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Abstract 

 

 The telecommunications industry is going through a metamorphic journey where the 5G 

and 6G technologies will be deeply rooted in the society forever altering how people access and 

use information. In support of this transformation, this dissertation proposes a fundamental 

paradigm shift in the design, performance assessment, and optimization of wireless 

communications networks developing the next-generation self-organizing communications 

networks with the synergistic application of machine learning and user-centric technologies.  

 This dissertation gives an overview of the concept of self-organizing networks (SONs), 

provides insight into the “hot” technology of machine learning (ML), and offers an intuitive 

understanding of the user-centric (UC) technology that form the foundation of the research 

initiatives conceived, implemented, and validated in this dissertation. A three-layered approach 

based on the synergistic application of SON, ML, and UC technologies is applied for anomaly 

detection, load balancing and capacity optimization, and radio access network-based notification 

area (RNA) configuration and management.  

 In the first research initiative, ML is applied to learn and predict a UC key performance 

indicator that imports the effect of the end-user perception of the quality of service to achieve end-

to-end service assurance and proactively detect dysfunctional network nodes enabling automatic 

detection and remediation of failing network nodes to mitigate network degradation in self-healing 

SON systems.  
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 In the second research initiative a UC and ML based methodology called US-OCSP (i.e. 

user-specific optimal capacity and shortest path) is developed that can be integrated with an auto 

or personal navigation system to provide routing that avoids congested network traffic and effects 

resource optimization enabling load balancing and capacity optimization in self-optimizing SON 

systems.  

 In the third research initiative, a UC and ML-embedded clustering mechanism is developed 

for dynamic configuration and management of RAN-based notification areas (i.e. RAN-based 

paging areas) that can help achieve improved signaling and paging load to attain reduced latency 

and improved network capacity, while lowering power consumption supporting emerging 5G/6G 

applications and services that generate an extensive amount of random aperiodic and keep-alive 

data traffic in self-configuring SON systems. 

 Finally, a high-level framework consisting of several core building blocks is provided to 

support UC and ML-infused network standardization that the network operators can adopt to shape 

the network of tomorrow. 
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Chapter 1.  Introduction 

 

The rapid increase of the capabilities of communications networks increases the likelihood 

of realizing the vision of a ubiquitously interconnected society, albeit in a virtual sense. In 

particular, the stunning evolution/revolution of wireless communications networks from the First 

Generation (1G) to the current initial deployment of the Fifth Generation (5G), and with high 

expectation of future networks, such as 6G, promises the fulfillment of this vision. Every 

generation witnessed big leaps of technological advancements from analog in 1G to digital in 2G 

to IP-based broadband in 3G to mobile packet-mode broadband in 4G to enhanced mobile 

broadband, massive machine-type communications, and ultra-reliable and low latency 

communications in 5G. In the 5G and beyond 5G world, the expectations and goals have 

tremendously increased targeting never before achieved network dimensions that will allow 

communicating immense amount of data at virtual zero latencies and unprecedented throughput 

supporting data-intensive applications or services with gigabit wireless and pervasive connectivity 

enabled via extensive cognitive capabilities.  

 

1.1. Research Motivation 

History has shown that the mobile industry undergoes a (managed) major technology shift 

roughly once every decade and as network traffic growth continues to grow given the vast arrays 

of technology developments on the horizon such as enhanced mobile broadband, tactile internet, 

vehicle-to-everything, massive spatial processing [e.g. massive MIMO], etc., network operators 
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will need more and more innovative functionalities in their network to fully realize the 

performance and application targets [1]. 5G/6G networks are more complex than previous 

generations and will greatly benefit from automation via enhanced self-organizing network (SON) 

mechanisms to support network densification, co-existence of multiple radio access mobile 

networks, end-to-end service assurance, dynamic network optimization, and minimization of 

operational and capital expenditures. It is a central theme of this dissertation that SON platforms 

based on machine learning (ML) can leverage the extensive amount of data generated across the 

network, identify patterns and correlations, and make efficient decisions to better address network 

performance challenges and create new opportunities for data monetization. To increase revenue, 

it is critical that the end-users receive excellent service, and this can be achieved by developing 

user-centric (UC) technologies, where users are no longer mere end-points but rather are an 

integral and active part of the network such that the network strategies and solutions are tailored 

as per user needs and timely feedback. 

Given the importance of the above-mentioned concepts towards developing the next-

generation communications networks via enhanced automation, enhanced intelligence, and 

enhanced user experience, the research in this dissertation proposes a fundamental paradigm shift 

in the design, performance, and optimization of communications networks by developing novel 

network strategies for user-centric, machine learning-based self-organizing 5G/6G and beyond 

wireless communications network evolution. A three-layered approach is taken towards 

developing such next-generation communications networks by the synergistic integration of SON, 

ML, and UC technologies as depicted in Figure 1.1.  

It is noted that the proposed approach generally applies to both wireless and wireline 

networks; however, the focus of this dissertation is on wireless networks.  
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Figure 1.1 The three-layered approach for the development of next-generation communications 

networks 

 

1.2. Research Objective and Initiatives  

 The research in this dissertation is directed towards developing innovative technologies for 

application in next-generation self-organizing wireless communications networks that are based 

on the synergistic application of machine learning and user-centric technologies.  

 The research initiatives include a user-centric anomaly detection methodology for self-

organizing networks using machine learning that learns and predicts a user-centric key 

performance indicator, quality of experience (QoE), using machine learning to detect 

dysfunctional network nodes (e.g. base stations). In the next research initiative, a user-centric 

optimal capacity shortest path routing technique for load balancing and capacity optimization in 

self-organizing networks using machine learning is developed. The proposed methodology is 

called user-specific optimal capacity and shortest path (US-OCSP) where the optimization begins 

at the end-user level to alleviate network congestion and improve user experience by 

recommending a tailored path between the end-user’s source and destination. The next research 

Enhanced User Experience - UC

Enhanced Intelligence - ML

Enhanced Automation - SON
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initiative is a user-centric, adaptive mechanism for self-configuration of radio access network-

based notification areas (RNAs) in 5G networks using machine learning where RNA clusters are 

formed by applying machine learning to user-centric network data. 

The process flow followed to demonstrate and evaluate the performance of the research 

initiatives is described in Figure 1.2. The process begins by simulating a cellular network to test a 

particular SON functionality followed by the collection of network measurements and statistics. 

Data preprocessing is performed to apply a UC methodology and generate the input dataset for 

ML followed by the implementation of a suitable ML algorithm. Once the final output is obtained, 

its performance is evaluated to validate the accuracy and understand the values and benefits 

attained. 

 

Figure 1.2 The process flow for the research initiatives 

Simulate a cellular 
network to test a 

SON functionality

Collect network 
measurements and 

statistics

Data preprocessing 
to apply UC 

methodology and 
ML dataset creation

Implementation of 
ML algorithm

Output and 
performance 
evaluation
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1.3. Contributions and Organization of this Dissertation 

  The rest of the dissertation is organized as follows: Chapter 2 presents a literature survey 

of SON and ML and introduces the concept of UC technology. It also introduces the simulation 

and tools used in this dissertation. Chapter 3 proposes and evaluates a UC methodology that uses 

supervised machine learning to learn and predict the QoE level of the end-user experiences and 

uses this information to detect anomalous behavior of dysfunctional network nodes (base stations/ 

eNodeBs/ gNodesBs) in self-organizing networks providing an intelligent, self-learning decision 

making mechanism that imports the effect of end-user perception of the quality of service for 

automatic detection and remediation of failures helping network operators understand the end-user 

needs and identify network elements that are failing and need attention and recovery [2], [3]. 

Chapter 4 proposes and demonstrates a UC methodology, user-specific optimal capacity and 

shortest path (US-OCSP) routing, that uses reinforcement learning to determine the resource-based 

optimum-capacity shortest path for a user between source and destination such that the 

optimization begins at the end-user level to find the shortest path available that traverses through 

non-congested network nodes and recommends that path to the end-user given its source and 

destination thus, facilitating effective resource allocation that will optimize end-user satisfaction 

[4]. In chapter 5, a UC methodology that uses unsupervised machine learning to form RNA clusters 

is developed such that it learns about the user characteristics (e.g. connectivity status, mobility 

status), examines radio conditions and network load, tracks the paging load improvement, and 

applies this knowledge towards intelligently and adaptively constituting and dynamically evolving 

the RNAs in a SON network. Chapter 6 concludes this dissertation by summarizing the research 

contributions made in this dissertation and provides future research directions.  
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Chapter 2.  Literature Review 

 

2.1. Introduction 

This chapter reviews the core technology components that provide the foundation of the 

research presented in this dissertation. The objective of this chapter is to give an overview of the 

concept of self-organizing networks (SONs), provide insight into the “hot” technology of machine 

learning (ML), and offer an intuitive understanding of the user-centric (UC) technology. An 

overview of the simulation tools used for experimental and evaluation purposes in this dissertation 

is also provided.  

 

2.2. Self-Organizing Networks 

 Network operators are under constant pressure of deploying denser networks that can 

sustain the tremendous growth of connected devices, types of services and applications, and mobile 

data traffic volume at acceptable levels of capital expenditures (CAPEX), operational expenditures 

(OPEX), and energy consumption that has driven significant momentum to realize network 

automation [5]. The umbrella concept of SON refers to the automation of network functions and 

capabilities that can realize a network that autonomously configures its entities, self-optimizes, 

and self-heals with little to no human intervention, thus minimizing the capital and operational 

expenditures, while providing enhanced network performance and efficiency.  

Self-organization functions for wireline networks laid a baseline that provided the network 

infrastructure for self-organization in wireless networks. A few typical examples [6] of the 
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emergence of self-organized functions for wireline networks are the introduction of dynamic host 

configuration protocol (DHCP) and the standardization of Internet Protocol version 6 (IPv6) 

enabling IP auto configuration eliminating the need of dedicated address servers and 

administrators, and the introduction of the Transport Control Protocol (TCP) that implements a 

decentralized mechanism to handle congestion in the Internet without explicit management of 

network resources. Additional examples [6] can be found in the area of mobile ad hoc and sensor 

networks where ad hoc routing protocols are implemented for self-organized packet delivery and 

the notion of self-organization appears in the context of failure resilience and network restoration 

to develop self-healing and self-stabilizing networks that react to link and node failures or physical 

damages to re-route the affected traffic in a self-organized manner.  

Introduced in 4G (3GPP Rel8-TS 32.500), with limited deployment, SONs for wireless 

networks are currently used to mechanize parallel operations of 4G and 5G (3GPP TR 28.861). 

Based on the location of the SON algorithm, SON is categorized as a centralized SON, a distributed 

SON and a hybrid SON [3] as shown in Figure 2.1 (NFs are the Network Functions, CN is the core 

network, and RAN is the Radio Access Network) and an overview of the SON framework [7], as 

illustrated by 3GPP, is shown in Figure 2.2. The 3GPP standards cited above have specified all 

three modes centralized, distributed, and hybrid SONs. It is the SON algorithm that is not 

standardized by 3GPP and is left to the implementer as an innovative opportunity.   

A centralized SON has two variants, viz., cross domain-centralized SON and domain-

centralized SON. In the cross domain-centralized SON, the SON algorithm is located in the 3GPP 

cross management domain layer such that the 3GPP cross management domain monitors the 

network via management data, analyzes the management data, makes decisions on the SON 

actions, and executes those actions, while in the domain-centralized SON, all these functionalities 
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are executed in the management domain. The 3GPP cross management domain is responsible for 

the management and control of the domain-centralized SON functions where the responsibilities 

may include switching on/off a domain-centralized SON function, making policies for a domain-

centralized SON function, and/or evaluating the performance of a domain-centralized SON 

function. A centralized SON (C-SON) view [7] is illustrated in Figure 2.3 where the 3GPP 

management system monitors the network via management data that may include service-level 

agreement requirements, performance measurements of the network, alarm information, etc. 

depending on a case-by-case basis. The 3GPP management system then analyzes this data, makes 

decisions on the SON actions, and executes them in and across multiple network domains such as 

RAN and CN. 

 

Figure 2.1 SON structures based on the location of the SON algorithms [7] 
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Figure 2.2 SON framework [7] 

 

NF
(RAN)

3GPP management system

SON
algorithm

NF
(CN)

 

Figure 2.3 C-SON view [7] 
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In a distributed SON (D-SON) [7] as depicted in Figure 2.4, the SON algorithm is located 

in the NFs such that the NFs monitor the network events, analyzes the network data, makes 

decisions on the SON actions and executes the SON actions in the network nodes. The 3GPP 

management system is responsible for the management and control of the D-SON functions where 

the responsibilities may include switching on/off a D-SON function, making policies for a D-SON 

function, providing supplementary information such as the value range of an attribute to a D-SON 

function, and/or evaluating the performance of a D-SON function.  

In a hybrid SON (H-SON) [7] as shown in Figure 2.5., the SON algorithm is partially 

located in the 3GPP management system and partially located in the NFs. The 3GPP management 

system and NFs work together, in a coordinated manner, to build up a complete SON algorithm. 

The decisions on the SON actions may be either made by the 3GPP management system or the 

NFs, depending on the specific cases.  

3GPP management system

NF (CN)

SON
algorithm

NF (RAN)

SON
algorithm

SON management 
& control

 

Figure 2.4 D-SON view [7] 
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3GPP management system

NF (CN) NF (RAN)

SON 
algorithm

SON 
algorithm

SON 
algorithm

 

Figure 2.5 H-SON view [7] 

 An illustration of the 5G network architecture embedded within the SON framework 

described above is given in Figure 2.6 where the RAN domain entities include 5G base 

stations/NG-RAN nodes1 (gNB and ng-eNB), and the CN domain entities include access and 

mobility management function (AMF), user plane function (UPF), session management function 

(SMF), unified data management (UDM), and policy control function (PCF). Additional details 

on the 5G network architecture and network functions can be found in 3GPP TS 23.501 [8] and 

3GPP TS 38.300 [9]. If the SON decisions are made at the NF layer, the SON framework can be 

characterized as a D-SON. If the SON decisions are made at the management domain or the cross 

management domain layer, the SON framework can be characterized as a C-SON. If the SON 

decisions are coordinately made by both management and NF entities, the SON framework can be 

characterized as an H-SON.   

