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Abstract

The Hajnal–Szemerédi theorem states that for any positive integer r and any multiple n of r , if G
is a graph on n vertices and δ(G) > (1− 1/r)n, then G can be partitioned into n/r vertex-disjoint
copies of the complete graph on r vertices. We prove a very general analogue of this result for
directed graphs: for any positive integer r with r 6= 3 and any sufficiently large multiple n of r , if
G is a directed graph on n vertices and every vertex is incident to at least 2(1− 1/r)n − 1 directed
edges, then G can be partitioned into n/r vertex-disjoint subgraphs of size r each of which contain
every tournament on r vertices (the case r = 3 is different and was handled previously). In fact, this
result is a consequence of a tiling result for standard multigraphs (that is multigraphs where there
are at most two edges between any pair of vertices). A related Turán-type result is also proven.

2010 Mathematics Subject Classification: 5C35 (primary); 5C20, 5C70 (secondary)

1. Introduction

1.1. Tilings in graphs. Given two (di)graphs H and G, an H-tiling in G is
a collection of vertex-disjoint copies of H in G. An H -tiling is called perfect if
it covers all the vertices of G. Perfect H -tilings are also referred to as H-factors

c© The Author(s) 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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A. Czygrinow et al. 2

or perfect H-packings. If H is connected and of order at least three, the problem
of deciding whether a graph G contains a perfect H -tiling is NP-complete [11].
In light of this, it is natural to ask for simple sufficient conditions which force a
graph to contain a perfect H -tiling.

A cornerstone result in extremal graph theory is the following theorem of
Hajnal and Szemerédi [9].

THEOREM 1.1 (Hajnal and Szemerédi [9]). Every graph G whose order n is
divisible by r and whose minimum degree satisfies δ(G) > (1− 1/r)n contains a
perfect Kr -tiling.

Notice that the minimum degree condition in Theorem 1.1 is tight. Earlier,
Corrádi and Hajnal [5] proved Theorem 1.1 in the case when r = 3. More recently,
Kierstead and Kostochka [15] gave a short proof of the Hajnal–Szemerédi
theorem.

Over the last three decades there has been much work on generalizing the
Hajnal–Szemerédi theorem. One highlight in this direction is a result of Kühn and
Osthus [19, 20] that characterizes, up to an additive constant, the minimum degree
which ensures that a graph G contains a perfect H -tiling for an arbitrary graph
H . Other notable results include an Ore-type analogue of the Hajnal–Szemerédi
theorem of Kierstead and Kostochka [14] and an r-partite version of the Hajnal–
Szemerédi theorem of Keevash and Mycroft [12]. See [21] for a survey including
many of the results on graph tiling.

There has also been interest in tiling problems for directed graphs and
hypergraphs. A recent survey of Zhao [31] gives an extensive overview of
the latter problem. In this paper we prove a directed analogue of the Hajnal–
Szemerédi theorem.

1.2. Tilings in directed graphs. Throughout this paper, the digraphs we
consider do not have loops and we allow for at most one edge in each direction
between any pair of vertices. An oriented graph is a digraph without 2-cycles.

For digraphs there is more than one natural notion of degree: The minimum
semidegree δ0(G) of a digraph G is the minimum of its minimum outdegree
δ+(G) and its minimum indegree δ−(G). The minimum degree δ(G) of G is the
minimum number of edges incident to a vertex in G.

For oriented graphs, there has been some progress on obtaining degree
conditions that force tilings. Denote by Tr the transitive tournament of r vertices
and by C3 the cyclic triangle. Yuster [30] observed that an oriented graph G on
n ∈ 3N vertices and with δ(G) > 5n/6 contains a perfect T3-tiling (and also gave
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Tiling directed graphs with tournaments 3

a minimum degree condition which forces a perfect Tr -tiling for r > 3). More
recently, Balogh et al. [2] determined the minimum semidegree threshold which
ensures a perfect T3-tiling in an oriented graph, thereby resolving a conjecture
from [26]. Keevash and Sudakov [13] showed that every oriented graph G on
n vertices with δ0(G) > (1/2 − o(1))n contains a C3-tiling covering all but at
most 3 vertices. (There are examples that show even δ0(G) > (n − 3)/2 does not
guarantee a perfect C3-tiling.)

Denote by Tr the set of all tournaments on r vertices. Let T ∈ Tr . For
digraphs, the minimum semidegree threshold that forces a perfect T -tiling was
characterized in [27].

THEOREM 1.2 [27]. Given an integer r > 3, there exists an n0 ∈ N such that the
following holds. Suppose T ∈ Tr and G is a digraph on n > n0 vertices where r
divides n. If

δ0(G) > (1− 1/r)n

then G contains a perfect T -tiling.

Notice that the minimum semidegree condition in Theorem 1.2 is tight. Note
also that Theorem 1.2 implies the Hajnal–Szemerédi theorem for large graphs. An
earlier result of Czygrinow et al. [7] gives an asymptotic version of Theorem 1.2
for perfect C3-tilings.

It is natural to ask whether Theorem 1.2 can be strengthened by replacing the
minimum semidegree condition with a minimum degree condition. In particular,
can one replace the minimum semidegree condition in Theorem 1.2 with δ(G) >
2(1−1/r)n−1? However, when T = C3 the answer is no. Indeed, an example of
Wang [29] shows that δ(G) > (3n − 5)/2 does not ensure a perfect C3-tiling. On
the other hand, he showed that minimum degree δ(G) > (3n − 3)/2 does force a
perfect C3-tiling in a digraph G. This led to the following question being raised
in [27].

QUESTION 1.3. Let n, r ∈ N such that r divides n. Let T ∈ Tr \ {C3}. Does every
digraph G on n vertices with δ(G) > 2(1− 1/r)n− 1 contain a perfect T -tiling?

Czygrinow et al. [6] answered Question 1.3 in the affirmative for perfect Tr -
tilings and also in the case when r is sufficiently large and δ(G) > 2(1 − 1/r +
o(1))n.

The main result of this paper gives an exact solution to a stronger version of
Question 1.3 for all r > 4.
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A. Czygrinow et al. 4

THEOREM 1.4. Given an integer r > 4, there exists an n0 ∈ N such that the
following holds. Suppose G is a digraph on n > n0 vertices where r divides n. If

δ(G) > 2(1− 1/r)n − 1,

then G contains n/r vertex-disjoint subdigraphs each of which contains every
tournament on r vertices.

The following theorem from [7], in some sense, answers the analogous question
when r = 3.

THEOREM 1.5 [7]. Suppose G is a digraph on n vertices where 3 divides n. If
δ(G) > 4n/3− 1, then there exist n/3 vertex-disjoint subdigraphs each of size 3
such that each subdigraph contains a T3 and all but at most one contains C3 as
well.

