks provisions for SFC demands.

Furthermore the work in [47] studies application component placement in NFV-enabled

hybrid fog-cloud setups. Here VNF placement is done using an ILP model, and the scheme

is evaluated for smaller networks to achieve cost minimization. However this work only con-

siders a single VNF type. By contrast [48] presents a multi-layer fog and cloud architecture

for video streaming applications. This study analyzes three fog layers, i.e., classified based

upon their coverage, computational and storage capacity. However this work does not ad-

dress SFC demand provisioning. Additional work in [49] presents an optimization model

for fog-based VNF placement for IoT applications. This solution considers heterogeneous

QoS requirements, and a heuristic scheme is also proposed to lower delay and improve uti-

lization. However this work does not account for node delays for processing and queuing.

The work in [50] also proposes a delay-aware SFC provisioning solution for multi-layer fog

networks. Namely greedy heuristics are developed to implement various operator or client

provisioning objectives, e.g., such as delay, cost, or load minimization. Findings show that

load minimization gives the highest carried load. Similarly, [51] presents another solution

for SFC provisioning in fog networks. Here a modified Tabu search is proposed for VNF

mapping along with shortest path routing for service chain connections (taking into account

delay and load balancing efficiency). Results show reduced delays and energy consumption

versus cloud-based SFC mappings. Finally [52] tables a combined SDN and fog architecture

to provide more scalable and flexible solutions for vehicular adhoc network (VANET) with

delay-sensitive and location-awareness services.

Researchers have also proposed the integration of NFV (and SDN) concepts with fog in-

frastructures for next-generation 5G wireless networks. For example [53],[54] address service

chaining in hybrid fog-cloud setups and focus on higher-level architectural issues relating

to virtualization and security. However these frameworks assume abundant resources at

22

the (single) fog tier and do not address delay-sensitive applications needs. Other work in

[55] a user-centric scheme to split VNF demands between BBU and RRH nodes nodes in

emerging 5G cloud-based radio access network (RAN) environments. Namely this scheme

leverages fronthaul capabilities and computational resources to ensure efficient baseband

function placement for each user in terms of throughput. Baseband processing chains are

also treated as composite VNF entities. Hence by partially centralizing the BBU, bandwidth

and latency requirements can be relaxed and fronthaul costs reduced. Meanwhile [56] also

integrates NFV with fog access points (F-AP) to improve handovers in 5G networks. Namely

this solution leverages edge caching and virtualization at F-AP nodes to reduce handover

signaling costs/overheads. Similarly the work in [57] develops a centralized BBU pool for

VNF placement to accommodate stringent delay constraints. Namely a graph-based cluster-

ing approach is used to split/place baseband VNFs, along with a genetic algorithm scheme

to reduce fronthaul costs.

2.5 Survivability Design for NFV

Most networks operators have relied upon a range of “overbuild” protection strategies to

provide very high-grade “telco-level” guarantees for their legacy services, e.g., such as leased

lines. However as more operators start to deploy NFV-based infrastructures, these stringent

requirements are also starting to emerge for SFC-based services. As a result there is now

a growing body of research on failure recovery in NFV infrastructures, and some of these

contributions are surveyed.

The authors in [58] discuss generalized NFV architectures for failure recovery to im-

prove end-to-end service resiliency. The focus here is on single node or link failures, and

the work discusses the merits of resilience at the physical or virtual layers, i.e., in terms

of network setup costs and failure coverage. A more detailed reliability-aware routing op-

timization framework for NFV is also proposed in [59]. Specifically a MILP formulation is

23

used to implement VNF placement and limit end-to-end delays and maximize the reliability

of supported NFs. Node failures are also handled by provisioning backup VNFs on alternate

paths. However findings show a direct tradeoff between reliability and bandwidth usage (and

computational complexity). Meanwhile [60] presents an availability-aware SFC placement

scheme using a redundancy sharing mechanism that leverages VNF multi-tenancy to increase

network utilization. However this approach suffers from increased resource utilization, cost,

and energy consumption. A proactive strategy for node failure recovery is also proposed in

[61] by using backup paths with distinct priorities, thereby precluding post-fault coordina-

tion. Once a failure occurs, recovery is done locally by the switch attached to the failed

link with minimal delay. As expected this strategy lacks SFC-level selectivity and mandates

link-level redundancy, leading to increased cost and reduced network capacity.

The authors in [62] propose a shared path protection scheme for single link or node

failures. Sharing is also used to reduce the amount of backup resources required (versus

dedicated protection). Furthermore only storage units are replicated at the backup nodes,

whereas processing units are instantiated only after a failure. However this scheme suf-

fers from high duplication overheads for larger networks and lacks delay and cost models.

Meanwhile [63] proposes a SFC routing and VNF deployment scheme for simultaneous and

multiple VNF failures. This solution tries to minimize computing and resource costs by using

k-node disjoint shortest paths, along with set-cover techniques for mapping. Nevertheless,

the scheme is only analyzed for a limited number of VNF failures and does not incorporate

SFC delay bounds. The work in [64] also proposes a shared protection reliability enhance-

ment scheme to reduce the cost of redundant VNFs. The reliability problem is formulated

as a MILP optimization to compute the optimal reliability that can be achieved at minimum

cost. Reliability-aware and minimum-cost genetic algorithms are proposed to address com-

putational complexity concerns with the MILP model. However this work only treats node

failures (not link failures) and lacks restoration mechanisms. A decision tree approach for

24

VNF recovery from link failures is also proposed in [65]. Namely a Monte-Carlo tree search

is used to select reliable links in a preventive manner and re-map the failed links in a reactive

manner. However this work does not consider node failures and only looks at VNF recovery,

i.e., not SFC dependency. Meanwhile a reliability-aware routing and resource sharing scheme

for NFV service chains is proposed in [66]. This solution uses an ILP model to incorporate

reliability constraints and also presents a more scalable (sub-optimal) greedy shortest path-

based heuristic scheme. The work in [67] focuses on backup resource allocation for resiliency

from node and link failures. Namely a heuristic algorithm is presented for survivable VNF

chain placement, where redundant communication paths (between VNF instances) are allo-

cated for fallback in case of a failure along the primary path. VNF migration is also done in

case of node failures, i.e., onto nodes with sufficient processing capacities.

The notion of a shared risk link group (SLRG) was introduced earlier to define a-priori

fault regions in large backbone networks. Namely an SRLG represents a set of network en-

tities (nodes, links) with similar risk vulnerabilities. Leveraging this concept [68] proposes a

path-based protection scheme to implement globalized re-routing of all requests after a fail-

ure event. The objective here is to minimize overall bandwidth usage. However results show

overly extended routes with much longer delays and costs. In a similar theme [69] studies

survivable NFV provisioning for large-scale disaster scenarios. First, a probabilistic SRLG

model is used to define random multi-failure risk regions. Resilient NFV provisioning is then

done using an ILP optimization approach to achieve a weighted tradeoff between various ob-

jectives, i.e., including resource usage minimization, routing cost minimization, and failure

risk minimization. A sub-optimal greedy heuristic is also proposed for handling large-scale

networks. Extending upon this, [70] proposes a genetic algorithm (meta-heuristic) for risk-

aware VNF mapping and traffic routing that tries to improve the reliability of user services

and/or reduce deployment and routing costs. However this work focuses on preventative

25

methods and does not provision any backup protection resources (or incorporate end-to-end

SFC delay bounds).

Finally the authors in [71] use diversity coding techniques to achieve link and node failure

recovery in NFV-based 5G and beyond networks. In contrast to conventional link recovery

methods, this approach offers near-instantaneous recovery without added re-transmission

overheads. Furthermore the scheme also provides significant reduction in routing and capac-

ity costs, i.e., reduced number of redundant links and increased carried demand. Similarly

the work in [72] also combines diversity and network coding techniques in NFV networks

to implement rapid self-recovery without any connection re-routing. A self-recovery scheme

for service function paths is also proposed in [73]. Specifically this approach recovers failed

paths by using data plane signaling to temporarily shift the responsibility of affected service

function (VNF) instances to another locations. Special service function forwarding nodes

are also designated here to manage various cases of failed instances. However this solution

can yield prolonged signaling and response times.

2.6 Survivability Considerations for Fog Computing

A handful of studies have also investigated survivability in fog computing infrastructures.

For example [74] studies failure recovery of SFC demands in SDN-controlled fog computing

networks. An ILP optimization failure re-routing model is proposed, taking into account reli-

ability, utilization, and energy consumption constraints. A near-optimal polynomial heuristic

is also designed to resolve run-time complexity concerns. Similarly the work in [75] presents

another fault prevention and recovery scheme for SFC traffic in SDN-based fog networks.

This efforts starts by introducing a multi-tier fog architecture comprised of fog nodes and

SDN-controlled switches. An optimization formulation is then developed to jointly improve

reliability and reduce the costs of flow re-routing and energy consumption. A fast heuristic is

then proposed to improve the reliability of selected paths, while minimizing network conges-

26

tion. However this study does not incorporate some key SFC QoS requirements, particularly

delay bounds. Similarly [76] presents another heuristic scheme for failure-aware SFC support

in SDN-based networks. The work considers computational complexity, average probability

of path failure, and link and server utilization levels. Meanwhile a multi-layer proactive

fail-over management architecture for NFV services is also introduced in [77]. Foremost, a

NFVI software layer is defined with master and backup VNF instances. The former handle

specific NFV services, whereas the latter store real-time standby images of corresponding

master VNFs. This layer also maintains current state between these two instances when traf-

fic is flowing. Additionally a NFVI middleware layer is introduced for managing hardware

parameters and VNF workloads. Finally a proactive fail-over management layer is specified

for failure prediction. Specifically this layer uses vector machine learning and random forest

algorithms to predict failures and implement proactive fail-overs.

Others have also looked at broader methodologies for improving overall resiliency in

fog computing domains, i.e., albeit not specifically for NFV-based services. For example

[78] presents a tree-based fault-tolerant approach for fog nodes using replication and non-

replication techniques. The former method uses multiple fog nodes to serve the same request,

whereas the latter uses different fog nodes to replace faulty nodes. For example data from

a failing node is sent to its parent node in the non-replication case. However the proposed

scheme is limited to node failures, and the tree-based mechanism can give increased load at

parents nodes (higher network congestion and delays). Additionally the work in [79] develops

a four-step protocol to manage fog node failures. This solution uses a check-pointing method

to store service state information. This data is then analyzed to see if a potential failure can

occur and appropriate preventative decisions are taken. In case of failure, the protocol also

notifies all dependent entities to perform reconfiguration and recovery actions. Similarly [80]

introduces various fault-tolerant scheduling methods for hybrid fog-cloud networks. These

27

schemes build upon existing cloud-based designs by mapping time-sensitive services to the fog

layer using a variety of techniques (such as replication, check-pointing, and re-submission).

Additionally work in [81] proposes proactive and reactive strategies for failure recovery of

networking elements in hybrid fog-cloud infrastructures. Namely a multi-dimensional knap-

sack problem model is used to determine the impact on key performance parameters such as

service allocation times, recovery delays, and computing resources loads. Now the proactive

strategy pre-allocates recovery resources for each primary resource allocation, whereas the

reactive strategy only allocates resources after a failure occurs. Recovery resources can also

be selected/identified prior to a failure in the latter approach. Nevertheless this solution does

not consider link failures and limits protection resources to the same layer for each node, i.e.,

horizontally. Another failure recovery strategy is also presented in [82] for overloaded or bro-

ken mobile edge computing nodes based upon workload offloading to neighboring resources.

However the availability of neighboring resources is not guaranteed by the protection strat-

egy, and this solution only considers a small number of nodes. Additionally [83] and [84]

present various techniques that leverage fog-based architectures to improve resiliency over

cloud computing setups. Finally [85] outlines a mechanism to enhance the reliability of data

transfers in fog-based healthcare networks by using directed diffusion and limited flooding

techniques.

2.7 Open Problems and Challenges

In summary, fog computing presents an ideal framework from which to deploy NFV-based

services to improve support for delay- and context-sensitive user applications. However there

is a dearth of work in this topic area as most SFC embedding studies have focused on larger

cloud computing networks and lack critical provisions for resource constraints or end-to-end

delays. In light of the above, a range of solutions need to be developed for the fog domain.

Foremost there is a need for specialized, scalable SFC embedding algorithms that take into

28

account key end-user requirements for delay- and context-sensitive support, i.e., includ-

ing bandwidth throughput, end-to-end delay, and function dependency. Given the reduced

size/scale of fog nodes, operator concerns relating to resource constraints and utilization also

need to be addressed here. Finally there is a need to design effective survivability schemes

for fog-based SFC services in order to meet the reliability needs of high-end users. Specifi-

cally several strategies need to be investigated here, including pre- and post-fault recovery

mechanisms. Overall these many challenges motivate this research dissertation effort.

