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An important aspect of good management of inventory for many single-use populations or stockpiles is to develop an informed
consumption strategy to use a collection of single-use units, with varied reliability as a function of age, during scheduled operations.
We present a two-phase approach to balance multiple objectives for a consumption strategy to ensure good performance on the
average reliability, consistency of unit reliability over time, and least uncertainty of the reliability estimates. In the first phase, a
representative subset of units is selected to explore the impact of using units at different time points on reliability performance
and to identify beneficial consumption patterns using a nondominated sorting genetic algorithm based on multiple objectives. In
the second phase, the results from the first phase are projected back to the full stockpile as a starting point for determining best
consumption strategies that emphasize the priorities of the manager. The method can be generalized to other criteria of interest
and management optimization strategies. The method is illustrated with an example that shares characteristics with some munition
stockpiles and demonstrates the substantial advantages of the two-phase approach on the quality of solutions and efficiency of

finding them.

1. Introduction

With increasing constraints on resources and budget, there
are more decision-making situations that involve balancing
of multiple objectives or criteria [1-7]. Pareto frontiers [8-
12] have become a popular tool to simultaneously optimize
multiple objectives. This approach aims to assemble a set of
contending solutions by eliminating poor choices that are
strictly inferior to others. It is advantageous in two ways: first,
it allows us to see an objective full set of competing choices
before considering the subjective aspects of the decision;
second, it effectively reduces the candidate solutions to a
smaller subset so that solutions robust to subjective choices
that affect the final decision can be evaluated more carefully
to support a coherent defensible final decision.

In recent years, strategies [13-17] that encourage sepa-
rate and transparent considerations of objective and sub-
jective aspects of a complex decision have been devel-
oped. Particularly, the Design-Measure-Reduce-Combine-
Select (DMRCS) approach [13] offers more rigor and struc-
ture to guide the often messy and complicated decision-
making process. After specifying the goals of the study with
their appropriate metrics in the Define and Measure steps, the
Pareto front approach is used in the Reduce step to allow us
to identify the set of objectively superior solutions. Then user
priorities are incorporated in the Combine and Select steps to
understand the trade-offs and impacts of subjective weighting
and scaling choices through a suite of graphical summaries
[14-17] and guide the user to make sensible and justifiable
decisions that are tailored to the study goals.
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In many applications, the complete enumeration and
evaluation of all the possible solutions is practically infea-
sible. Direct Pareto optimization can also be unduly time-
consuming for a large population, given the number of
solutions to be evaluated, as well as the computational
intensity of evaluating solutions when some complex criteria
are calculated. Thus, a numerical search algorithm is often
needed to generate desirable solutions in a timely manner.
Genetic algorithms (GAs), also called evolutionary algorithm
(EAs) [18-20], are popular methods for finding the Pareto
front based on multiple objectives. GAs are a family of heuris-
tic optimization techniques that mimic the evolutionary
process for optimizing objective functions of interest. At each
evolving generation, solutions in the current population and
a set of new solutions generated by crossover and mutation
operations compete to survive in the next generation.

There are generally two ways that a GA can be used to
optimize multiple objectives simultaneously. One approach
is to guide the GA search based on optimizing a combined
objective function using the desirability function approach
[21]. The Pareto front can be populated along the GA search
process. The drawback to such an approach is that it generally
relies on subjective choices made by the user before the
search, such as the scaling of the criteria and the relative
weights or priority given to each objective. To mitigate this
issue, multiple GAs can be run using different weighting and
scaling choices to maximally populate the front and avoid
local optimization based subjective user choices [17]. How-
ever, sometimes this comes with an unnecessarily increase
in run time because the multiple parallel GA searches can
result in the repeated evaluation of the same solution many
times.

Another approach is to use a class of evolutionary
algorithms specifically designed to simultaneously optimize
multiple criteria to identify the Pareto front. At the end of
each generation, the best available set of solutions that simul-
taneously optimize different prioritizations of the criteria are
obtained. One such algorithm is the fast and elitist nondom-
inated sorting genetic algorithm (NSGA-II) [22]. NSGA-II is
an improvement upon the previous nondominated sorting
algorithm, NSGA, which was one of the first evolutionary
algorithms for simultaneously optimizing multiple objectives
[23]. The major criticisms of NSGA, which have all been
addressed by NSGA-II, were the computational complexity
of the nondominated sorting algorithm, its lack of elitism,
and the need for users to specify additional parameters [22].
The two key elements of NSGA-II are that (1) it sorts the
population of solutions into tiers of nondominated solutions
and (2) within a tier, solutions are ranked according to their
crowding distance to promote a diverse set of solutions across
all portions of the PF [22].

However, some of the computational challenges for pop-
ulating a rich Pareto front relate to the potentially large
solution space and/or the large number of objectives. This
has substantially influenced its application to even broader
areas of problems. In this paper, we propose a new two-
phase optimization process to accelerate the search for a
Pareto front over a large solution space. In the first phase,
a representative subpopulation is selected to explore the
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general features of the set of superior solutions. In the second
phase, the main features of the more promising solutions
found in Phase I are matched back to the original population
to form more informative starting points for an accelerated
search for the full Pareto front in the full population. The
new method is illustrated with a stockpile management
example, which aims to management a collection of single-
use units to ensure good performance on several reliability
characteristics including average reliability, consistency of
unit reliability over time, and uncertainty of the reliability
estimates. The method demonstrates improvements on both
the quality of solutions and computational efficiency of the
search algorithm. The NSGA-II algorithm is adapted for
this stockpile management application by optimizing several
reliability-based characteristics, and it is further enhanced by
using an adaptive population size [24] to allow more efficient
population of the rich Pareto front.

The remainder of the paper is organized as follows.
Section 2 provides more details about the problem, data,
and the basic statistical modelling and data analysis for
the stockpile management application. Section 3 details the
methods for the general genetic search algorithm and its
two-phase implementation for enhancing computational effi-
ciency. Section 4 demonstrates the application of the method
to the stockpile example. Section 5 offers some conclusions
and more insights on implementation for other applica-
tions.

2. Application

For many stockpiles or populations of single-use units whose
reliability degrade with age, the characteristics of the different
individual units vary as units were added to the stockpile at
different times and their reliability when used differ as units
are consumed at different times. Hence, deciding what order
to use the units can make an important difference to their
overall performance and impact the utility of the stockpile.
We consider a scenario where N = 200 units with different
ages are available in the stockpile and have different estimated
reliability. While the original Department of Defense data
cannot be shared for proprietary reasons, this example shares
characteristics with many stockpile management scenarios.
The data sets for this example are included in Tables 1 and
2. The units are planned to be used in scheduled operations
at the end of each year for four years at a rate of 50 units per
year, and the goal is to find a best strategy to use all of the units
to achieve good performance on several aspects of reliability.
For the practitioners, obtaining a timely solution with solid
performance on several metrics of interest represents a sub-
stantial improvement over current practice where haphazard
samples are used with unpredictable reliability performance.

To estimate the reliability, a sample of 227 units (sum-
marized in Table 1) from the same stockpile as the 200 units
(shown in Table 2) were previously destructively tested with
a pass or failure observed for each tested unit. The units were
at different ages when they were tested. The reliability was
estimated by fitting a Probit regression model [25] where
the binary response (pass or failure) is assumed to follow a
Bernoulli distribution, Y; ~ Binomial(1,R;), and R; is the
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TaBLE 1: The data table for the 227 sample units used for estimating the reliability. The listed values are the age of the unit at the testing time
(measured in months) with the 34 units that failed bolded and listed in the first two columns. The remaining unbolded entries are the ages

for units that passed.

