
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

April 2020

Service Provisioning and Security Design in Software Defined Service Provisioning and Security Design in Software Defined

Networks Networks

Mohamed Rahouti
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and

Computer Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Rahouti, Mohamed, "Service Provisioning and Security Design in Software Defined Networks" (2020). USF
Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/8987

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usf.edu%2Fetd%2F8987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usf.edu%2Fetd%2F8987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F8987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F8987&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Service Provisioning and Security Design in Software Defined Networks

by

Mohamed Rahouti

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Co-Major Professor: Kaiqi Xiong, Ph.D.
Co-Major Professor: Nasir Ghani, Ph.D.

Yufeng Xin, Ph.D.
Yicheng Tu, Ph.D.

Mahshid R. Naeini, Ph.D.

Date of Approval:
March 27, 2020

Keywords: Quality of Service, Security, Traffic Engineering, OpenFlow, Global
Environment for Networking Innovations

Copyright c© 2020, Mohamed Rahouti

Dedication

To my family, my mother Hafida in particular, for all the support, braveness,

understanding, and unconditional love.

To my uncle, Bouchta Assemmar, for the unconditional support and love.

To Mr. Mohammed Boutaleb, for the unconditional encouragement and believing in me.

To Dr. Manoug Manougian, for the endless support throughout my Ph.D. studies and

summer employment under his supervision.

Acknowledgments

I would like to acknowledge and dedicate my gratitude to the following people who

made the completion of this work possible: Most specially, my mother, Hafida Assemmar,

my father, Abdelouakil Rahouti, and my siblings, for their unconditional love and support.

My supervisor, Dr. Kaiqi Xiong, for his continuous help and advisement prior and

throughout my Ph.D. study.

My supervisor, Dr. Nasir Ghani, for all the endless guidance and support and ensuring

my graduate experience and scholarly work are enriched.

My dissertation committee member, Dr. Yufeng Xin, for his contribution and con-

tinuous assessment throughout my research.

My research collaborator, Tommy Chin, for his time and the dedicated patience

towards training me and ensuring improvement of my technical skills

My dissertation committee members, Dr. Yicheng Tu and Dr. Mahshid R. Naeini,

for their valuable suggestions and guidance towards this dissertation work.

God, for giving me strength, capability and perseverance.

i

Table of Contents

List of Tables iv

List of Figures v

Abstract vii

Chapter 1 : Introduction 1

1.1 Background Overview 1

1.2 Motivations 2
1.3 Problem Statement 6
1.4 Proposed Work and Contributions 6

Chapter 2 : Survey of Related Work 8

2.1 QoS Guarantees in SDN Communication Systems 8

2.2 Latency and Response Time Management 10

2.3 SDN-Based Priority Queueing 12

2.4 Saturation and Flooding Threats in SDN 15

2.5 Open Challenges 17

Chapter 3 : End-to-End Latency Management in SDN Infrastructures 1 19

3.1 Problem Scope 20

3.1.1 Statistics Overhead and Collection 21
3.1.2 Latency Metric Estimation 22

3.1.3 Efficient Path Selection 22
3.2 Proposed Prototype 23

3.2.1 Statistics Collection and Latency Timing 24

1Parts of this chapter were published by the author of this dissertation study in M. Rahouti et
al. ”LatencySmasher: A Software-Defined Networking-Based Framework for End-to-End Latency
Optimization”, 44th IEEE Conference on Local Computer Networks (LCN), 2019. The IEEE does
not require individuals working on a thesis to obtain a formal reuse license (if they are the senior
authors of the published work)

ii

3.2.2 Time Series-Based Latency Estimation 26

3.2.3 Adaptive Heuristic-Path Selection 29

3.3 Performance Evaluation 32
3.3.1 Per-Link Latency Examination and Path Selection 33

3.3.2 Proposed Framework Performance Versus Default Path Compu-
tation 36

3.3.3 Overhead Considerations 37

Chapter 4 : SDN-Based Priority Queueing 39

4.1 Problem Scope 40

4.2 System Overview 42

4.2.1 System Queueing Model 44

4.2.2 Queue Control Mechanism 48

4.3 Performance Evaluation 50
4.3.1 Control Latency 50

4.3.2 Service Fairness 52
4.3.3 Priority Level Delay Variation 53

4.3.4 End-to-End Delay Validation 55

Chapter 5 : Dynamic Threshold-Based SYN Flood Attack Detection 57

5.1 Research Background and Problem 58

5.1.1 Overview of SYN Flooding Attacks 58

5.1.2 Threat and Attack Model in SDN Environment 60
5.1.3 Motivation and Problem Scope 62

5.2 Modeling and Framework Design 64

5.2.1 Adaptive Detection Threshold and Signature Structure 66

5.2.2 Overall Framework Functionality 70

5.3 Performance Evaluation 72
5.3.1 Traffic Generation and Event Rules Implementation 73

5.3.2 Performance Results 74

Chapter 6 : Conclusions and Future Work 82

6.1 Conclusions 82
6.2 Future Work 83

Appendix A: Glossary 100

iii

List of Tables

Table 3.1 Percentage improvement in latency (proposed framework versus default
controller) 37

Table 5.1 Average inspection and mitigation times and system load 76

iv

List of Figures

Figure 1.1 A high-level overview of SDN architecture layers. 3

Figure 3.1 Overview of proposed framework design 23

Figure 3.2 Latency metric estimation by the SDN controller 24

Figure 3.3 Adaptive A∗ path selection algorithm 31

Figure 3.4 The experimental SDN topology on NSF GENI testbed 32

Figure 3.5 Average relative error of individual links in a single end-to-end path 34

Figure 3.6 Path selection comparison (actual versus estimated path cost) 35

Figure 3.7 Latency comparison between A∗ approach and default Floodlight path
selection 36

Figure 3.8 Overhead comparison with default Floodlight (horizontal lines plot av-
erages) 38

Figure 4.1 Latency overview in a SDN setup 40

Figure 4.2 Overview of SDN-based priority queueing structure (QoSP) 42

Figure 4.3 Queue control mechanism 49

Figure 4.4 Control latency in QoSP solution versus default Floodlight controller 50

Figure 4.5 Global service fairness index comparison 53

Figure 4.6 Queueing delay per priority level (normal to high for QoSP scheme) 54

v

Figure 4.7 End-to-end latency comparison 55

Figure 5.1 Typical TCP handshake (top) and SYN flooding attack (bottom) 59

Figure 5.2 SYN flooding attack in SDN 60

Figure 5.3 Architecture of proposed SYNGuard framework 63

Figure 5.4 The operational placement of proposed IDPS for traffic flow 65

Figure 5.5 Proposed algorithm for the detection threshold update 70

Figure 5.6 SYNGuard states 71

Figure 5.7 GENI testbed topology 73

Figure 5.8 SYN flooding rule sample in Snort 75

Figure 5.9 SYN flooding rule sample in Zeek, n is the threshold 75

Figure 5.10 Average inspection times for SYN flooding (10 sec threshold, Snort and
Zeek) 77

Figure 5.11 SYN flood mitigation time (100,000 SYN flagged packets) 78

Figure 5.12 Memory utilization (100,000 SYN flagged packets) 79

Figure 5.13 CPU utilization for varying simultaneous attack sessions (same source) 80

vi

Abstract

Information and Communications Technology (ICT) infrastructures and systems are

being widely deployed to support a broad range of users and application scenarios. A key

trend here is the emergence of many different “smart” technology paradigms along with an

increasingly diverse array of networked sensors, e.g., for smart homes and buildings, intelli-

gent transportation and autonomous systems, emergency response, remote health monitoring

and telehealth, etc. As billions of these devices come online, ICT networks are being tasked

with transferring increasing volumes of data to support intelligent real-time decision making

and management. Indeed, many applications and services will have very stringent Quality

of Service (QoS) and security requirements.

In light of the above, effective and secure end-to-end delivery of user data flows is a

major focus for network operators. Now in recent years, Software-Defined Networking (SDN)

has emerged as a leading communication technology for supporting the evolving service needs

of ICT infrastructures. However, even though various efforts have conducted research work,

prototype development, and deployment of SDN-based solutions in smaller ICT scenarios,

future contributions are still needed. Most notably, there is a lack of cohesive mechanisms

for enhancing end-to-end QoS and security for real-time services in SDN systems.

vii

Foremost, stringent delay-sensitive data services, such as emergency response, require

effective QoS mechanisms to reduce end-to-end path latency and minimize SDN controller

response times. Here, a key concern is how to handle short-term network state fluctuations

due to congestion while ensuring latency performance. In addition, security issues, such as

large scale Distributed Denial of Service (DDoS) attacks, also pose serious threats to SDN

environments. Although various Intrusion Detection and Prevention Systems (IDPS) have

been proposed to detect and mitigate such attacks, they often entail significant performance

overheads and excessive inspection and/or mitigation times, rendering them impractical.

In light of the above, this dissertation study presents some novel solutions and mech-

anisms for improving QoS support and security (related to data-control saturation) in SDN-

enabled ICT infrastructures. Specifically, an adaptive solution is presented to achieve rapid

path computation by leveraging active link latency measurements to generate efficient sta-

tistical estimates. Furthermore, a novel priority queueing mechanism is also proposed to

improve support for higher-grade services traffic. This solution also integrates and prioritizes

control plane traffic to improve overall response and delivery times. Finally, a lightweight

kernel-based IDPS scheme is also developed to thwart data-control saturation attacks by

leveraging modular string search and filtering techniques. In particular, this solution uses

dynamic/self-adjusted detection thresholds to improve attack detection. The proposed meth-

ods are all prototyped and tested in the National Science Foundation (NSF) Global Environ-

ment for Network Innovations (GENI), a live real-world distributed network testbed facility.

viii

Overall, detailed performance evaluations show that the proposed solutions properly address

and resolve many of the research problems outlined in this dissertation study.

ix

Chapter 1 : Introduction

This dissertation studies the performance and security of Software-Defined Network-

ing (SDN) setups in emerging Information and Communications Technology (ICT) infras-

tructures. Namely, a key focus is on end-to-end delay management for Quality of Service

(QoS) support, which is directly affected by SDN controller response time, switching latency,

and path computation and selection overheads. In addition, another key focus is the security

of such SDN infrastructures against large scale flooding attacks. Hence this initial chapter

provides an introduction to some of the main developments in these domains and then in-

troduces the key motivations for this work. The core contributions of this research are then

presented in a high-level modality, along with an overview of the rest of this thesis.

1.1 Background Overview

Modern ICT networking systems already form an indispensable part of modern life.

Moreover, these infrastructures are constantly being evolved to take on more expansive roles

and support an increasingly broad range of emerging “smart” paradigms. Some notable ex-

amples here include smart homes and buildings, intelligent transportation and autonomous

vehicles, emergency response services, work from home, remote health monitoring and tele-

health, etc. Furthermore, a key supporting component here is the emergence and widespread

1

adoption of smaller, lower cost networked sensor devices for information/data gathering,

widely termed as the Internet of Things (IoT). As billions of these devices come online to

support many “smart” technology paradigms, traffic volumes are continuing to grow.

Overall, end-to-end QoS support and network security are key requirements for ICT

infrastructures carrying an increasingly diverse range of client traffic. Some of the main

concerns for networking-enabled services typically include, but are not limited to, routing

path computation and selection, QoS support and congestion management, traffic prioriti-

zation, disaster response, effective security policies, and targeted attack mitigation. Indeed,

modern cloud computing services, IoT paradigms, and other emerging communication tech-

nologies open up many new challenges here. These concerns are further compounded by

the exponentially increasing heterogeneity and scalability of data services and last mile ac-

cess technologies. However current enterprise and legacy IP routing technologies (along

with their decentralized networking and computing infrastructures) are not well-suited for

emerging ICT-based services with stringent real-time data transfers needs. As a result, the

technical community is starting to deploy SDN technologies in modern ICT infrastructures

in order to improve application-level QoS performance and dynamic service provisioning [1].

1.2 Motivations

ICT networks must provide services support for a broad range of intelligent devices,

applications, and systems that are embedded into an ambient environments. Namely, some

examples here include sensors integrated in wearable equipment (e.g., such as smart watches),

2

actuation and automation-enabled devices in smart homes and buildings, vehicular sensors

and on-board units for car maintenance and accident avoidance, and so on. These smart

devices (along with their associated control systems, automation technologies, and network

elements) are all merged together into a networked ecosystem to enable efficient and reliable

“smart” application support [2].

Figure 1.1: A high-level overview of SDN architecture layers.

Now increasingly, many ICT networks are starting to leverage SDN-based technology.

This approach uses a centralized controller to separate and consolidate the control plane of

a network, allowing streamlined automation of administration, service provisioning, and

security policies. In particular, SDN controllers can be programmed to support a wide range

of customized applications and make use of the standardized Representational State Transfer

(REST) Application Programming Interface (API). The overall SDN architecture is depicted

3

in Figure 1.1, including the main planes/layers and their functionalities. In particular, the

three planes are defined here:

• Control Plane: Centralized control structure that embodies a controller and a Net-

work Operating System (NOS). This layer provides hardware-based abstractions for

SDN applications as well as a holistic view of the entire network [3], [4].

• Data Plane: Termed as the infrastructure or forwarding layer and consists of inte-

grated forwarding elements/components, i.e., switches. Each component maintains a

set of rules for directing networking traffic according to the instructions received from

the control plane [3], [4].

• Application Plane: Set of SDN-based applications that support different customized

operations and functionalities, including, but not limited to, QoS support, network

security and policy services, as well as implementations [3], [4].

Now unlike legacy routing networks, SDN uses software modules (running at the

controller) to generate and place rules for handling data at the switching devices, i.e., in-

stead of using distributed routing protocols. This capability can provide more streamlined

and rapid run-time distribution of traffic forwarding rules and security policies. Specifically,

SDN controllers operate with a logically centralized global view of network resources. This

information can be leveraged to implement customized provisioning strategies and further

coupled with programmable interfaces to insert and push forwarding rules to switches via

southbound protocols, e.g., such as OpenFlow [5], [6], OpenContrail [7], and Extensible Mes-

4

saging and Presence Protocol (XMPP) [8]. As such, the “programmability” of the network

infrastructure layer in SDN provides a dynamic and cost-effective configuration management

solution for ICT services. For instance, SDN can be used to control and regulate IoT systems

by expanding connectivity to smart homes using capacity sharing [9]. Alternatively, SDN

can be used to assure security for routing devices [2] or improve mobility support in clouds

[10], [11].

To date, many studies have looked at the application of SDN in various ICT applica-

tions. For example, some efforts have focused on QoS latency and response time management,

e.g., [12], [13], [14], [15], [16]. Other studies have also tried to improve the performance of

switching devices using various optimization and TE approaches, such as [17], [18], [19].

Nevertheless, despite these contributions, various open challenges still remain here. For ex-

ample, there is a further need to leverage the real-time data collection/processing capabilities

at SDN controllers to achieve more effective, dynamic path computation. This is of partic-

ular importance to real-time traffic flows with tight delay QoS bounds (which can easily be

impacted by time-varying bursty traffic). Furthermore, there is also a need to support pri-

ority queueing for multiple traffic levels in SDN networks. These data plane traffic priorities

also need to be properly integrated with SDN control plane traffic.