This is best possible in the following two senses: (i) there exist digraphs G for
which δ(G) = 4n/3−2 and which do not contain a triangle factor of any kind and;
(ii) by Wang’s example in [29], there exist digraphs such that δ(G) > 4n/3 − 1
that do not have a perfect C3-tiling. However, there is perhaps more to say about
the case when r = 3, as the following conjecture, which originally appeared in
[23], suggests.

CONJECTURE 1.6 [23]. Suppose G is a digraph on n vertices where 3 divides n.
If δ(G) > 4n/3 − 1 and G is strongly 2-connected, then there exist n/3 vertex-
disjoint subdigraphs such that each of these subdigraphs contain both T3 and C3.

It should be noted that in [7] Conjecture 1.6 was proven when δ(G) > (3n −
3)/2. Note that when δ(G) > (3n − 3)/2, G is strongly 2-connected.

1.3. Tilings in multigraphs. Instead of proving Theorem 1.4 directly, we
prove a more general result concerning tilings in multigraphs. A similar approach
was taken in [7] and [6].

Suppose that M is a multigraph. The minimum degree δ(M) of M is the
minimum number of edges incident to a vertex in M . For x, y ∈ V (M) we write
µ(xy) to denote the number of edges between x and y in M . We say that a loopless
multigraph M is standard if µ(xy) 6 2 for all x, y ∈ V (M). Given vertices x, y
in a standard multigraph M we say that xy is a light edge if µ(xy) = 1 and a
heavy edge if µ(xy) = 2.

Given a digraph G, the underlying multigraph M of G is the standard
multigraph obtained from G by ignoring the orientations of edges. Given a
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Tiling directed graphs with tournaments 5

standard multigraph M , an orientation of the edges is legal if the resulting graph
G is a digraph (that is there is at most one edge in each direction between any
pair of vertices in G). A standard multigraph M on r vertices is universal if,
given any legal orientation G of M , we have that T ⊆ G for every T ∈ Tr .
For example, let M be a standard multigraph on r vertices where µ(xy) = 1,
2 for all distinct x, y ∈ V (M) and the collection of light edges in M forms a
matching. Then M is universal. On the other hand if M is a standard multigraph
on n vertices that contains a cycle on light edges then M is not universal. (There is
a legal orientation of M without a copy of Tr .) Write Ur for the set of all universal
standard multigraphs on r vertices.

Throughout the paper, instead of dealing with the set Ur itself, we mainly work
with three subsets of Ur : K̄r , K̂r and K′r . The elements of each of these three
subsets are obtained from the complete standard multigraph on r vertices by
removing the edges from a set of vertex-disjoint (light) paths P1, . . . , Pt where
|P1| > |P2| > · · · > |Pt |. The elements of K̄r are formed by removing the edges
of P1, . . . , Pt from the complete standard multigraph on r vertices where we
stipulate that |Pi | 6 2 for all i ∈ [t], that is the elements of K̄r are formed by
removing a (light) matching from the complete standard multigraph on r vertices.
The elements of K̂r are formed in the same way, but we stipulate that |P1| 6 3 and
|Pi | 6 2 for all i > 2. To form elements of K′r , we stipulate that either |P1| 6 4
and |Pi | 6 2 for all i > 2, or |P1|, |P2| 6 3 and |Pi | 6 2 for all i > 3.

Figure 1. On the left is an element of K̂3 which is not in U3. In the middle is an
element of K̄3 which is in U3. On the right is an element of K′4 which is in U4.

We now prove that K̄r ⊆ K̂r ⊆ K′r ⊆ Ur for r > 4. While this follows from a
very strong result of Havet and Thomassé [10], which states that every tournament
T on n vertices contains every oriented path P on n vertices except when P is the
anti-directed path and n ∈ {3, 5, 7}, we prove it directly as we do not need the full
strength of their result.

PROPOSITION 1.7. For r > 2, K̄r ⊆ Ur and for r > 4, K̄r ⊆ K̂r ⊆ K′r ⊆ Ur .

Proof. Let r > 2, T be a tournament on r vertices, and let EK be a legal orientation
of K ∈ K̄r , where EK has exactly t 6 br/2c light edges. Form a bijection from
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A. Czygrinow et al. 6

V (T ) to V ( EK ) by choosing t independent edges in T and mapping their endpoints
to the light edges of EK with the correct orientation. Then complete the bijection
by mapping all other vertices of T to V ( EK ) arbitrarily. Since all other edges of EK
are double edges, we have T ⊆ EK .

Let r > 4, T be a tournament on r vertices, and let EK be a legal orientation
of K ∈ K′r , where the light edges of EK form t vertex-disjoint paths P1, . . . ,

Pt with |P1| > · · · > |Pt | where either |P1| 6 4 and |Pi | 6 2 for all i > 2,
or |P1|, |P2| 6 3 and |Pi | 6 2 for all i > 3. The statement follows from the
following two facts which are straightforward to verify: (1) every tournament on
4 vertices contains every orientation of a path on 4 vertices; (2) every tournament
on 6 vertices contains two vertex-disjoint transitive triangles. We use this to first
find an isomorphic copy of P1 and P2 (if applicable) in T , then we complete the
embedding as in the first paragraph.

Given a collection of (multi)graphs X , an X -tiling in a (multi)graph M is a
collection of vertex-disjoint copies of elements of X in M . An X -tiling is called
perfect if it covers all the vertices of M . We refer to the elements of an X -tiling as
tiles. The next result (originally conjectured in [6]) ensures a standard multigraph
of high minimum degree contains a perfect Ur -tiling.

THEOREM 1.8. Given an integer r > 2, there exists an n0 ∈ N such that the
following holds. Suppose M is a standard multigraph on n > n0 vertices where r
divides n. If

δ(M) > 2(1− 1/r)n − 1

then M contains a perfect K′r -tiling; so in particular, when r > 4, M contains a
perfect Ur -tiling.

Notice that Theorem 1.8 implies Theorem 1.4. Also note that, for every even
n, Theorem 1.8 is true when r = 2, because every simple graph on n vertices
with minimum degree at least n/2 contains a perfect matching. When r = 3,
Theorem 1.8 was proved for every n divisible by 3 in [7].

