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We explore dynamical features of lump solutions as diversion and propagation in the space. Through the Hirota bilinear method
and the Cole-Hopf transformation, lump-type solutions and their interaction solutions with one- or two-stripe solutions have
been generated for a generalized (3+1) shallow water-like (SWL) equation, via symbolic computations associated with three
different ansatzes. The analyticity and localization of the resulting solutions in the (𝑥, 𝑦, 𝑧, and 𝑡) space have been analyzed. Three-
dimensional plots and contour plots are made for some special cases of the solutions to illustrate physical motions and peak
dynamics of lump soliton waves in higher dimensions. The study of lump-type solutions moderates the visuality of optics media
and oceanography waves.

1. Introduction

It is very important to control the physical mechanisms
of rough waves and interaction waves specially with lump-
type waves. The significance of nonlinear waves of these
types appears from natural disasters. Many physical phe-
nomena need analytical approaches to classify the physical
dynamics of nonlinear evaluation equations. The Darboux
transformation (DT) and the Lie symmetry (LS) method [1–
3] are efficient approaches to obtaining closed-form solutions.
However, some problems occur in applying those methods,
such as how to find Lax pairs in the DT method and
how to carry out the back-substitution procedure in the LS
method. There are also new types of closed-form solutions,
for example, positions and complexions [4–8], and even
new collision phenomena including fissions and fusions [9–
14]. The Hirota bilinear method plays an influential role in
discovering all the mentioned types of solutions to overcome
a lot of analytic problems. Most studies apply the Hirota
method to completely integrability nonlinear problems as in

[10, 15–23]. We would like to demonstrate that the Hirota
method can be used to explore various types of closed-form
solutions: interaction solutions of lumps with solitons, kinks,
line-solitons, resonance solutions, and one- or two-stripe
solitons; and two classes of breather solutions (time periodic
or space periodic solutions). Our analysis will show that
those solutions can predicate the characteristics and physical
significance of nonlinear problems.

Consider the following generalized (3+1) SWL equation
[24, 25]:

𝑢�푥�푥�푥�푦 + 3𝑢�푥�푥𝑢�푦 + 3𝑢�푥𝑢�푥�푦 − 𝑢�푦�푡 − 𝑢�푥�푧 = 0. (1)

There are a few studies on this equation. For example, Tian
et al. in [26] generated a traveling wave solution via the tanh
method. In 2010, Zayed [27] used 𝑡ℎ𝑒 𝐺�耠/𝐺method to obtain
some traveling wave solutions by reducing the independent
variables using the linear D’lambert transformation.

In what follows, we investigate lump soliton solutions and
their dynamics and the susceptibility of their interactions
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with other types of solutions using the Hirota method for
(1). By using the singular manifold method (SMM) with two-
term truncated series, one derives the same ansatz in [24, 25]

𝑢 (𝑥, 𝑦, 𝑡, 𝑧) = 2( ln (𝜓 (𝑥, 𝑦, 𝑡, 𝑧))�푥. (2)

This is called the Cole-Hopf transformation, where 𝜓 is
an auxiliary or test function that will be determined later.
Starting by substituting (2) into (1), one gets

8𝜓�푥�푥�푥�푦𝜓�푥𝜓 − 4𝜓�푥�푥�푥𝜓�푥�푦𝜓 + 2𝜓�푥�푥�푥�푥𝜓�푦𝜓 − 12𝜓�푥�푥�푦𝜓�푥2
− 2𝜓�푥�푡𝜓�푦𝜓 − 2𝜓�푥�푦𝜓�푡𝜓 − 2𝜓�푦�푡𝜓�푥𝜓 − 2𝜓�푥�푥𝜓�푧𝜓
− 4𝜓�푥�푧𝜓�푥𝜓 + 4𝜓�푥2𝜓�푧 + 2𝜓�푥�푥�푧𝜓2 − 2𝜓�푥�푥�푥�푥�푦𝜓2
+ 2𝜓�푥�푦�푡𝜓2 − 4𝜓�푥�푥�푥𝜓�푥𝜓�푦 + 12𝜓�푥�푥𝜓�푥𝜓�푥�푦
+ 4𝜓�푥𝜓�푡𝜓�푦 = 0.

(3)

The transformation increases the nonlinearity but allows us
to work with the test function. In [24], Zhang used Bell
polynomial theories to generate lump-kink solutions, lumps
with one-stripe solitons and lumps with two-stripe solitons
for (1), but he supposed that 𝑧 = 𝑥 tominimize the number of
independent variables and so studied the equation in a (2+1)-
dimensional domain.