However, the use of SDN-based technologies also introduces many new attack vectors

for malicious actors [20]. Some key examples here include DDoS attacks [21], Link Discovery

Service (LDS) exploitation [20], [22], and Man-in-the-Middle (MITM) attacks [20]. Indeed

5

many of these exploits have already been demonstrated in real SDN settings. Accordingly,

various efforts have also looked at improving the security of SDN operation. Of particular

concern are large scale DoS flooding attacks, which can be used to overwhelm both the

data and control planes in SDN. For example, the SLICOTS [23] and OPERETTA [24] solu-

tions try to thwart Transmission Control Protocol (TCP) SYN flooding attacks by surveiling

failed SYN requests. However, there is a further need to develop more effective DoS security

solutions here. In particular, these methods should leverage the real-time traffic monitor-

ing capabilities of SDN controllers to implement more dynamic schemes for DoS/flooding

detection and mitigation.

1.3 Problem Statement

This dissertation addresses the above challenges and presents a set of novel solutions

for improving QoS and security support for SDN-based user services. Specifically, these

methods include intelligent Traffic Engineering (TE) path selection as well as priority-based

queueing schemes to improve end-to-end service latency. In addition, dynamic IDPS se-

curity mechanisms are also proposed to mitigate flooding saturation threats in SDN-based

infrastructures.

1.4 Proposed Work and Contributions

The key contributions of this dissertation effort include the following:

1) End-to-end latency management: A novel framework is proposed to manage end-

to-end latency by leveraging globalized control and topological views at the SDN con-

6

troller. Specifically, these include latencies associated with path search and selection

and controller-switch communication.

2) Priority-queueing support: A novel priority queueing mechanism is introduced to

improve service support for higher-grade traffic flows. In particular, this solution also

integrates control plane traffic to improve overall response and delivery times.

3) Saturation and flooding attack mitigation: A novel kernel-based IDPS scheme

is proposed using a dynamic threshold-based strategy for detecting TCP SYN flood

attacks on SDN infrastructures. This solution improves controller response times and

reduces traffic processing overheads.

The rest of this dissertation is organized as follows. First, Chapter 2 presents a sur-

vey of the latest research work on QoS and security support in SDN infrastructures. Next,

Chapter 3 presents a novel scheme for end-to-end latency reduction in SDN environments.

Building upon this, Chapter 4 details a priority-based solution for SDN traffic manage-

ment. Finally, Chapter 5 addresses the critical issue of SDN security and details a dynamic

threshold-based countermeasures solution for detecting and mitigating TCP SYN flooding

attacks. Finally, conclusions and future research directions are presented in Chapter 6.

7

Chapter 2 : Survey of Related Work

The overall topic of QoS support in SDN-enabled communication systems has received

a significant amount of attention in the last decade, specifically due to the contemporary

nature of this technology and its potential challenges. Along these lines, this chapter presents

an overview of some of the latest developments and state-of-art efforts in this particular

domain, i.e., including work on latency management, controller overhead reduction, priority-

aware flow forwarding, and flooding and data-control plane saturation issues. A broad range

of associated mechanisms and provisioning schemes are also surveyed. Lastly, some key open

research challenges are summarized to motivate this dissertation study.

2.1 QoS Guarantees in SDN Communication Systems

By one definition, QoS is the qualitative measurement of the overall performance

of networking-enabled services, e.g., based upon metrics such as bandwidth throughput,

end-to-end communication delays, loss, etc. [12]. Now as noted in Chapter 1, delivering

QoS support in SDN-based environments is of a key importance for many users in emerging

“smart” technology paradigms [25]. Here SDN provides an effective framework for expediting

traffic management and control in emerging data networking environments. Furthermore,

SDN also presents a global view of network resources and implements centralized control

8

provisioning by decoupling network control from the data plane [12]. Hence SDN controllers

can simply “program” forwarding rules by pushing them over their southbound interfaces

to SDN-enabled switches, e.g., such as Open vSwitch [6]. These capabilities allow network

operators to achieve a holistic view of user data flows and build tailored management appli-

cations for their clients, e.g., such as TE routing [12], QoS-aware flow routing [26] [27], flow

inspection [28], Science De-Militarized Zone (DMZ), and even full in-line Intrusion Detection

and Prevention System (IDPS). Namely, the abstraction of the network infrastructure allows

networking administrators to program new features and policies through a standard open

API without having to adjust their physical infrastructure plane.

Now many high-end users have stringent QoS delays bound requirements, mandating

effective management of associated control and switching plane latencies (in SDN settings).

Hence various research studies have been carried out to explore and enhance QoS support in

SDN networks. Furthermore, the majority of these earlier studies have focused on addressing

data plane and packet sojourn times [12], [29]. Carefully note that the data-control commu-

nication delay in SDN networks (e.g., time between OpenFlow Packet In and Packet Out

messages) has a significant impact on traffic delivery performance. Indeed, this delay is in-

evitable between the data and control planes given the inherently centralized nature of SDN

operations (and this represents an additional factor in latency increase).

Furthermore, SDN-based switching devices, e.g., such as Open vSwitch platforms,

process packets/flows according to the rules injected by the SDN controller through its

9

southbound interface. Namely, these flow rules are inserted by the SDN controller into data

plane nodes in either a proactive or reactive manner. Specifically, in the former approach, the

controller populates the traffic rules prior the arrival of traffic to the forwarding switch device.

Meanwhile in the latter approach, the controller injects and adjusts flow rules dynamically

and in real-time. Expectedly, flooding attacks causing data-control saturation (e.g., TCP

SYN floods) can complicate reactive flow rule insertion (discussed in Section 2.4).

2.2 Latency and Response Time Management

In the past, various efforts have also looked at the performance of SDN OpenFlow

devices. However, most of these studies have not presented efficient mechanisms to manage

controller response delays at the control plane. For example, Curtis et al. [13] demonstrated

that the collection rate of SDN topology statistics is strictly limited by dimensionality of

flow tables. This study also confirmed that collecting such measurements can significantly

impact the update rate of flow rules. Accordingly, the authors tabled a solution to reduce

the impact the of overheads associated with flow rule matching and processing. Meanwhile,

other studies such as Huang et al. [30] and Rotsos et al. [31] also presented an in-depth look

at the performance of OpenFlow switches across a broad range of vendor devices.

Other researchers have also focused on efficient resource allocation in SDN setups.

For example, Egilmez et al. [14] presented a solution to improve QoS support in OpenFlow-

based networks by guaranteeing end-to-end bandwidth allocation for multimedia streaming.

Additionally, Sharma et al. [15] also introduced an SDN-based QoS framework leveraging

10

the capabilities of the Floodlight SDN controller [32]. Namely, this scheme assigns one

SDN controller per Autonomous System (AS) routing domain and uses it to communicate

through a northbound interface to handle OpenFlow policies (while guaranteeing efficient

bandwidth allocation between end-user hosts). Also, Celenlioglu and Mantar [33] presented

a framework for routing and resource allocation/management while considering initial routes

in SDN-enabled intra-domain settings. This solution was shown to enhance overall routing

scalability and improve QoS support.

Furthermore, Jinyao et al. [34] also presented HiQoS, a multi-path mechanism to

ensure QoS guarantees in SDN environments. Namely, OpenFlow-based queuing mechanisms

were applied to implement bandwidth management and allocation for different types of

networking traffic. Multi-path selection was also done here based upon a modified version of

the Dijkstra algorithm with QoS constraints. Similarly, Tariq and Bassiouni [35] proposed

QAMO-SDN, a QoS-aware solution that implemented multi-path routing in smaller SDN-

enabled data center environments. Namely, the proposed solution pre-computed multiple

paths between two end-user hosts using the Dijkstra algorithm, and the authors tested their

solution in a simulated networking environment.

Similarly, Huang et al. [36] presented another SDN-based multi-path framework for

GridFTP (big data transfer protocol). Again, this solution leveraged the Dijkstra algorithm

for path selection. Meanwhile, Hussain et al. [37] also assessed a hash-based mechanism

for multi-path selection in SDN networks using the Floodlight controller. Specifically, this

11

solution was designed to schedule different flows by using a hash function to forward them

in a balanced manner over pre-computed routes. Finally, Basit et al. [16] detailed a cross-

layer coordination scheme between different Internet Service Providers (ISPs) running SDN

setups, i.e., peering across multiple Internet Exchange Points (IXPs). This solution focused

on improving network throughput and resource efficiency by computing all available end-

to-end paths between any pair of nodes. Note that this work assumed the availability of

OpenFlow switches with multi-queueing support.

However, despite these many contributions, none of the above studies have tried to

leverage real-world time series (TS) data to further improve path selection. Although some

TS-based estimation approaches have been proposed [38], they have not been implemented

for a per-link latency calculation and QoS-aware path selection in SDN environments.

2.3 SDN-Based Priority Queueing

Rapid response time is a critical requirement for many high-grade user services. In

particular, timely communications play a vital role in emergency response services, i.e.,

since it can directly impact human life and property [39], [40]. However, network resource

coordination and decision making can be very challenging under such circumstances [41].

Namely, fast response times can be difficult to achieve and hence associated information

infrastructures (providing decision support) must be tailored for highly-responsive operation

[42]. At the same time, network operators must maintain existing Service Level Agreements

(SLAs) in order to prevent sizable revenue losses [43], [44]. As a result, customers are

12

usually assigned different traffic priority levels [41] during emergency situations, and traffic

processing decisions are made accordingly [45]. However, most existing emergency response

communication setups are ill-equipped to handle such requirements, i.e., since they are largely

built using older distributed routing protocol technologies. It is here that SDN-based systems

offer much potential.

Now many research studies in the past have proposed TE-based solutions, e.g., to

improve QoS (for data traffic flows with different priority levels), improve capacity utiliza-

tion, and minimize flow processing delays and controller response times [46]. For example,

Google [47] has applied SDN capabilities to improve capacity utilization between its data

centers by using application-specific priority levels. Egilmez, et al. [14] also proposed a

SDN-based scheme that used dynamic routing to prioritize multimedia traffic over normal

flows, whereas Rahouti, et al. [26] presented a SDN framework for emergency response traf-

fic. Nevertheless, even though SDN offers a broad range of services via its control plane,

many of these solutions do not support multi-priority data plane flows or prioritize control

plane traffic (by default) [48].

Furthermore, priority queueing and load balancing mechanisms for OpenFlow devices

have also been studied, i.e., to support a broad range of QoS-based services and deliver

preferential management for certain types of data plane flows [49]. Specifically, several

studies have looked at reinforcing switching devices by using optimization techniques [15],

[19], [50]. However, these efforts do not handle flows with differing priority levels, which

13

require efficient management at both the data and control plane levels [48]. Hence, improved

control mechanisms are still needed to manage overheads in SDN settings, e.g., controller

response times and flow rule processing delays. Specifically, these solutions must take into

account the queueing mechanisms in both control and data planes.

Meanwhile, other studies have also looked at modeling the behaviors of forwarding

devices with SDN controllers using analytical models, e.g., such as Miao et al. [50] and

Azodolmolky et al. [51]. However, in order to simplify analytical tractability, these methods

have assumed basic first come first serve (FCFS) queueing and processing of all data plane

flows. As a result, these solutions impose key limitations on both data and control plane

packet flows, i.e., since all data flow packets are treated with the same priority level, and

control plane traffic is also intermixed. As a result, this simplification can result in QoS

degradation for stringent emergency response services.

Overall, the above studies assume that network control logic/intelligence is only de-

ployed at the centralized control plane level, i.e., relegating little/no intelligence at the

switching devices. As a result, the data plane handles all incoming packets in a FCFS man-

ner regardless of their priority level. Hence these forwarding methods do not leverage any

available SDN control feedback features to manage data plane queues. Now other studies

have also tried to characterize incoming flows by port numbers, albeit with lower accuracy

[18]. However, none of these studies have presented a practical SDN prototype that leverages

intelligent control capabilities along with priority-based queueing methods (at both the data

14

and control planes) to minimize control response times.

2.4 Saturation and Flooding Threats in SDN

As noted earlier, SDN is being widely deployed to enhance network QoS support [28].

However recent studies have also revealed some critical, inherent security vulnerabilities

in existing SDN setups [52]. As a result, researchers have also looked at improving the

security of the SDN control plane. In particular, Mahout [53] proposed a mechanism to

prevent flooding threats in SDN setups. However this solution was premised upon statistic

aggregation techniques, which renders it impractical against data-to-control layer saturation

attacks (that may exploit micro-flows). Meanwhile KernelDetect [28] presented a lightweight

kernel space IDPS approach using modular string search and filtering schemes to detect and

mitigate DoS threats. Also, the Avant-Guard scheme [54] detailed a solution to alleviate

saturation attacks by using flow alteration techniques in OpenFlow switching devices.

Recently, Tian et al. [55] also presented FlowSec and Blackbox, two strategies to

counter DoS threats by limiting the number of packets sent to the controller in a given time

interval. These methods also keep track of attack levels while trying to mitigate floods.

Meanwhile PrioGuard [56] detailed a DoS mitigation scheme using a non-cooperative re-

peated game, whereas FloodDefender [57] introduced a protocol-independent solution for

DoS mitigation. Namely, FloodDefender tries to secure both the control and data layers by

leveraging table-miss engineering and packet filter approaches. Meanwhile, [58] presented

another solution that tries to prevent reforwarded requests-based flooding attacks in multi-

15

domain SDN environments. Specifically, this approach uses an adaptive rate adjustment

method to change the re-forwarding rate. Additionally, MinDoS [59] used a priority man-

ager to prevent DoS attacks. Namely, flows are forwarded to multiple buffer queues with

varying priority levels to enhance controller security. Bharathi et al. in [60] also proposed a

path randomization and flow aggregation-based solution to resolve the impact of DoS attacks

on switch flow tables. Furthermore, SDNManager tabled a lightweight framework for DoS

prevention in SDN infrastructures using flow bandwidth change forecasts [61]. Finally, [62]

and [63] presented secure controller mechanisms to prevent DoS attacks against both the con-

trol and date planes. Specifically, [63] is an improved prototype version of [62] which deploys

new triggers to detect and prevent DoS attacks. The proposed solution was implemented

and evaluated over a hardware SDN testbed using the RYU controller software.

Some studies have also focused on SYN flooding attacks. For example, SYN flooding

traffic was identified in [64] by assessing the ratio of TCP SYN packets to TCP ACK flows

produced by the same entities. However, it is impractical to leverage this strategy since

identifying malicious packets in large traffic pools and then accurately marking threatening

flows in real-time is very challenging. Meanwhile, Deng, et al. [65] also studied SYN flooding

threats in order to improve SDN resiliency. Other notable studies on SYN flooding attacks

also include SLICOTS [23] and OPERETTA [24], as presented by R. Mohammadi et al. and

S. Fichera et al, respectively. These IDPS schemes thwart such attacks by surveiling failed

TCP SYN requests and blocking malicious adversarial hosts.

16

Overall, the majority of the above schemes have focused on improving the internal

interactions between modules in the application-controller-switch infrastructure, i.e., to ad-

dress external DoS saturation threats in SDN environments. Nevertheless, few efforts have

considered the use of dynamic/self-adapting detection threshold mechanisms to handle real-

istic scenarios where flooding traffic and bursts may vary in real-time (exhibit time-varying

patterns). Furthermore, current detection and mitigation knowledge on sophisticated SYN

flooding attacks is also incomplete, and most SDN modules can themselves become vulner-

able to malicious TCP SYN flood behaviors.