There are four different examples which show that the minimum degree
condition in Theorem 1.8 is tight. Let M1 and, when r > 3, let M2 be the standard
multigraphs on n vertices which contain all possible edges except that M1 contains
an independent set U of size n/r + 1 and M2 contains a set U of size 2n/r + 1
such that between any two distinct vertices u, v ∈ U , µ(uv) = 1. For both i = 1,
2, δ(Mi) = 2(1 − 1/r)n − 2, but Mi does not contain a perfect Ur -tiling. In the
case of M1, this is because every element in Ur has at most 1 vertex in U and in
the case of M2, it is because every element in Ur has at most 2 vertices in U .
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Tiling directed graphs with tournaments 7

Figure 2. From left to right, the tightness examples M1,M2,M3,M4.

Suppose n/r is odd. We define the standard multigraph M3 on n vertices as
follows: Take two disjoint sets X, Y of size n/r . Inside the sets X, Y place all
heavy edges, and between X and Y place no edges. From X ∪ Y to the remaining
vertices, place all heavy edges. Now partition the remaining (1 − 2/r)n vertices
into sets of size n/r or 2n/r . Between all such sets, place all heavy edges. Inside
the sets of size 2n/r place all light edges and inside the sets of size n/r place no
edges. We have δ(M3) = 2(1−1/r)n−2. If M3 contained a perfect Ur -tiling, each
copy of Ur would intersect the sets of size n/r from V (M3) \ (X ∪ Y ) in exactly
one vertex and the sets of size 2n/r in exactly two vertices, and furthermore every
copy of Ur has exactly 2 vertices from X or exactly 2 vertices from Y . However,
since |X | and |Y | are odd, M3 does not contain a perfect Ur -tiling.

Suppose n/r is odd and r > 4. We form the standard multigraph M4 on n
vertices similarly: Take two disjoint sets X, Y of size 2n/r . Inside the sets X, Y
place all heavy edges and between X and Y , place all light edges. From X ∪ Y
to the remaining vertices, place all heavy edges. Now partition the remaining
(1− 4/r)n vertices into sets of size n/r or 2n/r . Between all such sets, place all
heavy edges. Inside the sets of size 2n/r place all light edges and inside the sets
of size n/r place no edges. We have δ(M4) = 2(1 − 1/r)n − 2. Now consider
the standard multigraph Sr with r vertices in which there are all possible edges
except that there is a vertex with precisely three light neighbours. If r = 4, 5 it
is easy to check that Sr is not universal (however, it is universal for r > 5). With
this in mind, suppose that r = 4, 5. Then if M4 contained a perfect Ur -tiling, each
copy of Ur would intersect the sets of size n/r from V (M4) \ (X ∪ Y ) in exactly
one vertex and the sets of size 2n/r in exactly two vertices, and furthermore every
copy of Ur has exactly 4 vertices from X or exactly 4 vertices from Y . However,
since |X | and |Y | are not divisible by 4, M4 does not contain a perfect Ur -tiling.
Note that if r > 5 then M4 actually does contain a perfect Ur -tiling, so M4 is only
an extremal example for the Ur -tiling problem when r = 4, 5. On the other hand,
notice that for all r > 4, M4 does not contain a perfect K′r -tiling. So M4 is an
extremal example for the perfect K′r -tiling problem for every r > 4.
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A. Czygrinow et al. 8

Finally, in the proof of Theorem 1.8 we (implicitly) produce a perfect K′r -tiling
where most of the tiles are elements from K̄r . The following example, however,
demonstrates that we need the minimum degree to be greater than 2(1 − 1/r)n
to guarantee a perfect K̄r -tiling. For any k ∈ N and r > 3, let G be a standard
multigraph containing n := 2rk vertices constructed in the following way. Let
{U1, . . . ,Ur−1} be a partition of V (G) such that |U1| = 3k + 1, |U2| = 3k − 1
and |Ui | = 2k for i ∈ {3, . . . , r − 1}. Place all possible light edges between U1

and U2, and for all other pairs of distinct sets Ui and U j , place all possible heavy
edges. Also, inside both G[U1] and G[U2] place all possible heavy edges. The
minimum degree of G is 2(2rk − 2k) = 2(1− 1/r)n, which is witnessed by any
v ∈ U3 ∪ · · · ∪ Ur−1. Now suppose that G contains 2k vertex-disjoint elements
from K̄r . Each one of these elements must have exactly 1 vertex in each of U3,

. . . ,Ur−1 and exactly 3 vertices in G[U1 ∪ U2]; however, G[U1 ∪ U2] does not
contain a perfect K̄3-tiling. Note that when r = 3, this corresponds to Wang’s
example in [29].

2. Overview of the proof of Theorem 1.8

2.1. The overall approach. As with many proofs in the area, the proof of
Theorem 1.8 divides into extremal and nonextremal cases. Roughly speaking, in
the extremal case we consider those standard multigraphs that are ‘close’ to the
extremal examples M1, M2, M3 and M4 that were introduced after the statement
of Theorem 1.8. We deal with these extremal cases in one unified approach in
Section 10.

Suppose that G is as in Theorem 1.8. Further, suppose that there is a ‘small’
set M ⊆ V (G) with the property that both G[M] and G[M ∪ Q] contain perfect
Ur -tilings for any ‘very small’ set Q ⊆ V (G) where |Q| ∈ rN. Then notice that,
to find a perfect Ur -tiling in G, it suffices to find an ‘almost’ perfect Ur -tiling in
G ′ := G \ M . Indeed, suppose that G ′ contains a Ur -tiling M1 covering all but
a very small set of vertices Q. Then by definition of M , G[M ∪ Q] contains a
perfect Ur -tiling M2. Thus, M1 ∪M2 is a perfect Ur -tiling in G, as desired.

Roughly speaking, we refer to such a set M as an ‘absorbing set’ (see Section 8
for the precise definition of such a set). The ‘absorbing method’ was first used
in [24] and has subsequently been applied to numerous embedding problems in
extremal graph theory.

In general, a multigraph G as in Theorem 1.8 may not contain an absorbing
set. Indeed, consider the multigraph G with disjoint vertex classes V1, . . . , Vr

each of size n/r in which there are all possible heavy edges except that each
Vi is an independent set. Then if Q is any set of r vertices in V1, there is no
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Tiling directed graphs with tournaments 9

set M ⊆ V (G) such that both G[M] and G[M ∪ Q] contain perfect Ur -tilings.
Note that this multigraph is close to the extremal example M1. It turns out that
when G is nonextremal, we can always find an absorbing set M ; we construct this
set in Section 8.

Thus, to complete the proof in the nonextremal case we must find an ‘almost’
perfect Ur -tiling in G \ M . Actually in Section 6 we prove a result that ensures
any multigraph G as in Theorem 1.8 contains a K̄r -tiling covering almost all
the vertices of G, see Corollary 6.6. However, this does not quite guarantee a
large enough Ur -tiling in G \ M . Indeed, the leftover set Q obtained by applying
Corollary 6.6 to G \ M will be slightly larger than the absorbing set M , and thus
M will not be able to absorb Q.