29

Table 2.1: Regular (non-survivability) service demands

Ref Preventive Proactive Tolerance
(Redundancy,
Replication)

Node
Failure

Link
Failure

Single
Failure

Multi
Failure

Cloud

[58] 8 3 3 3 3 3 3
[59] 3 3 3 3 8 3 8
[60] 3 8 3 3 8 3 3
[61] 3 8 3 8 3 3 8
[62] 3 8 3 3 3 3 8
[63] 3 8 3 3 8 3 3
[64] 3 8 3 3 8 3 8
[65] 3 3 3 8 3 3 3
[66] 8 3 3 3 8 3 8
[67] 8 3 3 3 3 3 3
[68] 8 3 3 8 3 3 8
[69] 3 8 8 8 3 3 3
[70] 3 8 8 3 3 3 3
[71] 8 3 8 3 3 3 3
[72] 3 8 3 3 3 3 8
[73] 8 3 8 3 8 3 8

Fog

[74] 3 3 8 3 3 3 3
[75] 3 3 8 3 8 3 3
[76] 8 3 8 3 8 3 3
[77] 3 3 8 3 3 3 8
[78] 8 3 3 3 8 3 8
[79] 3 3 3 3 3 3 3
[80] 8 3 3 3 8 3 3
[81] 3 3 3 3 8 3 8
[82] 3 3 3 3 8 3 3
[83] 8 3 3 3 8 3 3
[84] 8 3 8 3 8 3 3
[85] 3 3 3 3 3 3 3

30

Table 2.2: Survivability service demands

Ref NFV SFC Delay
Bound

Lifetime Prop
delay

Queue
delay

Proc
delay

Trans
delay

Network
Resources

Energy Cost

Cloud

[58] 8 8 8 8 8 8 8 8 8 8 3
[59] 3 3 3 8 8 8 3 3 3 8 8
[60] 3 3 8 8 8 8 8 8 3 8 8
[61] 8 8 8 8 8 8 8 8 8 8 8
[62] 8 8 8 8 8 8 8 8 8 8 8
[63] 3 3 8 8 8 8 8 8 3 8 3
[64] 3 3 8 8 8 8 8 8 3 8 3
[65] 3 3 8 8 8 8 8 8 3 8 8
[66] 3 3 8 8 8 8 8 8 3 8 3
[67] 3 3 8 8 8 8 3 8 3 8 8
[68] 3 3 8 8 8 8 8 8 3 8 8
[69] 3 8 8 8 8 8 8 8 3 8 3
[70] 3 8 8 8 8 8 8 8 3 8 3
[71] 3 8 3 8 8 8 3 3 3 8 8
[72] 3 8 8 8 8 8 8 8 8 8 8
[73] 3 3 8 8 8 8 8 8 8 8 8

Fog

[74] 3 3 8 8 8 8 3 3 3 8 8
[75] 3 3 8 8 3 8 3 3 3 3 8
[76] 3 3 8 8 8 8 3 3 3 8 8
[77] 3 3 8 8 8 8 3 3 8 8 8
[78] 8 8 8 8 3 8 8 8 8 3 8
[79] 8 8 3 8 8 8 8 8 8 8 8
[80] 8 8 3 3 8 3 3 3 8 8 3
[81] 8 8 8 8 8 8 3 3 3 8 3
[82] 8 8 8 8 8 8 8 8 3 8 8
[83] 8 8 8 8 8 8 8 8 8 8 8
[84] 8 8 8 8 3 8 3 3 8 8 8
[85] 8 8 8 8 8 8 3 8 3 8 8

31

Table 2.3: Survivability requirements and initiative

Ref Redundancy Protection Scalability Decentralization Self-
Healing

Self-
Diagnose

Recovery
Time

cloud

[58] 3 8 3 3 8 8 8
[59] 3 3 3 8 8 8 3
[60] 3 3 3 3 8 8 3
[61] 3 3 3 3 3 8 3
[62] 3 3 8 3 8 8 8
[63] 3 3 3 3 8 8 8
[64] 3 3 8 3 8 8 3
[65] 3 8 8 3 8 8 3
[66] 3 3 3 3 8 8 3
[67] 3 3 3 3 8 8 8
[68] 3 3 3 8 8 8 3
[69] 8 8 3 3 8 8 3
[70] 8 8 3 3 8 3 3
[71] 3 3 3 3 3 3 3
[72] 3 3 3 8 3 3 8
[73] 8 8 8 8 3 3 3

fog

[74] 8 8 8 8 8 8 8
[75] 8 8 3 3 8 8 3
[76] 8 3 3 8 3 8 8
[77] 3 3 3 8 8 8 3
[78] 3 8 3 3 8 8 3
[79] 8 8 3 8 8 8 3
[80] 3 8 3 8 8 8 3
[81] 3 3 3 3 8 8 3
[82] 8 8 8 8 8 8 3
[83] 3 3 3 3 3 3 3
[84] 8 8 3 3 8 8 3
[85] 8 3 3 3 3 3 3

32

Chapter 3: SFC Provisioning in Fog-Cloud Networks

As detailed in Section 2.7, provisioning VNF service chains across fog networks is a topic

of growing interest with relatively little contributions to date. Particularly, what is needed

are new SFC embedding methodologies that take into account key requirements, both from

the network operator and end-user client sides. Specifically the former include the specifics of

fog-based architectures and their associated resource constraints, whereas the latter include

important service and QoS parameters. Furthermore the proposed solutions should also

be scalable and adaptable to realistic operation settings where demands can either arrive

individually (in an on-line manner) or in larger batch sets.

To address these challenges this chapter details a multi-layer architecture for hybrid fog-

cloud networks along with a comprehensive SFC demand model that takes into account

both end-user bandwidth and delay requirements. Subsequently a novel on-line solution

framework is proposed to provision incoming requests in an on-line manner. Specifically two

polynomial-time heuristic algorithms are introduced that account for end-user client and

operator provisioning concerns, i.e., including methods to minimize delay and load. In addi-

tion input SFC demand sorting strategies are also presented to improve provisioning success

across a larger batch of incoming demands. Detailed simulation results are then presented

and discussed to evaluate the relative performance of the proposed fog SFC mapping and

demand sorting strategies.

33

3.1 Architecture and Notation Overview

Fog computing infrastructures typically consist of multiple layers, as per [35],[48],[50].

Accordingly a generalized multi-layer fog setup is assumed here, as shown in Figure 3.1, and

includes the following entities:

• Layer 1 (Terminals): Client terminals including mobile phones, laptops, vehicles, and

IoT sensors. End user clients request processing and storage services from the fog

network by sourcing SFC requests.

• Layer 2 (Primary Fog): Lower fog layer comprising of smaller resource-constrained

nodes connecting to client terminals. Each primary fog node manages a footprint with

a set of terminals and also interconnects with its peers.

• Layer 3 (Secondary Fog): Upper fog layer with higher capacity nodes (than Layer

2). Each secondary fog node manages a “cluster” of smaller primary fog nodes and

interconnects with its peers. Although the geographic separation between secondary

fog nodes is larger, these nodes can still support some delay-sensitive services.

• Layer 4 (Cloud Core): Ultra-scalable cloud datacenters connected to secondary fog

nodes over high-bandwidth metro/wide-area networks and links. Given the increased

propagation delays involved, this layer is not suitable for highly delay-sensitive services.

Carefully note that all links in the above architecture are assumed to be wireline except for

those between Layer 1 (terminals) and Layer 2 (primary fog nodes). Furthermore, Layers

2-4 may also contain other networking devices such as routers, gateways, switches, access

points, etc (which are not modeled here). Next, consider the requisite notation.

34

Figure 3.1: Multi-layer fog network architecture

3.1.1 Physical Network Model

The fog-cloud network is modeled as a multi-layer graph, G=(N,E), where N is the set

of nodes and E is the set of communication links. Namely N={ni
j}, where ni

j is the j-th node

at Layer i, and these nodes can either be terminals (i=1) or fog nodes (i=2,3). Since the

focus here is on delay-sensitive SFC mapping, cloud core (Layer 4) nodes are not considered.

Also, the maximum resource capacity of a fog node in Layer 2 or 3 is given by Ci
j and its free

available capacity is given by cij (cij≤Ci
j). Similarly, E={eijkl}, where eijkl is the link between

the k-th node in Layer i and l-th node in Layer j. Here the maximum bandwidth of link eijkl

is Bij
kl, its available/free capacity is bijkl (bijkl≤B

ij
kl), and its communication delay is δijkl (which

includes both propagation and access protocol delays).

Furthermore there are a total of T VNF types denoted by the set F={fm}, where each

fm requires Pm resources at a mapped node. The processing delay for running VNF fm at

node ni
j is also given by ∆m

ij (i=2-4). Additionally the unit resource usage cost at node ni
j

is χi
j, and the unit bandwidth usage cost at link eijkl is Γij

kl. As expected upper layers offer

increasing node capacity and link bandwidth as well as reduced processing/transmission

35

delays and resource usage costs. However the increased geographic spread between upper

layer nodes entails notably longer communication (propagation) delays, i.e., up to tens of

milliseconds (to Layer 4 cloud core datacenters).

3.1.2 SFC Demand Model

The SFC demand model takes into account a range of important end-user client request

parameters. Namely, a SFC request, xr, is summarized via the tuple:

xr =< srcr, dstr, br, δr,Fr > (3.1)

where srcr is the closest primary fog node to requesting Layer 1 source terminal, dstr is the

closest primary fog node to the Layer 1 destination terminal, br is the required bandwidth

to interconnect the VNFs, δr is the end-to-end delay bound, and Fr is an ordered set of

requested functions in the service chain, i.e., Fr = {f1, f2, . . .} ⊆ F. The complete batch set

of input SFC requests is also given by the set Xin = {xr}. Accordingly Figure 3.2 illustrates

a sample SFC demand request with 4 VNFs being embedded across multiple fog layers,

i.e., colors denoting differing VNF types (f1 - f4) and the dashed green line denoting the

end-to-end SFC connection route (with br capacity).

3.2 Polynomial-Time SFC Mapping Schemes

A novel polynomial-time heuristic framework is now presented for SFC embedding in

hybrid fog-cloud infrastructures. This solution implements two key schemes for path routing

and node mapping across the layers, i.e., delay or load minimization. The detailed algo-

rithmic psuedocode is shown in Figure 3.3. The scheme starts by constructing a temporary

feasible graph, G
′
(N

′
,E
′
), by pruning all nodes and links with insufficient resources to map

the SFC request, i.e., nodes with cij≤Pm (fm∈Fr) and links with bijkl≤br. Next the K shortest

36

Figure 3.2: SFC demand request embedding example

paths between srcr and dstr are computed over G
′
(N

′
,E
′
) with the requirement that they

satisfy the delay bound, δr. These paths are defined by a set of path vectors, P={ps}, each

containing vectors of path nodes and links, i.e., ps={{ni
j}, {e

ij
kl}}. These K path routes are

then sorted and searched to find the appropriate VNF mappings for a given provisioning

strategy, either delay or cost minimization. These schemes are detailed next.

3.2.1 Delay Minimization Approach (DM)

The delay minimization (DM) scheme tries to embed SFC requests to achieve the lowest

delay. Accordingly the set of shortest paths, P, is sorted by increasing end-to-end path

communication delay, given by the sum of all link delays (transmission, propagation) in a

37

path vector, i.e.,

Dcom(ps) =
∑

eijkl∈ps

δijkl,where ni
k, n

j
l ∈ ps (3.2)

Next the individual paths, ps, are searched to find mappings for the VNFs in Fr with the

lowest processing delay (outer loop, Figure 3.3). Now realistically the number of nodes

along a path will be greater than the number of requested VNFs and this gives up to

Q=
(|ps|
|Fr|

)
mapping combinations, where |·| denotes set cardinality. Hence the algorithm

sequentially evaluates all such combinations (inner loop, Figure 3.3) by calling an appropriate

combination generating function. Namely, Φ(|ps|, |Fr|, t) returns the t-th combination vector

of
(|ps|
|Fr|

)
, ut, of length |Fr|. Specifically, ut={umt }, where umt notes the position of the m-

th VNF mapping, 1≤umt ≤|ps|, where |ps| is the number of nodes in ps. Based upon the

above, the combination vector ut is used to build a SFC mapping vector of 2-tuple pairs,

vt={<fm, ni
j>}, noting the mapped nodes for each VNF fm∈Fr, Figure 3.3. Now a VNF

mapping also imposes processing delays at the mapped nodes, given by:

Dprc(vt) =
∑
ni
j∈vt

∆m
ij ,where vt = {< fm, n

i
j >} (3.3)

Hence the inner loop in Figure 3.3 searches all mapping combinations to find the one with

the lowest aggregate delay, given by Dcom(ps)+Dprc(vt). Overall the DM scheme favors

closer primary fog nodes in Layer 2 with lower delays/higher cost (although secondary fog

nodes will also be considered and used if necessary). Expectedly, an exhaustive search over

all Q combinations can be problematic for longer paths with few VNFs. Hence a faster first

fit-DM (FF-DM) mapping is also defined to select the first valid mapping (Figure 3.3).