Age

0 66.7 0 0 0 0 0 0 0 4.9 40.7 65.5 68 78.8
0 67.4 0 0 0 0 0 0 0 4.9 43.6 65.7 68 81.8
0 67.5 0 0 0 0 0 0 0 4.9 473 66.1 68 83.6
0 67.7 0 0 0 0 0 0 0 14.5 479 66.1 713 83.7
0 67.8 0 0 0 0 0 0 0 15.3 48 66.3 71.7 83.8
0 68 0 0 0 0 0 0 0 18.2 48.4 66.7 71.8 89.5
0 71.5 0 0 0 0 0 0 2.1 19.3 50.1 66.9 72.7

4.8 71.7 0 0 0 0 0 0 2.1 22.9 50.4 67 72.9

11.7 73.1 0 0 0 0 0 0 2.4 23.8 50.5 67 73

31.6 75.7 0 0 0 0 0 0 2.4 26.9 52.4 67.3 73.1

31.6 75.9 0 0 0 0 0 0 2.4 29.5 54.4 67.4 73.1

36.5 77.6 0 0 0 0 0 0 2.4 29.6 55.1 67.5 73.1

47.9 78.3 0 0 0 0 0 0 2.5 31.6 65 67.5 73.8

55.1 78.6 0 0 0 0 0 0 2.7 323 65.1 67.5 74.1

59.5 81.9 0 0 0 0 0 0 3.2 323 65.1 67.7 77.6

64.9 82.1 0 0 0 0 0 0 3.2 33.6 65.2 67.8 777

65 87.8 0 0 0 0 0 0 4.7 36.5 65.5 67.9 78.6

TaBLE 2: The ages of the 200 units from the current population to be consumed.

24.6 68.4 44.8 82.5 479 20.7 51.0 86.5 32.6 51.3
56.9 54.6 70.9 54.4 53.0 673 66.2 91.5 971 18.1
87.7 60.8 279 74.9 32.5 64.4 79.3 66.3 38.0 38.5
88.6 85.5 42.4 22.4 39.3 30.0 97.3 53.8 671 72.9
46.0 50.0 80.5 53.7 68.0 52.9 80.3 66.1 98.7 20.5
78.8 36.0 76.6 89.1 54.7 30.4 16.6 25.9 87.2 80.2
68.1 19.0 49.4 61.4 28.6 67.2 69.1 20.3 37.7 92.5
351 58.8 19.4 84.9 30.9 88.7 39.9 721 81.5 91.9
80.4 355 46.2 29.1 30.3 88.7 90.8 52.6 19.8 74.7
88.3 76.6 77.0 23.9 69.5 59.0 671 60.2 95.2 571
90.3 57.7 68.7 29.4 49.7 83.4 62.9 42.7 61.4 20.8
20.6 673 78.6 19.4 615 18.9 26.5 69.7 90.9 80.4
715 92.4 93.5 82.9 17.8 63.4 45.2 39.1 83.4 49.5
52.2 38.2 56.5 86.1 60.0 64.7 34.8 45.4 25.7 58.2
31.2 29.3 19.0 921 69.6 94.1 67.8 98.0 21.3 39.1
32.7 391 73.6 88.9 98.8 48.8 71.8 23.2 96.3 74.0
95.9 73.8 96.2 374 84.8 68.5 73.4 59.3 73.6 73.7
93.1 15.2 74.1 87.8 777 313 32.7 32.2 49.3 36.5
60.0 22.1 95.6 31.9 91.2 23.4 86.8 74.5 20.8 83.5
24.0 18.7 99.5 70.4 39.5 23.9 30.1 39.7 53.4 28.1

probability of observing a pass, which is dependent on the
age of the unit (denoted by A;) as given by

R =@ (By+BiA;). (1)

The @ in Eq. (1) is the standard normal cumulative dis-
tribution function, and f3,, 3; are the unknown coeflicient
parameters. Bayesian analysis [26, 27] was used to esti-
mate the model parameters with diffuse prior distributions,
Bo» 1 ~ Uniform(—1000,1000), assumed for the coeflicient

parameters. Markov Chain Monte Carlo (MCMC) simulation
was used to approximate the posterior distribution of the
model parameters given the observed data. The reliability of
any unit from the stockpile can be predicted from Eq. (1)
using the age of the unit at its use time.

Figure 1 shows the histogram for the current age distribu-
tion for the 200 units in the stockpile, as well as the estimated
reliability of units across the range of anticipated ages when
they will be consumed. From Figure 1(a), we can see that
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FIGURE 1: (a) Current age distribution for the stockpile of 200 units to be used; (b) Summary of posterior reliability distribution as a function

of the age of the unit.

the current age of the units in the stockpile ranges from 15
to 100 months, and the age distribution is relatively close
to a uniform distribution. The estimated reliability curve in
Figure 1(b) shows the posterior mean, median, and 5% and
95% quantiles of the posterior distribution of the reliability as
a function of the age of the unit. From the plot, we can obtain
the estimated reliability for any unit in the current stockpile
when it is consumed. For example, if a unit is currently 20
months old, then a year from now the unit will be 32 months
old and its reliability is predicted to be between 0.8 and 0.9
with a 90% probability.

Given the current age distribution and the reliability
curve as a function of age, we can calculate the age of the units
at their scheduled use time and then predict the reliability
of the units and its uncertainty for any consumption strategy
(where a strategy describes the order to use the units during
scheduled operations). With this information, we can then
summarize the overall performance of the strategy based
on some chosen metrics to evaluate and compare strategies.
Three aspects of the reliability performance are of interest to
the stockpile manager including the overall average reliability
of all units at their use times, the consistency of performance
for the collection of units used in different time intervals, and
the precision of the estimated reliability. The goal is to find a
best strategy to simultaneously optimize all three objectives
given current understanding of the stockpile.

Matching the Define and Measure steps in the DMRCS
(Define-Measure-Reduce-Compare-Select) [13] process, we
convert the general goals for the optimization into quanti-
tative metrics that are calculated and compared for possible
consumption strategies. Since the reliability of the units has
been estimated from previous testing, it is important to
incorporate the uncertainty associated with the estimated
reliability into the assessment of different strategies. Let R;;
denote the probability that the jth unit works properly if it
is used at the end of the ith year, where i = 1,...,4 and

j = 1,...,m; = 50. For a stockpile manager, the quantity

of main interest is not the individual reliability R;; but the
success rate of all 50 units used in each time interval, which
can be estimated with the average reliability of the 50 units
as R, = (1/50) Z?gl R;;. Then the reliability characteristics
of most interest can be quantified as follows. The overall
reliability is calculated by the average reliability summarized
over the four years, R = (1/4) Z?:I R;. The consistency over
time can be measured by the standard deviation of the success

rates over the four years, i.e. SD(R;) = \/ (1/3) Z?ZI(R,- - R)2.
The overall uncertainty of the estimated reliability can be
quantified by s(R) = Y+, s(R;), where R; = (1/50) Z?Sl ﬁij
is the estimated success rate at the end of ith year, and s(R,)

is the posterior standard deviation of R; calculated from
the MCMC simulation. In the MCMC simulation in the
Bayesian analysis, we generate M = 3000 draws of parameters
to approximate the posterior distribution after the burn-in
runs; we use a superscript “B” to denote Bayesian estimates
computed using the posterior draws. Let ﬁgk denote the

estimate of R;; using the k' draw (k = 1,..., M) of the model
parameters given by ﬁgk = d)([j’g,k + ,BEkAij), where A;; is

the age of the unit j when it is used at the end of the i
year and Eg o Ef arethe k™ posterior draws of the coefficient
parameters. Then R}; = (1/50) Z;’-gl ng is the estimate of the
expected success rate R, using the k™ posterior draw from
MCMC. The posterior mean ﬁf =(1/M) Zkle ﬁﬁc can give a
point estimate of R; and its uncertainty can be estimated by
S(RP) = \(1/(M ~ 1)) ¥21 (RE ~ RE)2. The three objectives
for reliability on which consumption strategies are compared
can be calculated using the following metrics:

Overall average reliability (maximize): R = ZIAIB (2)
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FIGURE 2: Typical consumption strategies: (1) Youngest first (always
uses youngest units at any time until all units are consumed), (2)
oldest first (always uses oldest units), and (3) SRS (selects a simple
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The previous practice before our study was to choose the
units to use haphazardly from the stockpile, which sometimes
yielded disappointing and unpredictable results. To gain a
quick understanding about how using units at different times
affects their reliability, we examine three simple strategies
that practitioners might consider. Figure 2 shows the current
age distribution for three possible usage strategies, where
different colors are used to display the year in which each unit
it used (dark purple = Year 1; light purple = Year 2; dark green
= Year 3; light green = Year 4). The circles are jittered vertically
to better display all the units with similar ages. The three
strategies considered include (1) the youngest first strategy,
where the youngest available units in the stockpile are always
used first in each time interval; (2) the oldest first strategy,
where the oldest available units in the stockpile are used first;
(3) the simple random sampling (SRS) strategy, which selects
an unstratified random sample of units to use in each time
interval, which results in the ages of units used to be in each
time period to be approximately evenly spread across the age
distribution. It is difficult to match any of these strategies
to the haphazard strategy, since the storage of the units can
induce particular patterns and may lead to results that are
similar to any of the above strategies.

Figure 3 compares the reliability performance over the
four years for these three strategies. For each strategy shown
in a subfigure of Figure 3, the black dots are the posterior

mean estimates of reliability for individual units at their use
times (ﬁg). The dashed line connects the posterior mean
estimates of the expected success rate of the 50 units used at
the end of each year, IAQf , which is equivalent to the average
reliability of the units used in each time interval. The vertical
intervals (with the dashed lines) display the 90% credible
interval of the expected success rates over the four years,
which are bounded by the 5% and 95% quantiles of the
empirical posterior distribution of R’

We can see that the youngest first strategy starts with
the highest success rate with the most precision, but that
decreases quickly over time with increasing uncertainty. By
leaving the oldest units to be used at the end, reliability
drops even faster and its uncertainty grows much faster
for units older than 70 months (see the reliability curve in
Figure 1(b)). The oldest first strategy starts with the lowest
success rate, but this rate increases over time because the
aging of the units is offset by leaving the youngest units to
be used at the end. It also has more uncertainty in early
years which reduces gradually over time. The SRS strategy
has more variable individual reliability within each time
interval, but the estimated success rate is between those
of the other two strategies. The success rate decreases over
time, mainly due to the natural aging of the units. The
uncertainty also increases over time due to the aging of the
stockpile. In comparison, the youngest first strategy has the
lowest average reliability, while the oldest first strategy has
the highest average reliability. Also, the oldest first strategy
has the most consistent performance over the four years,
while the youngest first strategy has the least consistency over
time. The SRS strategy has the smallest overall uncertainty
among the three strategies. Therefore, none of these strategies
has universally best performance over all aspects. To select a
best strategy, we need to balance the trade-offs between the
multiple aspects of reliability performance to make a decision
tailored to the needs of the stockpile manager.

To simultaneously optimize the multiple reliability objec-
tives given in Equations (2)-(4), we use a Pareto front
approach with the DMRCS procedure to guide the structured
decision-making process. After specifying the goals of the
study with their appropriate metrics in the Define and
Measure steps, the Pareto front approach from the Reduce
step allows us to identify the set of objectively superior
solutions (consumption strategies, in our application). To
find the Pareto front, a customized search algorithm is needed
when there is not a complete enumerated list of all possible
solutions available. Genetic algorithms are often used to
search through a large solution space to find optimal solutions
for multiple objective optimization problems. Particularly,
the NSGA-II, is a leading search algorithm for multiple
objective optimization. However, with all of the advantages
of finding the complete Pareto front, the search for the front
is time consuming relative to optimizing on a single overall
summary built upon the multiple objectives. For even this
moderate sized stockpile of 200 units, there are an enormous
number of strategies to choose from (%0) (L) (W) =
200!/(501)* = 10", Given the size of the solution space, a
genetic algorithm to search directly over the entire solution
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FIGURE 3: Reliability over time of typical consumption strategies. The dots represent the estimated reliability for individual units used at the
end of each year. The dashed curve shows the posterior mean estimate of the expected success rate (i.e., average reliability of 50 units used in
each time interval) over the four years. The vertical intervals in red show the 90% credible interval of the expected success rate for each year.

space can be time consuming and could require multiple long
runs of GA searches to obtain an adequately populated front.
Considering that swapping times of use for any individual
units of similar ages is unlikely to yield a large difference in the
overall reliability performance quantified in Equations (2)-
(4), the search algorithm to find the best strategies can be
accelerated by sacrificing a bit of accuracy in an early phase to
seek the general patterns associated with leading candidates
rather than searching through every single possible candidate
solution. To make the problem tractable and improve the
likelihood of finding the best possible solutions, a more
efficient search can be conducted as a two-phase process.
In the first phase, a quicker search among a subset of
representative units can provide a broader assessment of the
more promising candidates. Then in the second phase, the
general features of the identified solutions for the subset
can be projected back to the full stockpile to obtain a
collection of promising solutions, which can then serve as
good starting points to accelerate the search over the entire
solution space for the full stockpile. This approach of finding
general patterns for the best performance on a representative
miniature version of the problem is powerful for accelerating
the time needed to obtain good solutions, and dramatically
increases the likelihood of not getting trapped at local optima
and missing the true Pareto front.

lead to a suboptimal choice, if a structured process were not
followed. In the “Reduce” step of the DMRCS process [13],
eliminating some potential solutions based on their objective
inferiority to other solutions can result in significantly fewer
choices that need to be considered. Once the number of
contending solutions has been reduced to a more manageable
quantity, decision-makers can then incorporate their tailored
priorities in the “Combine” and “Select” steps to further
narrow down the possibilities to a single, defensible choice.
In this section we primarily focus on how to “Reduce” the
number of solutions to be considered by using a genetic
algorithm paired with the Pareto front approach to decision-
making.

3.1. General Nondominated Sorting Genetic Algorithm. Evo-
lutionary computation describes the broad class of numer-
ical optimization techniques and algorithms based on the
Darwinian principle of natural selection, or “survival of the
fittest” [20]. While a variety of approaches to evolutionary
computation exist, the common thread of these algorithms
and techniques is that they mimic evolution by maintaining a
population of “solutions” that compete to survive and repro-
duce. Such algorithms are typically run for many generations,
with each generation being incrementally better, or more fit
than the previous generation, until an acceptable solution is
reached.