To overcome this we again have to use the property that our multigraph G
is nonextremal. Using the K̄r -tiling obtained from Corollary 6.6 we build a
significantly bigger K′r -tiling so that now the leftover set is very small compared
to M . This is another delicate part of the proof and is dealt with in Section 7.

In Section 6 we apply a Turán-type result for standard multigraphs; this is
introduced in Section 4 (see Theorem 4.2). We also introduce a multigraph
regularity lemma in Section 5 and make use of this in Sections 6 and 7.

2.2. Extremal versus nonextremal graphs. Notice that both M1 and M2 have
the property that they contain (i) an independent set of size n/r or (ii) a set of
vertices of size 2n/r which contains no heavy edge. Further, M3 and M4 have
this property when r > 3 and r > 5, respectively. These properties turn out to be
barriers for obtaining an absorbing set. Thus, as suggested above, we deal with
the case when our multigraph G is ‘close’ to satisfying (i) and/or (ii) separately.
More precisely, given γ > 0 and r ∈ N, we say that a multigraph G on n vertices
is (1/r, γ )-extremal if:

(i) there exists S ⊆ V (G) such that ||S| − n/r | < γ n and e(G[S]) < γ n2; or

(ii) there exists S ⊆ V (G) such that ||S| − 2n/r | < γ n and e2(G[S]) < γ n2.

(Here we write e2(G[S]) to denote the number of heavy edges in G[S].) Note
that M3 and M4 satisfy neither (i) nor (ii) when r = 2 and r = 4, respectively.
When r = 2, M3 contains two vertex classes X, Y of size n/2 for which there
are no edges between X and Y . Similarly, when r = 4, M4 contains two vertex
classes X, Y of size n/2 for which there are no heavy edges between X and Y .
Standard multigraphs that are ‘close’ to satisfying one of these two properties
will also be considered in the extremal case. More precisely, given γ > 0 and
r = 2, 4, a multigraph G on n vertices is (r, γ )-splittable if there exist disjoint
sets U1,U2 ⊆ V (G) such that:
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A. Czygrinow et al. 10

• |U1|, |U2| > (1/2− γ )n; and either

• r = 2 and there are at most γ n2 edges between U1 and U2 in G; or

• r = 4 and there are at most γ n2 heavy edges between U1 and U2 in G.

To summarize, the extremal case thus considers multigraphs that are (1/r, γ )-
extremal, (2, γ )-splittable or (4, γ )-splittable. While now we are unable to
employ the absorbing method, the multigraphs considered in the extremal case
have a rigid structure that we can exploit. For example, if G is (4, γ )-splittable
and satisfies δ(G) > 3n/2 − 1, then there is a partition A, B of V (G) such that
there are almost all possible light edges between A and B; and both G[A] and
G[B] contain almost all possible heavy edges. The proof of the extremal case
takes a similar approach to that of Komlós, Sárközy and Szemerédi in their proof
of the Alon–Yuster conjecture [17].

2.3. Absorbing in the nonextremal case. In order to construct our desired
absorbing set it suffices to show that, for every x, y ∈ V (G) there are Θ(nr−1)

(r−1)-sets X ⊆ V (G) such that both G[X∪ {x}] and G[X∪ {y}] contain K′r . This
is formalized by a result of Lo and Markström [22] (we state it as Lemma 8.1 in
Section 8). Our following lemma thus yields an absorbing set in the nonextremal
case.

LEMMA 2.1. Let r > 3, 0 < 1/n � η, φ � γ � 1/r , and let G be a multigraph
on n vertices. If δ(G) > 2(1−1/r−η)n and G is not (1/r, γ )-extremal and either
r 6= 4 or G is not (4, γ )-splittable, then for all distinct x1, x2 ∈ V (G) there exist
at least (φn)r−1 (r − 1)-sets Y ⊆ V (G) such that G[Y ∪ {x1}] and G[Y ∪ {x2}]

both contain K′r .

We prove Lemma 2.1 in Section 8.

3. Notation

For the rest of the paper, when we write multigraph, we mean standard
multigraph. Let G be a multigraph. We write e(G) for the total number of edges
in G and e2(G) for the number of heavy edges in G. Given a subset X ⊆ V (G),
we write G[X ] for the submultigraph of G induced by X . We write G \ X for the
submultigraph of G induced by V (G) \ X and define X := V (G) \ X .

In a multigraph G, for i = 1, 2 let N i
G(v) := {u : uv ∈ E(G) and µ(uv) = i}

and d i
G(v) := |N

i
G(v)|. Let NG(v) := N 1

G(v) ∪ N 2
G(v). We define the degree

dG(v) of v to be the sum of the multiplicities of the edges incident with v, that is
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dG(v) := d1
G(v) + 2d2

G(v). Note that dG(v) = |NG(v)| + |N 2
G(v)|. Given a set

X ⊆ V (G) (or subgraph X of G) we write dG(v, X) for the total number of
edges in G incident to v whose other endpoint lies in X (or V (X)). We define
d2

G(v, X) similarly. Given disjoint X, Y ⊆ V (G) (or subgraphs X, Y of G) we
write eG(X, Y ) for the total number of edges in G with one endpoint in X (or
V (X)) and the other in Y (or V (Y )); We write e2(X, Y ) for the total number
of heavy edges in G with one endpoint in X (or V (X)) and the other in Y (or
V (Y )), and let E2(X, Y ) denote the set of all such edges. In all the aforementioned
notation we omit the subscript G if the multigraph is clear from the context.

When U is a family of multigraphs (digraphs) and G is a multigraph (digraph)
we write U ⊆ G to mean that some U ∈ U is a subgraph of G. If U ∈ U we say
that U is a copy of U . If U is a family of multigraphs and G is a digraph we write
U ⊆ G to mean that there is a legal orientation EU of some U ∈ U such that EU is
a subdigraph of G.

Given a graph G we let G(t) denote the graph obtain from G by replacing each
vertex x ∈ V (G) with a set Vx of t vertices so that, for all x, y ∈ V (G):

• if x 6= y then Vx ∩ Vy = ∅;

• if xy ∈ E(G) then there are all possible edges in G(t) between Vx and Vy;

• if xy 6∈ E(G) then there are no edges in G(t) between Vx and Vy .

Similarly, given a multigraph G we let G(t) denote the multigraph obtain from
G by replacing each vertex x ∈ V (G) with a set Vx of t vertices so that, for all
x, y ∈ V (G):

• if x 6= y then Vx ∩ Vy = ∅;

• if µ(xy) = 2 in G then there are all possible heavy edges in G(t) between Vx

and Vy;

• if µ(xy) = 1 in G then there are all possible light edges in G(t) between Vx

and Vy;

• if µ(xy) = 0 in G then there are no edges in G(t) between Vx and Vy .