                                                 
1 The gNBs and ng-eNBs are interconnected with each other by means of the Xn interface. The gNBs and ng-eNBs 

are also connected by means of the NG interfaces to the 5G core network (5GC). 
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Figure 2.6 5G network architecture embedded within the SON framework 

The raw performance data of NFs of the mobile network, along with other management 

data such as alarm information, configuration data, etc., forms what is referred to as the 

management data analytics service [MDAS] and utilizes this information for the analysis and 

correlation of the overall performance data of the mobile network to diagnose ongoing issues 

impacting the performance of the mobile network and predict any potential issues (e.g., potential 

failure and/or performance degradation) [10]. The MDAS services can be made available and 
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consumed by other management and SON functions [7] as illustrated in Figure 2.7 such that the 

SON functions may utilize the services provided by MDAS to conduct their functionalities and 

control actions. 

 

 

Figure 2.7 Management data analytics service and SON functions [7] 

 

 

Management Data 
Analytics 
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Network 
Functions

NF
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Functions

SON

Management  
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SON functions can be broadly classified into three categories: self-configuration, self-

optimization, and self-healing each of which can be described below [5], [11], [12]. 

Self-configuration refers to the automatic configuration of network nodes and parameters. 

This may include the dynamic plug-and-play configuration of newly deployed network nodes 

where a network node will, by itself, configure operational parameters, radio parameters, and 

neighbor relations (for mobility management and hand overs). The self-configuration network 

functions may incorporate dynamic assignment of physical cell identity, transmission frequency, 

and power, dynamic connections to IP backhaul, dynamic configuration of paging areas such as 

RAN-based notification areas (RNA), automated neighbor relations and other such functions that 

are required for a newly deployed network node or sub-network to become fully operable. This 

initial configuration of network parameters may successfully be able to manage a network in a 

static environment, but since the real-world environment is not static, there is a need for further 

optimization. 

Self-optimization refers to constant monitoring of network parameters and environment to 

dynamically update system parameters in order to ensure efficient network performance. Self-

optimization involves functions such as load balancing optimization, where network nodes 

exchange information about load level and available capacity by means of radio resource status 

reports in order to transfer load or part of the user traffic from congested cells to other cells that 

may have spare resources, mobility robustness optimization that performs mobility management 

and handover parameter optimization for automatic detection and correction of errors in the 

mobility configuration, random access channel (RACH) optimization where a UE can be polled 

by a network node to obtain RACH statistics that can be used to minimize the number of attempts 

on the RACH channel reducing interference, interference coordination to keep inter-cell 
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interference under control by managing radio resources, and energy efficiency to enable a greener 

network where some network nodes can be switched off during off-peak-traffic situations when 

capacity is not needed. While these optimization strategies can help improve the network 

performance, partial or full outages may occur due to various faults and failures that can degrade 

the overall performance of the network and require self-healing. 

Self-healing refers to the automatic detection and remediation of failures in order to ensure 

fast and seamless recovery. Self-healing includes functions such as anomaly detection that is 

automatically able to detect faults and failures that have occurred in the network, fault diagnosis 

or classification that can determine the causes of the problems to find the correct solution, and cell 

outage management to implement compensation mechanisms in order to minimize the disruption 

caused in the network until the completion of recovery operations. The self-healing function in 

future networks is expected to proactively predict the faults and anomalies and to take the 

necessary measures to mitigate network degradation before a fault or failure actually happens.  

The full automation of SON is desirable to maximally reduce the OPEX of the networks, 

and to achieve the fastest reaction to the network issues, but in order to prevent any major negative 

network impact due to improper SON actions, it is critical that the network operators build 

confidence about the SON functions step by step before allowing the SON process to run fully 

autonomously, thus human intervention of the SON process needs to be allowed [5], [7]. In 

accordance with this observation, the SON process can be categorized as open loop or closed loop. 

Network operators have the flexibility to stop, resume, and cancel the SON process and make 

adjustments to the network as needed in an open loop SON process and once the network operators 

have built adequate confidence, they may convert the open loop SON process to a closed loop 

SON process that will be completely autonomous [5], [7]. 
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The taxonomy of  self-organizing networks [5] is illustrated in Figure 2.8. The research 

initiatives in this dissertation have developed novel methods to process and execute SON functions 

such as anomaly detection, load balancing optimization, and dynamic configuration of paging 

areas. Initially, SON functions can be implemented as open loop where the SON updates take 

effect based on the response by the network operator and eventually can be converted to closed 

loop after enough confidence is gained such that the response from the network operator is no 

longer required. 

 

Figure 2.8 Taxonomy of self-organizing networks 

 

2.3. Machine Learning 

 Machine Learning (ML) is the ability of systems to acquire and continuously improve their 

own knowledge, by extracting patterns from raw data to address problems involving knowledge 
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of the real world and make decisions that appear to be subjective and mimic human "cognitive" 

functions [13]. As opposed to well-established mathematical models, ML is a data-driven 

paradigm shift where a machine learning algorithm learns from experience while working on some 

tasks and determines if the performance improves with experience.  

 ML is broadly classified into three categories, namely, supervised learning, unsupervised 

learning, and reinforcement learning and can be explained as given below [5], [12]. 

 Supervised Learning (SL), as the name implies, requires a supervisor in order to train the 

system. This supervisor tells the system, for each input, what is the expected output and the system 

then learns from this guidance. Unsupervised Learning (UL), on the other hand, does not have the 

luxury of having a supervisor. This occurs, mainly when the expected output is not known, and 

the system will then have to learn by itself. Reinforcement Learning (RL) works similarly to the 

unsupervised scenario, where a system must learn the expected output on its own, but in this case, 

a reward mechanism is applied such that the system receives a reward or a penalty depending on 

the type of decision it makes. The basic structures of these ML categories are depicted in Figure 

2.9.  

In addition to these categories, deep learning is a particular kind of machine learning that 

achieves great power and flexibility by representing the target system as a nested hierarchy of 

concepts, with each concept defined in relation to simpler concepts, and more abstract 

representations are computed in terms of less abstract ones [13]. Deep learning is based on neural 

networks and can be applied to supervised learning, unsupervised learning, as well as 

reinforcement learning algorithms. 
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Figure 2.9 Basic structures of ML categories [14] 

ML can be used to solve various problems across a variety of applications and emphasizes 

thinking outside a single issue and beyond established boundaries. ML is expected to deeply 

transform system design and optimization for the existing as well as next-generation wireless 

communications networks and will play a pivotal role in implementing the SON functions, thus 

helping the network operators to transition from the existing human management models to self-

driven automatic management. ML-based SON networks will not only achieve the fastest reaction 

to the network issues but will also be able to take proactive measures based on ML-based 

predictions.  

The research initiatives taken in this dissertation involves the application of different types 

of supervised, unsupervised, as well as reinforcement learning algorithms [13], [15], [16], [17], 

[18], [19], [20], [21], [22], [23] listed in Figure 2.10.  
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Figure 2.10 Classification of ML algorithms utilized in this dissertation 

 

2.4. User-Centric Technology 

 It is well-known that capturing and utilizing the end-user or customer experience is one of 

the most vital aspects of any industry or business domain. A good and satisfying experience leads 

the users to spend more time on the network, which in turn drives demand and increase revenues 

[2]. This can be achieved by developing user-centric technologies, where the network strategies 

are based on user needs, the network optimization is based on user feedback, and the network 

performance is monitored via user-focused key performance indicators (KPIs).  

The network operators are expected to deliver significantly increased operational 

performance (e.g. increased spectral efficiency, higher data rates, low latency), as well as superior 

user experience (approaching that of wireline, fixed networks but offering full mobility and 
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coverage) and the need to deploy massive deployments of Internet of Things (IoT) networks, while 

still offering acceptable levels of energy consumption, equipment cost and network deployment 

and operation cost making it extremely significant that the next-generation network developments 

are based on use cases that are more user-centric opening up new revenue streams for network 

operators [5]. This dissertation proposes new user-centric technologies for next-generation 

network development and enhancement.  

 

2.5. Simulation Toolkit 

 Simulation modeling allows a practical and effective way to test novel methodologies and 

algorithms without having to make a scale copy of the entire network. The network simulator used 

in this dissertation is ns-3 [24], which provides a network simulation platform based on 3GPP 

standards [24] to design and test SON algorithms and solutions. It supports the evaluation of radio 

level performance and end-to-end QoE (QoE can be defined as the overall acceptability of an 

application or service, as perceived subjectively by the end-user). The ns-3 simulator is a discrete-

event network simulator intended primarily for research and educational use. In brief, ns-3 

provides models of how packet data networks work and perform and provides a simulation engine 

for users to conduct network experiments. Some of the reasons to use ns-3 include the ability to 

perform studies that are more difficult or not possible to perform with real systems, to study system 

behavior in a highly controlled, reproducible environment, and to get insight into the workings of 

a particular network. The programming language used to write the ns-3 simulation programs in 

this dissertation is C++.    

 The ns-3 output consists of network metrics and measurements that are extracted and 

processed to generate the input datasets to test the ML algorithms applied in this dissertation. The 
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programming language used to implement ML algorithms is Python and the ML programs are run 

via the Anaconda Distribution [25] that provides an open-source platform to execute ML 

algorithms. It comprises of an extensive set of ML-focused libraries and modules such as scikit-

learn [26], [27] and TensorFlow. It supports scientific libraries such as SciPy, NumPy, and pandas 

providing high-performance and easy-to-use data structures, and data analysis and manipulation 

methods used for scientific computing. It also consists of a 2D plotting library, Matplotlib to 

visualize and interpret results.  

 

2.6. Concluding Remarks 

 This chapter laid out the background for the research presented in this dissertation. It 

included a literature review for self-organizing networks and machine learning and introduced the 

concept of user-centric technologies. It covered an overview of the simulation toolkit used in this 

research for demonstration and evaluation purposes.   
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Chapter 3.  QoE-Driven Anomaly Detection in Self-Organizing Networks using Machine 

Learning2 

 

3.1. Introduction 

 With the exponential growth in mobile traffic data, network operators are in a dire need of 

a technology that can meet the demanding requirements of ever-increasing network usage marked 

by a radical change in user behavior that has been triggered by the proliferation of bandwidth-

hungry applications. As the emerging bandwidth-intensive technologies such as 5G, Internet of 

Things (IoT), and Virtual Reality (VR) begin to be deployed, the network operators need to ensure 

that networks are intelligent, scalable and robust enough to provide an excellent user experience 

that consumers expect. One promising solution to address these concerns is the deployment of self-

organizing networks enhanced by the machine learning technology. There is little doubt that ML 

will be a foundation technology that will permeate next-generation wireless networks to provide 

ground-breaking levels of flexibility and intelligence.  

This chapter applies the three-layered approach represented by the synergistic integration 

of SON, ML, and UC technologies to the first research initiative presented in this dissertation 

where a UC KPI (key performance indicator) uses ML to predict and detect the anomalous 

behavior of dysfunctional network nodes (base stations) by importing the effect of the end-user 

                                                 
2 The contents of this chapter have been published in [2], [3], [5]. Permissions are include in Appendix A. 
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perception of the quality of service for automatic detection and remediation of failures in self-

healing SON systems. 

 

3.2. Anomaly Detection  

One of the salient functions of self-organizing networks is to be able to correctly detect 

anomalies, e.g., dysfunctional nodes (e.g., base stations) or sites that cause outages and degradation 

in the network. Automatic detection of network node failures and outages is crucial to ensure fast 

and seamless recovery from such failures. The occurrence of failures in a network element, such 

as a base station, may cause deterioration of this network element’s functions and/or service quality 

and will, in severe cases, lead to the complete unavailability of the respective network element 

[28]. Consequently, anomaly detection is crucial to minimize the effects of such failures on 

network users. In case of green communication, energy-efficient network planning strategies 

include networks designed to meet peak-hour traffic such that energy can be saved by partially 

switching off base stations when they have no active users or simply very low traffic [29]. This 

makes anomaly detection even more critical as the detection methods must be well-equipped not 

to falsely detect partially switched off base stations in energy saving mode as dysfunctional.  

 Currently, alarm monitoring, routinely performed checks on the configuration parameters 

and counters, collecting traffic data to profile the behavior of the network in normal vs. abnormal 

conditions, measuring reference signal received power (RSRP) and signal-to-noise-and-

interference ratio (SINR), analyzing incoming handover measurements from neighboring cells, 

keeping track of customer complaints, and analyzing key performance indicators (KPIs) to detect 

any degradation are some of the widely used detection methods that network engineers follow to 

detect dysfunctional nodes [30]. These procedures may not always provide timely or accurate 
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determination of the network state. Alarm monitoring and configuration parameter checks may not 

necessarily be able to detect sleeping cells. Drive test data, RSRP, and SINR measurements can 

be affected by poor radio frequency (RF) conditions due to temporary reasons like ducting or 

external interference which may not be due to faulty network nodes. The number of handover (HO) 

attempts made could unduly be affecting the results of the detection method based on HO 

measurements. Customer complaints may provide limited technical information. On balance, the 

state-of-the-art approaches for anomaly detection lack the knowledge of the end-user perception 

of the quality of a provided service. KPI analysis is crucial in anomaly detection and needs more 

user-centric KPIs such as the quality of experience (QoE) to evaluate and detect dysfunctional 

nodes. 

 

3.3. Quality of Experience (QoE) 

 QoE is defined by the Telecommunication Standardization Sector of International 

Telecommunication Union (ITU-T) as “the overall acceptability of an application or service, as 

perceived subjectively by the end-user” [31]. In other words, QoE describes the degree of the end-

user’s “delight or annoyance” while using a product or service. Unlike the quality of service (QoS), 

QoE incorporates user-centric network decision mechanisms and processes such that it takes into 

account not just the technical aspects regarding a service but also incorporates any kind of human-

related quality-affecting factors reflecting the impact that the technical factors have on the user’s 

quality perception [32]. There are different types of approaches that can be used for QoE 

assessment. These approaches can be classified into subjective tests, objective tests and hybrid 

tests methods. There are various types of evaluation models based on these approaches proposed 

for QoE estimation in the literature. Parametric QoE estimation models are currently the most 
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popular candidates for quantifying QoE levels in an indirect and user-transparent way in mobile 

networks. Parametric models use network parameters and metrics for QoE estimation [32], [33]. 

Parametric QoE models are derived by performing subjective experiments that may include 

laboratory tests or crowdsourcing and by performing statistical analysis on the results. The derived 

models may then be used to generate formulas which can be used to compute QoE given specific 

input parameters [34]. 

 

3.4. The Methodology 

 The proposed methodology, QoE-driven anomaly detection in SON using ML, can be 

explained using the process flow described in Figure 3.1. An end-to-end network scenario is 

created using the network simulator ns-3 [24], where end users interact with a remote host that is 

accessed over the Internet to run the most commonly used applications like file downloads and 

uploads. The transmit power on a few network nodes is altered intentionally to test the 

methodology.   