In each generation of the algorithm, every solution has an
inherent “fitness” that impacts the likelihood it is chosen to
create new solutions for the next generation. New solutions
are created via the operations of recombination (sometimes
referred to a crossover) and mutation. Recombination is often

3. Methods

In this application, there are a large number of possible
consumption strategies and selecting a single strategy from
those possibilities could be overwhelming, and would likely



Complexity

considered a multiparent operation while mutation is usually
a single parent operation. In general, the purpose of these two
operations depends on the type of evolutionary algorithm
being implemented. For our purposes, recombination is used
to preserve the desirable features of two existing solutions
by merging those solutions into a new solution [20], while
mutation is used to inject “fresh blood” into the population
by randomly generating a slight modification of an existing
solution to maintain population diversity [20]. Intuitively,
we can think of recombination as incrementally moving the
population forward while mutation allows it to occasionally
branch out and explore other directions. At the end of a
generation, it is determined which solutions should survive
to the next generation. Again, there are numerous ways
in which this could be implemented; we prefer an elitist
strategy in which offspring solutions compete against their
parent solutions for survival into the next generation—this
ensures that each generation is at least as “fit” as the previous
generation [20].

This cycle of fitness evaluation, reproduction, and sur-
vival is continued until some termination criterion is
achieved. Eiben and Smith [20] describe two typical strate-
gies to determine when an evolutionary algorithm should
terminate. In cases where the optimal value is known, the
algorithm could terminate once the objective function being
optimized is within a tolerable threshold, € > 0, of that
known value. Even if the optimal value is known, there is no
guarantee that the algorithm with converge upon that value.
Further, there are likely to be many situations in which the
optimal value is unknown. Thus, this termination strategy
could be modified slightly so that the algorithm stops when
incremental improvements in the objective function remain
below a pre-specified threshold, § > 0, for a certain number
of generations. Another reasonable strategy is to terminate
the algorithm after a pre-specified amount of time, which
could be defined by elapsed processing time, a fixed number
of function evaluations, or a fixed number of generations [20].

There are two main ways that an evolutionary algorithm
can be used to solve multiobjective optimization problems.
One approach is to combine all criteria into a single objective,
such as a desirability function [21], to be optimized by the
evolutionary algorithm. To limit the impacts of subjective
weighting and scaling choices on the search, multiple evo-
lutionary algorithms are often run using different subjective
choices to explore robustness of results across different
subjective choices. However, this often comes with the cost of
repetitively evaluating the same solutions in searches directed
with different subjective choices.

The other approach is to use a class of evolutionary
algorithms designed to simultaneously optimize all criteria
under consideration, often by identifying the Pareto front. At
the end of each generation, the best available set of solutions
that simultaneously optimize different prioritizations of the
criteria are obtained. One such algorithm is the fast and
elitist nondominated sorting genetic algorithm (NSGA-II)
[22]. NSGA-II is an improvement upon the previous non-
dominated sorting algorithm, NSGA. The reduced computa-
tional complexity of NSGA-II is achieved with the following
nondominated sorting algorithm. For each solution S in the

current population, two quantities are calculated: (1) the
number of solutions that dominate S (domination count) and
(2) a list of all solutions dominated by S. All solutions that
have a domination count of 0 are nondominated and hence
on the first tier Pareto front. After each solution has been
assigned a domination count and the solutions it dominates
have been determined, the algorithm loops through the
solutions on the first tier PE. For each solution S on the
first tier PE, the solutions it dominates are considered; each
solution dominated by S has its domination count reduced
by one; if it’s new domination count is 0, then that solution is
on the second tier PF. This process is repeated for all solutions
on the lower tier PFs.

Once the population of solutions is sorted into tiers
of PFs, NSGA-II ranks solutions on a given tier according
to their crowding distance [22], where solutions further
separated from others are valued for the diversity they bring
to the algorithm. The crowding distance measures how far
a solution’s criteria values are from those of other solutions,
with solutions that are farther from others assigned a larger
crowding distance and a higher rank. The overall crowding
distance for a solution is computed as the sum of crowding
distances for the individual criteria. To compute the crowding
distance for a single criterion, the observed criterion values
are sorted from smallest to largest. The minimum and
maximum observed values are assigned an infinite crowding
distance. For all other values of the criterion, the crowding
distance assigned to a specific value is computed by taking
the range of values immediately flanking that value and
scaling that according to the range of the criterion. Once the
crowding distances have been computed for each criterion
separately, the overall crowding distance for a solution is
determined as the sum of that solution’s crowding distances
for all criteria.

Putting these key elements together, the general NSGA-
IT has five steps. Some details specific to our implementation
of NSGA-II, which match the presentation of the NSGA-II
steps, are provided below:

(1) Generate an initial population of size popsize. This
initial population can be randomly generated, or
utilize starting points strategically chosen by the user.
Details about how solutions are represented in our
implementation immediately follow the outline of
NSGA-II. In Section 3.2 we discuss how random
points are used to initialize the Phase I GA search
while Phase IT uses starting points strategically chosen
based on the results of the Phase I search.

(2) Rank solutions based on (a) which tier PF they
are on and (b) their crowding distance. Deb et al.
[22] note that solutions on a higher tier PF (i.e.,
lower domination count) are preferred, but given two
solutions on the same tier, a larger crowding distance
(i.e., higher rank) is preferred to maintain population
diversity.

(3) Create a fixed number of offspring via recombination
and mutation. Details regarding our specific imple-
mentation of recombination and mutation follow the
outline of NSGA-II.
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FIGURE 4: Representation of sample solutions, sorted by unit ID, for N = 40 and »; = 10. (Top) Construction of a recombination solution from
two randomly selected parent solutions (Bottom) Construction of a mutation solution. The coloring of each unit indicates the time period in
which the solution assigns the unit to be used (dark purple = Year I; light purple = Year 2; dark green = Year 3; and light green = Year 4).

(4) Combine parents and offspring into a single popu-
lation, rank solutions based on (2a) and (2b) above,
and the top popsize solutions move on to the next
generation.

(5) Repeat Steps (3) and (4) for a specified number of gen-
erations. For both phases of the search (Section 3.2),
we use 200 generations in our implementation; the
impact of that choice is explored in the Supplemen-
tary Materials (available here).

In our application, the units in the stockpile are to be used
over a period of four years. We assume that the units in the
stockpile have a unique ID number from1to N = Z?:I n; =
200. In our implementation of NSGA-II, we represent a
solution as a permutation of the unit IDs with the first »,
units in the permutation being assigned to Year 1, the next
n, used in Year 2, and so on. Figure 4 illustrates some sample
solutions sorted by their ID number, where different colors
are used to indicate assignment to the different time period
(dark purple = Year 1; light purple = Year 2; dark green = Year
3; and light green = Year 4); for ease of representation, N =
40 units are used in Figure 4, with »; = 10 units used per time
period.

To create a single recombination solution in our imple-
mentation of NSGA-II, we randomly select two parents from
the population of solutions, with a probability inversely
proportional to their rank so that those with higher ranks are
more likely to be chosen [20]. Once two parents have been
selected, their offspring solution is formed by considering
each unit and randomly deciding which parents assigned
usage year for that unit will be used in the offspring solution as
seen in Figure 4. In the example in Figure 4, Parent Solution 1
uses the first unit in Year 3 (dark green) while Parent Solution
2 uses the first unit in Year 1 (dark purple); to create the
offspring solution, we randomly decide in which of these
two years the offspring solution should use the first unit, in
this example it was Year 1. This process is repeated for each

additional unit in the solution. In the event that this random
recombination results in an excess number of units assigned
to one or more years (and thus one or more of the other time
periods have a deficit), units are randomly selected from a
year with the overage and allocated to a year with a shortage.
In the example Offspring solution from Figure 4, Year 1 has
an overage, with 11 units assigned to it, while the Year 2 has
a shortage, with nine units. Thus, to finalize this offspring
solution the shortages and overages need to be addressed; in
this example, this would be resolved by randomly selecting
one unit assigned to be used during Year 1 and instead
designating it to be used in Year 2. To mutate a single parent
solution from the population in our implementation, the
usage periods for two randomly selected units assigned to
different years are swapped as seen in Figure 4, where the
years assigned to units 10 and 13 in the parent solution are
swapped in the offspring solution.