2.5 Open Challenges

In summary, the maintenance of QoS is a crucial concern as it dominates both in-

frastructure and operational costs in SDN networks (as well as legacy networks). Indeed,

metrics such as controller response times, flow rule processing rates, forwarding delays, and

resiliency are mutually dependent upon each other and will clearly impact overall end-to-end

communication delay and achievable QoS. In this context, it is vital to develop sophisticated

processing and forwarding strategies (at both the control and data plane levels) in order to

maintain QoS and lower cost without affecting SDN controller overheads.

Now a typical solution here may be to dedicate more resources at the SDN controller

in order to reduce its response time. However, such an approach yields significantly larger

infrastructural complexity and operational costs, e.g., physical hardware and energy usage.

Moreover, the processing resources available for logical controllers at a Service Provider

17

(SP) can still be limited, i.e., since operators may restrict the number of concurrent virtual

machine instances per account. As a result, applications-specific QoS may still degrade.

Furthermore, many earlier QoS studies have used port numbers to identify traffic. However,

these schemes suffer from low accuracy or assume that the network can effectively classify

incoming traffic. As such, practical applicability is low and most evaluation efforts have

only been done in simulation-based environments. Indeed, few studies have combined and

integrated priority-based flow forwarding and queueing mechanisms along with TE methods

to improve response time and end-to-end traffic delay (especially in ERS networks).

Furthermore, centralized SDN controller themselves (as well as SDN-enabled switch-

ing devices) can become potential targets of saturation attacks, e.g., such as SYN flooding

attacks. These DoS/DDoS attacks can further degrade the perceived QoS of ICT-based

services and applications. For example, an adversary might try to exhaust resources at the

SDN controller, consume excessive control plane and/or data plane bandwidth, and even

overload switch flow tables [65]. Along these lines, earlier studies have proposed various

solutions for addressing such threats, i.e., including, but not limited to [66], [57], [56], and

[21]. However, none of these studies have proposed more effective strategies using adaptive or

dynamic threshold-based kernel-level IDPS methods. Additionally, most widely-used IDPS

solutions, e.g., such as Zeek [67] (formerly known as Bro) and Snort [68], yield significant

system overheads and very high mitigation times (particularly Zeek).

18

Chapter 3 : End-to-End Latency Management in SDN Infrastructures 1

As surveyed earlier, the centralized control capability in SDN presents a unique oppor-

tunity for providing QoS support. In particular, delay-sensitive traffic flows require effective

QoS mechanisms in order to minimize user latency and controller response time. Now a key

challenge here is how to handle short-term network state fluctuations (in terms of congestion

and latency) while still guaranteeing end-to-end latency performance. It is here that effective

path computation strategies can be developed and applied.

Along these lines, this chapter tables a systematic framework that utilizes active

link latency measurements to perform efficient statistical estimation of network state and

fast/adaptive path computation. The solution is also implemented in a real-world SDN con-

troller application and tested experimentally in the Global Environment for Network Innova-

tions (GENI), a live distributed testbed network funded by the National Science Foundation

(NSF). Overall, detailed performance evaluation results shows that the proposed framework

can effectively resolve end-to-end routes with minimal latency and also deliver significant

reduction in controller overheads.

1Parts of this chapter were published by the author of this dissertation study in M. Rahouti et
al. ”LatencySmasher: A Software-Defined Networking-Based Framework for End-to-End Latency
Optimization”, 44th IEEE Conference on Local Computer Networks (LCN), 2019. The IEEE does
not require individuals working on a thesis to obtain a formal reuse license (if they are the senior
authors of the published work)

19

3.1 Problem Scope

This study focuses on end-user devices sending and receiving fixed rate real-time

traffic flows. The SDN network setup uses OpenFlow switches [6] that provide access to the

data forwarding plane as well as controller-switch communication (to enable state update

functions). Namely, OpenFlow Version 1.5.1 is used here, although the proposed framework is

readily extensible to more recent versions as well. Leveraging this setup, this chapter studies

end-to-end packet delay across SDN networks using statistics collection and topological path

updates. Now effective path selection implementations should try to minimize the average

delay or maximum delay, or both. Efficient use of link capacity is also another key concern

here [12]. Finally, the overheads associated with statistics collection and path updates can

also have a significant impact on end-to-end packet processing latency at switches. Hence it is

also important to address controller-switch communications overheads by reducing statistics

collection overheads and lowering the amount of flow rules generated by the controller.

In light of the above, a novel framework is now proposed, leveraging centralized SDN

control and topological views to manage end-to-end latency, i.e., including delays associated

with path search and selection and controller-switch communication. In particular, the

following techniques/methods are applied here:

• Traffic engineering: Combine empirical latency measurements with a heuristic path

computation approach to reduce end-to-end delays

20

• Statistics and flow rules offloading: Define strategies to reduce the impact of con-

trol channel overheads on latency, i.e., speedup flow rule processing and improve statis-

tics collection at the controller

Accordingly the research problem is divided into three different sub-problems, includ-

ing statistics overhead and collection, latency metric estimation, and efficient path selection.

Consider the details next.

3.1.1 Statistics Overhead and Collection

Statistics collection plays a vital role in providing real-time information to SDN pro-

visioning applications. Now a major challenge here is reducing the impact and overheads

associated with topology statistics collection/inquiries. Hence a metrics matrix (MM) is

typically defined to track various statistics measurements in a given time interval, I. Specifi-

cally, these metrics can include per-switch latency, receive speed (Rx), transmit speed (Tx),

hop counts, etc. This matrix can then be used to estimate link cost to further solve the path

selection problem detailed subsequently (Section 3.1.3). Overall the MM matrix represents

the SDN topology as a weighted graph G = (V,E), where V is a set of graph vertices, each

representing a switching device, and E is a set of physical links (client-switch and switch-

switch). For each link e ∈ E, the vector L(e) is also used to represent the current per-link

metrics of a path connecting a pair of nodes. Moreover, the matrix MM can also include a

respective weight function for each link e ∈ E, i.e., denoted by w(e).

21

3.1.2 Latency Metric Estimation

Since SDN controllers must provide a high degree of globalized visibility, extracting,

filtering, and deploying link and device specific statistics is of key interest. Namely, the

broader objective here is to use these statistics to perform latency metric estimation and

assist with effective path computation. Now in a typical communication scenario between

two endpoint nodes, this model should ideally estimate the latency metrics associated with all

links along the respective path. These estimates can then be used for selecting the forwarding

path for network flows over a fixed time interval, I. Specifically, given the dynamicity of

network topologies, any estimated values will only be considered valid for a fixed interval.

Overall, effective estimation techniques can be used to help reduce the overhead of

statistics collection (via the SDN REST API). In turn, this approach can lower management

plane complexity as well as per-switch latency. For example, in order to measure and collect

a latency metric with OpenFlow switches, the SDN controller must repetitively transmit

multiple Link Layer Discovery Protocol (LLDP) packets over a short time interval, increasing

control messaging overheads.

3.1.3 Efficient Path Selection

Path selection at the SDN controller plays a critical role in ensuring end-to-end QoS.

Therefore in the context of delay-sensitive user traffic, the proposed method must effectively

compute a route between the communicating endpoint nodes in order to satisfy latency

requirements. However, since networking topologies and link loads are highly dynamic, a

22

static minimum cost path will not necessarily yield the most effective route. Therefore,

the proposed path selection mechanism herein jointly incorporates multiple dynamic link

metrics, e.g., such as transmit/receive speeds and transmit/receive utilization per internal

link, and is detailed subsequently (Section 3.2.3).

Figure 3.1: Overview of proposed framework design

3.2 Proposed Prototype

A novel solution is now presented for improving end-to-end latency for stringent

real-time services. This framework is specifically designed to handle dynamic networking en-

vironments experiencing link congestion (which can cause excessive network delays, packet

unsequencing, and even loss). The proposed framework is shown in Figure 3.1 and con-

sists of three modules which are now described further, i.e., statistics collection, time series

estimation, and path selection.

23

Figure 3.2: Latency metric estimation by the SDN controller

3.2.1 Statistics Collection and Latency Timing

A core component of the solution focuses on collecting link delay statistics for the

SDN controller. Namely, the most recent version of the Floodlight SDN controller (Version

1.2) [32] is used to compute link latency by injecting timestamps into LLDP packets and

transmitting them as Packet Outs messages to each switching device, see Figure 3.2. In

turn, when the SDN controller receives one of its own LLDP packets back from a neighboring

switch, it processes it as a Packet In and examines its timestamp value. The “elapsed time”

can then be derived by subtracting the timestamp from the current time. Based upon this,

the latency, LatL, of a link is defined as the elapsed time minus the control plane latency of

the origin switch and the SDN switch (that originally sent out the Packet In message):

LatL = [Ct − LLDPt]− LatSO − LatSS, (3.1)

where Ct, LLDPt, LatSO, and LatSS represent the current time, the timestamp in the LLDP

packet, the control plane latency of the origin switch, and the control plane latency of the

switch that sent out the Packet In message, respectively. Note that this is an approximate

24

calculation, since it is difficult to estimate the exact control plane latency at each switch.

Now this is of particular concern in data center environments where latencies are in the sub-

milliseconds range. Namely, most SDN controller clock implementations have millisecond

precision, which will limit overall estimation accuracy. For instance, if a latency is manually

set at a particular internal link to 10 milliseconds, the impact of this latency on the link

should be feasibly observed. Hence, the LLDP-based latency should be computed as follows:

t lldp tx− t lldp rx− lat tx ovs− lat rx ovs, (3.2)

where t lldp tx, t lldp rx, lat tx ovs, and lat rx ovs represent the initial timestamp values

of the LLDP packet, the trip timestamp, the latency at the neighboring switch (that receives

and sends out the LLDP packet to the next switch), and the latency in the next hop switch,

respectively. Note that the only constraint here is for the networking environment to be

stable prior to capturing the per-link latency values (and this usually occurs after about 60

seconds of wait time).

In general, most default SDN controller implementations do not provide any type of

QoS support. This deficiency will clearly impact the delay performance of network applica-

tions and services with Round Trip Time (RTT) sensitivity [12] [26]. In particular, RTT in-

stability can be affected by various factors, such as (1) network congestion, (2) in/outbound

latency at the SDN switches, and (3) networking topology dynamics. To address these

concerns, the proposed framework leverages the global view at the SDN controller and its

computation capabilities to estimate per-link latencies. Consider the details.

25

3.2.2 Time Series-Based Latency Estimation

End-to-end flow latency along network paths can vary randomly as it is susceptible to

dynamic changes, e.g., such as fluctuating traffic volumes, link faults, routing changes, etc.

As a result, network statistics will generally exhibit a highly dependant nature, obviating the

applicability of linear regression models with independent statistics assumptions. Moreover,

in addition to descending or increasing trends, TS data can also show seasonality trends

(whose variations will apply within a specific time window). For instance, once samples have

been collected along a path for a given time window, further estimates can be derived for

periods of bursty traffic. In light of the above, the proposed TS-based latency estimation

treats the measured per-link latency statistics as a time series observation of a random

process during time Xt. Namely, Xt is considered as a time-dependent random variable on

which a realization is made, where t denotes the sample index.

Due to its holistic and global perspective, the SDN controller can obtain access to a

broad range of topology statistics including, but not limited to, inter-switch statistics and

both internal and external per-link measurements. The latter measurements can include link

speed, transmission speed, reception speed, overall link utilization, etc. However, querying

and collecting statistics measurements via the REST API and statistics collection module

(at the controller) entails significant overheads at both the SDN controller and switches.

As a result, the end-to-end latency of network packet traffic can be unduly affected here.

Hence in order to reduce the amount of statistics inquiries made through the REST API,

26

the proposed TS model performs link metric estimation. In particular, per-link latency is

estimated for a fixed window size based upon current topological statistics. Accordingly, a

Weighted Moving Average (WMA) TS-based approach is now presented.

First, consider N successive observation time instances for the per-link latencies

(along a particular end-to-end path) given by z(t) = (z(1), z(2), ..., z(N)) = (z1, z2, ..., zN).

These values can be representative of N random variables distributed according to N dif-

ferent probability density functions, i.e., f1(z1), f2(z2), ..., fN(zN). Hence the sequence of

latency metric samples received by the SDN controller can be referred to as sample realiza-

tion of per-link latencies. Now Ribeiro et al. [69] proposed a moving average technique for

network bandwidth estimation by averaging recent measurements within a window size of

M . Inspired by this previous work, an Exponentially Weighted Moving Average (EWMA)

model is incorporated into the latency estimator module. Namely, this approach utilizes the

per-link latency values computed by the SDN controller as described above, and generates

a new estimate, Yi, as follows:

Yi = θiYi−1 + (1− θi)Zi. (3.3)

where θi is an exponential weighting factor, 0 ≤ θi ≤ 1. Note that this approach has not

been proposed and implemented before for per-link latency estimation in networking-enabled

environments.

27

Now a key requirement here is the initialization of the exponential weighting factor,

θ. Namely, if θ is chosen too large, then the previous estimates will be given increased

importance, and the end-to-end path latency estimation will not reflect current network

changes and dynamicity. However, if θ is set to a smaller value then improved estimation

agility can be achieved [70]. Ideally, however, this weighting should be adaptive such that

a value θi is defined for each current measurement interval, i. Accordingly, a dynamic

exponential weighting factor is computed as follows:

θi =
γΛ∑i

t=i−M(Zt − Zt−1)
,

where Λ =| Zmax − Zmin |,

(3.4)

i.e., Λ is the difference between the maximum and minimum per-link latency samples within

the window size M . Overall, the estimation module starts with initial M and γ values of

10 and 15, respectively. In particular, these values are empirically chosen by taking into

account both network topology dynamics and statistics collection overheads. Note that per-

link latency samples can sometimes remain unchanged for a given duration. Hence Equation

3.4 can lead to a divide by zero error. In order to resolve this concern, the dynamic weighting

factor θi is initialized to 0.5 if the observed per-link latencies remain constant within a given

time frame.

28

3.2.3 Adaptive Heuristic-Path Selection

The A∗ algorithm is widely used for graph traversal and path selection [71] due to its

accuracy and performance. In particular, this scheme is an instance of the best-first search

which defines a heuristic evaluation function, f(x), as follows:

f(n) = g(n) + h(n), (3.5)

where n is the next node on the path, h(n) is the heuristic function to predict the path with

the lowest cost from n to the target node, and g(n) is the actual cost of the path from the

initial source to the current node n, respectively. Here the heuristic function can be used

to control the behavior of the A∗ algorithm. Namely, if h(n) is 0, then the actual cost,

g(n), drives path selection according to the ubiquitous Dijkstra algorithm for shortest path

selection. Alternatively, if h(n) = g(n), then the heuristic estimation is equal to the actual

cost of traversing from node n to the destination. In this case the A∗ algorithm quickly

follows the lowest-cost path and does not explore other options. Finally, if h(n) > g(n),

then the scheme cannot guarantee that the lowest-cost path will be found, i.e., even though

it runs faster since it will not expand all nodes. Hence for effective operation, the condition

h(n) ≤ g(n) should be satisfied, i.e., meaning that the total path latency should be less than

or equal to the actual cost of moving from the current node n to the target node.

29

Leveraging the above, the path selection module calculates the path based upon the

output of the latency estimation module as follows:

f(n) = g(n) + θiYi−1 + (1− θi)Zi,

i.e., h(n) = θiYi−1 + (1− θi)Zi.