The data obtained from the ns-3 simulation serves as the input dataset for the machine 

learning model where a parametric QoE model and ML algorithms are implemented to predict 

QoE scores of end users that are further used to identify dysfunctional network nodes. There are 

multiple parametric QoE models which can be used for a reliable estimation of QoE for various 

types of services. One of the most commonly used application by users is the file download 

application. The protocol used by this application is the file transfer protocol (FTP).  File transfer 

services are considered to be elastic services, whose utility function is an increasing, strictly 

concave, and continuously differentiable function of throughput [35]. The principal characteristic 

of FTP services is that there is no need for a continuous and in-sequence packet arrival. Taking 
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into account that the delay expected by the end-user is proportional to the size of the downloaded 

file, the most dominant factor that affects the QoE level is the data rate. A parametric model that 

is commonly used to provide the mean opinion score (MOS) for FTP services used to generate the 

QoE scores is expressed in Equation (3.1) 

𝑀𝑂𝑆𝐹𝑇𝑃 = { 
  1                     𝑢 < 𝑢−

  𝑏1. log10(𝑏2. 𝑢)        𝑢
− ≤  𝑢 < 𝑢+ 

  5                    𝑢+ ≤ 𝑢

    (3.1) 

where 𝑢 represents the user data rate (user throughput) of the correctly received data. The values 

of the 𝑏1 and 𝑏2 coefficients are obtained from the upper (𝑢+) and lower rate (𝑢−) expectations for 

the service [32], [34], [35]. Either the parametric model or acquiring direct feedback from users 

can be used to analyze the differences and similarities of the results. It would be even more 

beneficial to create the QoE target values based on a combined method that acquires QoE scores 

as rated directly by the end-users and supplement that with user-impacting network metrics to 

analyze and assign appropriate weights to each metric generating a holistic approach for QoE 

evaluation. This will ensure that the direct user feedback as well as important network metrics are 

considered in the QoE calculation. 

  In selecting ML algorithms, the first step is to understand the problem at hand and the 

associated data available to find out what general category the ML algorithm belongs, viz., 

supervised learning, unsupervised learning, or reinforcement learning. ML learns from examples 

and the preferred approach is to train a model by making the best possible use of the data available.  

If the expected output information is available for training, supervised learning is preferable. For 

QoE prediction, it is important and (also possible) that the expected QoE output is selected to get 

as close to the end-user perception of the quality of service experienced as possible so that the ML 

algorithm learns using this reference. Consequently, the type of machine learning algorithms 
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implemented in this research are supervised machine learning algorithms. Four supervised learning 

algorithms, support vector machines (SVM), 𝑘-nearest neighbors (𝑘-NN), decision trees (DT), and 

neural networks (NN) were implemented each of which are explained in Section 3.4. 

  To perform anomaly detection, the predicted QoE score for every user, using the machine 

learning models described above, is used to filter out all the users with poor QoE scores (QoE ≤ 

1). If the majority of users attached to a particular network node have poor QoE scores, the node 

is declared to be dysfunctional. In other words, if the mode of the QoE scores of all the users 

connected to that particular network node is less than or equal to the threshold which in this case 

is set to 1, then the network node is declared as dysfunctional but if the mode of the QoE scores of 

all the users connected to a particular network node is greater than the threshold, the network node 

is declared as functional. 

 

Figure 3.1 The process flow for QoE-driven anomaly detection in SON using ML 

If the majority of users are found to be experiencing poor 
QoE scores while being served by a network node, such a 

node is declared to be dysfunctional.

Shortlist network nodes (base stations) that are serving users 
having poor QoE scores (range: 0 to 1)

Evaluate the performance of the ML algorithms for QoE 
prediction

Apply supervised ML algorithms to learn and predict QoE 
scores (range: 0 to 5 [the best]) 

Collect simulation results to perform data preprocessing and 
create UC-dependent QoE target values using a parametric 

QoE model

Simulate a cellular network using ns-3 to test anomaly 
detection in a SON 
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3.5. The ML Algorithms  

3.5.1 Support Vector Machines 

 A support vector machine [26], [16], [19] constructs a hyperplane or set of hyperplanes in 

a large or infinite dimensional space, which can be used for classification, regression or other tasks. 

If sufficient separation is achieved by the hyperplane with the largest distance to the nearest 

training samples of any class, the algorithm will generally be effective. The training samples that 

are the closest to the decision surface are called support vectors. The SVM algorithm finds the 

largest margin (i.e., “distance”) between the support vectors to obtain optimal decision regions. 

The type of SVM algorithm used in the proposed method is SVM regression. In SVM regression, 

the input vector 𝒙 is first mapped3 onto an 𝑚-dimensional feature space using a fixed (nonlinear) 

mapping i.e. by using kernel functions, and then a linear model is constructed in this feature space 

to separate the training data points. The linear model in the feature space 𝑓(𝒙,𝜔) is given by 

𝑓(𝒙,𝜔) =∑ 𝜔𝑗𝑔𝑗 (𝒙) + b
𝑚

𝑗=1
     (3.2) 

where 𝑔𝑗 (𝒙), 𝑗 = 1,… . ,𝑚 denotes a set of nonlinear transformations (e.g. radial basis function) 

and b is a bias term. A loss function [16] often used by an SVM to measure the quality of estimation 

is called the 𝜀 − insensitive loss function and is given below. 

ℒ 𝜀(𝑦, 𝑓(𝒙, 𝜔)) = {
0,                               𝑖𝑓  |𝑦 − 𝑓(𝒙, 𝜔)| ≤ 𝜀 
|𝑦 − 𝑓(𝒙,𝜔)| − 𝜀,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (3.3)                            

The SVM performs linear regression in the high-dimension feature space using 𝜀 – insensitive loss 

and, at the same time, tries to reduce model complexity by minimizing ||𝜔||2. This can be described 

                                                 
3 In SVM, the input space is transformed into a new feature space using kernel functions where it becomes easier to 

process the data such that it is linearly separable. Hard margin SVM works well when the data is completely linearly 

separable. Hard margin SVM is very sensitive to errors (noise/outlier), in which case, soft margin SVM is preferred. 

Soft margin SVM uses slack variables (ξ) to soften the constraints that determine the decision boundaries by skipping 

a few outliers.   
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by introducing (non-negative) slack variables 𝜉i, 𝜉i
* where 𝑖 = 1, … . , 𝑛, to measure the deviation 

of training samples outside the 𝜀 – insensitive zone. Thus, SVM regression is formulated as the 

minimization of the following function [19]: 

min
1

2
||𝜔||2 + 𝐶∑ (𝜉𝑖 +

𝑛

𝑖=1
 𝜉i

*)    (3.4) 

subject to {

𝒚𝒊 − 𝑓(𝒙𝒊, 𝜔)  ≤  𝜀 + 𝜉𝑖
∗

𝑓(𝒙𝒊, 𝜔) − 𝒚𝒊  ≤  𝜀 + 𝜉𝑖
𝜉𝑖, 𝜉𝑖

∗  ≥  0, 𝑖 = 1,… . , 𝑛

 

where C is a regularization parameter that determines the tradeoff between the model complexity 

and the degree to which deviations larger than 𝜀 are tolerated in optimization formulation, 𝒙𝒊 

represents the input values, 𝜔 represents the weights, and 𝒚𝒊 represents the target values. This 

optimization problem can be transformed into the dual problem and its solution is given by 

𝑓(𝑥) = ∑ (𝛼𝑖 −
𝑛

𝑖=1
 𝛼i

*) K (𝒙𝒊, 𝒙)     (3.5) 

subject to 0 ≤ 𝛼i
* ≤ C, 0 ≤ 𝛼𝑖 ≤ C, where 𝑛 is the number of support vectors,  𝛼𝑖 is the dual variable, 

and the kernel function is given by 

K (𝒙, 𝒙𝒊)   = ∑ 𝑔𝑗(𝒙)𝑔𝑗(𝒙𝒊)
𝑚

𝑗=1
     (3.6) 

The SVM performance (estimation accuracy) depends on the optimized setting of meta-parameters 

C, 𝜀 and the kernel parameters.  

3.5.2 𝑘-Nearest Neighbor Algorithm 

The basic idea behind the 𝑘-nearest neighbor algorithm [26], [20] is to base the estimation 

on a fixed number of observations 𝑘 which are closest to the desired data point. A commonly used 

metric measure for distance is the Euclidean distance. Given 𝛸 ∈ ℝ𝑞 and a set of samples 

{𝑋1, … . , 𝑋𝑛}, for any fixed point 𝑥 ∈ ℝ𝑞, it can be calculated how close each observation  𝑋𝑖  is to 
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𝑥 using the Euclidean distance ||𝑥|| =  (𝑥′𝑥)
1

2 where “ ′  ” denotes the vector transpose. This 

distance is given as 

𝐷𝑖 = ||𝑥 − 𝑋𝑖|| = ((𝑥 − 𝑋𝑖)
′(𝑥 − 𝑋𝑖))

1

2    (3.7) 

The order statistics for the distances 𝐷𝑖 are 0 ≤ 𝐷(1) ≤ 𝐷(2) ≤ 𝐷(𝑛). The observations 

corresponding to these order statistics are the “nearest neighbors” of  𝑥. The observations ranked 

by the distances or “nearest neighbors”, are {𝑋(1), 𝑋(2), 𝑋(3), … . , 𝑋(𝑛)}. The kth nearest neighbor of 

𝑥 is 𝑋(𝑘). For a given 𝑘, let 

𝑅𝑥 = ||𝑋(𝑘) − 𝑥|| = 𝐷(𝑘)     (3.8) 

denote the Euclidean distance between 𝑥 and 𝑋(𝑘). 𝑅𝑥 is the 𝑘th order statistic on the distances 𝐷𝑖. 

In 𝑘-NN regression, the label4  assigned to a query point is computed based on the mean of the 

labels of its nearest neighbors. The weights used in the basic type of 𝑘-NN regression are uniform 

where each point in the local neighborhood contributes to the classification of a query point. In 

some cases, it can be beneficial to weigh points such that nearby points contribute more to the 

regression than points that are far away. The classic 𝑘-NN estimate is given as 

𝑔̃(𝑥) =
1

𝑘
∑ 1𝑛
𝑖=1 (||𝑥 − 𝑋𝑖|| ≤ 𝑅𝑥)𝑦𝑖     (3.9) 

This is the average value of 𝑦𝑖 among the observations that are the 𝑘 nearest neighbors of 𝑥. A 

smooth 𝑘-NN estimator is a weighted average of the 𝑘 nearest neighbors and is given as 

𝑔̃(𝑥) =
∑ 𝜔(

||𝑥−𝑋𝑖||

𝑅𝑥
)𝑦𝑖

𝑛
𝑖=1

∑ 𝜔(
||𝑥−𝑋𝑖||

𝑅𝑥
)𝑛

𝑖=1

     (3.10) 

                                                 
4 In supervised machine learning, the task of the ML model is to predict target values from labelled data. The input is 

referred to by terms such as independent variables or features. The output is referred to by terms such as dependent 

variables or target labels or target values. 
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3.5.3 Decision Tree Methods 

The primary idea for decision tree methods [26], [21], [36] is that, based on the original 

data, a set of partitions are created so that the best class (in classification problems) or value (in 

regression problems) can be determined by creating decision rules which could be a set of if-then-

else rules deduced from the data features. The type of decision tree algorithm used in this 

dissertation is an optimized version of the classification and regression trees (CART) algorithm 

which can be explained as follows: Given training vectors 𝒙𝑖 ϵ 𝑅
𝑛,   𝑖 = 1,….., 𝑙 and a label vector 

y ϵ 𝑅𝑙, a decision tree recursively partitions the space such that the samples with the same labels 

are grouped together. Let the data at node 𝑚 be represented by 𝑄. For each candidate split 𝜃 = 

( 𝑗, 𝑡𝑚) consisting of a feature 𝑗 and threshold 𝑡𝑚, partition the data into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) 

subsets. This means the data represented by 𝑄 is now divided into two subsets 𝑄𝑙𝑒𝑓𝑡(𝜃) and 

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) that are computed using the equations given below: 

𝑄𝑙𝑒𝑓𝑡(𝜃) =  (𝑥, 𝑦)| 𝑥𝑗 ≤ 𝑡𝑚    (3.11) 

 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) =  𝑄 \ 𝑄𝑙𝑒𝑓𝑡(𝜃)    (3.12) 

where the division operator ‘\’ is used to denote left division5. The impurity6 at 𝑚 is computed 

using an impurity function, H ( ) the choice of which depends on the task being solved 

(classification or regression) 

𝐺(𝑄, 𝜃) =  
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
 𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
 𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡(𝜃))   (3.13) 

The parameters are selected such that they minimize the impurity  

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄, 𝜃)    (3.14) 

                                                 
5 The left division operator, also known as backslash operator, is generally used in computer programming 

languages and performs the reverse of right division such that 𝑋\𝑌 = 𝑋−1𝑌. 
6 The impurity refers to the quantification of the error between the predicted value of the machine learning model and 

the actual target values. 
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The subsets 𝑄𝑙𝑒𝑓𝑡(𝜃
∗) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃

∗) are recursively computed until the maximum allowable 

depth is reached. The maximum allowable depth is a computational choice specified to control the 

complexity of the tree and prevent overfitting via pruning. The classification and regression trees 

are used for constructing prediction models from data. These models are obtained by recursively 

partitioning the data space and fitting a prediction model within each partition. The recursive 

partitioning can be represented graphically as a decision tree which is easy to visualize and 

interpret. The classification trees are designed for dependent variables that take a finite number of 

unordered values, with prediction error measured in terms of misclassification cost and regression 

trees are designed for dependent variables that take continuous or ordered discrete values, with 

prediction error typically measured by the squared difference between the observed and predicted 

values [36]. The proposed method uses the regression criteria for determining the locations for 

future splits such that for a node 𝑚 in a region 𝑅𝑚 with 𝑁𝑚 observations, the common criteria used 

to minimize are mean squared error (MSE) and mean absolute error (MAE). The MSE minimizes 

the L2 error using mean values at terminal nodes and can be expressed as follows:  

𝑦̅𝑚 =
1

𝑁𝑚
∑ 𝑦𝑖𝑖𝜖𝑁𝑚      (3.15) 

𝐻(𝑋𝑚) =
1

𝑁𝑚
∑ (𝑦𝑖 − 𝑦̅𝑚)

2
𝑖𝜖𝑁𝑚     (3.16) 

The MAE minimizes the L1 error using median values at terminal nodes and can be expressed as 

follows:  

𝑦̅𝑚 =
1

𝑁𝑚
∑ 𝑦𝑖𝑖𝜖𝑁𝑚       (3.15) 

𝐻(𝑋𝑚) =
1

𝑁𝑚
∑ |𝑖𝜖𝑁𝑚 𝑦𝑖 − 𝑦̅𝑚|    (3.17) 

where 𝑋𝑚 is the training data in node 𝑚 . 
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3.5.4 Neural Network  

  A neural network (multi-layer perceptron) [26], [18] algorithm learns a function 

𝑓(. ): 𝑅𝑚 → 𝑅𝑜 by training on a dataset, where 𝑚 is the number of dimensions for input and 𝑜 is 

the number of dimensions for output. Given a set of features 𝑋 = 𝑥1, 𝑥2, … . , 𝑥𝑚 and a target 𝑦, it 

can learn a non-linear function approximator for either classification or regression. In logistic 

regression, there can be one of more non-linear layers called hidden layers between the input and 

output layers. A one hidden layer multi-layer perceptron (MLP) with scalar output is illustrated in 

Figure 3.2.  