38

3.2.2 Load Minimization Approach (LM)

Meanwhile the load minimization (LB) scheme tries to minimize the relative load at

network links and nodes when embedding SFC requests (while also satisfying the delay

bound, δr). Hence the K shortest-paths, P, are now sorted in order of increasing aggregate

link load, defined as:

Llink(ps) =
∑

eijkl∈ps

(Bij
kl

bijkl + ε

)
,where ni

k, n
j
l ∈ ps (3.4)

where ε�1 is chosen to avoid divide-by-zero errors. Namely the fractional term in Eq. 3.4

defines the relative load of a link. Specifically this value is equal to unity if the link capacity

is unused (bijkl=B
ij
kl) but approaches infinity if it is fully reserved (bijkl=0). These sorted paths

are then searched to find the VNF mapping with the lowest aggregate node load (outer loop,

Figure 3.3). Similarly, a node-level load is also defined for a mapping vector vt as follows:

Lnode(vt) =
∑
ni
j∈vt

(Ci
j

cij + ε

)
(3.5)

where the inner bracketed term is the relative load of a node (akin to Eq. 3.4). As per the

above all mapping combinations are evaluated (inner loop, Figure 3.3) to find a feasible one

with the lowest aggregate load, i.e., Llink(ps) + Lnode(vt). Overall the LB approach avoids

closer Layer 2 fog nodes if they are more congested and instead maps more VNFs onto Layer

3 nodes (lower cost). A faster first fit-LM (FF-LM) mapping scheme is also defined to select

the first valid load-based mapping (Figure 3.3).

3.3 Algorithmic Complexity

Consider the run-time complexity of the algorithm in Figure 3.3. First, assuming ef-

ficient implementation, K shortest-path route computation over G(N,E) is bounded by

39

O(K|N|log(|E|)). Meanwhile the main loop in Figure 3.3 iterates over the K paths and

examines all M combinations by performing linear computations for each (to find lowest

path delay or load). Assuming path lengths bounded by L�|N|, the number of com-

binations is bounded by O(LL). Hence the total complexity of the scheme is given by

O(K|N|log(|E|) + K · LL+1). This bound also applies to the first choice schemes (FF-DM,

FF-LM).

3.4 Batch Sorting Strategies

In many cases, operators may process user demands in batches at fixed intervals of time

(aperiodic, periodic). In particular a batch represents set of multiple requests and can be of

variable size. Overall, batch processing can help streamline provisioning transactions and also

enable more efficient and effective resource allocation versus “on-demand” provisioning, i.e.,

where incoming SFC demands are mapped in the order in which they are received. Namely,

considering a large number of demands in conjunction with each other allows operators to

design/apply more expansive provisioning methodologies, e.g., such as those based upon

optimization, metaheuristics, or sorting/re-ordering algorithms.

In light of the above several demand sorting strategies are proposed here to re-order

incoming SFC batch requests according to various criteria. The overall goal here is to try to

lower SFC request blocking rates (i.e., increase revenues) and/or cost. Now as noted earlier

in Section 3.1.2, the complete batch of input SFC requests is given by the set Xin = {xr}.

Accordingly the proposed sorting strategies transform/re-order this input set, i.e., Xin−→X
′
,

based upon their bandwidth and VNF resource request sizes. As per well-known bounds on

optimized sorting algorithms, all of these schemes have a run-time computational complexity

of O(|Xin|log(|Xin|)). Consider the details.

40

3.4.1 Highest Bandwidth First (HBF)

This scheme sorts batch SFC requests in order of decreasing bandwidth size, i.e., maps

larger br values first:

Xin −→ X
′
= {xr | br ≥ br+1} (3.6)

The overall objective here is to provision higher revenue demands first as customers with

larger bandwidth sizes will likely provide increased revenues.

3.4.2 Lowest Bandwidth First (LBF)

This scheme sorts batch SFC requests in order of increasing bandwidth size, i.e., maps

smaller br values first:

Xin −→ X
′
= {xr | br ≤ br+1} (3.7)

The overall objective here is to minimize bandwidth fragmentation (wastage) on network

links by packing in smaller demands first.

3.4.3 Highest VNF First (HVF)

This scheme sorts batch SFC requests in order of decreasing average VNF resource size,

i.e., maps larger averages first:

Xin −→ X
′
= {xr |

∑
fm∈Fr

fm
|Fr|

≥
∑

fm∈Fr+1

fm
|Fr+1|

} (3.8)

The overall objective here is to provision higher revenue demands first as customers with

larger VNF resource demand will likely provide increased revenues.

41

Table 3.1: Multi-layer fog network simulation parameters

Layer 2 Layer 3
Parameter Primary Fog Secondary Fog

Number of nodes 20 (5 clusters) 5 (one/cluster)
Node resource capacity, Ci

j 20 200

Node VNF proc. delay, ∆m
ij (ms) 1 0.5

Node unit usage cost, χi
j 5 1

Number of links 200 (40/cluster) 10 links

Link bandwidth, Bij
kl 100 1,000

Link delay, δijkl (ms) 0.5-1 (uniform) 1-2 (uniform)

Bandwidth unit usage cost, Γij
kl 5 1

Parameter SFC Request

Total number of VNFs, T 6
VNFs per SFC request, |Fr| 4-6 (uniform)
Node resources per VNF, Pm 2-3 (uniform)
SFC bandwidth request, br 4-6 (uniform)
SFC delay bound, δr (ms) 25

3.4.4 Lowest VNF First (LVF)

This scheme sorts batch SFC requests in order of increasing average VNF resource size,

i.e., maps smaller averages first:

Xin −→ X
′
= {xr |

∑
fm∈Fr

fm
|Fr|

≤
∑

fm∈Fr+1

fm
|Fr+1|

} (3.9)

The overall objective here is to minimize node resource fragmentation (wastage) at network

nodes by packing in smaller demands first.

3.5 Performance Analysis

The SFC mapping schemes are evaluated for a realistic multi-layer fog network with 1,000

terminals (Layer 1), 100 primary fog nodes (Layer 2), and 5 secondary fog nodes (Layer 3),

Table 3.1. Each secondary fog node manages a “cluster” of 20 primary fog nodes, and some

42

1: Input: Network G=(N,E), request xr=<srcr, dstr, br, δr,Fr>
2: Output: SFC node mapping, v∗, and SFC route, p∗

3: /* Prune network to build feasible graph, G′(N′,E′) */
4: N′ ← Remove nodes nij ∈ N with cij < min{fm ∈ Fr} & E′ ← Remove links eijkl ∈ E with bijkl < br

5: Compute K shortest (delay-constrained) paths from src
′

r to dst
′

r in G′(N′,E′), i.e., P={ps} s.t.
Dcom(ps) < δr

6: /* Order K paths based on scheme */
7: if (delay minimization) then
8: Sort P by increasing delay, i.e., Dcom(ps) ≤ Dcom(ps+1)
9: else if (load balancing) then

10: Sort P by increasing load, i.e., Llink(ps) ≤ Llink(ps+1)

11: /* Initialize path vector, mapping vector, and flags */
12: p∗={∅}, v∗={<∅, ∅>}, found=0

13: /* Search all K paths, */
14: for (each path) do

15: Extract path ps∈P, i.e., path vector

16: /* Compute max. number of mapping combinations */
17: Q=choose(|ps|,|Fr|)
18: /* Search all combinations */
19: for (each combination) do
20: /* Generate mapping vector */
21: Compute t-th comb. vector, ut={umt }=Φ(|ps|, |Fr|, t)
22: Build t-th node mapping pair vector, vt={<fm, nij>}
23: /* Check delay and node resources for mapping */
24: if ((Dcom(ps) +Dprc(vt) ≤ δr) & (cij ≥ Pm for all mapped nodes in vt)) then
25: found=1

26: /* Track & update latest path and mapping vectors */
27: if (first fit-DM or first fist-LB) then
28: Copy ps → p∗, vt → v∗

29: Exit search /* first valid delay/load-based mapping */
30: else if (delay minimization) then
31: if (Dcom(ps)+Dprc(vt)<Dcom(p∗)+Dprc(v

∗)) then
Copy ps → p∗, vt → v∗

32: else if (load balancing) then
33: if (Llink(ps)+Lnode(vt)<Llink(p∗)+Lnode(v

∗)) then
Copy ps → p∗, vt → v∗

34: /* Reserve resources on path p∗ for mapping v∗ */
35: if (found) then
36: Reserve node capacity in N (i.e., decrement available capacity of all mapped nodes in v∗ by Pm

values for fm ∈ Fr)
37: Reserve link capacity in E (decrement available capacity of all mapped links in p∗ by br)

Figure 3.3: Fog-based SFC mapping algorithm for a request, xr

43

primary fog nodes are connected to multiple secondary fog nodes. In turn each primary fog

node manages 5 terminals, and respective node resource (link bandwidth) levels are scaled up

between layers, Table 3.1. A total of T=6 VNFs are defined, and SFC requests are generated

between random terminals. Each SFC request has 4-6 VNFs and requires 4-6 bandwidth

units (br). To represent a range of functions, each VNF requires 2-3 units of node resource

(Pm) and has 0.5-2 ms node processing delay (∆m
ij). The delay bound (δr) is also set to 25

ms to reflect delay sensitive users. Finally the number of computed shortest-paths is set

to K=3 (Figure 3.3) as results show minimal gains with larger values. Tests are done for

varying SFC demand batches (infinite holding times) and several metrics are evaluated.

3.5.1 SFC Mapping Results

First, Figure 3.4 plots the SFC request blocking rates for all schemes. This metric is

typically regarded as a measure of revenue for network operators. These results indicate

that the LM scheme gives the highest carried load as mappings are spread across Layer 2

(and Layer 3) nodes to prevent network hot spots (resource exhaust). By contrast the DM

schemes (DM, FF-DM) strictly focus on shortest delay routes and tend to concentrate node

mappings onto Layer 2 nodes (primary fog nodes). The net result here is notably higher

blocking rates. For example the exhaustive-search DM scheme consistently yields 10-15%

lower success rates than the LM scheme for all input batch sizes tested (and even about 5%

lower than the FF-LM scheme).

Next the average end-to-end delays for successful SFC demands are plotted in Figure

3.5. These values include processing, transmission, and propagation times. As expected

the DM scheme gives the lowest delay due to mapping preference onto closer primary fog

nodes. By contrast the LM scheme has notably higher latency since the non-linear weights

in Eqs. 3.4 and 3.5 increase rapidly with congestion at Layer 2 nodes and links. Regardless

these increased delays still fall within the 25 ms bound and also pertain to a larger number

44

Figure 3.4: SFC demand request blocking rate

of accepted requests, Figure 3.4. Note that the LM scheme also gives lower delays versus

its simpler FF-LM variant, i.e., by about 15-20% at low-medium loads, indicating a clear

benefit with expanded search.

Finally the average embedding cost for all successful SFC demands is also gauged in

Figure 3.6. Specifically, the cost of a mapped request, xr, is computed as the total cost of

all the node and link resources that it uses, i.e.,

cost(xr) =
∑

ni
j∈v∗,fm∈Fr

χi
j · Pm +

∑
eijkl∈p∗

Γij
kl · br (3.10)

Overall results indicate that the LM scheme gives the lowest cost as it makes extensive use

of Layer 3 resources. Conversely, provisioning SFC demands with the DM scheme is much

more expensive, with costs ranging from 130% (low load) to 45% (high load) above the LM

scheme. In fact these findings also confirm that both first-fit strategies outperform the DM

45

Figure 3.5: Average end-to-end SFC delay (successful requests)

scheme, including the FF-DM scheme. As such the LM strategy will likely yield improved

revenue profiles for network operators.

3.5.2 Batch Sorting Results

The effectiveness of the various batch sorting schemes in Section 3.4 is now analyzed for

varying input demand sets. First consider delay-based provisioning. Namely Figure 3.7 plots

the impact of all four sorting strategies on the blocking performance of the DM scheme (as

well as the non-sorted baseline approach). As expected the DM-LVF and DM-LBF schemes

give the lowest blocking as they quickly pack in a larger number of smaller/lighter demands

first. By contrast the HBF and HVF schemes yield several factors higher blocking, even ex-

ceeding the non-sorted baseline scheme. For example at a nominal input load of 50 requests,

the DM-LBF and DM-LVF schemes give approximately 5% and 7% blocking, respectively,

whereas the DM-HBF and DM-HVF schemes yield almost 5 times higher blocking. This

46

Figure 3.6: Average SFC cost (successful requests)

increased blocking is a direct result of the increased (node, link) resource fragmentation that

occurs when provisioning larger demands first.

Similar runs are also repeated for the load balancing LM scheme, and the results in Figure

3.8 also yield very similar findings for the different sorting strategies. Namely the LM-LBF

and LM-LVF schemes give superior blocking performance, coming in several factors lower

than their LM-HBF and LM-HVF counterparts for low-medium input load ranges (request

batch sizes). In line with the findings in Section 3.5.1, the LM scheme also outperforms the

DM scheme for each sorting strategy. For example comparing the results for LVF sorting

between Figures 3.7 and 3.8 shows almost 80-100% lower blocking rates for up to medium

input loads (150 requests). Again this notable improvement is due the ability of the LM

scheme to spread demands across higher capacity Layer 3 (secondary fog) nodes.