2. Lump Soliton Solutions

To generate single-lump solutions, we suppose that

𝜓 = 𝛽2 + 𝛾2 + 𝛼11,
𝛽 = 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑡 + 𝛼4𝑧 + 𝛼5,
𝛾 = 𝛼6𝑥 + 𝛼7𝑦 + 𝛼8𝑡 + 𝛼9𝑧 + 𝛼10.

(4)

where 𝛼�푖, 𝑖 = 1 . . . .11, are real unknowns that will be found
subsequently. We carry out a direct substitution of (4) into
(3) and gather the coefficients of the resulting polynomial
in 𝑥, 𝑦, 𝑡, and 𝑧, to obtain a nonlinear algebraic system in𝛼�푘. By solving this system of nonlinear algebraic equations
with the aid of Maple, we acquire some sets of solutions for
the parameters. Avoiding the redundancy, we surpass one
studying case as follows:

𝛼1 = 𝛼1,
𝛼2 = 𝛼2,
𝛼3 = − 1𝛼6𝛼11 (𝛼1𝛼7 − 𝛼2𝛼6) (−𝛼

2
1𝛼7𝛼8𝛼11

+ 𝛼2𝛼1𝛼6𝛼8𝛼11 + 3𝛼56𝑎7 + 3𝛼51𝛼2 + 6𝛼31𝛼26𝛼2
+ 3𝛼41𝛼6𝛼7 + 6𝛼21𝛼36𝛼7 + 3𝛼46𝛼1𝛼2) ,
𝛼4 = 1𝛼6𝛼11 (𝛼1𝛼7 − 𝛼2𝛼6) (3𝛼

4
1𝛼22 + 6𝛼31𝛼2𝛼6𝛼7

+ 3𝛼26𝛼21𝛼22 + 3𝛼26𝛼21𝛼27 − 𝛼2𝛼1𝛼7𝛼8𝛼11 + 6𝛼36𝛼1𝛼2𝛼7
+ 𝛼22𝛼11𝛼6𝛼8 + 3𝛼46𝛼27) ,

𝛼5 = 𝛼5,
𝛼6 = 𝛼6,
𝛼7 = 𝛼7,
𝛼8 = 𝛼8,
𝛼9 = (3𝛼

3
1𝛼2 + 3𝛼21𝛼6𝛼7 + 3𝛼26𝛼1𝛼2 − 𝛼7𝛼8𝛼11 + 3𝛼36𝛼7)𝛼6𝛼11 ,

𝛼10 = 0,
𝛼11 = 𝛼11.

(5)

Using the aggregation equation (4), one can represent the
auxiliary function as

𝜓 = (𝛼1𝑥 + 𝛼2𝑦 − 1𝛼6𝛼11 (𝛼1𝛼7 − 𝛼2𝛼6) (−𝛼
2
1𝛼7𝛼8𝛼11

+ 𝛼2𝛼1𝛼6𝛼8𝛼11 + 3𝛼56𝑎7 + 3𝛼51𝛼2 + 6𝛼31𝛼26𝛼2
+ 3𝛼41𝛼6𝛼7 + 6𝛼21𝛼36𝛼7 + 3𝛼46𝛼1𝛼2) 𝑡
+ 1𝛼6𝛼11 (𝛼1𝛼7 − 𝛼2𝛼6) (3𝛼

4
1𝛼22 + 6𝛼31𝛼2𝛼6𝛼7

+ 3𝛼26𝛼21𝛼22 + 3𝛼26𝛼21𝛼27 − 𝛼2𝛼1𝛼7𝛼8𝛼11 + 6𝛼36𝛼1𝛼2𝛼7
+ 𝛼22𝛼11𝛼6𝛼8 + 3𝛼46𝛼27) 𝑧 + 𝛼5)

2 + (𝛼6𝑥 + 𝛼7𝑦 + 𝛼8𝑡

+ (3𝛼31𝛼2 + 3𝛼21𝛼6𝛼7 + 3𝛼26𝛼1𝛼2 − 𝛼7𝛼8𝛼11 + 3𝛼36𝛼7)𝛼6𝛼11
⋅ 𝑧)
2

+ 𝛼11,

(6)

where

� = 
𝛼1 𝛼2𝛼6 𝛼7
 ̸= 0, 𝛼6𝛼11 ̸= 0. (7)

By using (2), the solution of (1) has the form

𝑢 = 4𝛼1𝛽 + 𝛼6𝛾𝜓 (8)

Incorporating (6) and (5) into (8), one gets a class of lump
solutions of (1) depicted in Figure 1.