In a single run of NSGA-II, the solutions in the population
with a nondomination count of 0 form the Pareto front. In
our implementation, we use multiple parallel runs of the
algorithm to ensure good exploration of the solution space.
The final populations from each run are combined together
and the final Pareto front (PF) is identified.

We further modify NSGA-II by implementing adaptive
population sizing [24]. When random starting points are used
to initialize a multiobjective evolutionary algorithm, many
of the solutions initially considered are far from optimal
in the early generations of the algorithm. For instance, if
randomly generated solutions are used to initialize NSGA-
I1, it is highly likely that only a relatively small number of
those solutions would be on the first tier PE. With a fixed
population size, this would mean that solutions on lower
tier PFs would potentially be used to generate offspring
solutions for the next generation, resulting in offspring that
likely continue to be inferior. Thus, computation time would
be wasted by evaluating these inferior solutions. Instead of
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using a fixed population size, adaptive population sizing
dynamically grows the population based on user specified
parameters and the size of the first tier PF [24]. The benefits of
adaptive population sizing include faster convergence of the
algorithm with reduced computational effort [24]. Similarly,
the number of offspring solutions produced each generation
can be determined dynamically.

To modify a multiobjective evolutionary algorithm to
employ adaptive population sizing, the user specifies a max-
imum population size (maxpop) and maximum number of
offspring (maxoff) to be created. To initialize the algorithm,
popsize = maxpop solutions would be randomly generated.
The nondominated sorting algorithm would be used to
determine which solutions are on the first tier PF (PF,).
The number of offspring noff, solutions to be created in
Generation g is then dynamically determined as

noff, = min {cg + [dg X |(PP1)gH ,maxoff} . (5

Here c, represents the minimum number of offspring solu-
tions to be created in Generation g, while d represents the
rate at which the number of offspring created in Generation g
grows as the number of solutions on the first tier PF grows. It
is possible that ¢, and d, change over generations. We prefer
d, to be a even value so that an even number of offspring are
created each generation, with half created via recombination
and half via mutation. In our implementation, we use ¢, = 20
andd, = 2. Thus, each generation a minimum of 20 offspring
solutions are created, and for every solution on the first tier
PE, two additional offspring solutions are created.

If at the end of Generation g there are (PF,) g solutions
on the first tier PE, the population size for Generation g+ 1 is
determined as

popsize,,, = min {ag + [bg X |(PF1)gH ,maxpop}. (6)

Here, a, represents the minimum number of solutions to
include in the population beyond the first tier PF while b,
represents how the size of the population grows in relation
to the size of the first tier PF. Again, a, and b, can change
over generations. In our implementation, we define a g relative
to the user specified maximum population size (specifically,
a, = 0.2 = maxpop) and b, = 1. This ensures that each
generation, the population size is slightly larger than the
number of first tier PF solutions.

The popsize ,,, highest ranked solutions are the ones that
move on to Generation g+1. There is a drawback to specifying
a maximum population size: if |(PF,) gI > maxpop, then
some solutions on the first tier PF do not move on to the next
generation—that is, the PF will be truncated. This could mean
that a reasonable, contending solution is not made available to
the user in the subjective decision-making stage. To prevent
this, if |(PF,) | > maxpop, we allow maxpop to grow based
on the size ofg the first tier PE

An exploration of the impact of some of the settings
used for the GA and R code for our implementation of
NSGA-II with adaptive population sizing can be found in the
Supplementary Materials.

3.2. Two-Phase Search via Genetic Algorithms. While a
directed search via a genetic algorithm is likely to be less
time-consuming than a direct optimization approach that
considers all possible solutions, it can still be computationally
intensive when there are a large number of possible solu-
tions, particularly if random starting points are used in the
initial population. To improve the computational efficiency
of the search, we propose a two-phase search that begins by
implementing a genetic algorithm for a subset of represen-
tative units from the stockpile (Phase I) and then mapping
the Phase I solutions to the entire stockpile to conduct a
fine-tuned search over the entire stockpile (Phase II). The
main steps in the two-phased Pareto search algorithms are
summarized below:

(1) Phase I begins by selecting a representative subset of
units from the full stockpile. Parallel runs of NSGA-
II, with random starting points, are used to find the
PF for the subset of units. The first tier PFs from each
of the multiple runs are combined to form the final PF
from Phase I.

(2) Phase II begins by projecting each of the solutions
from the Phase I PF to the larger stockpile based
on mapping the usage pattern (captured by the age
distribution of units used in different time intervals),
with these projected solutions used as the starting
points for the Phase IT GA.

(3) The Phase II GA search algorithm is run multiple
times with the same starting population formed by the
projected solutions to search over the solution space
of the entire stockpile. The resulting first tier PFs are
combined to obtain the final Phase IT PE

The Phase II PF provides users with an objective set of
solutions from which to make their final decision. Graphical
tools [13-17] can then be used by the decision-makers to
select a final decision about a consumption pattern that
best fits their priorities. In the Supplementary Materials, we
compare the required computation time and quality of the
PFs identified using the two-phase search for our application
to those found by running the GA only on the full stockpile
with random starting points. We find that the two-phase
search is dramatically more effective in populating the PF
in a shorter amount of time. Based on the examination of
the single stage search, the completeness and quality of the
solutions obtained in a reasonable time are inadequate.

4. Results and Discussion

4.1. Phase I GA Search. To begin the first phase of our search
for a consumption strategy with optimized reliability, we
choose a representative subset of units from the stockpile of
units. This representative subset was chosen by sorting the
stockpile of 200 units by age and, then, for every group of
five consecutive units in the sorted stockpile of units, one unit
was chosen at random for the representative subset, yielding
a subset of 40 units for Phase I. This reduces the size of the
search space from about 10'"7 possible consumption strate-
gies to about (%9)(39)(29) = 10*; this smaller solution
space can be adequately explored in a shorter amount of time.
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FIGURE 5: Pairwise scatterplots of Phase I Pareto front. The square symbol in each plot represents the Utopia point, where both criteria achieve

their optimal values.

In the first phase of the search, for our implementation
of NSGA-II, we specify maxoff = 200 and maxpop = 200,
though the maximum population size is allowed to grow if the
number of solutions on the first tier PF exceeds 200 so that the
PF is not truncated. Additionally, we choose to run the GA for
a fixed amount of time, defined as 200 generations. Since the
goal of this phase of the search is to create informed starting
points for the second phase of the search, it is less critical to
completely populate the full PF with every single solution.
We explore the impact of these choices in the Supplementary
Materials. For every solution generated by the algorithm,
the three metrics ((2)-(4)) to be optimized are computed as
described in Section 1 and rounded to four decimal places.
We find that using more decimal places increases the number
of solutions on the PF and thus the runtime of the GA,
without producing meaningful differences in the estimated
performance of the solutions identified to be on the PE.