Next the average end-to-end delay is also analyzed for the respective sorting strategies,

i.e., HBF, HVF, LVF, LBF. Foremost, results for the DM approach in Figure 3.9 indicate

that the least resource first strategies give notably lower delays across all input ranges. In

47

Figure 3.7: SFC demand request blocking rate, DM sorting scheme

fact the respective delays for both DM-LBF and DM-LVF schemes stay well below the 25

ms bound except at extremely high input loads (over 250 requests). Overall, preferentially

routing smaller demands first gives more SFC mappings onto lower Layer 2 nodes/links,

helping lower average end-to-end delays. By contrast the HBF and HVF strategies process

heavier demands first, quickly exhausting resources at the primary fog layer (increasing node

processing delays) and pushing the lighter demands onto more distant secondary fog layer

nodes (increasing propagation delays). These effects yield notably higher end-to-end SFC

delays, i.e., averaging almost 5 ms higher than the corresponding LBF and LVF schemes in

Figure 3.9.

Similarly, end-to-end delay results are also presented for the LM scheme in Figure 3.10.

As per the earlier findings with the DM scheme, the LBF and LVF sorting strategies also yield

the lowest end-to-end delays. However the relative separation between the different sorting

strategies is much lower here, i.e., within 5 ms, since the LM scheme is not focused on delay

minimization. Furthermore, comparing the results in Figure 3.9 and Figure 3.10 shows that

48

Figure 3.8: SFC demand request blocking rate, LM sorting scheme

the LM sorting variants give notably higher end-to-end delays than their DM counterparts.

For example the LM-LBF scheme saturates at the 25 ms delay bound for slightly under 250

requests, whereas the DM-LBF scheme only starts to approach this bound for 300 requests.

Overall this is expected since the LM scheme makes more use of Layer 3 secondary fog nodes

and links.

Average SFC embedding costs are also analyzed for the different sorting strategies, as

per Eq. 3.10. Foremost, results for the DM scheme are shown in Figure 3.11 and indicate

that the least resource first schemes, e.g., LBF and LVF, actually yield the highest costs.

This is due to the fact that these methods pack a larger number (of smaller) demands onto

primary layer nodes/links with higher resource usage costs. In turn this increased utilization

drives up average SFC costs. By contrast the highest resource first schemes tend to increase

resource fragmentation at Layer 2 nodes, forcing more mappings onto Layer 3 nodes/links

with lower costs. Indeed the differences are notable here, with the widest margins occurring

between the HBF and LBF sorting strategies, i.e., anywhere from 15-30% higher costs with

49

Figure 3.9: Average end-to-end SFC delay, DM sorting scheme (successful requests)

the former sorting strategy. Overall this is the cost penalty for achieving improved delay

performances with the LBF and LVF strategies, as per Figures 3.9 and 3.10.

Finally Figure 3.12 plots the average SFC embedding costs for the LM scheme. Again, the

relative performance between the different sorting strategies matches the results for the DM

scheme in Figure 3.11. Namely the LM-LBF (LM-HBF) scheme gives the highest (lowest)

costs, with the LVF strategies falling in between. More importantly, comparing the results in

Figures 3.11 and 3.12 also shows notably lower costs with the LM schemes. For example the

average SFC cost of the LM-HBF scheme for up to 100 requests is well below 20, i.e., almost

3 times less than the DM-HBF scheme. Although the comparative differences between the

other sorting strategies are less drastic between the DM and LM schemes, they are still quite

notable, e.g., for 200 input requests the LM-LVF scheme gives an average SFC cost of 62

(Figure 3.12) versus 90 for the DM-LVF scheme (Figure 3.11).

50

Figure 3.10: Average end-to-end SFC delay, LM sorting scheme (successful requests)

Figure 3.11: Average SFC cost, DM sorting scheme(successful requests)

51

Figure 3.12: Average SFC cost, LM sorting scheme (successful requests)

52

Chapter 4: Pre-Provisioned SFC Protection

As fog-based SFC services gain traction associated survivability concerns are also starting

to emerge. Now as surveyed in Section 2.5, most existing studies on SFC reliability have

used protection-based strategies to pre-provision backup VNF or link bandwidth resources

for mitigating failures. Although these methods are mostly designed to handle isolated single

faults, this is still a critical requirement as these types represent the overwhelming majority

of network failures. In light of this there is a further need to develop realistic and effective

protection methodologies for SFC demands across fog networks as well.

To address these survivability concerns, this chapter augments the heuristic framework

presented in Chapter 3 to support further dedicated pre-provisioned protection capabilities.

The focus here is to handle common single node or link faults. Performance results are also

presented from a simulation study to evaluate the blocking rate, delay and cost of these

proposed SFC protection strategies.

4.1 Polynomial-Time SFC Protection Schemes

Novel polynomial-time heuristic schemes are now presented for SFC survivability in fog

networks. Specifically these methods extend upon the non-survivable heuristics developed in

Chapter 3 by pre-provisioning backup node/link-disjoint SFC mappings. Namely two SFC

mappings are now provisioned for each incoming request, xr, termed as primary and backup.

Furthermore akin to Section 3.2, delay and load minimization strategies are also used for

path routing and node mapping across layers. The case of end-to-end SFC protection is also

illustrated in Figure 4.1 for the same 4-VNF SFC embedding example presented earlier in

53

Figure 4.1: SFC demand protection example

Figure 3.2. Here a complete link and node-disjoint backup SFC mapping is established to

protect the original primary “working” SFC embedding. As expected this technique entails

much more resource overheads at both the nodes and links. Consider the details.

The overall psuedocode for dedicated SFC protection is shown in Fig. 4.2. This frame-

work reuses the notation presented in Section 3.1.2, i.e., where a network is defined as a

graph G=(N,E), and a demand is given by a tuple xr. The algorithm starts out by se-

lecting the closest (Layer 2) primary fog nodes to the source and destination terminals to

“anchor” the SFC, i.e., srcr and dstr. A temporary feasible graph, G
′
(N

′
,E
′
), is then built

by pruning all nodes and links with insufficient resources to map the SFC request, i.e., nodes

with cij≤Pm (fm∈Fr) and links with bijkl≤br. Next, the K shortest paths are computed over

G
′
(N

′
,E
′
) with the requirement that they satisfy the delay bound, δr. These paths are

54

termed as the primary (working) paths and denoted by a set of path vectors, P={ps}, each

containing vectors of path nodes and links, i.e., ps={{ni
j}, {e

ij
kl}}. For backup protection

SFC provisioning, node/link-disjoint paths are then computed for each path in ps, denoted

by the set Q={qs}. The node/link disjoint path pairs in {P,Q}={ps,qs} are then itera-

tively searched to find the appropriate VNF mappings for a given provisioning strategy, e.g.,

delay or load minimization. Carefully note that these protection heuristics have the same

computational complexity as the regular non-survivable schemes presented in Section 3.2,

i.e., O(K|N|log(|E|) + K · LL+1), where L is the path length, L�|N|. Further details are

now presented.

4.1.1 Delay Minimization Protection (DM-P) Approach

The delay minimization-protection (DM-P) approach focuses on minimizing the total

delay across both the primary and backup SFC mappings. To achieve this, the set of K

path pairs {P,Q} are sorted by increasing end-to-end communication delay across both the

primary and backup routes. Namely this value is given by the sum of all link (transmission,

propagation) delays between nodes in both path vectors, i.e.,

Dcom(ps,qs) =
∑

eijkl∈ps

δijkl +
∑

eijkl∈qs

δijkl (4.1)

Next the above path pairs are searched to find mappings for the VNFs in Fr with the lowest

processing delay (outer loop, Fig. 4.2). As per the regular provisioning case in Section

3.2, the number of nodes along the primary/backup paths will usually be greater than the

number of requested VNFs. Hence this implies up to Q1=
(|ps|
|Fr|

)
mapping combinations for the

primary working path and Q2=
(|qs|
|Fr|

)
combinations for the backup path. Hence the algorithm

sequentially evaluates all of these combinations for both paths (inner loop, Fig. 4.2) by calling

an appropriate combination generating function. Namely Φ(|ps|, |Fr|, t) returns the t-th

55

combination vector of
(|ps|
|Fr|

)
, ut, of length |Fr| for the primary path. Specifically, ut={umt },

where umt notes the position of the m-th VNF mapping on the primary path, 1≤umt ≤|ps|.

The combination vector ut is used to build a SFC mapping vector of 2-tuple pairs for the

primary path, vt={<fm, ni
j>}, to note the mapped nodes for each VNF fm∈Fr, Fig. 4.2.

Similarly Φ(|qs|, |Fr|, t) returns the t-th combination vector of
(|qs|
|Fr|

)
, yt, of length |Fr| for the

backup path. Specifically yt={ymt }, where ymt notes the position of the m-th VNF mapping

on the backup path, 1≤ymt ≤|qs|. Finally yt is used to build a SFC mapping vector of 2-tuple

pairs for the backup path, wt={<fm, ni
j>}, Fig. 4.2. Now the primary and backup VNF

mappings also impose processing delays at the mapped nodes, given by:

Dprc(vt,wt) =
∑
ni
j∈vt

∆m
ij +

∑
ni
j∈wt

∆m
ij (4.2)

Hence the inner loop in Fig. 4.2 searches all mapping combinations to find the one with

the lowest aggregate delay, given by Dcom(ps,qs)+Dprc(vt,wt). Overall the DM scheme will

favor closer primary fog nodes in Layer 2 with lower delays/higher cost, although secondary

fog nodes in Layer 3 will also be considered and used if necessary. A first fit-DM-P (FF-DM-

P) scheme is also defined to reduce run-time complexity by selecting the first valid mapping

in Fig. 4.2 (as per non-survivable DM scheme, Section 3.2.1).

4.1.2 Load Minimization Protection (LM-P) Approach

The load minimization-protection (LM-P) scheme tries to minimize the relative network

link and node load when provisioning primary/backup SFC mappings (while also satisfying

the request delay bound, δr). Hence the K primary/backup path pairs {P,Q} are now sorted

56

in order of increasing aggregate link load, defined as:

Llink(ps,qs) =
∑

eijkl∈ps

(Bij
kl

bijkl + ε

)
+
∑

eijkl∈qs

(Bij
kl

bijkl + ε

)
(4.3)

where ε�1 is chosen to avoid divide-by-zero errors. Namely the fractional term in Eq. (4.3)

is the relative link load (as defined in the non-survivable LM scheme, Section 3.2.2). These

sorted paths are then searched to find the VNF mapping with the lowest aggregate node

load (outer loop, Fig. 4.2). Furthermore a node-level load is also defined for a mapping v

as follows:

Lnode(vt,wt) =
∑
ni
j∈vt

(Ci
j

cij + ε

)
+
∑
ni
j∈wt

(Ci
j

cij + ε

)
(4.4)

where the inner bracketed term is the relative load of a node, i.e., akin to Eq. 3.4 (Section

3.2.2). As per the above, all mapping combinations are evaluated (inner loop, Fig. 4.2)

to find a feasible mapping with the lowest aggregate load, i.e., Llink(ps,qs)+Lnode(vt,wt).

Akin to the non-survivable LM scheme (Section 3.2.2) the LM-P approach also avoids con-

gested/costly Layer 2 fog nodes and tries to map more VNFs onto Layer 3 nodes (lower

cost). Finally a faster first fit-LM (FF-LM-P) scheme is also defined to select the first valid

load-based mapping (Figure 4.2).

4.2 Performance Analysis

The survivable SFC mapping heuristic schemes are evaluated using the same multi-layer

fog infrastructure detailed in Section 3.5. Namely this scenario has 1,000 terminals (Layer

1), 100 primary fog nodes (Layer 2), and 5 secondary fog nodes (Layer 3). SFC requests are

also generated between random terminal nodes, with 4-6 VNFs each, as detailed in Table

3.1. In addition the delay bound (δr) is kept at 25 ms to reflect delay-sensitive users, and

57

tests are run for varying SFC demand batches with infinite request lifetimes. Finally up to

K=3 paths are searched in the mapping process (Fig. 4.2).

First, Figure 4.3 plots the blocking rates for both SFC protection strategies. In particular

the baseline DM-P and LM-P schemes are selected, along with their first-fit variants, i.e.,

FF-DM-P and FF-LM-P. As per the findings in Section 3.5.1, the LM scheme still gives

the lowest blocking rates (highest carried load) since it spreads out primary and backup

VNF mappings across both nodes and layers. By contrast the blocking rate for the DM

scheme is much higher, even exceeding the non-exhaustive search first-fit LM protection

scheme (FF-LM-P). Furthermore in comparison with results for non-protected demands in

Figure 3.4, backup provisioning also gives notably larger separation between the DM and

LM strategies. For example the LM-P scheme consistently gives 15-20% less blocking than

the DM-P scheme for almost all input loads tested, i.e., versus 5-10% separation between

the DM and LM schemes in Figure 3.4.