3. Interaction Solutions

3.1. Lump Solitons with One-Stripe Waves. Suppose that the
test function is a confederation of a quadratic functionwithan
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Figure 1: Proportion sight of the solution equation (8) with (6) and (5). For arbitrary constant values, 𝛼2 = 𝛼1 = 1, 𝛼7 = −1, 𝛼6 = 1, 𝛼10 =0, 𝛼11 = 1, and 𝛼8 = 5. (a-b) 3D plots for 𝑡 = 0, and 3, respectively. (d-e) Consistent contour plot of (a), (b). 2D plot present in (f) for various
values of y.

exponential function as follows:

𝜓 = 𝛽2 + 𝛾2 + 𝛼11 + 𝜆,
𝛽 = 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑡 + 𝛼4𝑧 + 𝛼5,
𝛾 = 𝛼6𝑥 + 𝛼7𝑦 + 𝛼8𝑡 + 𝛼9𝑧 + 𝛼10

𝜆 = 𝑒�푘1�푥+�푘2�푦+�푘3�푡+�푘4�푧+�푘5 .
(9)

where 𝛼�푖, 𝑖 = 1 . . . .11 and 𝑘�푗, 𝑗 = 1..5, are real unknown
constants that will be determined subsequently. Using the
ansatz in (2),
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𝑢 = 22𝛼1𝛽 + 2𝛼6𝛾 + 𝑘1𝑒�푘1�푥+�푘2�푦+�푘3�푡+�푘4�푧+�푘5𝜓 . (10)

Inserting (9) into (3), gathering the coefficients of the
resulting polynomial in 𝑥, 𝑦, 𝑡, and 𝑧, and equaling these
coefficients to zero, we explore a complicated algebraic system
on the unknown constants. We then solve the obtained
system using Maple and snaffle the following assortment of
solutions:

𝛼1 = 𝛼1,
𝛼2 = 𝑘2 (𝛼

2
1 + 𝛼26)𝑘1𝛼1 ,

𝛼3 = 3𝑘21𝛼1,
𝛼5 = 𝛼5,
𝛼6 = 𝛼6,
𝛼7 = 0,

𝛼8 = −3𝑘2 (𝛼
2
1)𝛼6 ,

𝛼9 = 3𝑘1𝑘2 (𝛼
2
1 + 𝛼26)𝛼6 ,

𝛼10 = 0,
𝛼11 = (𝛼

2
1 + 𝛼26)𝑘21 ,

𝑘1 = 𝑘1,
𝑘2 = 𝑘2,
𝑘3 = 𝑘31,
𝑘4 = 0,
𝑘5 = 𝑘5.

(11)

To avoid the singularity and promote the wave to localize
in all directions, the following stipulation must be taken into
consideration:

𝑘1𝑎1𝑎6 ̸= 0. (12)

Substituting (11) into (9), we obtain

𝜓 = (𝛼1𝑥 + 𝑘2 (𝛼
2
1 + 𝛼26)𝑘1𝛼1 𝑦 + 3𝑘

2
1𝛼1𝑡 + 𝛼5)

2

+ (𝛼6𝑥 − 3𝑘2 (𝛼
2
1)𝛼6 𝑡 +
3𝑘1𝑘2 (𝛼21 + 𝛼26)𝛼6 𝑧)

2

+ (𝛼21 + 𝛼26)𝑘21 + 𝑒
�푘1�푥+�푘2�푦+�푘

3

1
�푡+�푘5 .

(13)

Introducing (13) into (10), we generate a class of inter-
action solutions with stripe soliton (solitary wave) solutions.
The results have been plotted in Figure 2 for different values
of times.

3.2. Lump Solitons with Tough Waves (Two-Stripe Solitons).
We suppose that the new ansatz is a combination of a
quadratic function and a hyperbolic function as follows:

𝜓 = 𝛽2 + 𝛾2 + 𝛼11 + 𝛿,
𝛽 = 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑡 + 𝛼4𝑧 + 𝛼5,
𝛾 = 𝛼6𝑥 + 𝛼7𝑦 + 𝛼8𝑡 + 𝛼9𝑧 + 𝛼10,
𝛿 = cosh (𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑡 + 𝑘4𝑧 + 𝑘5) .