(3.6)

As per the above, the path selection module chooses h(n) to achieve dynamic path selection

to the target node. Now readily-available per-link latency estimates from the latency estima-

tion module (Section 3.2.2) can be leveraged to specify h(n). Specifically, h(n) is basically

expressed as a set of links between two communicating nodes as follows:

h(< n0, ..., nk >) = h(nk). (3.7)

In order to satisfy the desired operating condition of the A∗ algorithm, i.e., h(n) ≤ g(n), the

following expression should hold:

θiYi−1 + (1− θi)Zi ≤ g(n). (3.8)

Overall, the above solution is capable of dynamically varying its performance according to

the calculated heuristic, h(n). Moreover, the shortest path between the designated end nodes

is not necessarily chosen, i.e., it may yield a path that is acceptable and close to the shortest

path depending upon the dynamics of a networking topology. This scheme also provides a

trade-off between the speed and efficiency of path selection.

Overall, the complete implementation-level description of the proposed A∗ scheme

is also given in Figure 3.3. The destination (goal) and source nodes here are denoted by

30

nodegoal and nodestart, respectively. Furthermore, two lists, OPEN and CLOSED, are also

maintained for tracking purposes. Specifically, OPEN is the list of pending tasks, i.e., nodes

that are visited but not expanded (and their successors are not searched yet). Meanwhile,

CLOSED is a list of nodes that have already been visited and expanded, i.e., where the

successors have been explored and placed in the OPEN list.

1: Initialize OPEN list & TS − estimator with M = 10
2: INPUT: G(V, E), cij∀(i, j) ∈ E,R, F,D
3: OUTPUT: path vector
4: while the OPEN list is != empty
5: f(nodec) = g(nodec) + h(TS − estimator(nodec))
6: if nodec is nodeg
7: return path & break
8: Generate each state nodes that comes after nodec
9: for each nodes of nodec

10: Set successorcost = g(nodec) + h(TS − estimator(nodec, nodes))
11: if nodes is in the OPEN list
12: if g(nodes) ≤ successorcost
13: Go to line 20
14: else if nodes is in the CLOSED list
15: if g(nodes) ≤ successorcost
16: Go to line 20
17: Move nodes from the CLOSED list to the OPEN list
18: else
19: Add nodes to the OPEN list
20: Set h(nodes) to be the heuristic distance to nodeg
21: Set g(nodes) = successorcost
22: Set the parent of nodes to nodec
23: Add nodec to the CLOSED list
24: return path vector

Figure 3.3: Adaptive A∗ path selection algorithm

31

Figure 3.4: The experimental SDN topology on NSF GENI testbed

3.3 Performance Evaluation

The proposed latency management solution is implemented and evaluated in a live

SDN network testbed. In order to gauge the proposed framework and conduct a compre-

hensive empirical examination of end-to-end latency, three key requirements constraints are

incorporated when building the SDN topology. Foremost, open source SDN controller and

OpenFlow software implementations are chosen to ensure wider adoption/evaluation of the

work. Next, realistic network traffic emulation is done using a dedicated software mod-

ule. Finally, the network topology is designed with multiple paths and physical links with

changeable loss rates and link speeds. As noted earlier, the solution is implemented in the

NSF GENI [72] network, a real-world federated and heterogeneous facility. This is a well-

32

established testbed that allows researchers to build arbitrary network topology slices and

deploy tailored end host (traffic generation) and SDN controllers.

Now in order to comprehensively evaluate end-to-end latency performance over realis-

tic networks, the GENI topology is chosen to interconnect nodes from Lexington, Kentucky,

Cleveland, and Louisiana, as shown in Figure 3.4. Namely, the stitching capability in the

GENI portal allows researchers to interconnect nodes from multiple aggregates (e.g., cities)

to build a larger coherent topology. Furthermore, each switching node also runs the Open

vSwitch (Version 1.5.1) protocol, whereas the SDN controller host deploys Floodlight (Ver-

sion 1.2), an open source SDN controller solution.

3.3.1 Per-Link Latency Examination and Path Selection

Initial tests are done to evaluate the relative percentage error of the per-link latency

estimates. Namely, the difference between estimated calculations based upon the TS model

and the actual measured values (calculated by the SDN controller) is derived as follows:

Error =
|LatencyE − LatencyA|

LatencyA
,

i.e., Error =
|[θiYi−1 + (1− θi)Zi]− LatencyA|

LatencyA
,

(3.9)

where LatencyE and LatencyA represent the estimated latency and the actual measured

value, respectively. Specifically, the relative error is calculated as the absolute error divided

by the magnitude of actual latency values (expressed in terms of percentage) as per Equation

3.9 for different observation trials. Based upon the above, Figure 3.5 plots the average relative

percentage error of multiple links in a single end-to-end path. Namely, the given path lies

33

between end nodes N1 and N6, and uses Link 1, Link 2, and Link 3 (representing inter-switch

links S1 → S3, S3 → S4, and S4 → S6, respectively), see figure Figure 3.4. As expected, in the

initial steps the estimated latencies will equal the actual values since the TS estimator uses

the initially-observed per-link latency values to compute the averages (and these will closely

match the actual latencies measured). However, with increasing measurement samples, the

accuracy of path latency estimation improves notably, and the average error rate remains

below 0.2% as shown in Figure 3.5.

Figure 3.5: Average relative error of individual links in a single end-to-end path

Next, the actual and estimated path costs are compared to evaluate the effectiveness

of the proposed adaptive A∗ path selection algorithm. As discussed in Section 3.2, the

34

A∗ algorithm will yield an improved path if the heuristic condition is satisfied in Equation

3.8. Hence Figure 3.6 plots both the actual and estimated latency values based upon the

TS estimator module. These results confirm that the the actual path cost is only smaller

than the estimated cost in the initial TS estimator phase, i.e., since the exponential moving

average of collected latency values is likely higher than the actual path cost.

Figure 3.6: Path selection comparison (actual versus estimated path cost)

35

Figure 3.7: Latency comparison between A∗ approach and default Floodlight path selection

3.3.2 Proposed Framework Performance Versus Default Path Computation

The proposed adaptive A∗ scheme is also compared to the default path selection

algorithm in the Floodlight SDN controller. Namely, Figure 3.7 plots the throughout com-

parison between these two methods. Specifically, in this experimental setup, N1 and N6 are

designated as the source and target nodes, respectively. Overall, these results confirm that

the proposed framework outperforms the Floodlight path selection mechanism with regard

to end-to-end latency minimization. Namely, as long as the heuristic selection condition

holds (as discussed in Section 3.2.3), the adaptive A∗ algorithm only expands on nodes with

36

lower heuristic latency values. This approach tries to reach the destination node as quickly

as possible rather than expanding every other node like the Dijkstra algorithm. Moreover,

the modified path selection module is only invoked when a better (lower) cost estimate for

the current path is found by the TS estimator module.

Table 3.1: Percentage improvement in latency (proposed framework versus default controller)
Measurement Statistics Node N1 Node N2 Node N3

Mean 3.07 % 6.41 % 4.51 %
Median 3.82 % 5.95 % 5.07 %

Additionally, Table 3.1 also summarizes the percentage improvements in end-to-end

latency yielded by the proposed framework (versus the default Dijkstra path selection method

provided in the Floodlight controller). These results confirm that the proposed SDN-enabled

framework reduces delays by at least 3% (for the different nodes communicating with the

designated server node, N6).

3.3.3 Overhead Considerations

Finally, control overheads are also measured to gauge operational complexity. Specifi-

cally, the SDN controller CPU resource utilization is plotted for both the proposed framework

and default Floodlight controller in Figure 3.8. Again, these results demonstrate that the

developed framework outperforms the existing Floodlight controller implementation, i.e.,

average overhead reduction of about 20%. Overall, this improvement is mainly due to the

increased statistics collection tasks running at the Floodlight SDN controller. Specifically,

the default statistics collection feature generates a large amount of unnecessary topology and

37

Figure 3.8: Overhead comparison with default Floodlight (horizontal lines plot averages)

per-link statistics in a periodic manner (every 10 seconds by default). These excessive calcu-

lations and exchanges result in notably higher controller and switch overheads. By contrast,

the proposed framework only requests individual per-link statistics when networking traffic

is initiated by an end node. Similarly new flow rules are only pushed to switches when an

alternative path with a better cost is estimated. Again, this contrasts with the default path

computation facility in the Floodlight controller, i.e., as the proposed adaptive path search

only expands along a new path if its heuristic cost (from TS estimation module) is less than

the current cost.

38

Chapter 4 : SDN-Based Priority Queueing

As surveyed earlier, SDN technology provides separation between the data and control

layers in a network in order to enhance service provisioning and management. Now for delay-

sensitive client services, e.g., such as an emergency response, various QoS strategies can be

implemented using SDN, e.g., such as minimization of end-to-end delay, effective calculation

of forwarding paths, and minimization of SDN controller response times. Furthermore,

priority-based traffic management can also be introduced for both data and control plane

packet flows.

Along these lines, this chapter presents a novel QoS solution that leverages the global

control capabilities of SDN along with priority-based queueing and TE techniques. Termed

as QoS Priority (QoSP), the proposed solution leverages multiple queues to handle higher-

priority traffic while preempting control plane traffic. In particular, the proposed scheme

distributes traffic across multiple queues with different priorities at each switch port (in the

OpenFlow devices). Furthermore, the solution is also implemented in a live SDN controller

and tested in the NSF GENI testbed facility. Overall, detailed performance evaluation results

show that the proposed QoSP scheme can effectively resolve controller latency concerns and

manage queueing times for each traffic priority in the data plane.

39

Figure 4.1: Latency overview in a SDN setup

4.1 Problem Scope

As noted earlier, OpenFlow SDN-enabled networks operate in a reactive manner by

checking switch flow tables for existing rules for incoming packets. If no matching flow rules

are found, switches send OpenFlow Packet In messages (which include first packet headers)

to the SDN controller. Subsequently, the controller replies with Packet Out messages to

allow the switches to install respective forwarding rules in their flow tables (assuming that

valid routing paths are found between the nodes). Now clearly control and switching latencies

can have a notable impact on overall packet routing delays here.

40

The overall breakdown of latency and messaging control is further illustrated in Fig-

ure 4.1 for a sample three switch network. Namely, the end-to-end route here traverses three

Open vSwitches, i.e., OVS1, OVS2, and OVS3. Accordingly, the flow enters the switches at

times L1, L4, and L6 and then departs at times L2, L5, and L7, respectively. Now assume

that flow entry matching procedures at OVS1 and OVS3 incur additional delays (overheads)

from Packet In messaging with the SDN controller. Hence the actual delay between OVS3

and OVS1 is given by L7 - L2. Additionally, L3 and L8 represent the timestamps for the

Packet In messages departing OVS1 and OVS3, respectively. In turn, this gives L̂3 and L̂8,

the corresponding arrival times of Packet In messages at the SDN controller. Note that

d1 and d3 also denote the propagation delays between the SDN controller and OVS1 and

OVS3, respectively, and these values are non-negligible in larger metro-core networks. In

this context, the minimization of controller-switch communication latency is of key impor-

tance. As a result, priority-based queueing is proposed to alleviate these delays and control

the scheduling management of control packets.

Now existing OpenFlow implementations only support a basic FCFS queueing strat-

egy to handle all ingress data flows [6]. However, this limitation can prevent data plane flows

from achieving their stringent QoS requirements in case of path congestion. To address this

concern, reordering of incoming traffic can be done in the data plane queue, i.e., according

to specific priority levels. In addition to multiple data plane queues, a control plane queue

can also be incorporated into the overall control mechanism to manage operation (via feed-

41

back control from the SDN controller). Overall, this approach can reduce controller response

times and packet processing/forwarding delays based upon different priority levels.

4.2 System Overview

The QoSP provisioning framework for SDN is now presented. Foremost, this solu-

tion classifies incoming data traffic flows (packets) into multiple priority levels and buffers

them separately. A feedback control mechanism is then used to implement priority-based

transmission of all enqueued data packets, i.e., with the SDN controller performing dynamic

queue control.

Figure 4.2: Overview of SDN-based priority queueing structure (QoSP)

42

The overall SDN queueing setup is shown in Figure 4.2 for both the data and control

planes in the QoSP scheme. This design relies upon a set of queues. Foremost, the uplink

channel (UC) and downlink channel (DC) queues buffer switch-to-control and control-to-

switch control packets, respectively. These queues are also assumed to have infinite length.

Meanwhile, the SDN controller maintains a finite queue to store incoming lookup requests

(Packet In messages). Finally, the Open vSwitch also maintains a series of priority-based

queues for incoming data packets. In particular, four different priority levels are supported

here, i.e., normal, low, medium, and high (Figure 4.2). Overall, the control plane queues (UC,

DC, and controller) are intended for flow rules management and control, and the correspond-

ing data plane queues store traffic with different priority levels. Furthermore, control-related

packets are also prioritized over all data plane packets regardless of the priority level of the

latter. Hence during flow scheduling, packets in the control channel queue are guaranteed

a minimal processing latency, whereas data plane packets are processed according to their

arrival priority levels.

Now consider a typical sequence of queueing actions in the above QoSP setup. Fore-

most, incoming data flows arriving at the Open vSwitch device (Step 1) are classified and

placed in the data plane queue in an ordered manner according to their corresponding pri-

ority level. Note that packets will only be queued if the buffer is not full and the switch

server (SS) is not busy (Step 2). Now assuming the SS is idle, a packet will be processed

and forwarded immediately if a matching flow rule entry is found in the Open vSwitch flow

43

table (Step 7). Alternatively, the header of the incoming packet will be forwarded to the

SDN controller (in a Packet In message) via the UC to acquire a corresponding flow rule

entry (Steps 4-6). Further analysis and details of the proposed solution are now presented,

including a detailed analytical queueing model.

4.2.1 System Queueing Model

The end-to-end latency performance of the proposed QoSP solution is now modeled

using queueing theory. In particular, the focus is on capturing control response and data-

control channel latencies (including queueing delays). For tractability, it is assumed that the

packet arrival rates and service times follow Poisson and negative exponential distributions,

respectively. As a result, the uplink (UC) and downlink (DC) channels can be modeled

as ubiquitous M/M/1 queueing systems, whereas the SDN controller can be modeled as a

M/M/1/K queueing system, where K denotes the maximum number of Packet In messages

that can be stored in the SDN controller. Consider the details.