Average end-to-end delays SFC delays are also shown in Figure 4.4 (averaged across all

primary/backup routes for successful SFC demand mappings). Akin to earlier findings in

Section 3.5.1, the DM-P scheme gives the lowest delays since it mostly utilizes closer primary

fog nodes (at the expense of increased blocking rates). By contrast the LM-P scheme gives

notably higher latencies as it selects more dispersed nodes with longer SFC routes, i.e.,

averaging 6-7 ms higher than the DM-P scheme for most input batch sizes. Additionally the

LM-P scheme consistently gives 2-3 ms lower delays than its faster FF-LM-P version, again

showing the benefits of more exhaustive mapping search.

Finally average SFC demand embedding cost are also plotted in Figure 4.5, i.e., Eq. 3.10

averaged across primary and backup routes for successful SFC demand mappings. Here the

LM-P scheme clearly gives the lowest cost as it uses more secondary fog nodes. As expected

the DM-P scheme is much more costly, with per-demand costs averaging almost twice as

high as the LM-P scheme. In line with the results for non-protected demands in Figure

58

3.6, both first-fit strategies (FF-DM-P, FF-LM-P) also have lower costs than the DM-P

scheme. Hence many network operators may also prefer load-based provisioning strategies

for protected SFC demands in order to maximize their revenues.

Note that the demand sorting schemes presented in Section 3.4 are also evaluated for both

the DM-P and LM-P protection heuristics. However the related results are not presented and

discussed here since the findings are largely similar, i.e., the LBF and LVF sorting strategies

give the lowest demand blocking and end-to-end SFC delays, albeit with higher SFC costs.

59

1: Input: Network G=(N,E), request xr=<srcr, dstr, br, δr,Fr>
2: Output: Primary/backup SFC node mappings (w∗, v∗) & Primary/backup SFC routes (p∗, q∗)

3: /* Find nearest fog nodes for client nodes */
4: src

′

r ← closest primary fog node to Layer 1 terminal srcr
5: dst

′

r ← closest primary fog node to Layer 1 terminal dstr

6: /* Prune network to build feasible graph, G′(N′,E′) */
7: N′ ← Remove nodes nij ∈ N with cij < min{fm ∈ Fr} & E′ ← Remove links eijkl ∈ E with bijkl < br

8: Compute K shortest paths from src
′

r to dst
′

r in G′(N′,E′), i.e., P={ps} s.t. Dcom(ps) < δr
9: Compute K shortest node/link-disjoint paths for each path ps, i.e., Q={qs} s.t. Dcom(qs) < δr

10: /* Order K disjoint path pairs based on scheme */
11: if (delay minimization) then
12: Sort disjoint path pairs {ps,qs} by increasing delay, i.e., Dcom(ps,qs) ≤ Dcom(ps+1,qs+1)
13: else if (load balancing) then
14: Sort disjoint path pairs {ps,qs} by increasing load, i.e., Llink(ps,qs) ≤ Llink(ps+1,qs+1)

15: /* Initialize path vectors, mapping vectors, and flag */
16: p∗={∅}, q∗={∅}, v∗={<∅, ∅>}, w∗={<∅, ∅>}
17: found=0

18: /* Search all K disjoint path pairs */
19: for (each path pair) do

20: Extract disjoint path pair {ps,qs}
21: /* Compute max. number of mapping combinations */
22: Q1=choose(|ps|,|Fr|) /* Primary path */ and Q2=choose(|qs|,|Fr|) /* Backup path */

23: /* Search all combinations */
24: for (each combination) do
25: /* Generate mapping vectors */
26: Compute t-th primary path combination vector, ut={umt }=Φ(|ps|, |Fr|, t)
27: Compute t-th backup path combination vector, yt={ymt }=Φ(|qs|, |Fr|, t)
28: Build t-th primary/backup node mapping vectors (vt, wt) from (ut, yt)

29: /* Check delay and resources for mapping */
30: if ((Dcom(ps) +Dprc(vt) ≤ δr) & (Dcom(qs) +Dprc(wt) ≤ δr) &

(cij ≥ Pm for all mapped nodes in vt, wt)) then
31: found=1

32: /* Track & update latest path and mapping vectors */
33: if (first fit-DM or first fist-LB) then
34: Copy ps → p∗, qs → q∗, vt → v∗, wt → w∗

35: Exit search /* first valid delay/load-based mapping */
36: else if (delay minimization) then
37: if (Dcom(ps,qs)+Dprc(vt,wt)< Dcom(p∗,q∗)+Dprc(v

∗,w∗)) then
Copy ps → p∗, qs → q∗, vt → v∗, wt → w∗

38: else if (load balancing) then
39: if (Llink(ps,qs)+Lnode(vt,wt)< Llink(p∗,p∗)+Lnode(v

∗,w∗)) then
Copy ps → p∗, qs → q∗, vt → v∗, wt → w∗

40: /* Reserve resources on paths p∗, q∗ for mappings w∗, v∗ */
41: if (found) then

Reserve node capacity in N and link capacity in E

Figure 4.2: Fog-based SFC protection mapping algorithm for a request, xr

60

Figure 4.3: Protected SFC demand request blocking rate

Figure 4.4: Average end-to-end SFC delay (primary, backup)

61

Figure 4.5: Average SFC cost (primary, backup)

62

Chapter 5: Post-Fault SFC Restoration

Post-fault restoration is classified as a more latent and non-guaranteed recovery mecha-

nism, and this approach has been studied extensively to recover failed end-to-end routes in

optical and bandwidth connection routing networks [86]. The basic premise of restoration

is to detect the occurrence of node and link failures and then attempt dynamic post-fault

re-computation of failed demands. In general restoration is much more resource efficient

than pre-provisioned protection, i.e., since backup SFC embeddings are not computed and

reserved in advance. Additionally, restoration strategies are also more effective against mul-

tiple failures, which can easily compromise protection-based schemes designed to handle

single failures (Chapter 4). However the performance of any post-fault restoration scheme

will be heavily-dependent upon the number of failures, the demand loading of the network

infrastructure prior to failures, and also the exact distribution (mapping) of demands and

faults across the network.

In light of the above there is a further need to develop post-fault restoration recovery

strategies for SFC demands in fog-based networks. These techniques are particularly attrac-

tive given the reduced geographic scale of fog networks, i.e., as they can yield faster post-fault

signaling (messaging) times and reduced restoration overheads. Hence this chapter intro-

duces some extended notation for post-fault restoration. Subsequently two SFC re-mapping

strategies are presented, including intermediate and end-to-end SFC path recovery (lever-

aging from similar methods studied in bandwidth connection routing networks). Detailed

performance analysis is then performed to evaluate these proposed solutions under failure

conditions. Carefully note that the actual detection and isolation of node/link faults and

63

quantification of exact restoration timescales (latencies) is not considered here as these tasks

are intricately related to underlying networking protocols and NFV orchestration systems.

Figure 5.1: Overview of post-fault restoration

5.1 Architecture and Notation Overview

The overall sequence of post-fault restoration is shown in Figure 5.1. Foremost, con-

sider a batch set of incoming SFC demands which is provisioned using any of the regular

heuristic schemes detailed in Chapter 3, i.e., to generate a subset of successfully-mapped

SFC demands. Upon fault occurrence, a subset of these demands will fail and restoration

recovery schemes will be initiated to try to recover them. Now as noted above the exact

underlying mechanisms for fault detection/localization are not considered here as they are

very implementation specific. Instead, it is assumed that the list of failed infrastructure

node/links will be known and provided as input to the restoration phase. Based upon the

above, two different post-fault restoration strategies are proposed. Carefully note that this

restoration framework only considers single node failures. Specifically this fault type re-

quires both re-mapping of failed VNFs as well as bandwidth connection (or sub-connection)

re-routing. However, without loss of generality, this solution can also be adapted to handle

multiple node or link failures. In particular the latter fault types are simpler to handle as

they may only require SFC connection re-routing.

Consider the requisite notation first. Extending upon the definitions in Section 3.1.2, the

failed network node in G(N,E) is denoted by n−∈N, and this can either be a primary fog

64

node (Layer 2) or secondary fog node (Layer 3). Now recall that the input batch of SFC

demands is given by the set Xin, as per Section 3.1.2. Building upon this, the number of

successfully-mapped requests is denoted by Xsuccess (provisioned using any of the heuristic

mapping and sorting schemes detailed in Chapter 3). Since a failed node can host multiple

VNFs, the subset of successful SFC mappings affected by the failure is denoted by the set of

failed SFC demands, Xfail⊆Xsuccess. Furthermore the specific VNF node mapping that fails

within a demand xr⊂Xfail is also denoted by f−r . Finally, the set of successfully-restored

SFC demands is given by Xrest⊆Xfail. These set entities are also shown in Figure 5.1.

5.2 Failed SFC Re-Mapping

The overall psueducode for post-fault restoration is presented in Figure 5.2. Specifically,

the algorithm starts by (optionally) sorting the incoming set of failed SFC demands, Xfail,

based upon any of the schemes outlined in Section 3.4 (HBF, LBF, HVF, or LVF). This

step yields an ordered set of failed SFC demands, denoted by X
′

fail. Next a working graph,

G
′′
(N

′′
,E
′′
), is constructed by taking G(N,E) and removing the failed node n− and all

of its links. In addition for the case of end-to-end restoration, all node and link capacity

reservations pertaining to non-failed nodes and links for failed SFC demands (in X
′

fail) are

also relinquished, i.e., by appropriately incrementing free capacity levels. The restoration

algorithm then loops through all failed SFC demands in X
′

fail and tries to recover each one

using an end-to-end or intermediate restoration strategy (detailed subsequently).

Now the actual re-mapping procedure makes full re-use of the heuristic SFC embedding

algorithms defined earlier in Chapter 3, i.e., DM or LM provisioning. Namely a temporary

“input” SFC request, x
′
, is defined as per the desired recovery mapping strategy, and an

appropriate call made to the algorithm in Figure 3.3. Finally all failed SFC demands in

X
′

fail that are successfully re-mapped (recovered) are then moved to the set of restored SFC

demands, Xsuccess. Carefully note that the heuristic approach in Figure 3.3 already reserves

65

1: Input: Network G=(N,E), failed node n−, failed SFC demand set Xfail

2: Output: Restored SFC set Xrest

3: /* Sort failed SFC demand set (optional) */
4: X

′
fail ← Sort demands in Xfail (as per strategies in Section 3.4)

5: /* Build working topology by pruning failed node and its links from network */
6: N

′′ ← Remove node n−

7: E
′′ ← Remove all links in E connected to n−

8: /* For end-to-end restoration also free all resources used by failed demands */
9: if (end-to-end restoration) then

10: for (each failed SFC demand) do
11: N

′′ ← Free all resources in N used by non-failed nodes in xr∈Xfail

12: E
′′ ← Free all resources in E used by non-failed links in xr∈Xfail

13: /* Initialized restored SFC demand set */
14: Xrest={∅}
15: /* Process and attempt restoration for all failed demands */
16: for (each failed SFC demand) do

17: Extract demand xr∈X
′
fail

18: /* Define modified SFC demand tuple */
19: if (end-to-end restoration) then
20: /* All VNFs between ingress/egress primary fog nodes */
21: x

′
=xr=<srcr, dstr, br, δr,Fr>

22: else if (intermediate restoration) then
23: /* Single VNF between adjacent nodes to fault */
24: src

′
r ←− Anterior node to n−

25: dst
′
r ←− Posterior node to n−

26: δ
′
r = δr− delays on working segments /* Reduced delay bound for segment */

27: F
′
r = {f−r } /* Failed VNF node mapping */

28: x
′
=<src

′
r, dst

′
r, br, δ

′
r,F

′
r>

29: Run SFC embedding routine for request x
′

(Figure 3.3) over G
′′
(N
′′
,E
′′
)

30: /* Update restored set */
31: if (new mapping found for x

′
) then

32: Move xr−→Xrest /* Note resources already updated in G
′′
(N
′′
,E
′′
) */

Figure 5.2: Fog-based SFC restoration for failed demands (end-to-end, intermediate)

66

resources for all successfully-provisioned demands, and hence free node and link capacities in

N
′′

and E
′′

do not need to be decremented further upon return. The two different restoration

strategies are now presented.

Figure 5.3: End-to-end SFC demand restoration example

5.2.1 End-to-End SFC Restoration

End-to-end restoration is a straightforward approach that simply tries to re-establish

the complete failed SFC request. Hence the heuristic SFC embedding algorithm (Figure

3.3) is called with a temporary “input” SFC request equal to the exact failed demand, i.e.,

x
′
=xr⊆Xfailed. Expectedly this strategy is more computationally-intensive since it must

completely re-map all VNFs and their interconnecting bandwidth connection segments, i.e.,

67

even those which are unaffected by the failed node n−. However, this “clean” re-mapping

approach can also give increased resource efficiency, particularly link bandwidth.