 

Figure 3.2 One hidden layer MLP  
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The input layer (the leftmost layer) consists of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, … . , 𝑥𝑚} that 

represent the input features. Each neuron in the hidden layer transforms the values from the 

previous layer with a weighted linear summation 𝜔1𝑥1 + 𝜔2𝑥2 +⋯+𝜔𝑚𝑥𝑚 shifted over 

biases 𝑏1, 𝑏2, … , 𝑏𝑚, followed by a non-linear activation function 𝑔(. ): 𝑅 → 𝑅 (e.g. logistic 

sigmoid function). The denotations 𝜔1, 𝜔2, … , 𝜔𝑚 represent the weights. The output layer (the 

rightmost layer) receives the values from the last hidden layer and transforms them into output 

values. 

MLP regression implements a multi-layer perceptron that trains using backpropagation 

with no activation function in the output layer. In other words, it uses the identity function as the 

activation function. It uses the square error as the loss function and the output is a set of continuous 

values. It uses L2 regularization that helps avoid overfitting by penalizing weights with large 

magnitudes. Starting from initial random weights, MLP minimizes the loss function by repeatedly 

updating these weights. After computing the loss, a backward pass propagates it from the output 

layer to the previous layers, providing each weight parameter with an updated value meant to 

decrease the loss. The algorithm stops when it reaches a preset maximum number of iterations; or 

when the improvement in loss is below a certain, small number.  

 

3.6. Performance Analysis and Evaluation 

 The values of the primary parameters used to configure the network scenario created in the 

ns-3 simulation are given below in Table 3.1. The output generated from the ns-3 simulation is fed 

as an input to the four supervised ML algorithms to study their effectiveness and the scalability of 

the proposed methodology.  
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Table 3.1 Simulation parameters and values 

Parameters 

 

Value 

Number of network users 

 

50 (scalable) 

Number of network nodes 

 

5 (scalable) 

Channel bandwidth 

 

20 MHz 

Transmission power of 

network nodes 

 

46 dBm 

Transmission power of 

dysfunctional network 

nodes 

 

30 dBm 

Application type 

 

FTP 

 

The performance of the ML algorithms is investigated as their accuracy in predicting the 

QoE scores determines the ability of the methodology to correctly detect the dysfunctional network 

nodes. The SVM performance depends on the type of kernel function and the setting of meta 

parameters C, epsilon, and the kernel parameter, gamma. C is a regularization parameter that 

determines the tradeoff between the model complexity and the degree to which deviations larger 

than epsilon are tolerated, epsilon specifies the epsilon-tube within which no penalty is associated 

in the training loss function with points predicted within a distance epsilon from the actual value, 

and gamma specifies how far the influence of a single training example reaches and is the inverse 

of the radius of influence of samples selected by the model as support vectors [26], [19]. The 

optimal SVM solution for the dataset obtained from the ns-3 simulation is found using the kernel 

function, radial basis function7 (rbf) with C = 5, gamma (𝛾) = 0.001, and epsilon = 0.01. The 𝑘-

                                                 
7 Radial basis function can be expressed as rbf: exp(−𝛾 .  ||𝑥 − 𝑥′||2); where ||𝑥 − 𝑥′||2is the squared distance 

(Euclidean distance) between two samples 𝑥 and 𝑥’; gamma (𝛾) must be greater than 0. 
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NN performance depends on the value of 𝑘 and the optimum value of 𝑘 for the given dataset is 

observed to be 4. The decision tree performance for MSE and MAE criteria at varying values of 

maximum allowable depth is tested and it is observed that MSE at maximum depth value 3 gives 

the most optimum performance for the given dataset. The optimal performance for neural networks 

was achieved for the given dataset by using the logistic sigmoid function 𝑓(𝑥) = 1/(1 +

exp(−𝑥)) and applying the solver limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm (L-BFGS). L-BFGS is a solver that approximates the Hessian matrix which represents 

the second-order partial derivative of a function. Further it approximates the inverse of the Hessian 

matrix to perform parameter updates. The training and testing accuracy scores for all four 

algorithms are compared and the accuracy results are summarized in Figure 3.3.  

 

Figure 3.3 Training and testing accuracy scores for the ML algorithms implemented for QoE 

prediction 
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The performance and scalability of these algorithms are further evaluated by creating 

different network scenarios by embedding three different propagation path loss models (Friis 

propagation, Log-Distance propagation, and Cost 231 propagation [24]) in the ns-3 simulation. 

The average accuracy results for QoE predictions are shown in Figure 3.4.  

To test the scalability even further, the ns-3 simulation was extended as a sequence of 

independent trials, so as to compute statistics on multiple independent runs and the average 

resulting performance of the ML algorithms is depicted in Figure 3.5. The dysfunctional network 

nodes were successfully detected based on the QoE scores predicted by each of the ML algorithms 

making them a viable choice. 

 

Figure 3.4 QoE prediction accuracy with different RF propagation models 
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Figure 3.5 The average accuracy results for QoE predictions against multiple independent 

simulation runs 

The application of the optimized version of the decision tree algorithm with the regression 

criteria MSE gave relatively better results than the rest of the algorithms. It is important to note 

that the choice of the ML algorithms depends on the nature of the dataset. Each ML algorithm has 

a few limitations that need to be considered carefully. For example, SVM complexity is very high 

and a wrong choice of kernel can lead to an increase in error percentage. 𝑘-NN is sensitive to 

localized data such that the localized anomalies can affect the outcomes significantly. The black-

box nature of NN makes it difficult to interpret how the results were derived and troubleshoot. DT 

has a high probability of overfitting and needs pruning for larger datasets. 
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3.7. Concluding Remarks 

The proposed methodology and its demonstration in this chapter realizes a novel method, 

QoE-driven anomaly detection in self-organizing networks using machine learning that will 

facilitate self-healing networks. The methodology is a user-centric approach that imports the effect 

of the end-user perception of the quality of a provided service by learning and predicting QoE 

scores. The performance of four supervised learning algorithms was investigated where the QoE 

scores of network users were predicted and were used to identify dysfunctional serving nodes in 

the network. It is a resource-efficient method as it not only provides information about the user 

experience, which is extremely crucial for a network operator, but also uses this information to 

identify nodes that are not functioning well enough to serve the users in their vicinity. It avoids 

over-engineering as network operators can prioritize their recovery operations on the network 

nodes that need immediate attention versus the ones that may still be manageable given their QoE 

scores.  

The proposed method can play an important role in supporting future networks based on 

green communication network design with features like enhanced mobile broadband, extreme 

densification, and energy efficiency where a large number of serving nodes may be partially turned 

off for certain intervals to attain energy efficiency as it can distinguish dysfunctional network 

nodes from partially switched off nodes in energy saving mode i.e. even when a network node is 

partially switched off to save energy, it would not be falsely detected as dysfunctional unless the 

QoE scores of the users in the vicinity goes down making it then a real issue that needs to be 

addressed. Furthermore, the existing network-centric techniques, for example, alarm monitoring 

can be supplemented by the proposed UC-technique such that any unnecessary troubleshooting 

actions against falsely generated alarms can be prevented as the QoE-driven anomaly detection 
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technique can validate if a network node that triggered the alarm needs attention based on the QoE 

levels predicted. Consequently, combining this method with the existing techniques for anomaly 

detection can provide highly robust and reliable methods for anomaly detection supporting the 

ultra-dense 5G/6G networks with the expected benefits of an improved understanding of end-

users’ perspective and resource-efficiency by effectively prioritizing recovery operations 

supporting high-density networks.   
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Chapter 4.  Optimal-Capacity, Shortest Path Routing in Self-Organizing Networks using 

Machine Learning8 

 

4.1. Introduction 

 A central challenge for emerging wireless communication networks, beyond the promise 

to deliver faster speeds and greater connectivity, is to optimize the ability of wireless network 

service providers to efficiently deliver the required user capacity over the available spectral 

resources. A self-organizing network (SON) is recognized as central to capacity optimization of 

mobile networks [37] and one of the promising ways to autonomously and intelligently manage 

SONs is by integration with machine learning and UC (user-centric) technology. 

 This chapter applies the three-layered approach represented by the synergistic integration 

of SON, ML, and UC technologies to propose a methodology called user-specific optimal capacity 

and shortest path (US-OCSP) for load balancing and capacity optimization in self-optimizing SON 

systems. US-OCSP performs user-specific dynamic routing to find the shortest path with optimal 

capacity given a source and destination. In this dissertation the routing is considered optimal when 

the routing makes the most efficient use of the resources available given the constraints and 

limitations related to the available network nodes and routes going from the source to destination. 

The methodology uses the percentage of allocated physical resource blocks (PRBs) to evaluate the 

available capacity of 4G/5G network nodes (eNodeB/gNodeB) and uses 𝒬-learning, an ML 

                                                 
8 The contents of this chapter have been published in [4]. Permissions are included in Appendix A. 
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reinforcement learning technique, to determine the shortest path that meets the capacity needs of 

a user in a SON network.  

US-OCSP can dynamically route the user traffic through non-congested network nodes, 

with minimal compromise on the subscriber’s capacity, thus facilitating effective resource 

management to attain customer satisfaction and alleviate network congestion by developing an in-

built application that is coordinated with an automobile or mobile phone’s navigation system 

(GPS) where a network route provided by US-OCSP is driven by the topography based on a GPS 

mapping system linking GPS and optimal network routing.  

 

4.2. Load Balancing and Capacity Optimization 

 Load balancing and capacity optimization in a SON is critical to efficiently deliver the 

required user capacity over the available spectrum resources. Load balancing optimization is a 

SON function where cells in a congested state can transfer part of the user traffic to other cells that 

have spare resources [7]. The radio resource status reports can help determine the physical resource 

block9 (PRB) utilization and the available nodal capacity that can be further used for load balancing 

and capacity optimization in the network [11]. 

 The prior art methods to achieve load balancing and capacity optimization include a 

channel borrowing mechanism, handover-based approaches, and antenna tilt optimization [38]. In 

channel borrowing, a cell can borrow a fixed number of channels from adjacent cells, but if the 

adjacent cells do not have enough resources to share, this can lead to even more congestion. In 

handover-based approaches, the user equipment (UEs) are handed off between the serving and 

                                                 
9 In LTE and NR, one subcarrier and one OFDM symbol forms a resource element. A physical resource block (PRB) 

is a group of resource elements such that it consists of 12 consecutive subcarriers across one slot. A PRB is the 

smallest radio resource unit used for resource allocation in 4G and 5G networks.  
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neighboring cells, but there is a possibility that this can give rise to a “ping-pong” effect10 causing 

instability and an increase in the occurrence of handover drops. In antenna tilt optimization, tilt 

adjustments are made to optimize coverage areas of the serving and neighboring cells, but these 

generally have a limited range and in case of equipment failure, it may require several days for 

repairing or replacing the physical parts. These network-centric approaches can be further 

enhanced by implementing a user-centric approach, where the shortest path with available optimal 

capacity is pre-determined based on the current network state and recommended to the end-user 

given its source and destination (much like a GPS offers recommended routes). 

 

4.3. The Methodology 

 The legacy methods lack a user-centric approach while transferring load from congested 

network nodes (base stations) to other nodes, which may not always lead to an improved user 

experience. Non-UC approaches would move users from one network node to other to reduce 

network congestion and while doing this some users may receive improved service, but some may 

face degraded service, but a UC-approach will strive to ensure every user gets good service. In 

US-OCSP, which is a user-centric methodology, the optimization begins at the end-user level and 

strives to find the shortest path available that traverses through non-congested network nodes and 

recommends that route to the end-user given its source and destination. An in-built application that 

is coordinated with an automobile or mobile phone’s navigation system (GPS) can be developed 

where a network route provided by US-OCSP is driven by the topography based on a GPS mapping 

system linking GPS and optimal network routing. 

                                                 
10 When UEs are in a loop where they are repeatedly handed off between the source and the target base stations, the 

resulting effect is called the “ping-pong” effect.  
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The proposed methodology takes a UC-approach that tailors the capacity needs of the end-

user to find the shortest path with optimal capacity for a given source and destination. Capacity is 

measured by the availability of resources (i.e., PRBs) at all possible serving network nodes 

between the source and destination. A reinforcement machine learning algorithm implemented 

(i.e., 𝒬-learning) determines the shortest path avoiding congested network nodes so as to achieve 

the required throughput and/or bit rate. In other words, under the assumption that a user will be 

served by multiple network nodes while moving from its source to destination no matter what route 

it takes, the proposed methodology will give the user optimal throughput by selecting a path with 

the least viable distance that goes through the network nodes to reach that destination and that have 

adequate availability of resources (PRBs) to serve the user. It avoids selecting a path that goes 

through congested network nodes that have very high PRB utilization. So, if the user takes the 

recommended path, the user will be able to achieve an optimal throughput/ bit rate, consistent with 

the definition of “optimal” on page 1 of this chapter. 