End-to-end latency in SDN involves multiple factors, including propagation delay,

switching latency, and control latency. In general, the processing of incoming flows (at

a switching device) can involve significant overheads depending upon flow rule matching

procedures. Namely, unlike packets that match with existing flow rules in the switch flow

table, unmatched packets must undergo additional delay as they are forwarded to the SDN

controller, i.e., table miss. Therefore, the end-to-end latency for data packets will also depend

upon the control latency and response time. Hence consider a pair of communicating end

44

nodes, n1 and n2, and the flow route between them as a sequence of single hops r1,2
d =<

hn1 → O1, hO1 → O2, ..., hOi
→ n2 >, where h and O are the corresponding links and

switches, respectively. Now first consider the end-to-end latency in case of a table lookup

match. Namely, if the incoming flow matches an existing flow rule in the switch flow table,

the total end-to-end latency is given by:

L1,2 = Pgn1 +

j+1∑
i=1

Tri +

j∑
i=1

(Qi + Pri), (4.1)

where Pri and Qi are the processing delay and queueing delay at the i-th switch, respectively,

Trk is the transmission latency at the i-th link, and Pgn1 is the propagation delay at end node

n1. However, if the arriving flow does not match any existing flow rule, additional controller

latency and queueing delays are incurred. Hence in this case, the end-to-end latency, L̂1,2,

is given by:

L̂1,2 = Pgn1 +

j+1∑
i=1

Tri +

j∑
i=1

(Q̂i + Pri) + C1,2, (4.2)

where C1,2 and Q̂i represent the additional control latency and Open vSwitch queueing

delays. Hence based upon Equations (4.1) and (4.2), the control path latency, C1,2, can be

written as:

C1,2 = L̂1,2 − L1,2 +

j∑
i=1

(Qi − Q̂i). (4.3)

In addition to the above, end-to-end latency is another critical parameter. Namely,

this value, termed as Le2e, can be derived in terms of the flow rule entry hit or miss proba-

45

bility. Specifically, the average delay experienced by an incoming packet is given by:

Le2e = Lhit ∗ Phit + Lmiss ∗ (1− Phit), (4.4)

where Lhit and Lmiss denote the average latencies for packets with matching and non-

matching (miss) flow rule entries, respectively, and Phit is the probability that a matching

flow rule is found at the switch. Based upon the above, Lhit and Lmiss can be estimated as

follows:

Lhit =
Le2e − Lmiss ∗ (1− Phit)

Phit

, (4.5)

and

Lmiss =
Le2e − (Lhit ∗ Phit)

1− Phit

. (4.6)

Extending upon this, the average queueing delay in the data plane at switch i, Qi, can be

derived from Equation 4.4 by subtracting the queueing delays at the SDN controller and UC

and DC queues as follows:

Qi = Lhit ∗ Phit + Lmiss ∗ (1− Phit)− (Du +Dd +Dsdn), (4.7)

where Du, Dd, and Dsdn denote the uplink, downlink, and SDN controller delays. Now let

Dls summarize these delays as follows:

Dls = Du +Dd +Dsdn (4.8)

Hence the average waiting time per packet in the data plane queue can be calculated by

subtracting Dls from the total end-to-end latency, Le2e. Since control plane packets are

46

assigned the highest priority and served in a non-preemptive forwarding manner at the

switches, the service rate for these packets will be smaller than that of data plane packets.

Therefore, given an arrival rate of λsdn at the control plane queue and an average queueing

time in the data plane queue, Qi, from Equation 4.7, the waiting time for normal packets

(lowest priority) is given by:

wp = Dre +Dovs +Doh, (4.9)

where Dre, Dovs, and Doh represent the residual packet service time, average switch waiting

time, and additional waiting time due to higher priority control plane packets, respectively.

Namely, Equation 4.9 represents the average time a low priority packet must wait prior

to being served and forwarded by the switch server (assuming that the corresponding flow

forwarding entry exists). Note that Dre can also be obtained by using the utilization law

[73] as follows:

Dre =
λiovs
µ2
O

. (4.10)

where µ2
O and λiovs are the packet service and packet arrival rates at the switch i, respectively.

Additionally, by applying Little’s Law, and assuming a service rate of µovs packets/sec at

the switch, the average packet waiting time at the switch, Dovs, is given by:

Dovs =
λovs ∗ (Dre +Dovs +Doh)

µO

, (4.11)

Meanwhile, the added waiting time due to control plane packets, Doh, is given by:

Doh =
Dre +Dovs +Doh ∗ λsdn

µO

. (4.12)

47

Finally, the average packet delay in the data plane for normal packets (lowest priority) can

be derived by substituting Equations 4.10, 4.11, and 4.12 into Equation 4.9. Note that both

Equations 4.9 and 4.4 will be used later in Section 4.3 to measure QoSP scheme performance.

4.2.2 Queue Control Mechanism

The proposed QoSP scheme also uses the well-known Random Early Detection (RED)

scheme [74] to manage all the data plane queues. Namely, this probabilistic mechanism in-

creases packet drop probability after the average queue length crosses a specified threshold

(up to the maximum buffer size). Since RED operation requires detailed queue level infor-

mation at the switch, a utilization monitor is also placed at the REST API to periodically

gather data plane queue statistics as well as port statistics (at OpenFlow switches). This

information is then sent to the SDN controller for each queue (priority level). Specifically,

data plane queues are instantiated by using an available port number at the switch. Detailed

statistics for each data plane queue are then collected by the utilization monitor by matching

the switch identifier with the queue instantiation port number, i.e., by using the REST API

Portusage(OV S1, Port2) function.

The pseudo-code of the overall RED-based queue control mechanism is also shown

in Figure 4.3. This scheme tries to control queue length and avoids dropping packets from

higher priority data flows. To achieve this, the average queue size is calculated for each data

plane priority queue level. In particular, these averages are updated whenever a priority

level queue is idle, i.e., to keep track of how many packets can be forwarded during the idle

48

1: INPUT: Packet In; Queue Stats
2: OUTPUT: Feedback signal
3: for each packet pi
4: Calculate average queue size avgq
5: Maintain avgq running average of queue length
6: if avgq < minth

7: Low queuing −− > send packets through
8: if avgq > maxth
9: Drop packet

10: Protection from misbehaving sources
11: else
12: Mark packet proportional to queue length
13: Notify sources of incipient congestion
14: return Packet Out

Figure 4.3: Queue control mechanism

interval. Now based upon the feedback control signal message from the SDN controller, if

one or more data plane queues are full (i.e., congestion), the switch is instructed to drop

packets with lower priorities (than the one arriving at the switch ingress port). Hence the

probability that a given priority queue experiences packet drops increases as more flows with

higher priority levels arrive at the switching device.

Finally in order to ensure that control packets (i.e., Packet In messages) are prop-

erly prioritized over data plane packets, the solution also leverages the OpenFlow Pause

controller feature. Specifically, this action allows the switch to pause a packet’s forwarding

procedure based upon its flow table (and serializes the packet state as continuation in the

Packet In message). Later on, the SDN controller transmits a continuation flag back to

the Open vSwitch using the NXT RESUME message, i.e., to resume processing of a data

plane packet from its previous interruption point.

49

4.3 Performance Evaluation

The proposed QoSP traffic management solution is also implemented and evaluated

in the NSF GENI testbed. In particular, the same overall topology and (hardware, software)

setup configuration is used from the previous chapter, as shown in Figure 3.4. Meanwhile,

traffic generation and measurement is also done using a variety of tools, including iPerf3,

ping, and Linux-based traffic control via the TC package [75]. Detailed results are now

presented for control latency, service fairness, and end-to-end service delay.

4.3.1 Control Latency

Figure 4.4: Control latency in QoSP solution versus default Floodlight controller

50

Control path latency is evaluated for data transfer between nodes N1 and N2 along

the route N1 → S1 → S2 → N2 (in Figure 3.4). Now based upon Equation 4.3, the control

plane latency, C1,2, can be approximated as:

C1,2 ≈ L1,2 − L̂1,2 (4.13)

Similarly, the reverse path delay from node N2 to node N1, C2,1, can also be approximated

as C2,1 ≈ L2,1 − L̂2,1. Hence the total control plane latency can be represented as the sum

of C1,2 and C2,1 as follows:

C ≈ (L1,2 + L2,1)− (L̂1,2 + L̂2,1) (4.14)

Note that L1,2 + L2,1 represents the overall RTT for packet miss instances, i.e., no flow rule

entry match in the switch flow table. Meanwhile, L̂1,2 + L̂2,1 represents the RTT of the same

packet experiencing a table hit, i.e., flow rule entry found in the Open vSwitch table. Hence

the control plane latency between the pair of nodes N1 and N2 can effectively be computed

by simply subtracting packet RTT values. Accordingly, Figure 4.4 compares the control

latency of the proposed SDN solution versus the un-optimized SDN controller. Here the

buffer size at the SDN controller is set to 10 kilobytes, whereas the transmission rates of the

UC and DC queues are set to 100 packets per second. Overall, the Cumulative Distribution

Function (CDF) plots show a notable improvement/reduction in average control path delay

with the QoSP scheme. In particular, the average delay is about 8% lower, i.e., mean 26 ms

for QoSP versus 34 ms for the default controller.

51

4.3.2 Service Fairness

Fairness between different data traffic priority queues is also a key concern. For ex-

ample, higher priority flows can easily degrade the throughput performance of lower priority

flows resulting in bandwidth starvation for some users. Hence the service fairness of data

plane queueing is also examined by using the global fairness index introduced by Jain [76]:

FairnessIndex =
(
∑
Xi)

2

n
∑
X2

i

; (4.15)

where

Xi =
Ti
Oi

, (4.16)

and Ti and Oi denote the measured throughput (using iPerf3) and fair (average) throughput

for sample i, respectively. Namely, this index gauges service performance based upon the

measured and expected throughputs.

Accordingly, Figure 4.5 plots service fairness results for both the QoSP solution and

default Floodlight implementation (FCFS queueing). In particular, the index is measured as

a function of the table hit probability in the Open vSwitch flow table. Overall, the findings

in Figure 4.5 show that the proposed QoSP yields much higher global service fairness. This

improvement is a direct result of the selective queueing mechanism used in this solution.

Specifically, the default setup does not prioritize control packets over data packets, thereby

impacting both queueing and switching delays for data flows (and high priority flows in

particular). By contrast, the proposed QoSP scheme yields notable improvement in service

52

Figure 4.5: Global service fairness index comparison

fairness for both control and data plane packets with respect to table miss and table hit

probabilities.

4.3.3 Priority Level Delay Variation

The prioritization of data flows is crucial for providing adequate QoS support for

high-end user services, e.g., such as emergency response. Hence to further examine the

performance of the proposed QoSP scheme, end-to-end latency is empirically measured for

each data plane priority level, i.e., switch queueing delays. Now since the total queueing

time is directly impacted by link delay, flow latency is gauged for two different link delay

53

Figure 4.6: Queueing delay per priority level (normal to high for QoSP scheme)

variations between nodes N1 and N2 in Figure 3.4, i.e., termed as low and high. Namely,

the link rates in the SDN topology are set to 5 Mb/s and 500 Mb/s for the low and high

scenarios, respectively. Additionally, data traffic is also generated at a speed of 5 Mb/s

and 500 Mb/s for the low and high scenarios, respectively. Subsequently, the latencies are

computed for all four data plane priority levels (normal, low, medium, and high) using 1

second time intervals. Accordingly, flows with different priority levels are then transmitted

from node N1 to node N8 in Figure 3.4, and the overall queueing delay is measured for each

flow. The respective delay CDFs for each priority level are then plotted in Figure 4.6. As

expected, higher-priority flows have the lowest delays. For example, almost 75% of higher

54

priority packets experience under 0.05 ms delays. By contrast close to 65% and 40% of

medium and low priority packets, respectively, experience smaller delays. Meanwhile, very

few normal traffic flows (i.e., lowest priority) have end-to-end delays under 0.05 ms, i.e., only

about 10%.

Figure 4.7: End-to-end latency comparison

4.3.4 End-to-End Delay Validation

Finally, Figure 4.7 plots the throughout comparison between the proposed SDN so-

lution and the default SDN Floodlight controller. In this case, both nodes N1 and N6 (in

Figure 3.4) are designated as the source and target entities, respectively. Overall, the results

55

demonstrate that the QoSP prototype notably outperforms the default forwarding mecha-

nism in the Floodlight SDN controller, i.e., with respect to end-to-end latency. Namely, the

results in Figure 4.7 show that the proposed solution reduces overall end-to-end latency by

at least 5% for data transfer between N1 and N6 nodes, i.e., along the route N1 → S1 → S3

→ S4 → S6 → N6.

56

Chapter 5 : Dynamic Threshold-Based SYN Flood Attack Detection

DoS and DDoS attacks, and in particular TCP SYN flooding attacks, pose serious

threats to SDN-based network control setups. Hence a variety of IDPS schemes have been

introduced for identifying and preventing such occurrences, as surveyed in Section 2.4. How-

ever, most of these schemes yield significant performance overheads and response times,

making them inflexible and inapplicable in large-scale operational networks.

Therefore in order to address these concerns, this chapter presents a novel adaptive

dynamic threshold-based kernel-level IDPS that leverages SDN capabilities to handle TCP

SYN flooding attacks. The proposed solution is then evaluated to detect and mitigate the

aforementioned threats and also compared against traditional IDPS technologies, namely

Snort and Zeek. These tests are done using a mixture of fundamental adversary attacks, as

well as SDN-specific threats in the real-world GENI testbed. Overall, detailed experimental

results demonstrate the efficacy of the proposed scheme within SDN environments.

57

5.1 Research Background and Problem

In an SDN-enabled network, switching devices (such as Open vSwitch platforms)

process packet flows according to the rules injected by the SDN controller. Namely, these

flow rules are generated and transmitted by the SDN controller to data plane switches in

either a proactive or reactive manner. Specifically in the proactive mode, the controller tries

to populate rules prior the arrival of user traffic at the forwarding device. Conversely, in the

reactive mode, the controller injects and adjusts flow rules dynamically in real-time. Hence

this study focuses on using reactive techniques to handle TCP SYN flooding threats against

SDN controllers.

5.1.1 Overview of SYN Flooding Attacks

TCP SYN flooding attacks are DoS attacks that try to overwhelm a victim’s host

computer with a large quantity of ICMP, SYN/SYN fragments, or UDP packet traffic. In

particular, these attacks appear when a single or multiple hosts are flooded by TCP SYN

segments initiating unaccomplished TCP connection requests (and hence are unable to re-

spond to legitimate connection requests) [77]. Specifically, TCP client and server hosts use

a three−way handshake mechanism to establish a connection, as shown in Figure 5.1. Suc-

cessful setup requires the client to send a SY N packet to the server host, which in turn

replies with a SY N ACK packet and immediately allocates TCP stack resources for this

established connection query [78]. Once this is achieved, the server enters a listening state,

called Transmission Control Block (TCB) [23], and stays there until it receives a final ACK

58

Figure 5.1: Typical TCP handshake (top) and SYN flooding attack (bottom)

message from the client (within a given timeout interval). It is only once the client replies

back with an ACK message that the TCP session is deemed as successfully established and

data can be exchanged.

Now as per the above, TCP session establishment is very susceptible to SYN flooding

attacks, i.e., where an adversary sends a large number of half-open connections to the server

without sending closing ACK packets, also shown in Figure 5.1. These floods can lead to

resource exhaust at the server, preventing legitimate new connections from being established.

Moreover, in some cases many distributed adversarial hosts can even send a large amount of

59

SYN packets using spoofed IP addresses (i.e., DDoS attacks), making it even more difficult

for a server to identify the sources of an attack.

Figure 5.2: SYN flooding attack in SDN

5.1.2 Threat and Attack Model in SDN Environment

The threat model here assumes both data and control plane vulnerably to TCP SYN

flooding attacks. Furthermore, it is also assumed that (1) an attacker is capable of sending

a large amount of TCP SYN-based traffic to an OpenFlow network, and (2) adversarial

traffic is comprised of a mixture of both legitimate and malicious packets, making it difficult

to differentiate. Accordingly, Figure 5.2 shows a realistic scenario that illustrates how an

attacker can flood the SDN infrastructure with TCP SYN packets. Here, the Open vSwitch

device receives an incoming packet stream containing a mixture of legitimate (normal user

traffic) packets and malicious SYN flooding packets (from the adversary host). It is assumed

60

that the single adversary host is capable of producing a large number of SYN packets to

saturate the switching device.