We run five instances of NSGA-II in parallel to facilitate
broad exploration of the solution space to effectively populate
the PE Using a machine with an Intel® Xeon® 3.3GHz
processor and 16GB RAM, the run times of the five instances
ranged from 34.98 minutes to 36.33 minutes, with an average
run time of 35.58 minutes. The first tier PFs identified by
the five instances of the algorithm ranged in size from 222
to 246 consumption strategies; across the five instances, 1102

unique solutions were identified as being on a first tier PE.
The first tier PFs from the five instances of the algorithm
were combined, and from that set of over 1100 solutions,
the final Phase I PE with 225 strategies, was identified.
The pairwise scatterplots in Figure 5 display the Phase I PF
based on a subset of stockpile units while Figure 6 shows
the consumption pattern, by current unit age, for the 225
strategies on the Phase I PE

The panels in Figure 5 show the trade-offs between the
computed criteria values for each pair of criteria. Note that
the points on the PF for three criteria are now projected onto
the plane of each pair of criteria, and the points on the three-
criterion PF are not necessarily on the two-criterion PFs.
Hence, there are many points located in the inner region of
the projected two criteria spaces instead of on the edge where
the PF is located. For each pair, the Utopia point, where both
criteria would simultaneously achieve their optimal values,
is plotted with a square symbol. The pairwise scatterplots
indicate that the largest trade-offs involve the uncertainty
metric with each of the other two metrics, as evidenced by the
larger distances between the points on the PF and the Utopia
point (bottom left corner in the plot of consistency versus
uncertainty and bottom right corner in the plot of uncertainty
versus average reliability). These trade-offs indicate that to
do well on the uncertainty metric, you must sacrifice on
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FIGURE 6: Consumption pattern, for a subset of 40 units, for the
225 strategies identified on the Phase I Pareto front. The units are
sorted based on their current ages with the coloring of each unit
representing the time period in which the solution assigns the unit
to be used (dark purple = Year 1; light purple = Year 2; dark green =
Year 3; light green = Year 4).

the consistency and average reliability metrics. On the other
hand, there seems to be little trade-oft between consistency
and average reliability, given the close proximity of the PF to
the Utopia point in this case.

Figure 6 shows the consumption patterns for the usage
strategies on the Phase I PF, according to the current age of the
units in the subset. Here, the coloring of each unit indicates
the time period in which the solution assigns the unit to be
used (dark purple = Year I; light purple = Year 2; dark green
= Year 3; light green = Year 4). The plot is similar to Figure 2
except the points are not jittered due to the larger number of
options to display. The strategies on the PF tend to use units
that are currently in the 60 to 75 month range during Year 1
(as indicated with dark purple appearing prominently in this
age range), those in the 40 to 60 month range in Year 2 (light
purple appears prominently in this range), and those in the
25 to 40 month range in Year 3 (indicated with dark green).
In Year 4 (light green), the strategies on the PF tend to use the
very youngest and very oldest units in the subset. When the
roughly 80-month-old units are used by strategies on the PF
tends to be fairly evenly split across the four years. In the next
section we discuss how these 225 strategies can be projected
on to the entire stockpile of units to create solutions that will
form the initial generation of the Phase IT GA search.

4.2. Phase 1I GA Search and Further Decision-Making. In
Phase II, we use the PF of 225 strategies identified from
Phase I for the subset of 40 units to obtain a set of strategies
projected to the full stockpile; these projections preserve the
promising consumption patterns identified for the subset of
units. Then the projected strategies are used as the starting
points for NSGA-II to obtain the PF for the full stockpile
of 200 units. The goal is to accelerate the Phase II search by
strategically choosing good starting points that are relatively
close to the anticipated final PE

We automatically project each strategy from the Phase
I PF to a strategy for the full stockpile based on match-
ing the consumption patterns captured by the current age
distribution. Now, we undo the process in Phase I, where
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FIGURE 7: Projection of a Phase I solution (consumption strategy for
the subset of 40 units) onto the full stockpile by mapping each unit in
the subset to the five adjacent units in the full stockpile with similar
ages.

a representative subset was selected from the full stockpile
by grouping five adjacent solutions with similar ages and
randomly selecting one unit from each group. At this stage,
we map each unit in the subset back to the same group from
which it was selected. Therefore, the subset strategy and the
projected strategy have similar consumption patterns, with
a similar current age distribution of units used at different
times. Figure 7 illustrates how the projection works using a
single strategy from the Phase I PE The horizontal axis is
the current age for individual units in the full stockpile (the
top row) and the subset of 40 units (the bottom row). Again,
the coloring of each unit indicates the time period in which
the solution assigns the unit to be used (dark purple = Year
1; light purple = Year 2; dark green = Year 3; light green =
Year 4). Each closed circle represents a unit. The circles in
Figure 7 show very similar color distributions between the
full stockpile and subset strategies, which indicates that the
automatic projection procedure works well for mapping the
consumption patterns from the subset of units to the full
stockpile.

By using the projection procedure to map each strategy
on the Phase I PF to a full stockpile strategy, we obtain a
collection of 225 consumption strategies for the full stockpile
which share the promising features from the subset of units.
Then, we use these 225 strategies to form an initial generation
to run five independent GA searches for 200 generations, with
maxpop =200 and maxoff = 200; again, these choices are
explored in the Supplementary Materials. Next, we combine
the five PFs generated from the five independent searches to
obtain an overall combined PF. Figure 8 shows the pairwise
scatter plots for the Phase II PF (the combination of five
independent PFs from five GA searches using the same initial
generation of projected strategies). The 229 strategies on the
Phase II PF are shown in black and the 225 starting points
are displayed in light gray. First of all, we can see that the
Phase II PF has a shape similar to the Phase I PF in Figure 5.
Among the three objectives, the most trade-off exists between
the uncertainty metric and the other two objectives. There is
no strategy that can do very well on both uncertainty and
either one of the consistency or average reliability. This can
be seen by having no solution close to the Utopia points
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FIGURE 8: Pairwise scatterplots of Phase II staring points (light gray circles) and Phase II Pareto front (black squares). The square symbol in
each plot represents the Utopia point, where both criteria achieve their optimal values.

(square symbols located on the bottom left corner of the
top left subplot for consistency and uncertainty, and on the
bottom right corner of the bottom right subplot for average
and uncertainty). On the other hand, there is much less trade-
off between the overall average reliability and the consistency,
which is evidenced by having some strategies achieving both
nearly best average reliability and most consistency. Secondly,
while the starting points for Phase II are located very close
to the final PE, the Phase II GA search did help push the
solutions on the PF slightly closer to the Utopia points.
However, the proximity of the projected solutions to the final
PF may indicate that if a quick decision needed to be made
in a short time period, then one may consider using the
most computing power on the Phase I search to make sure
a satisfying PF with all promising solutions and their main
features is found for a representative subset. Then a set of
near-optimal solutions can be obtained by only projecting the
Phase I solutions to the full stockpile without conducting the
fine-turned search in Phase II.

To examine the actual consumption patterns among the
229 strategies on the Phase II PF, for each strategy Figure 9
shows the current age distribution for the units with coloring
used to indicate the assigned usage time for all units (dark
purple = Year 1; light purple = Year 2; dark green = Year
3; light green = Year 4). The plot is similar to Figure 6, but
now displays the consumption strategy for all 200 units in the
stockpile. One prominent feature of Figure 9 is that some of
the units are dominated mostly by a single color. For example,
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FIGURE 9: Consumption pattern for the 229 strategies identified on
the Phase II Pareto front. The units are sorted based on their current
ages with the coloring of each unit representing the time period in
which the strategy assigns the unit to be used (dark purple = Year I;
light purple = Year 2; dark green = Year 3; light green = Year 4).