An example of end-to-end SFC restoration is shown in Figure 5.3 for the same 4-VNF

SFC embedding example presented earlier in Figure 3.2. Here it is assumed that the primary

fog node hosting the second VNF, f2, in Layer 2 fails. Hence the complete SFC is re-mapped,

and this can result in some of the same VNF placements as per the original SFC mapping.

For example VNFs f1 and f3 in Figure 5.3 are still re-mapped to their original locations,

whereas VNFs f2 and f4 are now placed at new locations.

5.2.2 Intermediate SFC Restoration

Intermediate restoration is a more expedient approach which only tries to recover the

failed VNF, i.e., by keeping in place all existing non-failed VNF mappings in a failed SFC

demand. To achieve this the heuristic embedding algorithm in Figure 3.3 is called using a

temporary “input” SFC request containing the singled failed VNF. Namely the appropriate

source and destination end-points for this SFC request are specified as the (non-failed)

anterior and posterior embedding nodes to the failed node n−, denoted by src
′

and dst
′
,

respectively. These end-point nodes are used to “stitch” and re-connect the restored VNF

node mapping with the existing non-failed SFC segments. Carefully note that the delay

bound for this modified single-VNF SFC demand is also reduced appropriately from δr in

order to account for the delay budgets of existing nodes and links (on the non-failed portions

of the embedded SFC).

An example of intermediate SFC restoration is also shown in Figure 5.4 for the same

4-VNF SFC embedding example presented earlier in Figure 3.2. Namely the primary node

hosting the second VNF, f2, in Layer 2 fails and this causes a re-mapping of the SFC segment

between the anterior node (mapping VNF f1) and posterior node (mapping VNF f3). In

particular the restored VNF is now placed in the secondary fog layer, and the intermediate

68

sub-connection route (reconnecting to the remaining working VNFs in the SFC embedding)

is 3 hops long.

Figure 5.4: Intermediate SFC demand restoration example

5.3 Performance Analysis

Post-fault restoration recovery is tested using the same multi-layer topology from Chap-

ters 3 and 4. As per the network topology defined in Section 3.5, there are 100 primary

fog nodes (Layer 2) and 5 secondary fog nodes each handling a “cluster” of 20 primary fog

nodes (Layer 3). Similarly, a total of T=6 VNFs are defined, and each SFC request has 4-6

VNFs with 4-6 bandwidth units demand (br) and a delay bound (δr) of 25 ms (see Table

3.1). The number of computed shortest-paths is also set to K=3 (Figure 3.3). Furthermore,

tests are done for single isolated node faults at both Layer 2 (primary fog nodes) and Layer 3

69

(larger secondary fog nodes carrying more demands). Finally SFC re-mapping computation

is tested for both the baseline DM and LM schemes (Section 3.2) as well as their LBF sorting

variants for failed demands in X
′

fail (Section 3.4.2). This particular variant is chosen since

it has been shown to give increased SFC setup success rates, as per the results in Section

3.5.2. The detailed findings are now presented.

Foremost, Figures 5.5 and 5.6 summarize the number of post-fault failures for both the

DM and LM schemes. Overall these plots represent the absolute numbers of successfully-

provisioned SFC requests that fail after a node fault at Layer 2 or Layer 3, i.e., |Xfail|, Figure

5.1. As expected these results confirm that the number of failed demands increases with in-

put load (measured by the number of successfully-routed SFC demands in the network prior

to failure, |Xsuccess|). Furthermore these results also indicate that Layer 3 nodes failures

are less impactful than smaller Layer 2 node failures at lower loads. However at increased

load regimes, Layer 3 node failures yield much higher SFC demand failures. This inflex-

ion/crossover is expected as Layer 3 nodes carry more (less) demands at increased (reduced)

loads. Furthermore the onset of this inflexion occurs earlier with the LM scheme at it tends

to be more reliant on secondary nodes. By contrast, the DM scheme is less susceptible to

secondary node failures, i.e., peak of 25 failures with the DM-LBF scheme versus almost 40

failures with the LM-LBF scheme. In fact DM mappings do not experience any failures at

very light input loads since they do not use any Layer 3 nodes at these load regimes, e.g,. for

under 20 input requests, Figure 5.5. Finally these results also indicate a small but consistent

increase in the number of failures with the LBF-based schemes. Again this increase is due

to the fact that these variants embed more SFC demands than their baseline counterparts.

Next, the post-fault restoration schemes are gauged to evaluate their effectiveness in re-

covering failed SFC demands. Although runs are done with both the baseline (DM, LM)

schemes and their LBF variants from Chapter 3, only findings with the latter variants are

presented in the remainder of this chapter as the respective trends are similar. Accordingly

70

Figure 5.5: Number of failed requests for DM scheme

Figure 5.6: Number of failed requests for LM scheme

Figures 5.7 and 5.8 plot the restoration rate percentages for both intermediate and end-to-

end restoration. These values represent the proportion of failed requests (from the subset

Xfail) that are successfully restored after restoration, i.e., |Xsuccess|, Figure 5.1. Overall

71

these findings reveal some key findings. Foremost, end-to-end restoration consistently out-

performs intermediate restoration for both Layer 2 and Layer 3 node failures. Specifically

the improvement in restoration success rates averages 5-10% across all input load regimes,

measured by the number of failed connections. This improvement is due to the fact that

end-to-end restoration is better at distributing SFC routes across the entire network as op-

posed to the immediate vicinity of the failed node. In general this finding mirrors earlier

results for bandwidth routing networks where end-to-end connection recovery also gives im-

proved success rates versus intermediate restoration, see [86]. These results also show that

recovery success rates decline with increasing load, i.e., as there is more resource contention

due to increased numbers of failed SFC demands. However these declines are much more

drastic for larger secondary node (Layer 3) faults for both restoration strategies. Namely

restoration rates for Layer 3 faults are very high at lighter load regimes, averaging well over

80% for both the DM and LM-based embedding strategies. However, the respective recovery

rates decline to the 50% range at higher load regimes. By contrast, post-fault restoration

for Layer 2 faults is slightly more effective at higher loads, i.e., restoration rates averaging

12-15% higher with the DM-LBF (LM-LBF) schemes. This slight increase is due to the

reduced number of (failed) demands carried by smaller primary fog nodes.

Restoration recovery re-computes failed VNF embeddings and generally gives altered SFC

routes. Hence it is also important to measure the impact on end-to-end delay. Accordingly,

Figures 5.9 (DM-LBF scheme) and 5.10 (LM-LBF scheme) plot the average increase in end-

to-end SFC delays versus input loads (for both Layer 2 and Layer 3 node failures). Overall

the results for both the DM-LBF and LM-LBF schemes give very similar findings here.

Foremost all restoration schemes show a clear increase in SFC delay under heavier loads,

i.e., as increased link congestion forces longer intermediate or end-to-end SFC routes. In

addition secondary fog node (Layer 3) faults are much more impactful, with average delays

rising by about 6-7 ms for both restoration strategies at high loads versus only 3-4 ms for

72

Figure 5.7: Restoration rate for DM-LBF scheme

Figure 5.8: Restoration rate for LM-LBF scheme

Layer 2 node faults. These increases represent approximately 25% and 15% of the 25 ms

SFC delay bound value, respectively. However at very light loads, Layer 3 node faults yield

slightly smaller delay increases (in 0.5-1 ms range), i.e., since they can be recovered using

73

closer primary fog nodes. Furthermore end-to-end restoration consistently gives smaller

delay increases than intermediate restoration, i.e., averaging about 0.5 ms for both the LM-

LBF and DM-LBF strategies. Again these findings mirror results from earlier connection

restoration studies where end-to-end restoration gives notably lower delays (hop counts) than

intermediate restoration, see [86].

Figure 5.9: Average increase in delay of restored demands (DM-LBF scheme)

Finally, Figures 5.11 and 5.12 plot the average cost increase for recovered SFC demands

for both restoration strategies. Akin to the results for delay increase, both the DM-LBF

and LM-LBF schemes give very similar performances for Layer 2 and Layer 3 node faults.

Foremost all restoration schemes give higher post-fault SFC costs, particularly at higher input

loads. For example the average cost increase for Layer 2 node faults at peak load is about 4-5

units and about 9-11 units for Layer 3 node faults. These increases represent approximately

10% more cost after failure, i.e., as determined by comparing the cost increases to respective

cost ranges in Figures 3.11 and 3.12. In addition, end-to-end restoration is slightly more

cost-effective than intermediate restoration since is uses fewer link resources.

74

Figure 5.10: Average increase in delay of restored demands (LM-LBF scheme)

Figure 5.11: Average increase in cost of restored demands (DM-LBF scheme)

75

Figure 5.12: Average increase in cost of restored demands (LM-LBF scheme)

76

Chapter 6: Conclusions

This dissertation addresses the topic of SFC demand provisioning in specialized multi-

layer fog networks. First, Chapter 2 presents a survey of related work on SFC provisioning

and survivability, with a focus on fog-based setups. Next, Chapter 3 presents some novel

polynomial-time heuristic methods for provisioning SFC demands in realistic two-layer fog

networks. Extending upon this Chapter 4 introduces new pre-provisioned protection algo-

rithms to achieve survivability against single fault scenarios. Finally Chapter 5 details novel

post-fault restoration methods to further improve survivability support. The key findings

from this research effort are now summarized along with potential future research directions.

6.1 Summary of Research Findings

This dissertation introduces a range of polynomial-time algorithms to achieve varying

provisioning objectives for SFC demands in fog computing networks. Commensurate fault

recovery methods are also proposed in order to improve service survivability. A summary of

the major findings of this dissertation work are now presented.

The findings in Chapter 3 presents some novel on-line heuristic algorithms to map SFC

demands in two-layer fog infrastructures. These schemes utilize k-shortest path routing

algorithms to compute a set of candidate SFC routes and then search them for multiple

VNF mapping combinations. In particular two SFC mapping strategies are developed here

based upon delay and load minimization. The major findings from this effort are as follows:

77

• Delay-based mapping scheme (DM) always gives the lowest end-to-end latency for

all scenarios tested. However this improvement comes at the expense of significantly

higher blocking rates and average SFC costs, i.e., as this scheme tends to overload

Layer 2 nodes/links with smaller resource pools and higher costs.

• Load minimization mapping scheme (LM) gives much lower blocking rates than the

delay minimization scheme as it maps demands across multiple nodes in both Layers

2 and 3. Although the average delay performance is worse than the DM scheme, this

method also yields notably lower SFC resource costs, i.e., almost half of the DM scheme.

As a result the LM scheme may be more favorable for many network operators.

• Least resource first sorting strategies that prioritize smaller bandwidth or node resource

demands (such as LBF and LVF) yield much lower blocking rates than counterpart

strategies which prioritize larger demands first (such as HBF and HVF). The average

end-to-end delays are also lower with these sorting strategies.

• Least resource first sorting strategies also yield higher average SFC costs, i.e., since

these schemes map increased numbers of smaller demands onto more costly primary

layer nodes and links.

Next, Chapter 4 addresses the critical problem of SFC survivability and studies pre-fault

protection strategies. In particular the focus here is on single node faults which are by far the

most common failure occurrences. Accordingly the delay and load minimization heuristic

strategies in Chapter 3 are further augmented to compute link/node-disjoint backup SFC

embeddings. The overall results here indicate:

• Load minimization protection scheme (LM-P) gives less blocking rates, i.e., higher

provisioning success, for equivalent input loads compared to the delay minimization

78

protection scheme (DM-P). In fact this reduction is much larger than that observed

for non-protected SFC demands between the DM and LM strategies.

• Delay minimization protection scheme (DM-P) also gives the lowest end-to-end SFC

delays as it tends to map fewer primary/backup SFC routes onto closer Layer 2 nodes.

However the associated costs are also notably higher, i.e., almost double, akin to the

increase between the LM and DM schemes for non-protected SFC demands.

Finally, Chapter 5 extends upon the topic of SFC survivability and studies more flexible

post-fault restoration methodologies. In particular these schemes are more resource efficient

than pre-fault protection and can also handle multiple faults. Hence two different algorithms

are presented to recover failed SFC demands in fog setups, i.e., end-to-end and intermediate

SFC recovery. The overall findings indicate:

• Post-fault SFC restoration gives very good recovery success rates in multi-layer fog

networks, i.e., ranging anywhere from 70-95% at lighter loads to 40-70% at heavier

loads. Hence this approach provides a very viable survivability solution for network

operators.

• End-to-end SFC restoration is more effective than intermediate restoration across all

input load regimes evaluated, i.e., averaging 5-10% higher restoration success rates. In

addition the corresponding increases in average end-to-end SFC delay and cost are also

lower with this approach.

• Secondary fog node faults (Layer 3) are much more impactful under increased load

conditions for both the DM and LM provisioning strategies. Layer 3 faults also yield

lower restoration success rates (and increased costs) under higher load conditions. This

reduction (increase) is due to the increased level of demand multiplexing at the nodes.