Now consider the detailed interactions between the end hosts, switches, and SDN

controller shown in Figure 5.2. Foremost, the adversary host (Host A) sends SYN flooding

packets (step a) and the receiving switch checks its flow table for a matching forwarding

rule. If no flow rule matching the destination IP address is found, i.e., table-miss, the switch

forwards it to the SDN controller (step b) in the form of Packet In message. The SDN

controller processes this Packet In request and searches for the corresponding path to the

target host (assuming that there is at least one path available). It then inserts the flow

rule into the switch’s flow table (step c). Next, the switch forwards the SYN packet to the

target host, Host B (step d). Finally, when Host B receives the SYN packet, it allocates

a new buffer for this request and replies with a SY N ACK packet (step e). Similarly,

once the destination switch receives the SY N ACK message, it again forwards it to the

SDN controller for flow rule query (step f). Upon receiving this Packet In message from

the switch, the SDN controller once again computes the return route and inserts it in the

switch flow table (step g). Finally, the switch sends a SY N ACK message to Host B

(step h). Given this handshake-based communication model, an adversary can readily insert

false source IP addresses and make the SDN controller insert spurious new forwarding rules

(step g). Namely, the forwarded SY N ACK packets to Host B will be based on invalid IP

addresses.

61

In light of the above, if the adversary host transmits a large number of “spoofed”

SYN packets, it can easily flood the resources at the target host. More importantly, the

adversary can also overwhelm switch lookup tables with spurious flow rules, consuming

precious memory. Furthermore, SYN floods can impose high computational workload at the

SDN controller, i.e., Packet In processing, and also saturate bandwidth usage at the control

plane due to excessive messaging, i.e., Packet In messages and flow rules.

5.1.3 Motivation and Problem Scope

SDN environments can face many specialized threats from malicious adversaries.

Hence the simple pre-placement of flow rules in data plane switches to dismiss any non-

matching flows is not practical. Instead, SDN control implementations typically consist of

different processing policies since network traffic is usually very dynamic. For example, poli-

cies can differ according to varying network conditions or user types [64]. Indeed, dynamic

processing policies can render controller applications susceptible to security SYN flooding

threats because such policies require continuous updates during the data layer transition [64].

Now recent versions of the OpenFlow protocol also allow the SDN controller to receive infor-

mation about data layer transition via incoming Packet In messages. Hence when a SYN

flooding attack occurs, the controller’s resources can easily be exhausted.

In light of the above, the first objective here is to try to maintain the core functionality

of the SDN infrastructure during SYN flooding saturation attacks. In particular, this is

done via direct installation of flow rules in SDN switching devices in real-time. Furthermore,

62

another objective is to try to process table-miss flows without harming normal/legitimate

user traffic flows. In particular, simply dropping all table-miss traffic is not acceptable as

it may adversely impact legitimate users as well. Instead, whenever a SYN flooding attack

takes a place, the table-miss traffic will be sent to the corresponding data layer cache prior

to communication with the SDN control layer (via Packet In messages).

Figure 5.3: Architecture of proposed SYNGuard framework

63

5.2 Modeling and Framework Design

In order to address SYN flooding attacks in SDN settings, a novel protocol indepen-

dent IDPS solution is now presented, i.e., termed as SYNGuard. The proposed scheme runs

as an application at the SDN controller and is comprised of several modules, as shown in Fig-

ure 5.3. As noted earlier, SYNGuard makes exclusive use of SDN capabilities to monitor and

collect statistics from incoming data plane traffic and exact flow routing rules/responses. The

overall placement of this solution (in relation to the Floodlight controller and Open vSwitch

platform) is also shown in Figure 5.4. Namely, this scheme uses Open vSwitch Switched

Port Analyzer (SPAN) ports to mirror all incoming flows on the corresponding device (for

analysis). Precisely, SPAN ports support communication traffic between the application and

data layers of the SDN setup. Overall, this positioning is critical for effective identification

and threat mitigation of SYN flood traffic, as shown in Figure 5.4. Now the architectural

framework in Figure 5.3 consists of four key modules; (1) Initialization, which sets up initial

operation of the switches, (2) Inspection, which examines the traffic received through the

raw operating system socket (e.g., SPAN port), (3) Mitigation, which tries to limit false

positive detection events, and (4) Threshold Evaluation, which dynamically adjusts the

attack detection threshold according to the current record of attacks (based upon the SDN

controller view).

Now in order to determine whether incoming traffic constitutes a TCP SYN flood

attack, the pattern of incoming flows over a time frame is identified. Namely, when the

64

Figure 5.4: The operational placement of proposed IDPS for traffic flow

current threshold value is surpassed by the quantity of arriving flows, the inspection module

in the framework detects/flags a SYN flood attack and generates an alert message. Contrary

to existing IDPS solutions, the dynamic threshold mechanism in the proposed framework

also relies on the state of the inspection module and frequency of generated alerts.

Overall, SYNGuard is (1) a lightweight design that uses a modular-based filtering

technique, (2) runs as an independent network application that utilizes SPAN interfaces

on Open vSwitch platforms, (3) adds minimal overhead and traffic processing latency, and

(4) operates transparently to end hosts and SDN-enabled applications. The latter ensures

improved applicability to larger networking environments. Further details are now presented.

65

5.2.1 Adaptive Detection Threshold and Signature Structure

In the context of DoS/DDoS attack detection, threshold values generally refer to the

rate of attack events per second. Specifically, a detection threshold represents the rate at

which an IDPS raises an alert for an attack. For example, if the event threshold is set to

70 packets per second, an alert will be generated once the incoming packets from a source

exceeds this bound. Hence selecting an appropriate detection threshold value is critical in

order to provide efficacious response to DoS threats while reducing false alerts (i.e., threshold

value too high or too low). To address these challenges, a dynamic self-adjusting detection

threshold is proposed for SYNGuard. Consider some further details here.

Foremost, it is assumed that legitimate user flows generate TCP SYN requests at

steady intervals. Namely, the number of SYN connection requests range from [r1 , r2],

whereas the number of flows per SYN connection is n ≥ 3 (i.e., three-way handshake ex-

change). Additionally, all incoming SYN flows are assumed to follow a Poisson arrival

distribution with an average of λ flows/second. Hence in order to compute the number of

packets per SYN connection, n, the SDN controller sends a Flow Statistics Collection (FSC)

request via a OpenFlow Read State message to switches with the matched field set equal

to the IP addresses in the flow table. The value of n can then be estimated by using the

OpenFlow Packet Count parameter, which is a pre-defined metric that tracks the number

of incoming flows based upon the switch flow table, i.e.,

66

n = min
∀fi∈F

(pci) (5.1)

where F and pci are the set of flow tables and minimum Packet Count value, respectively.

Now consider the dynamic threshold update mechanism for SYN flood detection.

Here, the ubiquitous TCP Additive Increase Multiplicative Decrease (AIMD) window size

control mechanism is adopted. Namely, let ΨI and ΨD represent the updating functions for

threshold increase and decrease, respectively. Now in the default TCP AIMD mechanism,

ΨI = S + 1, (5.2)

and

ΨD =
S

2
, (5.3)

where S is the threshold value bounded by Smin ≤ S ≤ Smax, i.e., Smin and Smax represent

the minimum and maximum threshold ranges, respectively. Leveraging from the above, the

SYNGuard solution introduces a modified, improved AIMD mechanism that dynamically

adjusts the increase and decrease levels based upon the event state of the SYN flood threat.

Namely, now the increase and decrease operations (for the i-th interval) are given by:

ΨI = Si + α, (5.4)

and

ΨD =
Si

β
, (5.5)

67

where Smin ≤ Si ≤ Smax, and α and β represent the threshold increase and decrease values,

respectively. Furthermore, S0 is manually initialized at a default threshold value at startup.

As a further improvement, a single update function is also defined for the detection

threshold. This function is continuously invoked by SYNGuard to update the current thresh-

old according to both legitimate and total traffic rates. Namely, the two update functions,

ΨI (Equation 5.4) and ΨD (Equation 5.5), are now replaced by a next-round threshold value,

S(i+ 1), such that:

S(i+ 1) = P1 + P2 (5.6)

where P1 and P2 are defined as:

P1 = p
(n
T

> S(i)
)
.
[
q(i).ΨI

(
S(i)

)
+
(

1− q(i)
)
.ΨD

(
S(i)

)]
(5.7)

and

P2 = p
(n
T

6 S(i)
)
.
[
q(i).ΨI

(
S(i)

)
+
(

1− S(i)
)
.ΨD

(
S(i)

)]
(5.8)

Substituting P1 and P2 into Equation 5.6, and simplifying gives a threshold update function

as follows:

S(i+ 1) = q(i).ΨI

(
S(i)

)
+
(

1− q(i)
)
.ΨD

(
S(i)

)
(5.9)

where q(i).ΨI(S(i))+(1−q(i)).ΨD(S(i)) is assumed to be an integer (or rounded otherwise),

and p(n
T
> S(i)) and p(n

T
6 S(i)) are the probabilities that both events n

T
> S(i) and n

T
6 S(i)

occur respectively.

68

Now carefully note that packet signature matching may not always be the best strat-

egy to identify SYN flood attacks, i.e., since malicious hosts may be capable of injecting

any arbitrary data bytes into packet payloads. As a result, signature matching can actually

be defeated by an adept adversary. Moreover, certain types of TCP SYN flooding attacks

may not contain proper packet payload data, e.g., low-profile SYN flood attacks. Hence, the

proposed framework also tries to match packet header information (instead of packet pay-

load data) in order to improve anomaly detection performance. Specifically, this approach

can help increase the effectiveness of threat signature matching and detection and can also

handle low-profile SYN attacks (with no particular data format in the packet payloads).

The overall pseudo code of traffic inspection is shown in Figure 5.5, where the header

information of packet is checked using string matching techniques. Here the variables T , Th,

and Si represent the timestamp, threshold value, and list of strings (i.e., for string matching

purposes), respectively. In addition, S(.) is defined as a counter function to track the number

of packets per source address (for threshold comparison). Now if an ICMP packet is received,

the packet counter, S(.), is updated and its header information is compared with the existing

signatures, i.e., string search. Hence an alert is generated based upon the current threshold

and string matching result, i.e., anomalous packet load. Lastly, the threshold update function

is invoked for appropriate adjustment of current attack detection rate.

69

1: Set P = PACKET IN
2: Set Th = threshold value
3: while True
4: T = Time frame[Timestamps];S0 = P/T
5: if P.Type == ICMP
6: Calculate n/T
7: QP.SRC ADDR + +
8: if P.SRC ADDR NOT IN S
9: S(P.SRC ADDR) = T

10: else
11: if T − S(P.SRC ADDR) > Th AND Si < Smax
12: if Q(P.SRC ADDR) > Th
13: Increase Th
14: else
15: S(P.SRC ADDR) = T
16: else
17: Decrease Th if Si > Smin
18: return 0

Figure 5.5: Proposed algorithm for the detection threshold update

5.2.2 Overall Framework Functionality

Now once SYNGuard has been initialized, the Inspection module (Figure 5.6) moni-

tors and classifies all TCP SYN requests, i.e., established TCP handshakes, while recording

source-side connection timeouts, i.e., failed connections. Once a connection request (i.e.,

first SYN packet) is received at the data layer, the Open vSwitch searches for a matching

TCP ACK forwarding rule in its flow table or inquires about it from the SDN controller.

Carefully note that the Open vSwitch device also verifies whether the received packet type

is a TCP SYN (prior to validating the completion of the TCP handshaking session) in order

to identify unsolicited packets.

The overall finite-sate machine for the SYNGuard system is also shown in Figure 5.6.

70

Figure 5.6: SYNGuard states

Here the initial state specifies all the input and global variables used in the inspection

and mitigation modules and jump starts the packet inspection process. Once a malicious

TCP SYN event is detected in the Inspection state, a string matching operation is carried

out, followed by alert generation. Next, if the current threshold value of detected events

is exceeded, the system moves to the Prevention state to mitigate the attack. Lastly, the

system also invokes the threshold update function to update the current detection threshold.

Finally, as shown in the architecture in Figure 5.3, once a flow is received at the

respective Open vSwitch port, the switch will transition from the Idle state to the Inspec-

71

tion state, i.e., to start traffic inspection prior to forwarding it to the potential target. It

is expected that the network administrator will specify/enter a default threshold value at

startup as well. Finally, a secure mode option is also supported in order to allow the IDPS

solution to conduct more comprehensive deep packet (payload) inspection using exact string

matching, i.e., in the case of sensitive data. However, if the switch is located in a trusted

region, the IDPS will only perform partial string matching.

Overall, switches will continuously inspect and examine all incoming flows and keep

track of malignant adversary traffic. Based upon this, threat detection thresholds will be

updated in a dynamic manner (as per the current trace and intensity of illegitimate traffic).

For example, if a sequence of flows is found to be legitimate, the switch will decrease the

threshold Si by a value β and also select exact string matching filters (or partial ones).

Alternatively, if a particular flow is found to be malicious, the controller will forward it to

the prevention module (Figure 5.3) to either drop or block it.

5.3 Performance Evaluation

The performance of the proposed SYNGuard solution is now tested in a real-world

heterogeneous testbed setup with various networking capabilities. Again the NSF GENI fa-

cility is used here, and the proposed topology slice is shown in Figure 5.7. Namely, this setup

consists of two end hosts, Host A and Host B, SDN controllers, and four Open vSwitches.

In particular, Host A represents the adversary which transmits a mixture of legitimate and

malicious traffic to the target at Host B. Meanwhile, hosts O1-O4 represent Open vSwitches

72

running the IDPS solution (in addition to performing their essential traffic forwarding op-

erations). Finally, hosts C1 and C2 represent the SDN controllers running the Floodlight

controller software. Namely, controller C1 manages Open vSwitches O1 and O2, and con-

troller C2 manages Open vSwitches O3 and O4, respectively. Lastly, the dashed and solid

lines represent the control and data plane links, respectively. Although a relatively simple

topology is used to evaluate the performance of SYNGuard scheme here, the solution can

readily be used in larger and more complex networking environments.

Figure 5.7: GENI testbed topology

5.3.1 Traffic Generation and Event Rules Implementation

Initial tests are done to evaluate system response time to threats under simulated

real-world networking conditions. Namely, two network traffic intent types are considered

here, i.e., adverse (malicious) and normal (benign). Packets from these flows are then gener-

73

ated and mixed into the network. Furthermore, both the iPerf and the Distributed Internet

Traffic Generator (D-ITG) toolkits are used in tandem to generate packet traffic and quan-

tify/control it across the network. Note that iPerf also allows saturation of edge network

links, which can be used as a baseline technique to evaluate response efficiency to saturation

attacks. Additionally, both the Zeek and Snort IDS toolkits are also deployed here for rule-

based detection. Namely, pre-defined detection rules are manually added or configured, i.e.,

if they are already implemented in particular version. However, in order to ensure proper

performance comparison, the only rules used for Zeek and Snort are those for SYN flood

attack detection and mitigation. Since both of these tools can handle a broader range of

network threats, comparing their associated overheads with other rules enabled will not be

meaningful (and hence they are offloaded or disabled). Accordingly, the sample scripts in

Figures 5.8 and 5.9 also show the actual detection rules for SYN-based flood traffic in the

Snort and Zeek IDS tools, respectively. Namely, in Figure 5.8 Snort raises a TCP-SYN

flagged threat alert based upon a default threshold value, e.g., whenever 70 or more packets

arrive within a 10 second interval. Meanwhile in Figure 5.9, Zeek uses a specified threshold,

n, which can be manually adjusted during configuration setup. This parameter counts the

number of failed TCP connections and raises an alert flag when this count is exceeded.