An example scenario could work as follows: the driver’s GPS, or mobile phone,  provides 

options with multiple  paths going from a source to destination that are relayed to the wireless 

network and then the US-OCSP algorithm finds the shortest network node path with non-congested 

nodes recommending a routing consistent with at least one of the GPS recommended paths. The 

application in autonomous vehicles could be quite important. The methodology can be used to 

further enable dynamic network path optimization, such that if the user changes its inputs, such as 

GPS route, the US-OCSP would recompute the network path in response to the changes in the user 

inputs. Thus, US-OCSP can help build a navigation system that will allow users to pick a route 

with less congested network traffic and help network operators with resource optimization.  
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The visual map depicted in Figure 4.1 is used to illustrate US-OCSP. Given a source and a 

destination of a user, US-OCSP first determines the available capacity of all 4G/5G base stations 

i.e. eNodeBs (eNBs)/ gNodeBs (gNBs) in the region of service that could potentially serve the 

user. This is done by calculating the PRB utilization of each eNB/gNB. PRB utilization is a 

performance measurement typically used for 4G/5G networks that provides the total usage (in 

percentage) of physical resource blocks, per node, and is defined as [39] 

PRB utilization = 𝑀(𝑇) =  
𝑀1(𝑇)

𝑃(𝑇)
∗ 100    (4.1) 

where 𝑀(𝑇) is the percentage of PRBs used, averaged during a time period 𝑇 with value range: 

0 − 100%, 𝑀1(𝑇) is the count of all PRBs used, 𝑃(𝑇) is the total number of PRBs available 

during time period 𝑇, and 𝑇 is the time period during which the measurement is performed.  The 

periodicity of the radio resource status report can be typically requested in  the range of 1 to 10s 

[11]. 

 

Figure 4.1 Example network topology to illustrate the US-OCSP methodology 
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The network scenario described in Figure 4.1 was simulated using the network simulator 

ns-3 [24]. One hundred UEs that generate constant bit rate traffic are randomly placed in the 

network and are connected to the closest of the 10 network nodes. Areas with high user 

concentration are denoted by beach, university and shopping mall symbols in the visual map. PRB 

utilization is calculated for every network node to evaluate its capacity. A threshold of 70% is set 

such that a network node with PRB utilization above the threshold is declared to be “busy” while 

a network node with PRB utilization below the threshold is declared to be “available.” 

US-OCSP uses a machine learning algorithm called 𝒬-learning, a form of reinforcement 

learning, to determine the shortest path to be taken by the end-user from its source to destination. 

In selecting ML algorithms, the first step is to understand the problem at hand by assessing the 

relevant data available to determine the general category of ML algorithm that will be used - 

supervised, unsupervised, or reinforcement.  Since ML learns from examples, the approach is to 

train a model by making the best possible use of the data available.  If expected output information 

is available for training, supervised learning is preferable. But when the target labels/values are 

not available the next best option is to find out if a reward mechanism can be applied to the data. 

In case of US-OCSP, the expected/desired output is not available, but a reward/penalty can be 

associated for every state-action pair in accordance with some performance criterion, hence 

allowing the use of reinforcement learning. 

Reinforcement learning addresses how an autonomous agent that senses and acts in its 

environment can learn to choose optimal actions to achieve its goals as described in Figure 4.2 and 

explained as given below [17]. Each time the agent performs an action aj from a set of possible 

actions 𝐴 in some state 𝑠𝑗  in an environment described by a set of possible states 𝑆, the agent 

receives a reward or penalty 𝑟𝑗 that represents an immediate value of the state-action transition 
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indicating the desirability of the resulting state. This generates a sequence of states 𝑠𝑖, actions 𝑎𝑖, 

and immediate rewards 𝑟𝑖 as shown in Figure 4.2, where 𝑠0, 𝑠1, 𝑠2 represent states, 𝑎0, 𝑎1, 𝑎2 

represent actions, 𝑟0, 𝑟1, 𝑟2 represent immediate rewards, and 𝛾 represents the discount factor. The 

task of the agent is to learn a control policy, 𝜋 ∶ 𝑆 → 𝐴, that would maximize the expected sum of 

rewards, with future rewards discounted exponentially by their delay. The discount factor is 

denoted by 𝛾. It represents the degree to which the rewards hold their value over time. When 𝛾 is 

close to 0, the algorithm tends to consider only immediate rewards but as 𝛾 gets closer to 1, the 

algorithm strives for a long-term high reward. 

 

Figure 4.2 Representation of a reinforcement learning system [17] 
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The 𝒬-learning algorithm is described in Table 4.1 and can be explained as follows [17]:  

Table 4.1 𝒬-learning algorithm11, assuming deterministic rewards and actions [17]. The discount 

factor 𝛾 may be any constant such that 0 ≤  𝛾 < 1. 

 

For each 𝑠, 𝑎 initialize the matrix entry 𝒬̂(𝑠, 𝑎) to zero. 

Observe the current state 𝑠 
Do forever: 

 Select an action 𝑎 and execute it 

 Receive immediate reward 𝑟 

 Observe the new state 𝑠′ 

 Update the matrix entry for 𝒬̂(𝑠, 𝑎) as follows: 

 

                                   𝒬̂(𝑠, 𝑎)  𝑟 +  𝛾max 𝒬̂(𝑠′, 𝑎′) 
                                                                  𝑎′ 

 𝑠  𝑠′ 
 

 

In 𝒬-learning, learning the 𝒬 function corresponds to learning the optimal policy. The 

evaluation function the agent attempts to learn is 𝒬(𝑠, 𝑎) such that the value of 𝒬 is the maximum 

discounted cumulative reward that can be achieved starting from state 𝑠 and applying action 𝑎 as 

the first action. In this algorithm, the learner represents its hypothesis 𝒬̂ by a large matrix that 

consists of a separate entry for each pair of state and action. The matrix entry for (𝑠, 𝑎) stores the 

value for 𝒬̂(𝑠, 𝑎), the learner’s current hypothesis about the actual, but unknown, value 𝒬(𝑠, 𝑎). 

The initial values of the matrix are set to zero. The agent recurrently observes its current state 𝑠, 

                                                 
11

 The training rule in the algorithm can also be written as an iterative equation where the 𝒬 value at iteration “𝑛 + 1” 

is : 

𝒬̂𝑛+1(𝑠, 𝑎) = 𝑟 + 𝛾max 𝒬̂𝑛(𝑠′, 𝑎′) 

                                  𝑎′                       

that could be interpreted as: 

𝒬̂𝑛+1(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛) =  𝑟(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛) +

𝛾 𝑚𝑎𝑥[𝒬̂𝑛(𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑥𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠)]  
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chooses some action 𝑎, executes action 𝑎, then observes the resulting reward 𝑟 = 𝑟(𝑠, 𝑎) and the 

new state 𝑠′ = 𝛿(𝑠, 𝑎) where 𝛿 denotes the state resulting from applying action 𝑎 to state 𝑠 . It 

further updates the matrix entry for 𝒬̂(𝑠, 𝑎) following each such transition in accordance to the 

rule given by (4.2) 

𝒬̂(𝑠, 𝑎)  𝑟 +  𝛾max 𝒬̂(𝑠′, 𝑎′)    (4.2) 

𝑎′ 

This training rule uses the agent’s current 𝒬̂ values for the new state 𝑠′ to refine its estimate of 

𝒬̂(𝑠, 𝑎) for the previous state 𝑠. 𝒬-learning propagates 𝒬̂ estimates one step backwards i.e. each 

time the agent moves forward from a previous state to a new one, 𝒬-learning propagates the 

computed 𝒬̂ values backward from the new state to the old state. At the same time, the immediate 

reward received by the agent for the state-action transition is used to augment these propagated 

values of  𝒬̂.  

After multiple iterations, the information that the agent collects will propagate from the 

transitions with non-zero rewards back through the entire state-transition space available to the 

agent, resulting eventually in a matrix that consists of the steady-state 𝒬 values. Using this 

algorithm, the agent’s estimate 𝒬̂ converges in the limit to the actual 𝒬 function, provided the 

system can be modeled as a deterministic and stationary Markov decision process, the reward 

function 𝑟 is bounded, and actions are chosen such that every pair of state-action is visited 

infinitely often.  

A significant aspect of 𝒬-learning that makes it scalable is that it can be employed in an 

arbitrary environment where the agent or the learner has no prior knowledge of how its actions 

affect its environment. The agent is not required to be able to predict in advance the immediate 
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result for every possible state-action. Hence, the algorithm can be applied even if there are newly 

added states and actions. 

Using the knowledge of PRB utilization gained from the output of the ns-3 simulation, US-

OCSP has at its core the 𝒬-learning algorithm, which was implemented in Python, and finds the 

shortest user path through the network that the user should take while in transit from a given source 

to destination to meet the capacity requirements of the user. A correspondence table of the network 

functions considered in US-OCSP with regards to the 𝒬-learning parameters is given in Table 4.2.  

Table 4.2 A correspondence table of the network mapping in US-OCSP with 𝒬-learning 

parameters  

𝓠-learning Parameters 

 

Network Mapping 

 

 

𝑠 
A state corresponds to a network 

node (eNB/gNB). 

 

 

𝑎 

An action corresponds to the 

agent's virtual movement from 

one network node to another. 

 

 

𝑟(𝑠, 𝑎) 
A reward is an immediate/instant 

value, or score received after 

every virtual move of the agent 

from one network node to 

another. 

 

 

𝒬(𝑠, 𝑎) 
A 𝒬 value is computed and 

refined recursively using the 𝒬-

learning algorithm until the agent 

virtually reaches the network 

node that serves the destination. 
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Considering the network scenario described in Figure 4.1, the agent (virtual user) will 

explore different paths12 going from the end-user’s source to destination using US-OCSP to find 

the optimal path. Every time the agent moves from one network node to another, it will receive an 

immediate reward for the transition whose value depends on whether or not there is a valid link 

established between the two network nodes and how close or far the network nodes are from the 

destination. Initially the immediate reward matrix 𝑟 is set to -1. If there is a valid path between two 

nodes, then the reward value is changed from -1 to 0 and if there is a direct connection from a node 

to the destination node, then the corresponding reward value is set to 100. The discount factor 𝛾 

may be any constant such that 0 ≤  𝛾 < 1. When 𝛾 is close to 0, the algorithm tends to consider 

only immediate rewards but as 𝛾 gets closer to 1, the algorithm strives for a long-term high reward. 

The 𝒬-matrix is initialized to 0 and continues to refine the 𝒬 value until it reaches the network 

node that serves the destination.  

The availability of network nodes is determined based on their PRB utilization derived 

from the ns-3 simulation. After multiple, recursive iterations, the information that the algorithm 

collects propagates from the transitions with non-zero rewards back through the entire state-

transition space available, resulting eventually in the final 𝒬-matrix obtained at the state of 

convergence. The rows of the 𝒬-matrix represent the current state and the columns represent the 

possible actions leading to the next state. The algorithm finds the actions with the maximum reward 

values recorded in the matrix for the initial state and continues the hops until it reaches the 

destination state. The algorithm traces the best sequences of states by following the transitions 

associated with the highest values recorded in the final 𝒬-matrix. The optimal path corresponds to 

                                                 
12 In a real-world network, the network layout can be overlaid with a GPS highway/street map such that the node to 

node path recommended by the algorithm can be traced in consultation with a GPS mapping system.  
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selecting the links or routes with maximal 𝒬 values. In other words, the computed 𝒬 values13 will 

help determine which node to node transitions should be selected to achieve the shortest path with 

optimal capacity. 

 

4.4. Performance Analysis and Evaluation 

 The example network model was simulated, and the network topology is fed as an input to 

the machine learning program. Table 4.3 provides the simulation parameters used to implement 

the network scenario described in Section 4.3 using ns-3. The output of the ns-3 simulation gives 

the modulation coding scheme (MCS) used and the transport block (TB) size for every user-

network node pair per unit time. The output is further used to find the PRB utilization by referring 

to 3GPP standards [40] and implementing equation (4.1). 

Table 4.3 Simulation set up parameters 

Parameter 

 

Value 

Number of network users 

 

100 (scalable) 14 

Number of network nodes 

 

10 (scalable) 

Channel Bandwidth 

 

20 MHz (100 PRBs) 

Scheduler Token Bank Fair Queue 

Scheduler (TBFQ) 
 

Traffic Type Constant Bit Rate (CBR) 

 

  

                                                 
13  𝒬 is an evaluation function/utility function such that the value of 𝒬 for the current state and action summarizes in 

a single number all the information needed to determine the discounted cumulative reward that will be gained in the 

future if that state-action pair is selected [17]. 
14 The term scalable in the table denotes that the number of users and networks nodes used to run the current 

network scenario can be changed to run a different network scenario. The simulator can scale up to tens of network 

nodes and hundreds of UEs. In a real network, the algorithm should be tested for a small county or area first and 

then expanded to validate the feasibility. 
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The ns-3 simulator supports QoS-aware packet scheduling where the fundamental unit for 

resource allocation is a physical resource block (PRB). The MAC scheduler generates specific 

structures called Data Control Indication (DCI) that are then transmitted by the physical layer of 

the network node to the connected UEs, in order to inform them of the resource allocation on a per 

subframe basis. In doing this in the downlink direction, the scheduler has to fill some specific 

fields of the DCI structure with all the information, such as the MCS to be used, the TB size, and 

the allocation bitmap which identifies which resource blocks will contain the data transmitted by 

the network node to each user. The scheduler implemented in this simulation is called Token Bank 

Fair Queue (TBFQ).  TBFQ is a channel-aware/QoS-aware scheduler that is derived from the 

leaky-bucket mechanism, which guarantees the fairness by utilizing a shared token bank and can 

be explained as follows [8]: TBFQ maintains a shared token bank so as to balance the traffic 

between different flows. The user who contributes more to the token bank has a higher priority to 

borrow tokens, while the user who borrows more tokens from the bank has a lower priority to 

continue to withdraw tokens. In case of multiple users with same token generation rate, traffic rate, 

and token pool size, users suffering from severe interference and shadowing conditions get more 

opportunities to borrow tokens from the bank. TBFQ can police the traffic by setting the token 

generation rate to limit the throughput.  

If the PRB utilization of a network node is found to be above 70%, it is declared as “busy” 

and if the PRB utilization of a network node is found to be below 70%, it is declared as “available” 

in terms of capacity. In accordance with this model, network nodes 4, 5, and 6 from Figure 4.1 are 

found as “busy” whereas network nodes 0, 1, 2, 3, 7, 8 and 9 are found as “available” based on the 

calculated PRB utilization values. The 𝒬-learning algorithm is then implemented in Python for 

determining the shortest path between the end-user’s source and destination. When distance is the 
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only criterion used to determine the path that the end-user should take, the recommended path 

given by the algorithm goes via network nodes 0, 5, 8 and 9. This path is the shortest path that the 

end-user can take to reach the destination, but is not the most efficient path as it does not verify if 

all the serving nodes on this path have enough capacity available to serve the end-user. In order to 

find the most efficient path, the status of all the network nodes based on their PRB utilization 

derived from the ns-3 simulation is given as an input to the 𝒬-learning algorithm. With this 

knowledge, the 𝒬-learning algorithm takes into account not only distance but also the available 

nodal capacity (i.e., eNB or gNB availability of PRBs) while determining the most efficient or 

optimal path the end-user should take given a source and a destination. Subsequently, the most 

efficient path suggested by US-OCSP goes via network nodes 0, 1, 2, 8, and 9 based on the results 

shown in Figure 4.3. Thus, US-OCSP not only avoids all other possible paths that may be longer 

and more time-consuming, but it also avoids selecting paths that may be served by network nodes 

that due to congestion cannot meet the capacity (throughput and/or bit rate) needs of the end-user. 