79

6.2 Extensions and Future Directions

In conclusion this dissertation research provides a strong foundation for provisioning

NFV-based services in fog computing networks. The proposed methods are practical and

scalable from a run-time perspective, and thereby lend well to real-world application. Based

upon these contributions, a range of further and more expansive topic areas can also be

investigated. Foremost more formalized optimization models can be developed for batch

provisioning and protection of SFC requests in fog networks. Although various studies have

proposed such methods for SFC mapping in cloud networks, the specialized infrastructure

requirements and resource limitations of fog domains need careful consideration. In addi-

tion it is important to note that such optimization-based methods may only be feasible for

very small infrastructures and demand pools, i.e., due to high variable count intractability.

As a result further metaheuristic schemes (such as those based upon simulated annealing

and genetic algorithms) can also be investigated to provide a median approach between

optimization and adhoc heuristic strategies.

Finally, with regards to service survivability, more efficient shared protection schemes

can also be considered in order to improve the resource efficiency (and lower the cost) of

SFC demands. Further investigations can also integrate the pre-fault protection and post-

fault restoration mechanisms introduced in this thesis to build more robust capabilities.

Specifically post-fault restoration can be used to overcome the rare case of multiple faults

and further augment the survivability performance of single-fault protection schemes.

80

References

[1] C. Rotsos et al. Network Service Orchestration Standardization: A Technology Survey.

Computer Standards & Interfaces, 54:203–215, 2017.

[2] E. Hernandez-Valencia, S. Izzo, and B. Polonsky. How Will NFV Transform Service

Provider Opex? IEEE Network, 29(3):60–67, 2015.

[3] R. Majumbi et al. Network Function Virtualization: State-of-the-Art and Research

Challenges. IEEE Communications Surveys and Tutorials, 18(1):236–262, 2016.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing and

Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing. Association for Computing Machinery, 2012.

[5] M. Abdelshkour. IoT from Cloud to Fog Computing. In Cisco Blogs: Perspectives,

2015.

[6] Tom Hao Luan, Longxiang Gao, Zhi Li, Yang Xiang, and Limin Sun. Fog Computing:

Focusing on Mobile Users at the Edge. ArXiv, abs/1502.01815, 2015.

[7] D. Zhao, D. Liao, G. Sun, and S. Xu. Towards Resource-Efficient Service Function

Chain Deployment in Cloud-Fog Computing. IEEE Access, 6:66754–66766, 2018.

[8] A. Taherkordi and F. Eliassen. Poster Abstract: Data-centric IoT Services Provisioning

in Fog-Cloud Computing Systems. In 2017 IEEE/ACM Second International Conference

on Internet-of-Things Design and Implementation (IoTDI), pages 317–318. ACM, 2017.

81

[9] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A Survey on Service

Function Chaining. Network and Computer Applications, 75(c):138–155, 2016.

[10] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo. Towards Making Network Function

Virtualization a Cloud Computing Service. In 2015 IFIP/IEEE International Sympo-

sium on Integrated Network Management (IM), pages 89–97, 2015.

[11] E. Amaldi, S. Coniglio, A. Koster, and M. Tieves. Network Slicing for Service-Oriented

Networks Under Resource Constraints. Electronic Notes in Discrete Mathematics,

52:213–220, 2016.

[12] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network

Function Virtualization: State-of-the-Art and Research Challenges. IEEE Communica-

tions Surveys & Tutorials, 18(1):236–262, 2016.

[13] J. Gil Herrera and J. F. Botero. Resource Allocation in NFV: A Comprehensive Survey.

IEEE Transactions on Network and Service Management, 13(3):518–532, 2016.

[14] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. NFV: State of the Art, Challenges,

and Implementation in Next Generation Mobile Networks (vEPC). IEEE Network,

28(6):18–26, 2014.

[15] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network Function Virtualization: Chal-

lenges and Opportunities for Innovations. IEEE Communications Magazine, 53(2):90–

97, 2015.

[16] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari. Joint Energy

Efficient and QoS-Aware Path Allocation and VNF Placement for Service Function

Chaining. IEEE Transactions on Network and Service Management, 16(1):374–388,

2019.

82

[17] D. bhamare et al. Optimal Virtual Network Function Placement in Multi-Cloud Service

Function Chaining Architecture. Computer Communication, 102:1–16, 2017.

[18] N. Ghani D. Oliveira, J. Crichigno. On Sensitive and Weighted Routing and Placement

Schemes for Network Function Virtualization. Infocommunications Journal, 9(4):15–23,

2017.

[19] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, and T. Wood. Virtual Function

Placement and Traffic Steering in Flexible and Dynamic Software Defined Networks. In

Structural Information and Communication Complexity, pages 104–118. IEEE, 2015.

[20] T. Lukovszki and S. Schmid. Online Admission Control and Embedding of Service

Chains. In IEEE International Workshop on Local and Metropolitan Area Networks

(LANMAN), pages 104–118, 2014.

[21] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy. Design and

Evaluation of Algorithms for Mapping and Scheduling of Virtual Network Functions.

In 2015 1st IEEE Conference on Network Softwarization (NetSoft), pages 1–9. IEEE,

2015.

[22] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau. Online VNF Scaling in Datacenters.

In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pages 140–

147. IEEE, 2016.

[23] D. Cho, J. Taheri, A. Y. Zomaya, and L. Wang. Virtual Network Function Placement:

Towards Minimizing Network Latency and Lead Time. In 2017 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom). IEEE, 2017.

83

[24] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad. Multi-Cloud Distribution

of Virtual Functions and Dynamic Service Deployment: Open ADN Perspective. In 2015

IEEE International Conference on Cloud Engineering. IEEE, 2015.

[25] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The Dynamic Place-

ment of Virtual Network Functions. In 2014 IEEE Network Operations and Management

Symposium (NOMS). IEEE, 2014.

[26] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba. Delay-Aware VNF Place-

ment and Chaining Based on a Flexible Resource Allocation Approach. In 2017 13th

International Conference on Network and Service Management (CNSM). IEEE, 2017.

[27] N Siasi, M Jasim, J Crichigno, and N Ghani. Container-based Service Function Chain

Design and Mapping. In IEEE SoutheastCon 2019, pages 1–6. IEEE, 2019.

[28] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Martini, F. Paganelli, W. Cerroni,

P. Cappanera, and P. Castoldi. Demonstration of Latency-Aware and Self-Adaptive

Service Chaining in 5G/SDN/NFV Infrastructures. In 2018 IEEE Conference on Net-

work Function Virtualization and Software Defined Networks (NFV-SDN), pages 1–2,

2018.

[29] N. Zhang, Y. Liu, H. Farmanbar, T. Chang, M. Hong, and Z. Luo. Network Slicing

for Service-Oriented Networks Under Resource Constraints. IEEE Journal on Selected

Areas in Communications, 35(11):2512–2521, 2017.

[30] Ahmet Cihat Baktir, Atay Ozgovde, and Cem Ersoy. How Can Edge Computing Benefit

from Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE

Communications Surveys & Tutorials, 19:2359–2391, 2017.

84

[31] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets: Bringing

the Cloud to the Mobile User. In Proceedings of the Third ACM Workshop on Mobile

Cloud Computing and Services, New York, NY, USA, 2012. Association for Computing

Machinery.

[32] N. M. Gonzalez et al. Fog Computing: Data Analytics and Cloud Distributed Processing

on the Network Edges. In 35th International Conference of the Chilean Computer

Science Society (SCCC), 2016.

[33] Pengfei Hu, Sahraoui Dhelimabc, Huansheng Ningabc, and Tie Qiud. Survey on Fog

Computing: Architecture, key Technologies, Applications and Open Issues. IET Net-

works, 98:27–42, 2017.

[34] Jordan Shropshire. Extending the Cloud with Fog: Security Challenges & Opportuni-

ties. In 2014 Americas Conference on Information Systems (AMCIS), 2014.

[35] Mithun Mukherjee, Lei Shu, and Di Wang. Survey of Fog Computing: Fundamental,

Network Applications, and Research Challenges. IEEE Communications Surveys &

Tutorials, 20(3):1826–1857, 2018.

[36] N. Siasi, A. Jaesim, and N.Ghani. Deep Learning for Service Function Chain Provision-

ing in Fog Computing. In IEEE Access, Vol. 99, No.11, pages x–x.

[37] M. Aazam and E. Huh. Fog Computing: The Cloud-IoTIoE Middleware Paradigm.

IEEE Potentials, 35(3):40–44, 2016.

[38] Bo Tang, Zhen Chen, Gerald Hefferman, Tao Wei, Haibo He, and Qing Yang. A

Hierarchical Distributed Fog Computing Architecture for Big Data Analysis in Smart

Cities. In 2015 Proceedings of the ASE Big Data & Social Informatics, New York, NY,

USA, 2015. Association for Computing Machinery.

85

[39] S. Sarkar and S. Misra. Theoretical Modelling of Fog Computing: a Green Computing

Paradigm to Support IoT Applications. IET Networks, 5(2):23–29, 2016.

[40] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge Computing: Vision and Challenges.

IEEE Internet of Things Journal, 3(5):637–646, 2016.

[41] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen. Help Your Mobile Applications with Fog

Computing. In 2015 12th Annual IEEE International Conference on Sensing, Commu-

nication, and Networking - Workshops (SECON Workshops). IEEE, 2015.

[42] S. He, B. Cheng, H. Wang, X. Xiao, Y. Cao, and J. Chen. Data Security Storage

Model for Fog Computing in Large-Scale IoT Application. In 2018 IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2018.

[43] S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. Ben Hadj-Alouane, M. J. Morrow,

and P. A. Polakos. A platform as-a-service for hybrid cloud/fog environments. In IEEE

International Symposium on Local and Metropolitan Area Networks (LANMAN). IEEE,

2016.

[44] O. Bibani, C. Mouradian, S. Yangui, R. H. Glitho, W. Gaaloul, N. B. Hadj-Alouane,

M. Morrow, and P. Polakos. A Demo of IoT Healthcare Application Provisioning in

Hybrid Cloud/Fog Environment. In 2016 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). IEEE, 2016.

[45] Nardelli-M. Schulte S. et al. Skarlat, O. Optimized IoT Service Placement in the Fog.

Service Oriented Computing and Applications, 11(4):427–443, 2017.

[46] A. Yousefpour. QoS-Aware Dynamic Fog Service Provisioning. ArXiv, abs/1802.00800,

2018.

86

[47] Carla Mouradian, Somayeh Kianpisheh, and Roch Glitho. Application Component

Placement in NFV-Based Hybrid Cloud/Fog Systems. In 2018 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN), pages 25–30. IEEE,

2018.

[48] Eduardo S Gama, Roger Immich, and Luiz F Bittencourt. Towards a Multi-Tier

Fog/Cloud Architecture for Video Streaming. In 2018 IEEE/ACM International Con-

ference on Utility and Cloud Computing Companion (UCC Companion), pages 13–14.

IEEE, 2018.

[49] B. Donassolo et al. Fog Based Framework for IoT Service Provisioning. IEEE Annual

Consumer Communications & Networking Conference (CCNC), 2019.

[50] N Siasi, A Jaesim, and N Ghani. Service Function Chain Provisioning Schemes for

Multi-Layer Fog Networks. IEEE Networking Letters, 2(1):38–42, 2020.

[51] N. Siasi, A. Jaesim, and N. Ghani. Tabu Search for Efficient Service Function Chain

Provisioning in Fog Networks. In 2019 IEEE 5th International Conference on Collabo-

ration and Internet Computing (CIC), pages 145–150, 2019.

[52] Nguyen B Truong, Gyu Myoung Lee, and Yacine Ghamri-Doudane. Software Defined

Networking-based Vehicular Adhoc Network with Fog Computing. In 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), pages 1202–1207.

IEEE, 2015.

[53] R. Chaudhary, N. Kumar, and S. Zeadally. Network Service Chaining in Fog and Cloud

Computing for the 5G Environment: Data Management and Security Challenges. IEEE

Communications Magazine, 55(11):114–122, 2017.

87

[54] Denis do Rosário, Matias Artur Klafke Schimuneck, João Camargo, Jéferson Campos

Nobre, Cristiano Both, Juergen Rochol, and Mario Gerla. Service Migration from Cloud

to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support. Sensors,

18(2), 2018.

[55] Salma Matoussi, Ilhem Fajjari, Salvatore Costanzo, Nadjib Aitsaadi, and Rami Langar.

A User Centric Virtual Network Function Orchestration for Agile 5G Cloud-RAN. In

2018 IEEE International Conference on Communications (ICC). IEEE, 2018.

[56] Yu Qiu, Haijun Zhang, Keping Long, Hongjian Sun, Xuebin Li, and Victor CM Leung.

Improving Handover of 5G Networks by Network Function Virtualization and Fog com-

puting. In 2017 IEEE International Conference on Communications in China (ICCC),

Qingdao, China, pages 1–5. IEEE, 2017.

[57] Jingchu Liu, Sheng Zhou, Jie Gong, Zhisheng Niu, and Shugong Xu. Graph-Based

Framework for Flexible Baseband Function Splitting and Placement in C-RAN. In

2015 IEEE International Conference on Communications (ICC), London, UK, pages

1958–1963. IEEE, 2015.