5.3.2 Performance Results

Overall, effective IDPS solutions play a critical role in countering malicious attack

traffic. As noted, adverse packet flows can result in end host resource exhaustion, link and

74

alert tcp any any -> $HOME_NET 80(flags:S;
msg:"Possible TCP DoS is Detected!";
flow: stateless;
detection_filter: track by_dist, count 70,
seconds 10; sid 10001;rev:1;)

Global attempts: table[$addr$] of count $&$ default=0;
event connection_rejected(c: connection){

local source = cidorig_h; #Get source address;

local n = ++attempts[source]; #Increase counter;

if (n=some_threshold); #Check for threshold;

Notice(...); #Alarm;}

switch saturation, as well as other bottlenecks. Therefore proper flow inspection is critical

for limiting resource exhaust. Along these lines, the performance of the SYNGuard solution

is examined with regards to the inspection times, threat response times (mitigation), threat

identification accuracy, and performance overheads. Furthermore, comparisons are also made

with some existing well-established solutions, including Snort and Zeek.

Foremost, inspection time for incoming flows is a critical parameter that directly

impacts malicious flow response times. Namely, when flows are captured by the IDPS,

the related packet information must be inserted into a buffer while awaiting inspection.

Expectedly, this waiting time will add to the overall time required for mitigating the attack

if an alert is raised. Hence in order to evaluate the inspection times of the proposed solution,

75

Figure 5.8: SYN flooding rule sample in Snort

Figure 5.9: SYN flooding rule sample in Zeek, n is the threshold

Table 5.1: Average inspection and mitigation times and system load
Traffic Load (1,000s of packets)

100 200 500

Metric IDPS

Inspection (Sec.)
Proposed IDPS 0.0031 0.0068 0.0117
Snort 0.0041 0.0059 0.0145
Zeek 0.0073 0.0102 0.0130

Mitigation (Sec.)
Proposed IDPS 0.0029 0.0081 0.0112
Snort 0.0045 0.0073 0.0130
Zeek 0.0076 0.0100 0.0128

System (%)
Proposed IDPS 8.04 12.70 15.09
Snort 9.02 15.08 19.17
Zeek 17.53 26.05 34.19

both the Snort and Zeek solutions are implemented with near equivalent configurations as

used in the SYNGuard scheme. Specifically, for evaluation fairness, each IDPS solution is

configured with similar threat detection signatures.

To gauge inspection times, a communication scenario is established between two hosts

using the hping3 tool. Specifically, smaller-sized packets are generated at a high rate in a very

small time window (e.g., one nanosecond) in order to achieve a high network link saturation.

Note that the proposed SYNGuard solution automatically adjusts its detection threshold,

whereas this value is static in both the Zeek and Snort schemes (and hence needs to be

manually set at initialization time). Hence these static detection thresholds are set to default

values of 10 seconds each. Experimental runs are also conducted for 15 successive trials in

an automated manner, and the results are averaged, as shown in Figure 5.10 and Table 5.1.

Overall, these findings demonstrate that the proposed solution notably outperforms both

Snort and Zeek. For example, Zeek gives almost 100% higher inspection times, whereas

Snort gives about 10-20% higher latencies. However, for some randomized runs, Snort can

76

Figure 5.10: Average inspection times for SYN flooding (10 sec threshold, Snort and Zeek)

match (but not exceed) the performance of the SYNGuard scheme.

Next, consider mitigation time, which is defined as the response time to handle threat-

ening adversary flows. Namely, once a specific flow has been detected and flagged as mali-

cious, the mitigation time is defined as the time between raising an attack alert and taking

necessary corresponding action, e.g., drop, block, etc. Indeed, this delay is a critical factor in

assuring the availability of key operational resources in SDN environments. Now even though

the detection attributes (for malicious traffic) in each IDPS scheme are unique, the mitiga-

tion time for the SYNGuard scheme is still compared against Snort and Zeek. Specifically,

77

Figure 5.11: SYN flood mitigation time (100,000 SYN flagged packets)

this value is measured as the time between attack initiation and attack rectification.

Along these lines, Table 5.1 summarizes the average mitigation times for the three

IDPS solutions using the same experimental configuration detailed earlier, i.e., threshold

initialization, threat detection signature, etc. Note that these results are averaged over 15

runs. Overall, the findings confirm that the SYNGuard solution provides relatively-similar

mitigation times to Snort, but significantly smaller than Zeek. It is assumed that each

IDPS scheme initiates blocking actions against harmful IP addresses once an attack alert is

generated. Furthermore, Figure 5.11 also plots the attack mitigation times for all schemes

78

(with Snort and Zeek using their default 10 second intervals). Again, these findings show

that the SYNGuard scheme outperforms both Snort and Zeek, i.e., average mitigation times

are about 40% lower than Zeek and 20% lower than Snort.

Figure 5.12: Memory utilization (100,000 SYN flagged packets)

Now excessive inspection operations can also lead to resource drainage on the plat-

forms running the IDPS software (due to overheads associated with examining packets).

Hence to gauge system overheads, Figure 5.12 also plots the memory utilization for each

IDS scheme for the case of a single attack with 100,000 SYN flagged packets. Here both

the Snort and Zeek solutions are initialized to use their default detection threshold (10 sec-

onds). Carefully note that link saturation also occurs in this attack scenario. These results

79

clearly show lower memory utilization with the proposed SYNGuard scheme, particularly in

comparison to the Zeek solution. Note that Table 5.1 also summarizes the measured system

load in terms of average resource utilization for a variety of network flooding attacks with

100,000, 200,000, and 500,000 SYN flagged attack packets (from adversary Host A to target

Host B, Figure 5.7).

Figure 5.13: CPU utilization for varying simultaneous attack sessions (same source)

Finally, Figure 5.13 plots the CPU utilization overhead for SYNguard, Snort, Zeek,

normal SDN (unprotected with no IDS), SLICOTS [23], and OPERETTA [24]. In particular,

SLICOTS and OPERETTA are state-of-art IDS solutions (developed by R. Mohammadi

et al. [23] and S. Fichera et al. [24], respectively) to prevent SYN flooding attacks in

80

SDN networks. These schemes work by surveiling failed TCP SYN requests and blocking

malicious adversary hosts. Specifically, SLICOTS is implemented as an extension of the

OpenDayLight controller software, whereas OPERETTA is developed as an SDN framework

using the POX controller. Overall, the results in Figure 5.13 show that the SYNGuard

solution gives the lowest CPU utilization of all, i.e., many factors lower than the Zeek

toolkit. However the Snort solution performs relatively well, and closely tracks SYNGuard

performance. It is important to note that both SLICOTS [23] and OPERETTA [24] can

also prevent control plane saturation. Regardless, SYNGuard still yields slightly less impact

on CPU overheads than OPERETTA, Snort, and Zeek. Like SLICOTS, SYNGuard also

benefits from temporary injection of flow rules in Open vSwitch devices. Hence the high

rate of malicious SYN flooding traffic has less of an impact on the control-data channel,

which further decreases overall resource overheads.

81

Chapter 6 : Conclusions and Future Work

This research dissertation focuses on QoS and security support in emerging ICT-

based networks using SDN technologies. First, Chapter 2 presents a background survey of

some existing work in related areas. Next, Chapter 3 details a novel scheme for end-to-end

path latency management in SDN settings. Building upon this, Chapter 4 presents further

priority-based mechanisms for effective traffic management. Finally, Chapter 5 addresses the

critical topic of SDN security and tables a dynamic threshold-based countermeasures solution

for detecting and mitigating data-control channel saturation attacks. Overall conclusions

from this dissertation effort are now presented along with some discussions on potential

future research directions.

6.1 Conclusions

Overall, some of the key contributions and findings from this study are as follows:

• To the best of the author’s knowledge, this dissertation presents one of the first studies

on using SDN to develop systematic schemes to reduce end-to-end path delay and la-

tency associated with controller-switch communication. Namely, the proposed solution

uses a time series (TS) estimation approach along with adaptive A∗ path computation

to select end-to-end paths with reduced delays.

82

• This work is one of the first to introduce a QoS-aware scheme that leverages globalized

SDN control in conjunction with priority-based queueing and TE techniques. Namely,

the solution uses multiple queues in each switch port to support different data plane

traffic priority levels while preempting control plane traffic.

• To improve the security posture of SDN operation, this work also presents a novel IDPS

solution to effectively detect and mitigate data-control plane saturation attacks, i.e.,

TCP SYN floods. Namely, this solution implements a dynamic threshold event detec-

tion strategy to lower inspections, i.e., based upon the Additive Increase Multiplicative

Decrease (AIMD) mechanism.

Furthermore, the NSF Global Environment for Networking Innovations (GENI) facil-

ity, a heterogeneous and at-scale real-world testbed, is also used to prototype and evaluate

the performance of all mechanisms in this dissertation study. Whenever applicable, appropri-

ate comparisons and analyses are also done with existing, well-established security schemes.

Overall, detailed performance evaluation studies have demonstrated that these solutions out-

perform existing counterpart schemes in term of accuracy and efficiency (with regard QoS

and security improvements in SDN-enabled communication systems).

6.2 Future Work

Overall, this dissertation effort presents some novel solutions for improving QoS sup-

port and security in evolving ICT networks via the integration of SDN-based technology.

Specifically, a key objective has been to reduce end-to-end delays for stringent traffic flows,

83

while taking into account switching latency and controller response overheads. Hence future

efforts can consider the extension of these mechanisms into broader multi-domain SDN se-

tups operating with multiple SDN controllers. Furthermore, other QoS strategies can also

be implemented here, e.g., such as priority-based routing and path selection for emergency

response services.

Now from the SDN security perspective, this study has presented inspection and

detection techniques to resolve data-control plane saturation attacks using dynamic thresh-

olding. Building upon this, future efforts can also look at identifying other potential security

threats against both the data and control planes which require Deep Packet Inspection (DPI).

For example, these can include Link Discovery Service (LDS) exploitation, TCP-based packet

spoofing, and TCP reply-enabled DoS threats.

84

References

[1] Ying He, F Richard Yu, Nan Zhao, Victor CM Leung, and Hongxi Yin. Software-defined

networks with mobile edge computing and caching for smart cities: A big data deep

reinforcement learning approach. IEEE Communications Magazine, 55(12):31–37, 2017.

[2] Shaibal Chakrabarty and Daniel W Engels. A secure iot architecture for smart cities. In

2016 13th IEEE annual consumer communications & networking conference (CCNC),

pages 812–813. IEEE, 2016.

[3] Rahim Masoudi and Ali Ghaffari. Software defined networks: A survey. Journal of

Network and computer Applications, Elsevier, 67:1–25, 2016.

[4] Hamid Farhady, HyunYong Lee, and Akihiro Nakao. Software-defined networking: A

survey. Computer Networks, Elsevier, 81:79–95, 2015.

85

[5] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, and William Snow.

Onos: towards an open, distributed SDN OS. In Proceedings of the third ACM workshop

on Hot Topics in Software Defined Networking (HotSDN), pages 1–6, 2014.

[6] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innova-

tion in campus networks. ACM SIGCOMM Computer Communication Review (CCR),

38(2):69–74, 2008.

[7] Opencontrail. http://www.opencontrail.org. [Accessed March 2020].

[8] Peter Saint-Andre, et al. Extensible messaging and presence protocol (xmpp): Core.

2004.

[9] Andrew Mckeown, Habib Rashvand, Tony Wilcox, and Paul Thomas. Priority SDN

controlled integrated wireless and powerline wired for smart-home internet of things. In

2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE

12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf

on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-

ScalCom), pages 1825–1830. IEEE, 2015.

86

http://www.opencontrail.org

[10] Walaa F Elsadek and Mikhail N Mikhail. Inter-domain mobility management using SDN

for residential/enterprise real time services. In 2016 IEEE 4th International Conference

on Future Internet of Things and Cloud Workshops (FiCloudW), pages 43–50. IEEE,

2016.

[11] Issa Khalil, Abdallah Khreishah, and Muhammad Azeem. Consolidated identity man-

agement system for secure mobile cloud computing. Computer Networks, 65:99–110,

2014.

[12] Tommy Chin, Mohamed Rahouti, and Kaiqi Xiong. Applying software-defined net-

working to minimize the end-to-end delay of network services. ACM SIGAPP Applied

Computing Review, 18(1):30–40, 2018.

[13] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet

Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for high-performance

networks. In SIGCOMM Computer Communication Review, volume 41, pages 254–265.

ACM, 2011.

[14] Hilmi E Egilmez, S Tahsin Dane, K Tolga Bagci, and A Murat Tekalp. OpenQoS: An

OpenFlow controller design for multimedia delivery with end-to-end quality of service

over software-defined networks. In Proceedings of the Asia Pacific signal and information

processing association annual summit and conference (APSIPA ASC), pages 1–8. IEEE,

2012.

87

[15] Sachin Sharma, Dimitri Staessens, Didier Colle, David Palma, Joao Goncalves, Ricardo

Figueiredo, Donal Morris, Mario Pickavet, and Piet Demeester. Implementing quality

of service for the software defined networking enabled future internet. In The European

Workshop on Software Defined Networking (EWSDN), pages 49–54. IEEE, 2014.

[16] Abdul Basit, Saad Qaisar, Syed Hamid Rasool, and Mudassar Ali. SDN orchestration

for next generation inter-networking: A multipath forwarding approach. IEEE Access,

5:13077–13089, 2017.

[17] Raphael Durner, et al. Performance study of dynamic QoS management for openflow-

enabled SDN switches. In 2015 IEEE 23rd International Symposium on Quality of

Service (IWQoS), pages 177–182. IEEE, 2015.

[18] Seyeon Jeong, et al. Application-aware traffic engineering in software-defined net-

work. In 2017 19th Asia-Pacific Network Operations and Management Symposium

(APNOMS), pages 315–318. IEEE, 2017.

[19] Keqiang He, Junaid Khalid, Sourav Das, Aditya Akella, Erran Li Li, and Marina Thot-

tan. Mazu: Taming latency in software defined networks. Technical report, 2014.

[20] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning network visibility

in software-defined networks: New attacks and countermeasures. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), volume 15, pages 8–11,

2015.

88

[21] Rui Wang, Zhiping Jia, and Lei Ju. An entropy-based distributed DDoS detec-

tion mechanism in software-defined networking. In Proceedings of IEEE Trust-

com/BigDataSE/ISPA, volume 1, pages 310–317, 2015.

[22] Tri-Hai Nguyen and Myungsik Yoo. Analysis of link discovery service attacks in SDN

controller. In 2017 International Conference on Information Networking (ICOIN), pages

259–261. IEEE, 2017.

[23] Reza Mohammadi, Reza Javidan, and Mauro Conti. Slicots: An SDN-based lightweight

countermeasure for tcp syn flooding attacks. IEEE Transactions on Network and Service

Management, 14(2):487–497, 2017.

[24] Silvia Fichera, Laura Galluccio, Salvatore C Grancagnolo, Giacomo Morabito, and Ser-

gio Palazzo. Operetta: An openflow-based remedy to mitigate tcp synflood attacks

against web servers. Computer Networks, 92:89–100, 2015.