Given a set X we write, for example X + v, X − v and X + v −w for X ∪ {v},
X \ {v} and (X \ {w})∪ {v} respectively. Similarly given multigraphs T , G where
T ⊆ G and v,w ∈ V (G), we write, for example, T + v, T − v, T + v−w for the
multigraphs G[V (T )+ v], G[V (T )− v] and G[V (T )+ v−w] respectively. We
define, for example, T − X , T + X , T − X + Y similarly where X, Y ⊆ V (G).
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A. Czygrinow et al. 12

Throughout the paper, we write 0< α� β � γ to mean that we can choose the
constants α, β, γ from right to left. More precisely, there are increasing functions
f and g such that, given γ , whenever we choose β 6 f (γ ) and α 6 g(β), all
calculations needed in our proof are valid. Hierarchies of other lengths are defined
in the obvious way.

4. Turán-type results for universal multigraphs and digraphs

In this section we determine the density threshold that ensures a standard
multigraph contains a universal graph, and therefore determine the threshold that
forces a digraph to contain any tournament of a given size.

Let tr−1(n) be the maximum number of edges in an (r − 1)-partite graph on n
vertices and let Tr−1(n) be the (r − 1)-partite graph that realizes this bound. Note
that when n > r − 1

tr−1(n)− tr−1(n − (r − 1)) =
(r − 1)(r − 2)

2
+ (r − 2)(n − (r − 1)), (1)

and for any n

tr−1(n) 6
(

1−
1

r − 1

)
n2

2
,

with equality when r − 1 divides n.

OBSERVATION 4.1. Let Dr−1(n) be the digraph obtained by replacing every edge
of Tr−1(n) with two oppositely oriented directed edges and let Mr−1(n) be the
underlying multigraph of Dr−1(n). Then Dr−1(n) contains no tournament on r
vertices and Mr−1(n) contains no graph on r vertices whose underlying graph is
complete.

Brown and Harary [4] proved that if a digraph D on n vertices contains
more than 2tr−1(n) edges, then D contains every tournament on r vertices.
The following theorem strengthens their result by showing that D contains a
subdigraph on r vertices which itself contains every tournament on r vertices;
in fact, we prove an even more general result about multigraphs.

THEOREM 4.2. Let r > 2 and let G be a multigraph on n vertices. If e(G) >
2tr−1(n), then K̄r ⊆ G.

Proof. The proof proceeds by double induction on r and n. Clearly the result
holds for r = 2. Let r > 3 and let G be a standard multigraph on n vertices
such that K̄r 6⊆ G. If n 6 r − 1, then e(G) 6 2tr−1(n); so suppose n > r .
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Since 2tr−2(n) 6 2tr−1(n) < e(G), by induction, there exists a copy of K̄r−1 in
G; let H be a copy of K̄r−1 with the maximum number of edges. If there exists
v ∈ V (G) \ V (H) such that d(v, H) > 2(r − 1) − 1, then we can either add v
to H to make a copy of K̄r or we can swap v with a vertex in H to increase the
number of edges in H ; either way, a contradiction. So for all v ∈ V (G) \ V (H)
we have d(v, H) 6 2(r − 1)− 2 = 2(r − 2). Thus by (1) and induction on n,

e(G) = e(H)+ e(G − H, H)+ e(G − H)
6 (r − 1)(r − 2)+ 2(r − 2)(n − (r − 1))+ 2tr−1(n − (r − 1))

= 2
(
(r − 1)(r − 2)

2
+ (r − 2)(n − (r − 1))+ tr−1(n − (r − 1))

)
= 2tr−1(n).

COROLLARY 4.3. Let G be a multigraph on n vertices. If δ(G) > 2(1 −
1/(r − 1))n or e(G) > (1− 1/(r − 1))n2, then K̄r ⊆ G.

First note that Theorem 4.2 and Corollary 4.3 immediately imply the
analogous digraph versions. Observation 4.1 shows that the density conditions in
Theorem 4.2 and Corollary 4.3 to force a copy of K̄r are best possible; however,
one may wonder if the same density conditions could force a multigraph K
whose complement contains a matching on at most br/2c − 1 light edges. The
following observation shows that this is not the case.

OBSERVATION 4.4. Let K be a multigraph on r vertices such that the
complement of K is a matching with at most br/2c − 1 light edges. If r is
even, let n ∈ rN and if r is odd, let n ∈ (r + 1)N. For sufficiently large n, there
exists a multigraph G on n vertices with (significantly) more than 2tr−1(n) edges
for which K 6⊆ G.

Proof. First suppose r is even and n = rk. Let G be an r/2-partite multigraph
with all parts of size 2k = 2n/r . Inside each part put all possible light edges and
between the parts put all possible heavy edges. We have

e(G) = n2
− n −

r
2

(
2n/r

2

)
=

(
1−

1
r
−

1
2n

)
n2,

which is much larger than (1− 1/(r − 1))n2 > 2tr−1(n).
Now suppose r is odd and n = (r+1)k. Let G be an (r+1)/2-partite multigraph

with all parts of size 2k = 2n/(r +1). Inside each part put all possible light edges

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.2
Downloaded from https://www.cambridge.org/core. University of South Florida Libraries, on 26 Feb 2020 at 20:02:42, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.2
https://www.cambridge.org/core


A. Czygrinow et al. 14

and between the parts put all possible heavy edges. We have

e(G) = n2
− n −

r + 1
2

(
2n/(r + 1)

2

)
=

(
1−

1
r + 1

−
1

2n

)
n2,

which is much larger than (1− 1/(r − 1))n2 > 2tr−1(n).
Note that in each case G contains no copy of K .

Finally, we address the issue of the structure of K̄r -free multigraphs with
2tr−1(n) edges. Let D∗2(n) be the family of digraphs obtained by partitioning n
as n = n1 + · · · + nk such that n1, . . . , nk are positive integers and at most one
of the ni s is odd, and taking k disjoint copies, D1, . . . , Dk of D2(n1), . . . , D2(nk),
then adding all edges directed from Di to D j for all 1 6 i < j 6 k. In particular,
note that D2(n) ∈ D∗2(n). Brown and Harary [4] proved that if T ∈ Tr and D
is a T -free digraph on n vertices with 2tr−1(n) edges, then D ∼= Dr−1(n) unless
T = C3 in which case D ∈ D∗2(n). The following observation shows that in our
case, there is a whole family of tightness examples. Let M∗

2(n) be the family of
multigraphs underlying the digraphs in D∗2(n).