Unit 60, which is the oldest unit in the stockpile, is mostly
colored light green for being used in the last year across all
229 strategies, while Unit 136, which is currently 67 months
old, is mostly colored dark purple for being used in the first
year. By looking across all 229 strategies, we can see they share
one common general pattern: the units aged between 60 and
75 months are mostly used in the first year (with dark purple
being the dominant color in this age range); the majority units
of age 45 to 60 months and also around 80 months are mostly
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FIGURE 10: Mixture plot showing the 35 optimal strategies selected for different weighting choices based on using the additive desirability
function (DF). The 16 most robust strategies, which are optimal for at least 1% of the total weighting area, are labeled with index numbers.

used in the second year (shaded light purple); a large fraction
of units aged between 30 and 35 months and also between 80
and 85 months are used in the third year (dark green), and
then lastly most of the units younger than 25 to 30 months
old and also above 85 months old are used in the last year
(light green). However, there are frequent deviations from the
prominent general pattern, particularly around the boundary
ages between different time intervals observed in the general
pattern.

While the two-phase GA search has greatly reduced the
number of solutions that need to be considered from about
1017 to 229, there are still a large number of possible solu-
tions. Further, there is a considerable amount of variability in
the consumption patterns for the 229 solutions on the Phase
IT PE, and some of these strategies may be better suited to the
user’s specific priorities than others. Hence, it is desirable to
further reduce the number of solutions to a more manageable
number.

In the Combine step of the DMRCS process, we use the
desirability function (DF) approach [13] to combine the three
objectives into a single metric and identify a smaller set of
solutions that are more robust choices based on different
possible user priorities. We use the tools outlined in Lu et
al. [14], Lu and Anderson-Cook [15], and Lu et al. [17] to
guide the remaining decision-making. First, to combine the
objectives that are measured on different scales, we need to
convert different criteria values to a more comparable scale.
Hence, we convert all the criteria values on the PF to a
desirability scale between 0 and 1, where the worst value on
the PF for each criterion is scaled to 0 and the best value is
scaled to 1. Then, we choose an additive DF of the form DF =
wyd, + wyd, + wyd;, where d, j = 1,2,3 is the desirability
score for j" objective and the w;’s are the weights subject to

3 . .
Y wj = Lw; > 0, to combine the scaled criteria values

for different weight combinations. Note that we chose this DF
form based on our preference for having a less severe penalty
for the worst performance on an objective and wanting to
allow the best performance on one criterion to offset the worst

performance on another. If one prefers more severe penalty
for the worst performance, then a different DF form such as
the multiplicative DE, DF = d)"d,*d}", can be used.

Figure 10 is the mixture plot showing the best strategies
for different weight choices. Each point in the plot corre-
sponds to a single weight combination. For example, the
centroid corresponds to the equal weights of (1/3,1/3,1/3)
for three objectives. The corners and the edges correspond
to optimizing based on a single criterion or two of the
three criteria, respectively. Different shades of gray are used
to distinguish the regions for different strategies. The 35
strategies selected in Figure 10 are the optimal for at least
one set of weights out of the 20301 weight combinations
explored over the entire weighting space. Out of the 35
strategies, 16 are further selected and labeled with their index
numbers (among the 229 strategies on the PF) which are
the more robust solutions that are optimal for at least 1% of
the total weighting area (i.e., optimal for at least 203 weight
combinations evaluated).

Figure 11 is the trade-off plot showing the criteria values
for the 35 strategies selected in Figure 10. In the trade-
oft plot, the x-axis is the selected strategies sorted based
on small-to-large average reliability. The y-axis shows the
desirability scale for all of the objectives, with the original
measurement scales for the objectives labelled on the side.
Different criteria values are displayed using different symbols,
and the 16 more robust strategies are shown in black to
distinguish from the remaining less robust solutions shown in
light gray. The line with triangles (consistency) approximately
tracks the line with the closed circles (average reliability)
with little fluctuations, which indicates there is relatively
little trade-off between consistency and average reliability.
While the line with squares (uncertainty) generally goes in
the opposite direction of the other two lines, which says
the main trade-offs exist between the uncertainty and the
other two objectives. The 35 strategies can be divided into
three groups of different trade-off relationships. The strategies
on the left side of Figure 11 all have very little uncertainty,
but relatively poor to fair average reliability and the worst
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FIGURE 11: Trade-off plot for comparing the criteria values for the 35 strategies selected in Figure 10. The 16 numbered strategies are displayed
in black while the remaining 18 less robust strategies are displayed in light gray. The criteria values are plotted in desirability scale with the

original scale shown on the side.
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FIGURE 12: Consumption pattern, displayed by current age distribution, for the four most promising solutions selected based on the mixture
plot in Figure 10. The coloring of each unit indicates the time period in which the strategy assigns the unit to be used (dark purple = Year 1;

light purple = Year 2; dark green = Year 3; light green = Year 4).

consistency. These strategies are only optimal if uncertainty is
considered as the single dominating objective. The strategies
in the middle of the trade-off plot have more compromised
performance on all three criteria with fair average reliability
and uncertainty and poor to fair consistency. These strategies
correspond to the relatively smaller areas located in the mid-
right region of the mixture plot in Figure 10, which are the
optimal choices when uncertainty is valued slightly higher
in general. The last group of strategies are located on the
right side of the trade-oft plot in Figure 11 which all have
very good average reliability and consistency but relatively
poor uncertainty. These strategies correspond to the larger
regions located on the top and bottom left side of the mixture
plot (Figure 10) which are generally best when uncertainty is
valued as least important.

Choosing from the robust strategies offers more protec-
tion against the ambiguity in the specified weights. Therefore,
we want to select strategies that match with the general user
priorities but also have some robustness against weight ambi-
guity. For the stockpile manager, typically the average relia-
bility is considered most important among all three criteria.

Hence, its weight should be slightly higher than the weights
for other objectives. Four strategies look most promising
from Figure 10 for satisfying this preference. Strategies 227
and 219 are optimal for large weight regions when average
reliability is considered the absolute dominating objective
and has at least 50% of the total weight. For the other two
objectives, Strategy 227 values consistency slightly more than
uncertainty, and vice versa for Strategy 219. However, if the
average reliability is considered most important and the two
other objectives are also quite important to be weighed no
less than 20%, then Strategies 197 and 192 are the most
promising choices, which correspond to the large regions
close to the centroid of the mixture plot with slightly more
emphasis on the average reliability. These four strategies are
all located in the right region of the trade-off plot (Figure 11)
with high average reliability, good consistency, and poor to
fair uncertainty.

Figure 12 offers a closer look at the consumption patterns
for the four strategies selected from the mixture plot by
focusing on the more preferred weight region. The general
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FIGURE 13: Synthesized efficiency plots for the four promising solutions. The white-gray-black coloring scale shows high to low synthesized
efficiency, which measures the relative performance of a strategies relative to the best possible for any given weight.

pattern now looks more prominent across the four strategies,
where the units with an age around 60 to 80 months are
mostly used in the first year, and then a mixture of some
younger units and a few older units are used in the next years,
from Year 2 to Year 4, until all units are consumed. However,
there are little differences between the strategies. Strategies
227 and 219 have more similar consumption patterns, which
generally use fewer younger units and more older units in
later years. On the other hand, Strategies 197 and 192 use
more older units in early times and more younger units
in later years, which consequently leads to slightly lower
average reliability but more consistency over time. Hence,
Strategies 227 and 219 are preferred when average reliability
is valued more dominantly, while Strategies 197 and 192 are
preferred when average reliability is considered only slightly
more important than the other two objectives. By the end of
the Combine stage, we have successfully reduced our choices
from the 229 on the PF down to the 17 more robust solutions
in the mixture plot, and then down to the four strategies that
more closely match the stockpile manager’s priorities.