 

Figure 4.3 A graphical representation of the 𝒬-learning curve converging towards the optimal 

solution. 
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4.5. Concluding Remarks 

 This chapter introduced and proposed a methodology called US-OCSP that uses Machine 

Learning to determine the most efficient (“optimal”) path to be followed by an end-user in terms 

of distance and capacity in a SON network given its source and destination. Network capacity 

generally depends on the utilization of the network nodes and of the backhaul links. This research 

considers utilization (in terms of nodal PRB utilization) that is associated with the resource blocks 

available at the network nodes. It is assumed that the network has enough backhaul capacity 

available to support link utilization which is generally determined by the committed information 

rate (CIR) associated with the backhaul links. The ML algorithm used in this research is 𝒬-

learning, a form of reinforcement learning. The effectiveness of this methodology is demonstrated 

in a network scenario simulated in ns-3 followed by the ML implementation in Python. The results 

showed that the shortest path with optimum capacity is rapidly determined, so that network 

dynamics can be accommodated. This methodology can help network providers to meet the end-

user demands by finding the most efficient path and to optimize network resource allocation. The 

proposed method assumes that some of the network nodes and links have available capacity. 

This chapter demonstrates the potential for implementing US-OCSP in future networks 

that will be autonomous and user-centric by incorporating ML in SON networks where the system 

can provide the most optimal path for end-users while moving from a given source to destination. 

An in-built application for navigation based on this methodology can play a significant role in 

future networks where US-OCSP can help build a navigation system that will allow users to pick 

a route with less congested network traffic and help network operators with resource optimization.  
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Chapter 5.  Self-Configuration of Radio Access Network-Based Notification Areas (RNAs) 

in Self-Organizing Networks using Machine Learning15 

 

5.1. Introduction 

 The merging of the digital and physical worlds is giving rise to a Fourth Industrial 

Revolution [41] where a diverse range of applications and services will require a radically new 

communication network architectural design. Such networks, such as 5G and 6G wireless 

networks are expected to be self-organizing networks (SON) to minimize OPEX and CAPEX, and 

as these networks expand, it is anticipated that there will be a need to extend the scope of network 

automation functionalities. This will likely include integration of new capabilities, such as self-

learning via machine learning (ML) and user-centric (UC) technologies that can leverage the data 

generated across the network and better meet user expectations and experiences enabling 

intelligent self-learning decision-making mechanisms that can manage network complexities and 

improve network performance and efficiency.  

In order to comply with the challenging demands of emerging 5G/6G applications and 

services that require lower latency and improved capacity, a key design consideration is to 

minimize the dependencies between the radio access network (RAN) and the core network (CN). 

The 5G RAN evolution includes the introduction of a novel radio resource control (RRC) state 

called RRC inactive and a RAN-based notification area (RNA). An RNA may constitute cells 

covered by one or more 5G network nodes (base stations), referred to as gNodeBs (gNBs) and an 

                                                 
15 A portion of this chapter is pending publication.  
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effective configuration of RNA clusters will be crucial in attaining optimum network performance 

by improving the signaling load, network capacity, latency, and power consumption.  

This chapter proposes a conceptual framework to enable self-configuration and 

management of RNAs in a hybrid SON domain. This methodology applies the three-layered 

approach represented by the synergistic integration of SON, ML, and UC technologies towards 

developing an adaptive mechanism that can self-configure and reconfigure RNAs to improve 

network signaling load and capacity. The chapter provides an overview of the RRC state handling 

and transitions followed by the key RNA configuration factors considered in this dissertation. 

Performance analysis and evaluation of the proposed technique for RNA configuration is 

demonstrated using a case study. The study optimizes the RNA design by balancing the tradeoff 

between maximizing the paging load improvement and minimizing (the probability of) cluster 

variance. Future research directions are provided to further improve the RNA configuration 

technique to achieve more robustness and resilience in larger, more practical networks. 

 

5.2. RRC State Handling and Transitions 

 A typical LTE network has two RRC states, RRC connected and RRC idle. The RRC 

connected mode is activated during data transfer and the UE enters RRC idle mode when there is 

no data to be transmitted or received. A 5G network is expected to encounter a large amount of 

random aperiodic and keep-alive traffic generated by a plethora of autonomous applications and 

services supported by 5G that will cause several RRC state transitions, adversely affecting the 

signaling and paging load, latency, power consumption, and capacity of the network.  A new RRC 

state, RRC inactive, has been introduced in the 3GPP standards to address these issues [42]. An 

overview of the RRC state transitions [42] in a 5G network is illustrated in Figure 5.1.  
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Figure 5.1 The RRC state transitions in a 5G network [42] 

A UE is either in the RRC connected state or in the RRC inactive state when an RRC 

connection has been established, but if this is not the case, i.e. no RRC connection is established, 

the UE is in the RRC idle state [42]. The differences and similarities in the characteristics of the 

5G RRC states [42] are noted in Table 5.1.  

The transitions from the RRC idle to the RRC connected state are expected to occur mainly 

when a UE first attaches to the network, while the transitions from the RRC inactive to the RRC 

connected are expected to occur frequently and are optimized to be fast and lightweight in terms 

of signaling achieved by keeping the CN-RAN connection alive during the inactivity periods 

allowing the UE to move around within a pre-configured area (the RNA) without notifying the 

network [43].  
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Table 5.1 Characteristic differences and similarities of the 5G RRC states 

RRC Idle RRC Inactive RRC Connected 

UE controlled mobility based 

on network configuration. 

UE controlled mobility based 

on network configuration. 

Network controlled mobility 

within NR (New Radio) and 

to/from E-UTRA (Evolved 

Universal Terrestrial Radio 

Access). 

 

The UE monitors a paging 

channel for CN paging. 

The UE monitors a paging 

channel for CN paging and 

RAN paging. A RAN-based 

notification area is 

configured by RRC layer. 

The UE performs RAN-

based notification area 

updates periodically and 

when moving outside the 

configured RAN-based 

notification area. 

 

The UE monitors control 

channels associated with the 

shared data channel to 

determine if data is 

scheduled for it. The UE 

provides channel quality and 

feedback information. 

UE’s Access Stratum16 

context is discarded. 

UE’s Access Stratum context 

is stored. 

 

UE’s Access Stratum context 

is stored. 

A UE specific DRX 

(Discontinuous Reception)17 

may be configured by upper 

layers. 

 

A UE specific DRX may be 

configured by upper layers or 

by RRC layer. 

At lower layers, the UE may 

be configured with a UE 

specific DRX. 

 

 

5.3. Key RNA Configuration Factors 

One of the most important factors to consider while configuring RNA clusters is analyzing 

the user activity by means of UE-gNB connections, as this has a direct impact on the signaling 

                                                 
16 The Access Stratum is located between the edge node of the serving network domain and the UE domain and 

provides services related to the transmission of data over the radio interface and the management of the radio 

interface [44]. 
17 A power saving feature where paging cycles can range from seconds to several hours, depending on the radio 

access technology [45]. 



60 

 

load. The radio frequency (RF) conditions will help select the boundaries of the RNA clusters and 

hence, it is important to incorporate the reference signal received power (RSRP) and signal-to-

noise-and-interference ratio (SINR) conditions of the user connections in the network. The RSRP 

measurements help in determining the path loss and SINR measurements can be used to ensure 

good cluster throughput. Another aspect that is critical in RNA cluster formation is the paging 

load. In LTE, paging is a CN function that is envisaged to be moved into the RAN in 5G by taking 

advantage of the RRC inactive state and the RNAs, thus allowing RAN controlled paging initiation 

procedures [43]. A RAN-initiated paging and a CN-initiated paging procedure for a 5G network 

can be described as shown in Figure 5.2 and Figure 5.3 respectively [46].  

 

Figure 5.2 RAN-initiated paging procedure for a 5G network 
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Figure 5.3 CN-initiated paging procedure for a 5G network 

As a generic example consider a network with  𝑀 cells and 𝑁 gNBs per RNA. The paging 

load (in terms of the number of messages) in the RAN-initiated paging and the paging load in the 

CN-initiated paging are given below [46]:  

RAN initiated paging load =   𝑀 ⏟  
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑜𝑣𝑒𝑟 𝑟𝑎𝑑𝑖𝑜

+ (𝑁 − 1) ⏟    
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑜𝑣𝑒𝑟 𝑋𝑛

 (5.1) 

CN initiated paging load =   𝑀 ⏟
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑜𝑣𝑒𝑟 𝑟𝑎𝑑𝑖𝑜

+ (𝑁 + 3)⏟    
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑜𝑣𝑒𝑟 𝑁2

+ 3⏟
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑜𝑣𝑒𝑟 𝑁4,𝑁11

 (5.2) 

where Xn is the interface between gNBs, N2 is the interface between the RAN and AMF (Access 

and Mobility Management Function), N4 is the interface between the SMF (Session Management 

Function) and UPF (User Plane Function), and N11 is the interface between the AMF and SMF. 
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5.4. Performance Analysis and Evaluation 

 The network dynamics in 5G that have paved a way to a variety of new services and 

applications that expect efficient management of the signaling load, bandwidth, latency, and power 

requirements making it more and more critical to minimize the inter-dependencies of CN and RAN 

where a converged CN with a common CN-RAN interface integrates multiple RAN networks [8] 

supporting independent functioning of the RANs enabling a significant reduction of the signaling 

overheads. The improved modularity and reduced signaling load enable a more resourceful and 

efficient use of network resources.  

The RAN has long been the most complex and dynamic part of the mobile wireless 

communications network and an effective configuration and management of RNA via the 

application of ML will help curb the compounding network complexities introduced by the 

emerging 5G services and demands. That said, RNA configuration is a good candidate for network 

operators to apply ML as an ML-fueled RNA solution will have the ability to learn about the user 

characteristics and locations and study the impact of radio conditions and network load and use 

this knowledge towards intelligently and adaptively constituting and dynamically evolving the 

RNAs to improve the overall network capacity.  

This section discusses a case study performed to demonstrate and evaluate the 

performance, feasibility, and the potential benefits of the proposed RNA clustering mechanism 

using simulation as depicted in the process flow diagram shown in Figure 5.4. For this study, a 

simulated network using ns-3 [24], consisting of several users being served by multiple network 

nodes representing 4G/5G base stations (network nodes), is configured as specified in Table 5.2. 
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Figure 5.4 Process flow diagram for the demonstration and evaluation of the proposed RNA 

clustering mechanism18  

The maximum transmission power of the outdoor network nodes is up to 40 watts and the 

transmission power of the network nodes that are located indoors is up to 20 watts. The channel 

bandwidth considered is 20 MHz and the testing frequencies19 include 700 MHz and 2.6 GHz. The 

proportional fair algorithm is used in the simulation for scheduling purpose [47].  

                                                 
18 Ideally, data preprocessing would be performed by extracting network metrics and measurements from a real-

world cellular network. In this study, the results from a network-simulator are used. 
19 It is expected that the proposed mechanism would support millimeter wave (mmW) frequencies, but this needs be 

tested.  

Simulate a wireless communication 
mobile network

Collect RF measurements for every user 
and its serving network nodes 

Data preprocessing and dataset 
creation Implementation of an unsupervised 

ML algorithm for RNA clustering

Performance evaluation
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The radio propagation model used is Cost231 [48] that is designed to cover a broad range 

of frequencies to predict path loss for outdoor scenarios in urban areas and is expressed in (5.3), 

(5.4), and (5.5) 

𝐿 = 46.3 + 33.9 log 𝑓 − 13.82 𝑙𝑜𝑔 ℎ𝑏 + (44.9 − 6.55 𝑙𝑜𝑔 ℎ𝑏) log 𝑑 − 𝐹(ℎ𝑚) + 𝐶 (5.3) 

such that 𝐹(ℎ𝑚) 

= {
(1.1 log(𝑓)) − 0.7 ℎ𝑚 − (1.56 log(𝑓) − 0.8) 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑠𝑚𝑎𝑙𝑙 𝑠𝑖𝑧𝑒 𝑐𝑖𝑡𝑖𝑒𝑠

3.2 (log(11.75 ℎ𝑚))
2 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑡𝑖𝑒𝑠
 

(5.4) 

𝐶 = {
0 𝑑𝐵  𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑠𝑖𝑧𝑒 𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛 𝑎𝑟𝑒𝑎𝑠

3 𝑑𝐵   𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑡𝑖𝑒𝑠
    (5.5)  

where 𝑓 is the frequency (megahertz),  ℎ𝑏 is the height of the base station (meters), ℎ𝑚 is the height 

of UE, 𝑑 is distance (kilometers), and 𝑙𝑜𝑔 is a logarithm in base 10.  

The indoor scenarios are mimicked by creating a building with user-defined dimensions 

and attributes and applying hybrid buildings propagation loss model that is a combination of 

several well-known path loss models. The users are allocated random positions and the mobility 

model used is the 2D random walk mobility [49], where each user moves with certain speed and 

direction chosen at random until a certain amount of time after which the users randomly change 

their positions and directions.  

The standardized A3 RSRP handover algorithm [50] implemented utilizes the RSRP 

measurements and the A3 event is triggered when the UE perceives that a neighbor cell’s RSRP 

value is better than the serving cell’s RSRP value by an offset at which point the handover occurs. 

The RSRP and SINR statistics are collected during the entire simulation run for every user and its 

serving network nodes. 
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Table 5.2 Simulation parameters and values20 

Parameters 

 

Values 

Number of network nodes  

 

10 (scalable) 

Number of users (UEs) 

 

25 (scalable) 

Transmission power of network nodes Up to 40 watts (if outdoors),  

Up to 20 watts (if indoors) 

 

Channel bandwidth 20 MHz 

 

Frequency 700 MHz and 2.6 GHz 

 

Scheduling algorithm Proportional Fair 

 

Radio propagation models 

 

Cost231 (for outdoor),  

Hybrid building (for indoor) 

 

Distribution of UEs Randomly distributed 

 

Mobility Model 2D random walk mobility 

 

Handover algorithm A3 RSRP  

 

 

During data preprocessing, thresholds for RSRP and SINR conditions utilize 

measurements that are within an acceptable range of radio conditions so that the RNA clusters are 

configured to meet minimum allowable range of signal strength and throughput requirements and 

reduce the ping-pong effect at cluster boundaries. The processed data defines the relationship 

between every network node and users (e.g., the connectivity status for every UE-network node 

connection) and the size of the dataset is defined by the number of network nodes and users. The 

network model used for clustering is depicted in Figure 5.5.  