OBSERVATION 4.5. Given r > 4, let n ∈ rN and let M∗

r−1(n) be the family of
multigraphs on n vertices which can be obtained from Mr−1(n) by the following
process. Take disjoint pairs of colour classes and replace each such pair with a
copy of M ∈M∗

2(2n/r), leaving all other edges between the sets as they were.
Then every M ∈M∗

r−1(n) does not contain K̄r .

Proof. Let M ∈M∗

r−1(n), let X1, . . . , Xs be the colour classes from M which
were not modified, and let Y1, . . . , Yt be the sets from M which appeared as a
result of merging two of the original colour classes. We have r − 1 = s + 2t
and thus any copy of K̄r must contain at least 2 vertices from some X i , which is
clearly not possible, or at least 3 vertices from some Y j , which would imply that
Y j contains a copy of K̄3, which is not the case. Thus K̄r /∈ M .

It would be interesting to determine whether every K̄r -free multigraph on
2tr−1(n) edges is a member of M∗

r−1(n), and more generally, whether every K̄r -
free multigraph on 2tr−1(n)− o(n2) edges is sufficiently ‘close’ (in edit-distance)
to some member of M∗

r−1(n).

5. A regularity lemma for standard multigraphs

In the proof of Theorems 1.8 and 7.2 we apply a version of Szemerédi’s
regularity lemma [25] for multigraphs. Before we state it we need some more
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Tiling directed graphs with tournaments 15

definitions. The density of a bipartite graph G = (A, B) with vertex classes A
and B is defined to be

dG(A, B) :=
eG(A, B)
|A||B|

.

We write d(A, B) if this is unambiguous. Given any ε > 0 we say that G is ε-
regular if for all X ⊆ A and Y ⊆ B with |X | > ε|A| and |Y | > ε|B| we have that
|d(X, Y )− d(A, B)| < ε.

Given disjoint vertex sets A and B in a graph G, we write (A, B) for the induced
bipartite subgraph of G whose vertex classes are A and B. If G is a multigraph
and A, B ⊆ V (G) are disjoint, then we write (A, B)iG for the bipartite graph with
vertex classes A and B where a ∈ A and b ∈ B are adjacent in (A, B)iG precisely
if µ(ab) = i in G.

The next well-known observation (see [16] for example) states that a large
subgraph of a regular pair is also regular.

LEMMA 5.1. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A, B) be an ε-regular
pair of density d. Suppose A′ ⊆ A and B ′ ⊆ B where |A′|> α|A| and |B ′|> α|B|.
Then (A′, B ′) is an ε′-regular pair with density d ′ where |d ′ − d| < ε.

The following result will be applied in the proof of Theorem 6.1. It is (for
example) a special case of [1, Corollary 2.3].

LEMMA 5.2. Let ε, d > 0 and m, r, t ∈ N such that 0 < 1/m � ε � d � 1/r
and t 6 r . Let H be a graph obtained from Kr by replacing every vertex of Kr

with m vertices and replacing each edge of Kr with an ε2-regular pair of density
at least d. Then H contains a K t -tiling covering all but at most εmr vertices.

We apply the following version of the regularity lemma, which is an immediate
corollary of a 2-coloured regularity lemma from [3] (Theorem 2.4). This result in
turn is easy to derive from the many-colour regularity lemma presented in [18]
(Theorem 1.18).

LEMMA 5.3 (Degree form of multigraph regularity lemma). For any ε > 0 and
M ′ ∈ N, there exists M = M(ε,M ′) such that the following holds. Let G be a
standard multigraph on n vertices and let 0 6 d 6 1. Then there exists a partition
{V0, V1, . . . , Vk} of V (G) with M ′ 6 k 6 M and a spanning subgraph G ′ of G
with the following properties:
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A. Czygrinow et al. 16

(i) |V0| 6 εn;

(ii) all clusters Vi , i ∈ [k], are of the same size ((1− ε)/M)n 6 (n − |V0|)/k =
|V1| 6 n/M ′;

(iii) dG ′(v) > dG(v)− (4d + 2ε)n for all v ∈ V (G ′);

(iv) e(G ′[Vi ]) = 0 for all i ∈ [k];

(v) for all 1 6 i < j 6 k and c ∈ [2], the pair (Vi , V j)
c
G ′ is ε-regular with

density either 0 or at least d.

We call V1, . . . , Vk clusters, V0 the exceptional set and G ′ the pure multigraph.
Given a multigraph G, and parameters ε, d,M ′, we define the reduced multigraph
Γ as follows: Let {V0, V1, . . . , Vk} be the partition and G ′ be the subgraph of
G obtained from an application of Lemma 5.3 with parameters ε, d,M ′. We let
V (Γ ) = {V1, . . . , Vk} and (i) if (Vi , V j)

2
G ′ has density at least d we place a heavy

edge between Vi and V j in Γ ; (ii) if (Vi , V j)
2
G ′ has density 0 and (Vi , V j)

1
G ′ has

density at least d we place a light edge between Vi and V j in Γ ; (iii) otherwise Vi

and V j are not adjacent in Γ .
The next result implies that the minimum degree of a multigraph is almost

inherited by its reduced multigraph.

LEMMA 5.4. Let ε > 0, d ∈ [0, 1], M ′, n ∈ N and let G be a multigraph on
n vertices. Let G ′ be the pure multigraph and Γ be the reduced multigraph
obtained by applying Lemma 5.3 to G with parameters ε, d and M ′. Then
δ(Γ ) > (δ(G)/n − (8d + 6ε))|Γ |.

Proof. Note that for all Vi ∈ V (Γ ),

dΓ (Vi) = d1
Γ (Vi)+ 2d2

Γ (Vi) = |NΓ (Vi)| + d2
Γ (Vi).

Let v ∈ Vi . Notice that NG ′(v) intersects at least (|NG ′(v)| − |V0|)/|V1| clusters
and thus by Lemma 5.3,

|NΓ (Vi)| > (|NG ′(v)| − |V0|)/|V1| > (d1
G(v)+ d2

G(v)− (4d + 3ε)n)/|V1|.

Also note that N 2
G ′(v) intersects at least (|N 2

G ′(v)| − |V0|)/|V1| clusters and thus
by Lemma 5.3,

d2
Γ (Vi) > (|N 2

G ′(v)| − |V0|)/|V1| > (d2
G(v)− (4d + 3ε)n)/|V1|.
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Tiling directed graphs with tournaments 17

Altogether this gives

dΓ (Vi) = |NΓ (Vi)| + d2
Γ (Vi) > (d1

G(v)+ d2
G(v)− (4d + 3ε)n)/|V1|

+ (d2
G(v)− (4d + 3ε)n)/|V1|

= (d1
G(v)+ 2d2

G(v)− (8d + 6ε)n)/|V1|

> (δ(G)/n − (8d + 6ε))|Γ |.