In the final Select step, we compare individual options
to make a final decision. Figure 13 shows the synthesized
efficiency plots [15] for all four promising strategies by look-
ing at the actual performance of individual strategies relative

to the best possible for different weights. The synthesized
efficiency measures the relative performance of a strategy
compared to the global optimal performance for any given
weight. When using a certain DF as an overall measure of
the performance, the synthesized efliciency of a strategy, S,
at a given weight combination, w, is defined as SE(S,w) =
DF(S, w)/max¢DF(S, w), where maxgDF(S, w) is the global
optimal for the given weight w. The white-gray-black coloring
scale is used to display high-to-low synthesized efficiency. We
can see that Strategies 192 and 197 both have mostly white or
light-gray corresponding to at least 90% efficiency around the
preferred weight region. Strategies 219 and 227 have slightly
lower synthesized efficiency for the region with slightly lower
weight on the average reliability. All four strategies have pretty
good performance for most of the weighting region except
the bottom corners with more dominating weights on either
of the uncertainty or consistency.

Figure 14 shows the fraction of the weight space (FWS)
plot [17], which allows us to make a more compact com-
parison between the four strategies by summarizing the per-
formance of individual strategies across the entire weighting
space. Each curve in the FWS plot corresponds to a single
strategy and it shows what fraction of the weighting space
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FIGURE 14: Fraction of Weight Space (FWS) plot for the four most
promising strategies.

(x-axis) has synthesized efficiency at least a certain amount
(shown on the y-axis). For example, we can see Strategy 192
is at least 85% eflicient relative to the best possible choice for
80% of all possible weights. The higher up the curve is located
in the FWS plot, the better overall performance a strategy has
across the entire weight space. We can see that Strategies 192
and 227 have similar performance for 80% of the weighting
space, but the curve for Strategy 227 then drops fast for the
remaining 20% of the weighting space. Strategy 197 has a per-
formance similar to the previous two strategies for 60% of the
weight space and slightly higher efficiency for the additional
20% weights, but it then becomes less efficient than Strategy
192 for the remaining 20% of the weighting space. Strategy 219
has slightly worse performance than the other three across
the entire weight space. Overall, Strategies 192 and 197 are
among the top two choices. Strategy 197 has slightly higher
efficiency for 80% of the weight space, but Strategy 192 has
slightly better worst efficiency over the entire weight space. If
we want more protection again the worst case scenario, we
would select Strategy 192 as our final choice. We note that
the FWS plot provides a compact summary for individual
strategies regardless of the dimension of objectives, and hence
allows for an easy assessment of overall performance (best,
worst, and robustness) of individual solutions and hence easy
comparison among many possible competing choices. Also,
the FWS plot can be summarized over, not only the entire
weighting space, but also any focused weight region [16].
Figure 15 shows the reliability performance for individual
units as well as the sets used at the end of each year over
the four years for the final selected Strategy 192. Due to the
use of a mixture of some younger and older units in each
time interval, the reliability of the units at their use times
also present a split distribution. For each year, the predicted
reliability is divided into two groups of units with high and
low reliability, with the difference between the two groups
of units increasing quickly over time. However, the expected
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FIGURE 15: Reliability over time for the final selected strategy (192).

success rate looks almost flat around 60% reliability over the
four years and the uncertainty of the estimated reliability
hardly changed over time with the credible interval of the
success rate maintains around 50% to 70% over the years.

In summary, in Section 4 we used the Pareto front
approach to strategically and effectively reduce the number
of solutions to focus on some more promising choices
tailored to the stockpile manager’s priorities. The two-phase
search process uses a quicker and smaller scale search on
a representative subset to find the superior consumption
patterns and maps the patterns found to obtain good starting
points to accelerate the GA search for the full stockpile
PE Then the last two steps in the DMRCS process guide a
structured quantitative decision-making by gathering useful
information and facts to help deepen our understanding of
different choices and their trade-offs and be able to make an
informed decision tailored to our needs and priorities.

5. Conclusions

In summary, the two-phase approach for finding ideal con-
sumption strategies leverages the formal process for decision-
making of DMRCS and takes advantage of efficient computer
search algorithms to identify promising solutions. Selecting
metrics that quantify the priorities of the stockpile manager
and capture the uncertainty in the estimated reliability were
key to finding a tailored solution for the optimization. When
we compare the strategy identified in Figure 15 with the
naive ones shown in Figure 3, substantial improvements to
the average reliability, consistency of reliability over time,
and reduced uncertainty of the reliability estimates were
all obtained. Given the natural trade-offs between crite-
ria, no strategy was able to perform best for the three
metrics simultaneously. Considering only a single criterion
can oversimplify the problem and lead to a poor decision
with unanticipated poor performance for other importance
aspects. However, good performance for all criteria was
possible with the strategically optimized solutions found on
the Pareto front. We emphasize the importance of having
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a conscious strategy for the consumption, since not only
does a haphazard strategy invite suboptimal performance, but
also provides no a priori indication of what performance to
anticipate. The double issue of reduced performance with no
advanced performance information can lead to dangerous
consequences in many applications.

The methodology described in the paper uses metrics well
suited to the problem being solved, but is flexible enough to
generalize to any set of quantitative measures. It is critical
in selecting a best consumption strategy to make sure in the
Define and Measure stages of the DMRCS process that care
is taken to focus on meaningful metrics important for good
performance of the stockpile as it is used.

The implementation of the genetic algorithm has an
impact on the solutions obtained and how efficiently the
Pareto front is populated. It is helpful to explore the per-
formance of the algorithm with different choices for GA
parameters to gain confidence that the implementation is
finding near-optimal solutions. However, as results in the
Supplementary Materials demonstrate, there are a number of
choices for the GA parameters that can lead to solid robust
optimization.

The computational intensity of the optimization was
greatly reduced and improved results were obtained by using
a two-phase approach to solve the problem at hand: general
patterns were identified with the manageable first phase based
on a representative fraction of the stockpile, and then these
solutions and patterns were leveraged in the second phase to
obtain promising starting points for further optimization. In
general, this approach is beneficial both for finding a timely
solution as well as gaining confidence that the best set of pos-
sible strategies have been identified. Based on a comparison of
results, the single stage search led to an inadequate PF based
on its completeness and quality. In addition, for this problem
it was discovered that the projected solutions from the first
phase were quite close to the overall optimum solutions, and
hence represent an option for streamlined solutions. Given
that there will be logistical constraints on the implementation
of the solution that lead to some suboptimality potentially
being introduced, finding regions of solutions with excellent
performance rather than the absolute best solution may be a
good practical option to pursue.

Data Availability

The data used in the paper are summarized in Tables 1 and 2.
The R code for reliability data analysis, the two-phase Pareto
front search algorithm, and the further design comparison
and evaluation is available from the authors upon request.
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Supplementary Materials

The Supplementary Materials investigate the impact of
choices made in implementing the genetic search algorithm
and contrast the outcomes from the two-phase search algo-
rithm and a single phase search on the entire stockpile
for demonstrating the substantial enhancement in computa-
tional efficiency. (Supplementary Materials)
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