(14)
Substituting (17) into (2), we snaffle an assortment of solu-
tions for (1) as follows:
𝑢
= 22𝛼1𝛽 + 2𝛼6𝛾 + 𝑘1sinh (𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑡 + 𝑘4𝑧 + 𝑘5)𝜓 . (15)
More complicated calculations have been done using

Maple, to acquire the unidentified constants. Substituting (14)
into (3), equaling the coefficients of 𝑥, 𝑦, 𝑡, and 𝑧 to zero,
and solving the resulting nonlinear algebraic system (up to
150 equations), we explore the following solution cases of the
constant parameters. In each case, we do back substitution in
(14).

𝛼1 = 0,
𝛼2 = 12 (𝑘

2
2𝛼4𝛼26)9𝑘22𝛼26𝑘21 + 4𝛼24 ,

𝛼3 = −𝑘1𝛼4𝑘2 ,
𝛼4 = 𝛼4,
𝛼5 = 0,
𝛼6 = 𝛼6,
𝛼7 = 𝛼6𝑘2 (4𝛼

2
4 − 9𝑘22𝛼26𝑘21)𝑘1 (4𝛼24 + 9𝑘22𝛼26𝑘21) ,

𝛼8 = 3 (𝑘
2
1𝛼6)2 ,

𝛼9 = 3 (𝑘1𝑘2𝛼6)2 ,
𝛼10 = 0,
𝛼11 = 9𝑘

2
2𝛼26𝑘21 + 4𝑘41𝛼24 + 16𝛼24𝛼26 − 36𝛼26𝑘21𝑘2216𝛼24𝛼26𝑘21 ,

𝑘1 = 𝑘1,
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Figure 2: Proportion scene of the solution equation (10) with (13) and (11) for the values of arbitrary constants is 𝛼1 = 1, 𝛼4 = 0, 𝛼6 = 3, 𝛼5 =1, 𝛼10 = 0, and 𝑘1 = 𝑘2 = 𝑘5 = 1. (a-c) represent 3D plots for (10) at 𝑡 = 0, 2, and 30, 𝑧 = 0, respectively. (e-g) Consistent contour plot of (a, b,
c), respectively.
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Figure 3: Proportion scenes of the solution equation (15) with (16) and (17) for the values of arbitrary constants are for 𝛼2 = −1, 𝛼6 = 1, 𝛼7 =2, 𝛼5 = 1, 𝛼10 = 0, 𝛼8 = 1, 𝛼11 = 1, 𝑘1 = 1, 𝑘2 = 1, 𝑘5 = 1. (a), (b), and (c) represent 3D plots for (10) at 𝑡 = 0, 5, 18 and 𝑧 = 0, respectively. (e),
(f), and (g) Consistent contour plot of (a), (b), and (c).

𝑘2 = 𝑘2,
𝑘3 = 𝑘31,
𝑘4 = 0,
𝑘5 = 𝑘5.

(16)

Substituting (16) into (14), we obtain

𝜓 = (𝛼1𝑥 + 12 (𝑘
2
2𝛼4𝛼26)9𝑘22𝛼26𝑘21 + 4𝛼24𝑦 −

𝑘1𝛼4𝑘2 𝑡 + 𝛼4𝑧)
2

+ (𝛼6𝑥 + 𝛼6𝑘2 (4𝛼
2
4 − 9𝑘22𝛼26𝑘21)𝑘1 (4𝛼24 + 9𝑘22𝛼26𝑘21) 𝑦 +

3 (𝑘21𝛼6)2 𝑡
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+ 3 (𝑘1𝑘2𝛼6)2 𝑧)
2

+ 9𝑘22𝛼26𝑘21 + 4𝑘41𝛼24 + 16𝛼24𝛼26 − 36𝛼26𝑘21𝑘2216𝛼24𝛼26𝑘21
+ cosh (𝑘1𝑥 + 𝑘2𝑦 + 𝑘31𝑡 + 𝑘5) .

(17)

Through the same procedure, we get a class of solutions of (1)
and plot a special solution in Figure 3.

4. Conclusions

Starting from the Cole-Hopf transformation, investigated
in the SMM with a two-term truncated series, we derived
novel lump solitons, lump-kinks, interacted lumps with one-
stripe solitons or kinks, and interacted lumps with two-stripe
solitons or kink waves, after some complicated calculations
using the Maple software. The presented three-dimensional
plots of the interaction solutions show that the lump solitons
are coalesced or spliced up by the stripe solitons. To the best of
our knowledge, those types of solutions for (1) are presented
for the first time. Our solutions are localized in the four
dimensional space (𝑥, 𝑦, 𝑧, and 𝑡), but in [24], the authors
assumed that 𝑧 = 𝑥 and generated only one lump solution.

Data Availability
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