Therefore, δ(Γ ) > (δ(G)/n − (8d + 6ε))|Γ |, as claimed.

6. Almost tiling multigraphs with K̄r

In order to prove Theorem 1.8, we apply (a corollary of) the following result.
Roughly speaking, it states that every standard multigraph with minimum degree
slightly greater than that in Theorem 1.8 contains an almost perfect K̄r -tiling.

THEOREM 6.1. Let n, r ∈ N where r > 2 and η > 0 such that 0 < 1/n � η �

1/r . Suppose that G is a standard multigraph on n vertices such that

δ(G) > 2(1− 1/r + η)n.

Then G contains a K̄r -tiling covering all but at most ηn vertices.

The next result is the key tool in the proof of Theorem 6.1.

LEMMA 6.2. Let η, γ > 0 and n, r > 2 be integers such that 0 < 1/n � γ �

η � 1/r . Let G be a standard multigraph on n vertices so that

δ(G) > 2(1− 1/r + η)n. (2)

Further, suppose that the largest K̄r -tiling in G covers precisely n′ 6 (1 − η)n
vertices. Then there exists a (K̄r ∪ K̄r+1)-tiling in G that covers at least n′ + γ n
vertices.

Proof. Certainly Theorem 4.2 and (2) imply that n′ > ηn. Let M denote a K̄r -
tiling in G containing precisely n′ vertices so that the total number of edges in M
is maximized. Set n′′ := n − n′ and G ′′ := G \ V (M).

CLAIM 6.3. There are at least γ n vertices x ∈ V (G ′′) such that dG(x, V (M)) >
2(1− 1/r)n′ + 2γ n.

Suppose for a contradiction the claim is false. Then by (2), at least n′′−γ n vertices
y ∈ V (G ′′) are such that dG ′′(y) > 2(1−1/r+η)n−2(1−1/r)n′−2γ n > 2(1−
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A. Czygrinow et al. 18

1/r+η/2)n′′. Thus by Theorem 4.2, G ′′ contains a copy of some U ∈ K̄r . But then
together with M, this forms a K̄r -tiling on n′+ r vertices in G, a contradiction to
the maximality of M. This proves the claim.

Given any x ∈ V (G ′′) such that dG(x, V (M)) > 2(1−1/r)n′+2γ n, there are
at least γ n elements U in M so that dG(x,U ) > 2r − 1. If dG(x,U ) = 2r , then
since U ∈ K̄r , V (U ) ∪ {x} spans a copy of an element of K̄r+1 in G. Otherwise
there is precisely one vertex y ∈ V (U ) such that xy is a light edge.

Suppose that for some z ∈ V (U ) \ {y}, zy is a light edge in G. Then since there
are all possible edges between x and V (U ) \ {y}, (V (U ) \ {y})∪{x} spans a copy
of some U ′ ∈ K̄r such that |E(U ′)| = |E(U )| + 1 . This is a contradiction to the
choice of M. Thus for all z ∈ V (U ) \ {y}, yz is a heavy edge. This implies that
V (U ) ∪ {x} spans a copy of some U ′ ∈ K̄r+1.

Claim 6.3 implies there are at least γ n vertices x ∈ V (G ′′) such that dG(x,
V (M)) > 2(1 − 1/r)n′ + 2γ n. So for at least γ n such vertices x , we can pair
them off with distinct elements U of M so that V (U ) ∪ {x} spans a copy of an
element of K̄r+1. This therefore implies that there exists a (K̄r ∪ K̄r+1)-tiling in G
that covers at least n′ + γ n vertices, as desired.

The next simple observation will be used in the proof of Theorem 6.1 to convert
a (K̄r∪ K̄r+1)-tiling in the reduced multigraph Γ of G into a K̄r -tiling in the blow-
up Γ (r) of Γ .

FACT 6.4. Suppose that r, t ∈ N such that r divides t . If U ∈ (K̄r ∪ K̄r+1) then
U (t) contains a perfect K̄r -tiling.

We are now ready to prove Theorem 6.1. We repeatedly apply Lemma 6.2
and Fact 6.4 to obtain an almost perfect K̄r -tiling in a blow-up of the reduced
multigraph of G. Applying Lemma 5.2 will then yield an almost perfect K̄r -tiling
in G. Arguments of a similar nature were applied in [8, 16, 28].

Proof of Theorem 6.1. Define additional constants ε, d, γ and M ′ ∈ N so that
0 < 1/n� 1/M ′ � ε� d � γ � η� 1/r . Set z := d1/γ e. Apply Lemma 5.3
with parameters ε, d and M ′ to G to obtain clusters V1, . . . , Vk , an exceptional set
V0 and a pure multigraph G ′. Set m := |V1| = · · · = |Vk |. Let Γ be the reduced
multigraph of G with parameters ε, d and M ′. Lemma 5.4 implies that

δ(Γ ) > 2(1− 1/r + η/2)k. (3)

CLAIM 6.5. Γ ′ := Γ (r z) contains a K̄r -tiling covering at least (1 − η/2)kr z
=

(1− η/2)|Γ ′| vertices.
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Tiling directed graphs with tournaments 19

If Γ contains a K̄r -tiling covering at least (1 − η/2)k vertices then Fact 6.4
implies that Claim 6.5 holds. So suppose that the largest K̄r -tiling in Γ covers
precisely ` 6 (1−η/2)k vertices. Then by Lemma 6.2, Γ contains a (K̄r ∪ K̄r+1)-
tiling that covers at least ` + γ k vertices. Thus, by Fact 6.4, Γ (r) contains a
K̄r -tiling covering at least (` + γ k)r vertices. (So at least a γ -proportion of the
vertices in Γ (r) are covered.) Further, by definition of Γ (r) and (3),

δ(Γ (r)) > 2(1− 1/r + η/2)kr.