[58] I. B. B. Harter, D. A. Schupke, M. Hoffmann, and G. Carle. Network virtualization for

Disaster Resilience of Cloud Services. IEEE Communications Magazine, 52(12):88–95,

2014.

[59] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz. A Reliability-Aware Network Service

Chain Provisioning With Delay Guarantees in NFV-Enabled Enterprise Datacenter Net-

works. IEEE Transactions on Network and Service Management, 14(3):554–568, 2017.

[60] D. Li, P. Hong, K. Xue, and J. Pei. Availability Aware VNF Deployment in Datacenter

Through Shared Redundancy and Multi-Tenancy. IEEE Transactions on Network and

Service Management, 16(4):1651–1664, 2019.

88

[61] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Francesco Paolucci, and Piero

Castoldi. OpenFlow-based Segment Protection in Ethernet Networks. IEEE/OSA Jour-

nal of Optical Communications and Networking, 5:1066–1075, 2013.

[62] C. Natalino, P. Monti, L. França, and title=Dimensioning Optical Clouds with Shared-

Path Shared-Computing (SPSC) Protection year=2015 organization=IEEE M. Furdek

and L. Wosinska and C. R. Francês and J. W. Costa, booktitle=2015 IEEE 16th Inter-

national Conference on High Performance Switching and Routing (HPSR).

[63] D. Yamada and N. Shinomiya. A Solving Method for Computing and Network Resource

Minimization Problem in Service Function Chain against Multiple VNF Failures. In

2019 IEEE Region 10 Conference (TENCON). IEEE, 2019.

[64] Abolfazl Ghazizadeh, Behzad Akbari, and Mohammad M. Tajiki. Joint Reliability-

aware and Cost Efficient Path Allocation and VNF Placement using Sharing Scheme.

ArXiv, 2019.

[65] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache. A Link Failure Recovery Al-

gorithm for Virtual Network Function chaining. In 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM). IEEE, 2017.

[66] L. Qu, M. Khabbaz, and C. Assi. Reliability-Aware Service Chaining In Carrier-Grade

Softwarized Networks. IEEE Journal on Selected Areas in Communications, 36(3):558–

573, 2018.

[67] M. T. Beck, J. F. Botero, and K. Samelin. Resilient Allocation of Service Function

Chains. In 2016 IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). IEEE, 2016.

89

[68] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S. Perennes, T. Turletti,

R. Sadykov, F. Vanderbeck, and C. Lac. Poster: Design of Survivable SDN/NFV-

Enabled Networks with Bandwidth-Optimal Failure Recovery. In 2019 The Interna-

tional Federation for Information Processing (IFIP) Networking (IFIP Networking),

pages 1–2, 2019.

[69] D Oliveira, J Crichigno, N Siasi, E Bou-Harb, and N Ghani. Joint Mapping and Routing

of Virtual Network Functions for Improved Disaster Recovery Support. In SoutheastCon

2018, pages 1–8. IEEE, April 2018.

[70] D. Oliveira, M. Pourvali, J. Crichigno, E. Bou-Harb, M. Rahouti, and N. Ghani. An

Efficient Multi-Objective Resiliency Scheme for Routing of Virtual Functions in Failure

Scenarios. In 2019 Sixth International Conference on Software Defined Systems (SDS),

pages 123–129. IEEE, 2019.

[71] N. Siasi, A. Jaesim, A. Aldalbahi, and N. Ghani. Link Failure Recovery in NFV for

5G and Beyond. In 2019 International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), pages 144–148. IEEE, 2019.

[72] Nazli Siasi, Nabeel I Sulieman, and Richard D Gitlin. Ultra-reliable NFV-based 5G Net-

works Using Diversity and Network Coding. In 2018 IEEE 19th Wireless and Microwave

Technology Conference (WAMICON), pages 1–4. IEEE, 2018.

[73] Seungik Lee and Myung-Ki Shin. A self-recovery scheme for service function chaining. In

International Conference on Information and Communication Technology Convergence

(ICTC). IEEE, 2015.

90

[74] Mohammad Mahdi Tajiki, Mohammad Shojafar, Behzad Akbari, Stefano Salsano, and

Mauro Conti. Software defined service function chaining with failure consideration for

fog computing. Concurrency and Computation: Practice and Experience, Wiley, 31,

2019.

[75] M. Tajiki, M. Shojafar, B. Akbari, S. Salsano, M. Conti, and M. Singhal. Joint Failure

Recovery, Fault Prevention, and Energy-efficient Resource Management for Real-time

SFC in Fog-supported SDN. Computer Networks, 162, 2018.

[76] M. Tajiki, M. Shojafar, B. Akbari, St. Salsano, and M. Conti. Software Defined Service

Function Chaining with Failure Consideration for Fog Computing. Concurrency and

Computation: Practice and Experience, page 4953, 2018.

[77] H. Huang and S. Guo. Proactive Failure Recovery for NFV in Distributed Edge Com-

puting. IEEE Communications Magazine, 57(5):131–137, 2019.

[78] Ryuji Oma, Shigenari Nakamura, Dilawaer Duolikun, Tomoya Enokido, and Makoto

Takizawa. Fault-Tolerant Fog Computing Models in the IoT. In Advances on P2P,

Parallel, Grid, Cloud and Internet Computing, pages 14–25, Cham, 2019. Springer In-

ternational Publishing.

[79] Umar Ozeer, Xavier Etchevers, Löıc Letondeur, François-Gaël Ottogalli, Gwen Salaün,

and Jean-Marc Vincent. Resilience of Stateful IoT Applications in a Dynamic Fog

Environment. In Proceedings of the 15th EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Services, page 332–341. Association

for Computing Machinery, 2018.

[80] Abdulaziz Alarifi, Fathi Abdelsamie, and Mohammed Amoon. A fault-Tolerant Aware

Scheduling Method for Fog-Cloud Environments. PloS one, 14(10), 2019.

91

[81] V. B. Souza, X. Masip-Bruin, E. Maŕın-Tordera, W. Ramı́rez, and S. Sánchez-López.

Proactive vs Reactive Failure Recovery Assessment in Combined Fog-to-Cloud (F2C)

systems. In 2017 IEEE 22nd International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD). IEEE, 2017.

[82] D. Satria, D. Park, and J. Minho. Recovery for Overloaded Mobile Edge Computing.

Future Generation Computer Systems, 70:138–147, 2017.

[83] Ashkan Yousefpour, Siddartha Devic, Brian Q Nguyen, Aboudy Kreidieh, Alan Liao,

Alexandre M Bayen, and Jason P Jue. Guardians of the Deep Fog: Failure-Resilient

DNN Inference from Edge to Cloud. In Proceedings of the First International Workshop

on Challenges in Artificial Intelligence and Machine Learning for Internet of Things,

pages 25–31, 2019.

[84] A. Modarresi and J. P. G. Sterbenz. Toward Resilient Networks with Fog Computing. In

2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM),

pages 1–7, 2017.

[85] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo. Adaptive and Fault-Tolerant Data

Processing in Healthcare IoT Based on Fog Computing. IEEE Transactions on Network

Science and Engineering, 7(1):263–273, 2020.

[86] Feng Xu, Tamal Das, Min Peng, and Nasir Ghani. Evaluation of Post-Fault Restoration

Strategies in Multi-Domain Networks. Optical Switching and Networking, 9(2):147–155,

2012.

92

Appendix A: Glossary of Terms

5G : Fifth generation

BBU : Baseband unit

CPU : Central processing unit

COTS : Commercial-off-the-shelf

DM : Delay minimization

DM-P : Delay minimization protection

DNS : Domain name service

ETSI : European Telecommunications Standards Institute

F-AP : Fog access point

FF-DM : First-fit delay minimization

FF-DM-P : First-fit delay minimization protection

FF-LM : First-fit load minimization

FF-LM : First-fit load minimization protection

ILP : Integer linear programming

IoT : Internet of things

93

IP : Internet Protocol

LM : Load minimization

LM-P : Load minimization protection

MANO : Management and network orchestration

MILP : Mixed integer linear programming

MIQCP : Mixed-integer quadratically constrained program

ML : Machine learning

NAT : Network address translation

NC : Network controller

NFV : Network function virtualization

NFVI : Network function virtualization infrastructure

OTA : Over-the-air

PaaS : Platform as-a-service

PGW : Packet data gateway

QoS : Quality of service

RAN : Radio access network

RRH : Remote radio head

SDN : Software defined network

SFC : Service function chain

94

SFR : Service function request

SFI : Service function instance

SGW : Servicing gateway

SRLG : Shared risk link group

TS : Tabu search

VANET : Vehicular adhoc network

VM : Virtual machine

VNE : Virtual network embedding

VNF : Virtual network function

VNFM : Virtual network function manager

WAN : Wireless local network

95

Appendix B: Variable Definitions

A list of all variable definitions used in this thesis dissertation is presented.

B.1 Chapter 3

br : Bandwidth request for request xr

Bij
kl : Maximum bandwidth of link eijkl

cij : Free available capacity of j-th fog node in Layer i

cost(xr) : Cost of mapping request xr

Ci
j : Maximum resource level of j-th fog node in Layer i

dstr : Closest primary fog node to Layer 1 destination terminal

Dprc : VNF processing delays at mapped nodes

Dcom : Communication delays in vector path

eijkl : Link between the k-th node in Layer i and l-th node in Layer j

E : Set of network communication links

E
′

: Set of pruned links with insufficient resources

fm : VNF instance

F : Set of VNFs

96

Fr : Ordered set of requested functions in service chain for request xr

G : Multi-layer graph

G
′

: Temporary feasible graph

K : Number of shortest paths

Lnode : Aggregate node load

Llink : Aggregate link load

N : Set of network (fog, cloud) nodes

N
′

: Set of pruned nodes with insufficient resources

ni
j : j-th node at Layer i

∆m
ij : Processing delay for running VNF fm at node ni

j

O(·) : Computational complexity order

Pm : Resource requirement for VNF fm

χi
j : Unit resource usage cost at node ni

j

srcr : Closest primary fog node to requesting Layer 1 source terminal

T : Total number of different VNF types

P : Set of path vectors (up to K in total)

ps : Individual path vector containing path nodes and links

Q : Number of mapping combinations of VNFs on path nodes

ut : t-th combination vector

97

umt : Position of m-th VNF mapping in t-th path combination vector, ut

vt : Mapping vector of 2-tuple pairs noting mapped path nodes for each VNF

xr : Single SFC request/demand

Xin : Set of input batch SFC requests

X
′

: Sorted set of batch SFC requests (ordered based on bandwidth or VNF resources)

χi
j : Unit resource usage cost at node ni

j

Φ(·) : Combination generating function

Γij
kl : Unit bandwidth usage cost at link eijkl

δr : Delay bound threshold for request r

B.2 Chapter 4

L : Path length

Q : Set of node/link-disjoint paths for each path in P

Q1 : Number of mapping combinations of VNFs on primary path nodes

Q2 : Number of mapping combinations of VNFs on backup path nodes

ut : t-th combination vector for primary (working) path

umt : Position of m-th VNF mapping in t-th primary path combination vector, ut

vt : Mapping vector of 2-tuple pairs noting mapped primary path nodes for each VNF

yt : t-th combination vector for backup path

98

ymt : Position of m-th VNF mapping in t-th backup path combination vector, yt

wt : Mapping vector of 2-tuple pairs noting mapped backup path nodes for each VNF

B.3 Chapter 5

E
′′

: Set of non-failed links (after removing failed links in E)

G
′′

: Working graph (with failed nodes and links pruned)

N
′′

: Set of non-failed nodes (after removing failed nodes in N)

Xsuccess : Set of successfully-provisioned requests from input batch Xin

Xfail : Set of failed SFC demands in Xsuccess

X
′

fail : Ordered set of failed SFC demands in Xsuccess

Xrest : Set of successfully-restored SFC demands from Xfail

x
′

: Temporary SFC request (end-to-end or intermediate)

n− : Failed node

dst
′
r : Anterior embedding node to failed node n−

src
′
r : Anterior embedding node to failed node n−

99

Appendix C: Copyright Permissions

The permission below is for the use of Figures 2.2, 2.3 and 2.4.

100

101

102

103

104

105

106

About the Author

Nazli Siasi received her Bachelor and Masters degrees in Information Technology Engineering

from Tabriz University of Technology and Tehran Polytechnic University of Technology in

2011 and 2014, respectively. Subsequently she spent several years working in industry before

starting her graduate studies in the Department of Electrical Engineering at the University of

South Florida under the supervision of Prof. N. Ghani (in 2017). Here she first completed her

M.S. degree with focus on Systems & Security and then proceeded to complete her doctoral

studies. Furthermore she also did an internship at Cisco (San Jose, CA) in the summer of

2018 and received both the Ali Sharifi Scholarship and a National Science Foundation (NSF)

Student Travel Award in 2019. Her research interests include cloud and fog computing,

network virtualization, software defined networks, wireless 5G networks, cybersecurity, and

machine learning.

	Network Function Virtualization In Fog Networks
	Scholar Commons Citation

	tmp.1637388722.pdf.8t037