                                                 
20 These values are applicable for 4G and 5G (non mmW) nodes. 
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Figure 5.5 The network model used for clustering (The arrows represent the connectivity status 

of the mobile UEs with the network nodes as they move around in the network.) 

During the ns-3 simulation, the mobile users are connected to the closest network node as 

they move around in the network. The UE-network node association for every user and network 

node in the network model during the entire simulation is captured in the input dataset prepared 

for the ML application in order to take a UC approach towards RNA configuration, since the UE-

network node association accounts for the user connectivity and mobility status. The resulting 

RNA clusters represent the averaged best results obtained based on the UE to network node 

associations captured during the network simulation. The clusters are formed such that each 

network node belongs to only one cluster.   
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In selecting ML algorithms, the first step is to understand the problem at hand by assessing 

the relevant data available to determine the general category of ML algorithm that will be used - 

supervised, unsupervised, or reinforcement.  Since ML learns from examples, the approach is to 

train a model by making the best possible use of the data available.  If the expected output 

information is available for training, supervised learning is preferable. But when the target 

labels/values are not available the next best option is to find out if a reward mechanism can be 

applied to the data in which case, reinforcement learning is applied. But if none of these options 

are available, the next preferred option is to identify patterns and derive correlations between the 

data samples to make the best possible sense of the data and make predictions using unsupervised 

learning which is what is applicable here.  

The 𝑘-means algorithm [23], an unsupervised machine learning algorithm is implemented 

in Python to operate on the dataset for cluster analysis. The 𝑘-means algorithm clusters data by 

dividing a set of samples of a dataset into k disjoint clusters , each described by the centroid (mean) 

of the samples in the cluster. The algorithm as described below strives to choose centroids that 

minimize the inertia or within-cluster sum-of-squares criterion. The algorithm works as follows: 

• Create a dataset, or matrix, of dimensions defined by the number of network nodes and the 

number of users to represent the relationship (i.e., the connectivity status) between every 

network node and user under nominal conditions for a given time period.  (The matrix entries 

are populated over time and are set to zeroes and ones to show the association between every 

network node and user and capture the user mobility status.)  
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• For an initial setting of 𝑘 clusters, choose 𝑘 samples from the dataset to select the initial 

centroids (i.e. the initial cluster centers are selected using the 𝑘-means++ initialization 

method21). 

• Repeat the steps below until convergence, which occurs when the centroids stop changing. 

• For all the data samples, find the closest (in the sense of Euclidean distance) centroid. 

• Create new centroids by taking the mean value of all of the samples assigned to each 

preceding centroid and compute the difference between the previous and new centroids. 

In this study, the determination of the “optimum” number of clusters is performed by using 

the silhouette analysis, and the comparison between the RAN-initiated and CN-initiated paging 

loads calculated via (5.1) and (5.2). The optimum number of clusters in this case study are 

determined with an objective to maximize the paging load reduction, subject to the constraints of 

the silhouette scores. The silhouette analysis [52] measures the quality of clustering by studying 

the separation distance between the resulting clusters to validate the consistency within them. The 

silhouette coefficients have a range of  [−1,+1] such that the worst value is −1 and the best value 

is +1. A value of +1 indicates that the sample is far away from the neighboring clusters. A value 

of 0 indicates that the sample is on or very close to the decision boundary between two neighboring 

clusters and a value of −1 and all other negative values indicate that those samples might have 

been assigned sub-optimally to a cluster. The silhouette coefficient is calculated using the mean 

intra-cluster distance 𝑎(𝑖) and the mean nearest-cluster distance 𝑏(𝑖) for each sample 𝑖.  

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
      (5.6) 

                                                 
21 The 𝑘-means++ algorithm can be explained using the steps below [51]. 

 Select the first center such that it is chosen uniformly at random from all the data points. 

 Select a second center with probability 
𝐷(𝑥)2

∑ 𝐷(𝑥)2𝑥∈𝑋
⁄  where 𝐷(𝑥) denotes the shortest distance from a 

data point to the first center chosen. Repeat this step until 𝑘 cluster centers are chosen.  
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The average silhouette score provides a measure of clustering validity and is used to select 

an ‘appropriate’ number of clusters22. The silhouette analysis and the paging load reduction 

obtained after comparing the RAN-initiated paging over CN-initiated paging were plotted and the 

optimum value for the number of clusters, 𝑘𝑐, is found to be equal to 4 such that it gives a balanced 

tradeoff between maximizing the average paging load reduction and maximizing the average 

silhouette score in this study as depicted in Figure 5.6. The silhouette analysis prevents the number 

of clusters from becoming arbitrarily large and the paging load reduction prevents the number of 

clusters from becoming arbitrarily low. So, in this study, the optimum number of clusters, in the 

sense defined above, is determined and for this number of clusters that design of the clusters is 

also determined.  

 

Figure 5.6 Performance evaluation for the selection of 𝑘𝑐 

                                                 
22 The silhouette analysis validates if there are data samples that are sub-optimally assigned to clusters and verifies if 

the clustering is within the acceptable limits where the silhouette scores are within a range of 0 to 1.   
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A limitation of the 𝑘-means algorithm is that it may not succeed in optimizing the centroid 

locations globally and can get stuck at a local minimum [53]. To address this, a more powerful 

ML algorithm, spectral clustering [18] [22] is implemented that allows to take a more general and 

practical approach for clustering. In spectral clustering, there are no issues of getting stuck in local 

minima or restarting the algorithm for several times with different initializations [22]. 

Instead of clustering in the original space, the data is first mapped to a new space such that 

similarities are made more apparent using Laplacian Eigenmaps23 [18] (spectral24 embedding) to 

place the data instances in such a way that the similarities between neighboring instances are 

preserved and clustering is applied to a projection of the normalized Laplacian. In the original 

space, a local neighborhood is created such that the instances in the same neighborhood are defined 

by creating an affinity matrix using the kernel radial basis function (RBF) [16].  

The matrix value of a similar pair of data instances → 0  and the value of a dissimilar pair 

of data instances → 1. This has the effect that instances that are nearby in the original space, 

probably located within the same cluster, will be placed very close in the new space, whereas those 

that are some distance away, probably belonging to different clusters, will be placed far apart. The 

𝑘-means clustering or a discretization approach to search for a partition matrix (clustering) that is 

closest to the eigenvector embedding is then run with the new data coordinates in the new space. 

The following steps describe the kernel-based clustering algorithm based on spectral embedding. 

                                                 
23 Laplacian Eigenmaps is a feature embedding method; that is, it finds a low dimensional representation of the data 

such that it projects similar data instances nearby in the new space by capturing and preserving the local 

information. 
24 The main tools for spectral clustering are graph Laplacian matrices. There exists a whole field dedicated to the 

study of those matrices, called spectral graph theory. One of the main goals in graph theory is to deduce the 

principal properties and structure of a graph from its graph spectrum (or from a short list of easily computable 

invariants). The eigenvalues are closely related to almost all major invariants of a graph, linking one extremal 

property to another. Spectral graph theory starts by associating matrices to graphs, computes the eigenvalues of such 

matrices, and relates the eigenvalues to structural properties of graph [22], [54], [55].   
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• Create an affinity matrix using the kernel, radial basis function to transform the input dataset 

into graph representation. 

• Construct the normalized graph Laplacian and solve the eigenvalue problem. 

• Perform eigenvalue decomposition on the graph Laplacian to define a new subspace.  

• Apply 𝑘-means/discretization to form clusters in this subspace. 

In spectral clustering, although the similarities are local, they propagate [18]. Consider 

three instances, 𝑎, 𝑏, and 𝑐 where the instances 𝑎 and 𝑏 lie in the same neighborhood and so do 𝑏 

and 𝑐, but not 𝑎 and 𝑐. As 𝑎 and 𝑏 will be placed close to each other and 𝑏 and 𝑐 will be placed 

close to each other, 𝑎 will lie close to 𝑐 too, and they will likely be assigned to the same cluster. 

Consider now when 𝑎 and 𝑑 are not in the neighborhood with too many intermediate nodes 

between them; these two will not be placed nearby and it is very unlikely that they will be assigned 

to the same cluster. 

The 𝑘-means algorithm would work effectively for simple cluster formations, but spectral 

clustering can serve as an extension to  𝑘-means and would be preferred for more general problems. 

The application of 𝑘-means and spectral clustering both provided identical resulting clusters for 

the example network model used in this case study. For a more complex network, it is 

recommended to combine these unsupervised learning algorithms with deep learning25. The 

resulting RNA clusters formed in the simulated network model are depicted in Figure 5.7. 

                                                 
25 Deep learning is a particular kind of machine learning that achieves great power and flexibility by representing the 

target system as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more 

abstract representations are computed in terms of less abstract ones [13].  
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Figure 5.7 Resulting RNA clusters for the simulated network model 

 

5.5. Future Research Directions 

 To improve network resilience and robustness, it is recommended that the RNA clusters 

should be monitored periodically and fine-tuned post initial clustering. This can be achieved by 

monitoring KPIs such as experienced user throughput, traffic volume density, end-to-end latency, 

reliability, availability, and retainability as described in Table 5.3 [56]. 

 These KPIs are defined to enable network operators to support the needs of 5G use cases 

and services to facilitate a fair assessment and comparability of the different technical concepts 

considered for 5G. They are heavily dependent on the network conditions, such as available 

infrastructure and related radio resources, number of users, radio conditions, etc. that need to be 

considered. The computational capabilities and network scalability required to effectively embed 

these KPIs can be achieved by adopting an ML-based SON framework. 
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Table 5.3 Key performance indicators for RNA cluster performance monitoring and optimization 

KPI 

 

Description 

 

Experienced 

user 

throughput 

 Experienced user throughput refers to an instantaneous data 

rate between Layer 2 and Layer 3. 

 Experienced user throughput is calculated as:  

𝑈𝑇𝑝𝑢𝑡 =
𝑆

𝑇
,  

where 𝑆 is the transmitted packet size and 𝑇 is the packet 

transmission duration calculated as the difference between 

the time when the entire packet is correctly received at the 

destination and the time when packet is available for 

transmission. 

 

 

Traffic 

volume 

density 

 Traffic volume density is defined as the aggregated number 

of correctly transferred bits received by all destination UEs 

from source radio points (DL traffic) or sent from all source 

UEs to destination radio points (UL traffic), over the active 

time of the network to the area size covered by the radio 

points belonging to the RNA(s) where UEs can be deployed.  

 

 

E2E latency 
 E2E latency, or one trip time (OTT) latency, refers to the 

time it takes from when a data packet is sent from the 

transmitting end to when it is received at the receiving 

entity, e.g., internet server or another device. 

 Another latency measure is the round-trip time (RTT) 

latency which refers to the time from when a data packet is 

sent from the transmitting end until acknowledgements are 

received from the receiving entity. 

 

 

Reliability 
 Reliability accounts for the percentage of packets properly 

received within the given maximum E2E latency (OTT or 

RTT depending on the service). 

 

 

Availability 
 Availability in percentage is defined as the number of places 

(related to a predefined area unit which in this case would 

refer to an RNA) where the QoE level requested by the end-

user is achieved divided by the total coverage area of an 

RNA. 

 

 

Retainability 
 Retainability is defined as the percentage of time where 

transmissions meet the target experienced user throughput 

or reliability. 

 

 



74 

 

 A conceptual framework to enable self-configuration and management of RNAs is 

proposed as depicted in Figure 5.8 that is analogous to a hybrid SON structure [7] where the 

centralized management system represented by the RNA controlling unit and the element 

management system represented by the anchor gNBs work together, in a coordinated manner, to 

build up a complete SON algorithm. The decisions on SON actions may be either made by the 

RNA controlling unit or the anchor gNBs26, depending on the specific cases. The RNA controlling 

unit consists of the RNA configurator and the RNA monitor. The initial RNA clustering 

mechanism illustrated in the previous section is implemented in the RNA configurator. 

 

Figure 5.8 The proposed RNA configuration and management framework 

                                                 
26 An anchor gNB is the network node that is aware of or has the list of all the gNBs that are a part of that RNA. It is 

the anchor gNB that maintains the CN-RAN connection and the UE context as the UE moves around within the 

RNA. 
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 Once the initial clusters are formed, the RNA monitor would monitor the KPIs for each 

cluster. A cluster-level threshold margin can be set such that it would trigger either an addition or 

removal of a gNB from a cluster, or trigger re-initiation of RNA clustering depending upon the 

tolerance limit set for the threshold variations. If a gNB is moved from one cluster to its adjacent 

cluster in order to maintain an acceptable level of cluster performance, the anchor gNBs of the 

clusters that underwent the changes would relay this information to the RNA monitor so that the 

modified clusters are taken into account for future monitoring. When the RNA monitor detects 

threshold variations exceeding the tolerance limit set, the RNA monitor would trigger the RNA 

configurator to re-initialize and form new RNA clusters in the network. 

 

5.6. Concluding Remarks 

 In the 5G and beyond era, improved signaling and paging load to achieve reduced latency 

and improved capacity are key requirements for emerging use cases where appropriate 

configuration of the RAN-based notification areas will play a significant role as it will have a direct 

impact on controlling the RRC state transitions improving the network capacity and efficiency. An 

effective configuration and management of RNAs in a SON will be crucial in attaining optimum 

network performance by improving the signaling load and network capacity as the transitions from 

the RRC inactive to RRC connected states are expected to occur frequently in the emerging 5G/6G 

applications and services and are optimized to be fast and lightweight in terms of signaling 

achieved by keeping the CN-RAN connection alive during the inactivity periods allowing the UE 

to move around within an RNA.  In this chapter, a self-learning mechanism that can dynamically 

configure RNA clusters is proposed, demonstrated, and evaluated enabling a user-centric smart 

RAN paging technique. Additional recommendations are made to optimize the RNA clusters by 
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means of performance monitoring of key performance indicators. A conceptual framework for 

effective RNA configuration and management in a hybrid SON system is proposed as a reference 

model to facilitate the development of the next-generation self-organizing 5G/6G networks.  
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Chapter 6.  Summary 

 

The substantial increase in data-intensive applications and services have motivated 

significant industry efforts to develop the next-generation 5G/6G networks with advanced 

automation, intelligence, and user experience focused capabilities. This will require network 

operators to significantly alter the traditional models and technologies used in the previous 

generations and integrate machine learning (ML) and user-centric (UC) technologies to address 

the complexities of the next-generation self-organizing network (SON) deployment, performance 

assessment, and optimization. This dissertation proposed, demonstrated, and evaluated a three-

layered approach for three important scenarios expected in next-generation wireless 

communications networks that are based on the synergistic integration of SON, ML, and UC 

technologies. This chapter summarizes the main contributions of this dissertation.  