[25] Mohamed Rahouti, Kaiqi Xiong, Tommy Chin, Peizhao Hu, and Diogo De Oliveira. A

preemption-based timely software defined networking framework for emergency response

traffic delivery. In 2019 IEEE 21st International Conference on High Performance Com-

puting and Communications; IEEE 17th International Conference on Smart City; IEEE

5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),

pages 452–459. IEEE, 2019.

89

[26] Mohamed Rahouti, Kaiqi Xiong, Tommy Chin, and Peizhao Hu. Sdn-ers: A timely

software defined networking framework for emergency response systems. In International

Science of Smart City Operations and Platforms Engineering in Partnership with Global

City Teams Challenge (SCOPE-GCTC), pages 18–23. IEEE, 2018.

[27] Haoqi Ni, Mohamed Rahouti, Aranya Chakrabortty, Kaiqi Xiong, and Yufeng Xin. A

distributed cloud-based wide-area controller with SDN-enabled delay optimization. In

Power & Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2018.

[28] Tommy Chin, Kaiqi Xiong, and Mohamed Rahouti. SDN-based kernel modular coun-

termeasure for intrusion detection. In International Conference on Security and Privacy

in Communication Systems, pages 270–290. Springer, 2017.

[29] End to-end delay minimization approaches using software-defined networking. End-to-

end delay minimization approaches using software-defined networking. In Proceedings of

the International Conference on Research in Adaptive and Convergent Systems (RACS),

pages 184–189. ACM, 2017.

[30] Danny Yuxing Huang, Kenneth Yocum, and Alex C Snoeren. High-fidelity switch mod-

els for software-defined network emulation. In SIGCOMM workshop on Hot topics in

software defined networking, pages 43–48. ACM, 2013.

90

[31] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W Moore.

Oflops: An open framework for openflow switch evaluation. In International Conference

on Passive and Active Network Measurement, pages 85–95. Springer, 2012.

[32] Project floodlight SDN controller. https://floodlight.atlassian.net/wiki/

spaces/floodlightcontroller/overview. [Accessed March 2020].

[33] M Rasih Celenlioglu and H Ali Mantar. An SDN based intra-domain routing and

resource management model. In International Conference on Cloud Engineering, pages

347–352. IEEE, 2015.

[34] Jinyao Yan, Hailong Zhang, Qianjun Shuai, Bo Liu, and Xiao Guo. Hiqos: An SDN-

based multipath QoS solution. China Communications, 12(5):123–133, 2015.

[35] Sana Tariq and Mostafa Bassiouni. Qamo-sdn: QoS aware multipath tcp for software

defined optical networks. In Annual Consumer Communications and Networking Con-

ference (CCNC), pages 485–491. IEEE, 2015.

[36] Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida. A multipath con-

troller for accelerating gridftp transfer over SDN. In International conference on e-

science, pages 439–447. IEEE, 2015.

91

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview

[37] Syed Asad Hussain, Shuja Akbar, and Imran Raza. A dynamic multipath scheduling

protocol (dmsp) for full performance isolation of links in software defined networking

(SDN). In Workshop on Recent Trends in Telecommunications Research (RTTR), pages

1–5. IEEE, 2017.

[38] Atef Abdelkefi and Yuming Jiang. A structural analysis of network delay. In 2011

Ninth Annual Communication Networks and Services Research Conference, pages 41–

48. IEEE, 2011.

[39] Zhenhong Shao, Yongxiang Liu, Yi Wu, and Lianfeng Shen. A rapid and reliable disaster

emergency mobile communication system via aerial ad hoc bs networks. In Proceedings

of the International Conference on Wireless Communications, Networking and Mobile

Computing (WiCOM), pages 1–4. IEEE, 2011.

[40] Mathieu Dervin, Isabelle Buret, and Céline Loisel. Easy-to-deploy emergency com-

munication system based on a transparent telecommunication satellite. In Proceedings

of the International Conference on Advances in Satellite and Space Communications

(SPACOMM), pages 168–173. IEEE, 2009.

[41] Abobakr Y Shahrah and Majed A Al-Mashari. Emergency response systems: research

directions and current challenges. In Proceedings of the Second International Conference

on Internet of things, Data and Cloud Computing, page 161. ACM, 2017.

92

[42] Avgoustinos Filippoupolitis and Erol Gelenbe. A decision support system for disaster

management in buildings. In Computer Simulation Conference, pages 141–147. Society

for Modeling & Simulation International, 2009.

[43] Kaiqi Xiong, Kyoung-Don Kang, and Xiao Chen. A priority-type resource allocation

approach in cluster computing. In Proceedings of the International Conference on High

Performance Computing and Communications (HPCC), pages 271–278. IEEE, 2011.

[44] Kaiqi Xiong and Harry Perros. SLA-based service composition in enterprise computing.

In IWQoS, pages 30–39. IEEE, 2008.

[45] Vita Lanfranchi and Neil Ireson. User requirements for a collective intelligence emer-

gency response system. In the British HCI Group Annual Conference on People and

Computers: Celebrating People and Technology, pages 198–203. British Computer So-

ciety, 2009.

[46] Keshav Sood, et al. Are current resources in SDN allocated to maximum performance

and minimize costs and maintaining QoS problems? In Proceedings of the Australasian

Computer Science Week Multiconference, page 42. ACM, 2017.

[47] Sushant Jain, ,, et al. B4: Experience with a globally-deployed software defined wan.

In ACM SIGCOMM Computer Communication Review, volume 43, pages 3–14. ACM,

2013.

93

[48] Murat Karakus and Arjan Durresi. Quality of service (qos) in software defined net-

working (SDN): A survey. Journal of Network and Computer Applications, 80:200–218,

2017.

[49] Shuo Wang, et al. Flowtrace: measuring round-trip time and tracing path in software-

defined networking with low communication overhead. Frontiers of Information Tech-

nology & Electronic Engineering, 18(2):206–219, 2017.

[50] Wang Miao, et al. Performance modelling and analysis of software-defined network-

ing under bursty multimedia traffic. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), 12(5s):1–19, 2016.

[51] Siamak Azodolmolky, et al. An analytical model for software defined networking: A

network calculus-based approach. In 2013 IEEE Global Communications Conference

(GLOBECOM), pages 1397–1402. IEEE, 2013.

[52] Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. A survey of security in soft-

ware defined networks. Communications Surveys Tutorials, 18(1):623–654, Firstquarter

IEEE, 2016.

[53] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-overhead dat-

acenter traffic management using end-host-based elephant detection. In Proceedings of

the International Conference on Computer Communications (INFOCOM), pages 1629–

1637. IEEE, 2011.

94

[54] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. AVANT-GUARD:

Scalable and vigilant switch flow management in software-defined networks. In Pro-

ceedings of the Conference on Computer and Communications Security (CCS), pages

413–424. ACM, 2013.

[55] Yun Tian, Vincent Tran, and Mutalifu Kuerban. DoS attack mitigation strategies on

SDN controller. In Proceedings of the Annual Computing and Communication Workshop

and Conference (CCWC), pages 0701–0707. IEEE, 2019.

[56] Guowei Wu, Zhaoxin Li, and Lin Yao. DoS mitigation mechanism based on non-

cooperative repeated game for SDN. In Proceedings of the International Conference

on Parallel and Distributed Systems (ICPADS), pages 612–619. IEEE, 2018.

[57] Gao Shang, Peng Zhe, Xiao Bin, Hu Aiqun, and Ren Kui. Flooddefender: Protecting

data and control plane resources under SDN-aimed DoS attacks. In Proceedings of

the International Conference on Computer Communications (INFOCOM), pages 1–9.

IEEE, 2017.

[58] Pengpeng Wu, Lin Yao, Chi Lin, Guowei Wu, and Mohammad S Obaidat. Fmd: A DoS

mitigation scheme based on flow migration in software-defined networking. International

Journal of Communication Systems, 31(9):e3543, Wiley Online Library, 2018.

[59] Tao Wang, Hongchang Chen, and Chao Qi. Mindos: A priority-based SDN safe-guard

architecture for DoS attacks. IEICE, 101(10):2458–2464, 2018.

95

[60] NA Bharathi, V Vetriselvi, and Ranjani Parthasarathi. Mitigation of DoS in SDN

using path randomization. In Proceedings of the International Conference on Computer

Networks and Communication Technologies (ICCNCT), pages 229–239. Springer, 2019.

[61] Tao Wang, Hongchang Chen, Guozhen Cheng, and Yulin Lu. Sdnmanager: A safe-

guard architecture for SDN DoS attacks based on bandwidth prediction. Security and

Communication Networks, 2018, 2018.

[62] Song Wang, Karina Gomez Chavez, and Sithamparanathan Kandeepan. Seco: SDN

secure controller algorithm for detecting and defending denial of service attacks. In

Proceedings of the International Conference on Information and Communication Tech-

nology (ICoIC), pages 1–6. IEEE, 2017.

[63] Song Wang, Sathyanarayanan Chandrasekharan, Karina Gomez, Sithamparanathan

Kandeepan, Akram Al-Hourani, Muhammad Rizwan Asghar, Giovanni Russello, and

Paul Zanna. Secod: SDN secure control and data plane algorithm for detecting and de-

fending against DoS attacks. In Proceedings of the Network Operations and Management

Symposium (NOMS), pages 1–5. IEEE, 2018.

[64] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David KY Yau, and Jianping Wu. Re-

altime ddos defense using cots SDN switches via adaptive correlation analysis. IEEE

Transactions on Information Forensics and Security, 13(7):1838–1853, 2018.

96

[65] Shuhua Deng, Xing Gao, Zebin Lu, Zhengfa Li, and Xieping Gao. DoS vulnerabili-

ties and mitigation strategies in software-defined networks. Journal of Network and

Computer Applications, Elsevier, 125:209–219, 2019.

[66] Mutalifu Kuerban, Yun Tian, Qing Yang, Yafei Jia, Brandon Huebert, and David Poss.

Flowsec: DoS attack mitigation strategy on SDN controller. In Proceedings of the

International Conference on Networking, Architecture, and Storage (NAS), pages 1–2.

IEEE, 2016.

[67] Vern Paxson. Zeek: The Zeek Network Security Monitor. Computer Networks, 31(23-

24):2435–2463, 1999.

[68] Martin Roesch, et al. Snort-lightweight intrusion detection for networks. In Proceed-

ings of the USENIX Large Installation System Administration Conference (LISA), vol-

ume 99, pages 229–238, 1999.

[69] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and Les

Cottrell. pathchirp: Efficient available bandwidth estimation for network paths. In

Passive and active measurement workshop, 2003.

[70] Jiri Navratil and R Les Cottrell. Abwe: A practical approach to available bandwidth

estimation. In Proc. passive and active measurement workshop, 2003.

97

[71] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[72] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Di-

pankar Raychaudhuri, Robert Ricci, and Ivan Seskar. GENi: A federated testbed for

innovative network experiments. Computer Networks, 61:5 – 23, 2014. Special issue on

Future Internet Testbeds – Part I.

[73] Hong Chen and David D Yao. Fundamentals of queueing networks: Performance,

asymptotics, and optimization, volume 46. Springer Science & Business Media, 2013.

[74] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-

ance. IEEE/ACM Transactions on networking, (4):397–413, 1993.

[75] Ivan Delchev. Linux traffic control. In Networks and Distributed Systems Seminar,

International University Bremen, Spring, 2006.

[76] Rajendra K Jain, Dah-Ming W Chiu, and William R Hawe. A quantitative measure of

fairness and discrimination. Eastern Research Laboratory, Digital Equipment Corpora-

tion, Hudson, MA, 1984.

[77] Prashant Kumar, Meenakshi Tripathi, Ajay Nehra, Mauro Conti, and Chhagan Lal.

Safety: Early detection and mitigation of tcp syn flood utilizing entropy in SDN. Trans-

actions on Network and Service Management (TNSM), 15(4):1545–1559, IEEE, 2018.

98

[78] Jon Postel. Internet control message protocol. 1981.

99

Appendix A: Glossary

AIMD Additive Increase Multiplicative Decrease

API Application Programming Interface

AS Autonomous System

CDF Cumulative Distribution Function

DC Downlink Channel

DDoS Distributed Denial of Service

D-ITG Distributed Internet Traffic Generator

DoS Denial of Service

DPI Deep Packet Inspection

ERS Emergency Response System

EWMA Exponentially Weighted Moving Average

FCFS First Come First Served

FSC Flow Statistics Collection

GENI Global Environment for Networking Innovations

ICT Information and Communications Technology

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IoT Internet of Things

100

ISP Internet Service Provider

IXP Internet Exchange Points

LDS Link Discovery Service

LLDP Link Layer Discovery Protocol

MITM Man-in-the-Middle

MPTCP Multi-Path-TCP

NOS Network Operating System

OVS Open vSwitch

QoS Quality of Service

RED Random Early Detection

REST Representational State Transfer

RTT Round Trip Time

Rx Receive Speed

SDN Software-Defined Networking

Science DMZ Science De-Militarized Zone

SLA Service Level Agreement

SP Service Provider

SPAN Switch Port Analyzer

SS Switch Server

TCB Transmission Control Block

TE Traffic Engineering

TS Time Series

Tx Transmit Speed

UC Uplink Channel

WMA Weighted Moving Average

XMPP Extensible Messaging and Presence Protocol

101

	Service Provisioning and Security Design in Software Defined Networks
	Scholar Commons Citation

	List of Tables
	List of Figures
	Abstract
	Chapter : Introduction
	Background Overview
	Motivations
	Problem Statement
	Proposed Work and Contributions

	Chapter : Survey of Related Work
	QoS Guarantees in SDN Communication Systems
	Latency and Response Time Management
	SDN-Based Priority Queueing
	Saturation and Flooding Threats in SDN
	Open Challenges

	Chapter : End-to-End Latency Management in SDN Infrastructures Parts of this chapter were published by the author of this dissertation study in M. Rahouti et al. "LatencySmasher: A Software-Defined Networking-Based Framework for End-to-End Latency Optimization", 44th IEEE Conference on Local Computer Networks (LCN), 2019. The IEEE does not require individuals working on a thesis to obtain a formal reuse license (if they are the senior authors of the published work)
	Problem Scope
	Statistics Overhead and Collection
	Latency Metric Estimation
	Efficient Path Selection

	Proposed Prototype
	Statistics Collection and Latency Timing
	Time Series-Based Latency Estimation
	Adaptive Heuristic-Path Selection

	Performance Evaluation
	Per-Link Latency Examination and Path Selection
	Proposed Framework Performance Versus Default Path Computation
	Overhead Considerations

	Chapter : SDN-Based Priority Queueing
	Problem Scope
	System Overview
	System Queueing Model
	Queue Control Mechanism

	Performance Evaluation
	Control Latency
	Service Fairness
	Priority Level Delay Variation
	End-to-End Delay Validation

	Chapter : Dynamic Threshold-Based SYN Flood Attack Detection
	Research Background and Problem
	Overview of SYN Flooding Attacks
	Threat and Attack Model in SDN Environment
	Motivation and Problem Scope

	Modeling and Framework Design
	Adaptive Detection Threshold and Signature Structure
	Overall Framework Functionality

	Performance Evaluation
	Traffic Generation and Event Rules Implementation
	Performance Results

	Chapter : Conclusions and Future Work
	Conclusions
	Future Work

	Appendix A: Glossary