 

6.1. Summary of the Main Contributions 

 The research initiatives in this dissertation focused on developing the next-generation self-

organizing communications networks that are capable of drawing insights from the user-centric 

network-generated data and yielding predictions via machine learning to proactively configure, 

manage, assess, and optimize various network functions and operations.  

 In the first research initiative covered in Chapter 3, QoE (Quality of Experience)-driven 

anomaly detection for self-organizing networks (SONs) using machine learning (ML) was applied 

to learn and predict a UC key performance indicator that imports the effect of the end-user 
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perception of the quality of service to achieve an increased level of end-to-end service assurance 

and proactively detect dysfunctional network nodes. This advance will enable automatic detection 

and remediation of failing network nodes (i.e., base stations and their associated systems) to 

mitigate network degradation in self-healing SON systems. The proposed methodology was 

demonstrated and evaluated by creating an end-to-end network scenario using the ns-3 network 

simulator, where end users interacted with a remote host that was accessed over the Internet to run 

the most commonly used applications, and applying ML to generate and validate QoE score 

predictions using a parametric QoE model. The performance of four supervised ML algorithms 

was investigated as well as their performance accuracy in making correct QoE predictions in 

detecting dysfunctional network nodes. The performance of these algorithms was further evaluated 

by creating varied network scenarios for different propagation path loss models. A sequence of 

multiple independent simulation runs was executed to test the methodology and detect the 

dysfunctional network nodes. The resulting average accuracy scores obtained for correct QoE 

prediction of the functional and dysfunctional network nodes ranged between 95% and 100%. This 

resource-efficient technique enables identification and prioritization of faulty network nodes based 

on an improved utilization of the end-users’ perception of the state of network node performance.   

 In Chapter 4, the research initiative of determining and assigning optimal-capacity, shortest 

path routing in self-organizing networks was investigated using a user-centric, machine learning 

methodology called US-OCSP (i.e. user-specific optimal capacity and shortest path). This 

approach enables load balancing and capacity optimization in self-optimizing SON systems. US-

OCSP can dynamically route the user traffic through non-congested network nodes, with minimal 

compromise on the subscriber’s capacity, thus facilitating effective resource management to attain 

customer satisfaction and alleviate network congestion by developing an in-built application that 
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is coordinated with an automobile or mobile phone’s navigation system (GPS) where a network 

route provided by US-OCSP is driven by the topography based on a GPS mapping system linking 

GPS and optimal network routing. This scenario could work as follows: the driver’s GPS, or 

mobile phone,  provides options with multiple  paths going from a source to destination that are 

relayed to the wireless network and then the US-OCSP algorithm finds the shortest network node 

path with non-congested nodes recommending a routing consistent with at least one of the GPS 

recommended paths. The application in autonomous vehicles could be quite important. The 

methodology can be used to further enable dynamic network path optimization, such that if the 

user changes its inputs, such as GPS route, the US-OCSP would recompute the network path in 

response to the changes in the user inputs. Thus, US-OCSP can help build a navigation system that 

will allow users to pick a route with less congested network traffic and help network operators 

with resource optimization. The effectiveness of this methodology was demonstrated using a 

simulated network model whose output was used to calculate PRB utilization of network nodes 

followed by a reinforcement ML application. The results showed that the shortest path with 

optimal capacity was rapidly determined.  

In the research initiative of Chapter 5, which is directed towards self-configuration of radio 

access network-based notification areas (RNAs27) in self-organizing networks using machine 

learning, a UC and ML-embedded clustering mechanism was developed for dynamic configuration 

and management of RNAs in self-configuring SON systems. The impact of the network load (in 

terms of UE to network node connections), radio conditions, and paging load was factored in and 

an unsupervised learning algorithm was applied to a user-centric dataset that represented the 

relationship between the network users and the network nodes to form RNA clusters. Performance 

                                                 
27 As discussed in Chapter 5, an RNA constitutes a group of cells covered by one or more network nodes (base 

stations) enabling efficient paging and load management in SONs.   
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analysis and evaluation of the proposed technique for RNA configuration was demonstrated using 

a case study. For this study, a simulated network model was configured where several mobile users 

were connected to different network nodes as they moved around in the network during the 

simulation. A UC network dataset was created using the simulation output and ML was applied to 

form RNA clusters. The study optimized the RNA design by balancing the tradeoff between 

maximizing the paging load improvement and minimizing (the probability of) cluster variance. 

Additional recommendations were made to optimize the RNA clusters by means of performance 

monitoring of key performance indicators and a conceptual framework for effective RNA 

configuration and management in a SON system was presented. Appropriate configuration and 

management of RNAs using the proposed mechanism will help achieve improved signaling and 

paging load to attain reduced latency and improved network capacity, while lowering power 

consumption supporting emerging applications that generate an extensive amount of random 

aperiodic and keep-alive data traffic.  

 The ML algorithms applied to the prototypes developed and tested in this dissertation are 

forms of supervised learning, reinforcement learning, and unsupervised learning. For larger, more 

complex networks, more effective results may be obtained by combining these with deep learning 

that will require higher computational and processing powers.  

 

6.2. Concluding Summary 

This dissertation conceived, implemented, and validated innovative methodologies for 

anomaly detection, load balancing and capacity optimization, and dynamic configuration of RAN-

based notification areas (i.e. RAN-based paging areas) that are directed towards application in the 

next-generation of self-organizing communications networks. Each of these methodologies 
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represent the synergistic application of machine learning and user-centric technologies. Network 

operators capture an abundance of data about their subscribers, and ML and UC based technologies 

can help exploit and utilize that data in a variety of ways to improve customer experience. In order 

to receive the most value from ML, an appropriate selection of UC methodologies and ML 

algorithms on a case-by-case basis is critical so that the network operators can employ algorithms 

that can scale resources as per customer demand meeting service assurance within acceptable level 

of capital and operational expenditures. It is important to develop a certain degree of 

standardization in order to effectively facilitate UC and ML-enabled network configuration, 

management, and optimization of SON systems. Several core building blocks to support UC and 

ML-infused network standardization that the network operators can adopt to realize potential key 

features, functions, and use cases for next-generation SON networks are proposed and described 

in Figure 6.1.  

 

Figure 6.1 Basic building blocks providing a high-level framework to deploy next-generation 

SON functions and use-cases with the synergistic application of ML and UC technologies 
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The UC data analyzer extracts the data generated across the network, performs preliminary 

analysis to determine a suitable UC methodology that is applicable, and processes the data to create 

the input dataset for the next-generation network function or use-case to be implemented. The ML 

arbitrator selects an appropriate ML algorithm and performs training and validation so that the ML 

arbitrator can start making predictions. The SON optimizer will apply the recommendations made 

by the ML arbitrator via network interaction and monitors to assess the effect of the changes made 

in the network. The results are stored for future reference and optimization. These building blocks 

provide a generic guideline that can be utilized by network operators to take a holistic approach 

towards developing the network of tomorrow that will be tasked with delivering unprecedented 

levels of performance efficiencies with exceptional user experience.   
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Appendix B: Abbreviations 

 

3GPP  3rd Generation Partnership Project 

4G/5G/6G Fourth Generation/Fifth Generation/Sixth Generation 

AI Artificial Intelligence 

AMF Access and Mobility Management Function 

CAPEX  Capital Expenditures 

CART Classification And Regression Trees 

CBR Constant Bit Rate 

CIR Committed Information Rate 

CN  Core Network 

C-SON Centralized Self-Organizing Network 

DCI Data Control Indication 

DHCP  Dynamic Host Configuration Protocol 

DRX Discontinuous Reception 

D-SON Distributed Self-Organizing Network 

DT Decision Tree 

E2E latency End-to-End latency 

eNB Evolved Node B 

E-UTRA Evolved Universal Terrestrial Radio Access 
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FTP File Transfer Protocol 

gNB Next-Generation Node B 

GPS Global Positioning System 

HO Handover 

H-SON Hybrid Self-Organizing Network 

IoT Internet of Things 

IP  Internet Protocol 

ITU International Telecommunication Union 

k-NN k-Nearest Neighbor 

KPI  Key Performance Indicator 

L-BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm 

MAC Multiple Access Control 

MAE Mean Absolute Error 

MCS Modulation Coding Scheme 

MDAS Management Data Analytics Service 

MIMO  Multiple Input Multiple Output 

ML  Machine Leaning 

MLP Multi-Layer Perceptron 

MOS Mean Opinion Score 

MSE Mean Squared Error 

NF  Network Function 

NG  Next Generation 

ng-eNB Next-Generation Evolved Node B 
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NN Neural Networks 

NR New Radio 

ns-3 Network Simulator-3 

OPEX  Operational Expenditures 

OTT One Trip time 

PCF Policy Control Function 

PRB Physical Resource Block 

QoE  Quality of Experience 

QoS Quality of Service 

RACH Random Access Channel 

RAN   Radio Access Network 

RB Resource Block 

RBF Radial Basis Function 

RF Radio Frequency 

RL Reinforcement Learning 

RNA  Radio Access Network-Based Notification Area 

RRC Radio Resource Control 

RSRP Reference Signal Received Power 

RTT Round Trip Time 

SINR Signal-to-Noise-and-Interference Ratio 

SL Supervised Learning 

SMF Session Management Function 

SON  Self-Organizing Network 
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SVM Support Vector Machine 

TB Transport Block 

TBFQ Token Bank Fair Queue Scheduler 

TCP  Transport Control Protocol 

TR  Technical Report 

TS  Technical Specification 

UC  User-Centric 

UDM Unified Data Management 

UE User Equipment 

UL Unsupervised Learing 

UPF User Plane Function  

US-OCSP User-Specific Optimal Capacity and Shortest Path 

VR Virtual Reality 
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Appendix C: Glossary28 

 

Access Stratum: The access stratum is located between the edge node of the serving network 

domain and the UE domain and provides services related to the transmission of data over the radio 

interface and the management of the radio interface. 

Anchor gNB: An anchor gNB is the network node that is aware of or has the list of all the gNBs 

that are a part of that RNA (radio access network-based notification area). It is the anchor gNB 

that maintains the CN-RAN connection and the UE context as the UE moves around within the 

RNA. 

Channel bandwidth: The RF bandwidth supporting a single RF carrier with the transmission 

bandwidth configured in the uplink or downlink of a cell. 

Connection: A communication channel between two or more end-points. 

Core network: An architectural term relating to the part of 3GPP System which is independent of 

the connection technology of the terminal (e.g. radio, wired). 

Coverage area: Area over which a mobile cellular service is provided with the service probability 

above a certain threshold. 

Discontinuous reception (DRX): Discontinuous reception is a power saving feature where paging 

cycles can range from seconds to several hours, depending on the radio access technology.  

Downlink: A unidirectional radio link for the transmission of signals from a base station to a UE. 

                                                 
28 Much of the contents of the glossary are taken from [45]. 
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Handover: The transfer of a user's connection from one radio channel to another (can be the same 

or different cell). 

Machine learning (ML): Machine Learning is the ability of systems to acquire and continuously 

improve their own knowledge, by extracting patterns from raw data to address problems involving 

knowledge of the real world and make decisions that appear to be subjective and mimic human 

"cognitive" functions. 

Medium access control: A sub-layer of radio interface layer 2 providing unacknowledged data 

transfer service on logical channels and access to transport channels. 

Mobility: The ability for the user to communicate whilst moving independent of location. 

Network element: A discrete telecommunications entity which can be managed over a specific 

interface. 

Network node (Base station): A network node or a base station is a network element in radio access 

network responsible for radio transmission and reception in one or more cells to or from the user 

equipment. 

Network operator: The entity which offers telecommunications services over an air interface. 

New radio (NR): Fifth generation radio access technology 

Node B: A logical node responsible for radio transmission / reception in one or more cells to/from 

the user equipment.  

Paging: The act of seeking a user equipment. 

Parametric QoE models: Parametric QoE models are derived by performing subjective 

experiments that may include laboratory tests or crowdsourcing and by performing statistical 

analysis on the results. The derived models may then be used to generate formulas which can be 

used to compute QoE given specific input parameters. 
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Physical resource block (PRB): A physical resource block is a group of resource elements such 

that it consists of 12 consecutive subcarriers across one slot. A PRB is the smallest radio resource 

unit used for resource allocation in 4G and 5G networks.  

Ping-pong effect: When UEs are in a loop where they are repeatedly handed off between the source 

and the target base stations, the resulting effect is called the “ping-pong” effect.  

Power saving mode: A mode of operation similar to power-off, allowing a UE to greatly reduce 

its power consumption while remaining registered with the network, without the need to re-attach 

or to re-establish packet data network (PDN) connections. 

Protocol: A formal set of procedures that are adopted to ensure communication between two or 

more functions within the same layer of a hierarchy of functions. 

Quality of experience (QoE): QoE can be defined as the overall acceptability of an application or 

service, as perceived subjectively by the end-user. 

Radio resource control: A sublayer of radio interface Layer 3 existing in the control plane only 

which provides information transfer service to the non-access stratum. RRC is responsible for 

controlling the configuration of radio interface Layers 1 and 2. 

RAN-based notification area (RNA): An RNA constitutes a group of cells covered by one or more 

network nodes (base stations) enabling efficient paging and load management. 

Self-organizing network (SON): SON automates network functionality to realize a network that 

can autonomously configure its entities, self-optimize, and self-heal with little to no human 

intervention thus minimizing operational and capital expenditures. 

Signaling: The exchange of information specifically concerned with the establishment and control 

of connections, and with management, in a telecommunications network. 
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Throughput: A parameter describing service speed. The number of data bits successfully 

transferred in one direction between specified reference points per unit time. 

Transport block: Transport Block is defined as the basic data unit exchanged between Layer 1 and 

MAC. 

Uplink: A unidirectional radio link for the transmission of signals from a UE to a base station. 

User equipment (UE): A UE allows a user access to network services. 

User-centric (UC) technology: A user-centric technology is where users are not mere end-points 

but are an integral part of the network such that the network strategies are based on user needs, 

network optimization is based on user feedback, and network performance is monitored and 

assessed via user-focused key performance indicators.  
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