If Γ (r) contains a K̄r -tiling covering at least (1 − η/2)kr vertices then again
Fact 6.4 implies that the claim holds. So suppose that the largest K̄r -tiling in
Γ (r) covers precisely `′ 6 (1 − η/2)kr vertices. Recall that `′ > (` + γ k)r . By
Lemma 6.2, Γ (r) contains a (K̄r ∪ K̄r+1)-tiling that covers at least `′ + γ kr >
(` + 2γ k)r vertices. Thus, by Fact 6.4, Γ (r 2) contains a K̄r -tiling covering at
least (` + 2γ k)r 2 vertices. (So at least a 2γ -proportion of the vertices in Γ (r 2)

are covered.) Repeating this argument at most z times we see that the claim holds.
For each 1 6 i 6 k, partition Vi into classes V ∗i , Vi,1, . . . , Vi,r z where m ′ :=
|Vi, j | = bm/r z

c> m/(2r z) for all 1 6 j 6 r z . Since mk > (1−ε)n by Lemma 5.3,

m ′|Γ ′| =
⌊

m/r z
⌋

kr z > mk − kr z > (1− 2ε)n. (4)

Let c ∈ [2]. Lemma 5.1 implies that if (Vi1, Vi2)
c
G ′ is ε-regular with density

at least d then (Vi1, j1, Vi2, j2)
c
G ′ is 2εr z-regular with density at least d − ε > d/2

(for all 1 6 j1, j2 6 r z). In particular, we can label the vertex set of Γ ′ so that
V (Γ ′) = {Vi, j : 1 6 i 6 k, 1 6 j 6 r z

} where, for c ∈ [2], µ(Vi1, j1 Vi2, j2) = c in
Γ ′ implies that (Vi1, j1, Vi2, j2)

c
G ′ is 2εr z-regular with density at least d/2.

By Claim 6.5, Γ ′ has a K̄r -tiling M that contains at least (1−η/2)|Γ ′| vertices.
Consider any element U in M and let V (U ) = {Vi1, j1, Vi2, j2, . . . , Vir , jr }. Set V ′

to be the union of Vi1, j1, Vi2, j2, . . . , Vir , jr . Note that 0 < 1/m ′ � 2εr z
� d/2 �

γ � 1/r . Thus, Lemma 5.2 implies that G ′[V ′] contains a K̄r -tiling covering all
but at most

√
2εr zm ′r 6 γm ′r vertices. (Here we are using that a heavy edge in

Γ ′ corresponds to a 2εr z-regular pair in G ′ consisting only of heavy edges, and a
light edge in Γ ′ corresponds to a 2εr z-regular pair in G ′ consisting only of light
edges.) By considering each element in M we conclude that G ′ ⊆ G contains a
K̄r -tiling covering at least

(1− γ )m ′r × (1− η/2)|Γ ′|/r
(4)
> (1− γ )(1− η/2)(1− 2ε)n > (1− η)n

vertices, as desired.
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A. Czygrinow et al. 20

The following result is a simple consequence of Theorem 6.1.

COROLLARY 6.6. Let r > 2 and 0 < 1/n � η � 1/r . Suppose that G is a
multigraph on n vertices such that

δ(G) > 2(1− 1/r − η)n.

Then G contains a K̄r -tiling covering all but at most 4r 2ηn vertices.

Proof. Add n′ := d2ηn/(1/r − η)e vertices to G which send out heavy edges to
all other vertices (including each other). Call the resulting multigraph G∗. Since

δ(G∗)= δ(G)+2n′= δ(G)+2(1−1/r+η)n′+2(1/r−η)n′>2(1−1/r+η)(n+n′),

we can apply Theorem 6.1 to G∗ to obtain a K̄r -tiling in G∗ covering all but
at most η(n + n′) vertices. Removing all those tiles that contain vertices from
V (G∗) \ V (G), we obtain a K̄r -tiling in G that covers all but at most η(n + n′)+
(r − 1)n′ 6 4r 2ηn of the vertices of G, as desired.

7. Almost perfect tilings in the nonextremal case

Suppose that, in the proof of Theorem 1.8 we have found a small absorbing set
M . Ideally, we would next like to apply Corollary 6.6 to conclude that G \ V (M)
contains an almost perfect Ur -tiling M, and then use M to cover the remaining
vertices, thereby obtaining a perfect Ur -tiling in G. However, to achieve this we
would require that the set of vertices uncovered by M is much smaller than the
size of the absorbing set M . Corollary 6.6 does not guarantee this though. Indeed,
this is because the size of the set of uncovered vertices in Corollary 6.6 is large
compared to the parameter η. Worst still, it is easy to see that the conclusion of
Corollary 6.6 is false if we replace 4r 2ηn with a term significantly smaller than
ηn.

Therefore, instead we show that the conclusion of Corollary 6.6 can be
strengthened in the desired way if our multigraph G is far from extremal. (This
strengthening will be at the cost of no longer guaranteeing an almost perfect K̄r -
tiling, but rather an almost perfect K′r -tiling.) This will ensure that we can then
use the above approach in the nonextremal case (we then have to deal with the
extremal case separately).

To precisely describe the multigraphs that are far from extremal, we use the
following definition.

DEFINITION 7.1. Given γ > 0 and r ∈ N, we say that a multigraph G on n
vertices is (1/r, γ )-extremal if
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Tiling directed graphs with tournaments 21

(i) there exists S ⊆ V (G) such that ||S| − n/r | < γ n and e(G[S]) < γ n2; or

(ii) there exists S ⊆ V (G) such that ||S| − 2n/r | < γ n and e2(G[S]) < γ n2.

The aim of this section is to prove the following result.

THEOREM 7.2. Let n, r ∈ N where r > 2 and α, η, γ > 0 such that 0 < 1/n �
α � η � γ � 1/r and let G be a multigraph on n vertices. If G is not (1/r, γ )-
extremal and

δ(G) > 2(1− 1/r − η)n,

then G contains a K′r -tiling covering all but at most αn vertices.

The proof of Theorem 7.2 makes use of Corollary 6.6. The next result will be
used to convert an almost perfect tiling of a multigraph with universal graphs into
a perfect tiling.

LEMMA 7.3. Let n, r ∈ N where r > 2 and τ, γ ′ > 0 such that 0 < 1/n � τ �

γ ′ � 1/r and let G be a multigraph on n vertices. If G is not (1/r, γ ′)-extremal,
δ(G) > 2(1− 1/r − τ)n, and there exists a K̄r -tiling covering all but one vertex,
then G contains a perfect (K′r ∪K′r+1)-tiling in which all but at most three of the
tiles are copies of K̄r .

Proof. Let T = {T1, . . . , Tm} be the K̄r -tiling in G and let v∗ be the leftover
vertex. If there exists T ∈ T such that d(v∗, T ) > 2r−1, then we obtain a perfect
(K′r ∪ K′r+1)-tiling in which all but one of the tiles are copies of K̄r . So suppose
that this is not the case. Then for all but at most

(2r − 2)|T | − δ(G) = 2(1− 1/r)(n − 1)− δ(G) 6 3τn (5)

of the T ∈ T , d(v∗, T ) = 2r − 2.
If there exists T ∈ T such that d(v∗, T ) = 2r − 2, then we could move v∗ into

T to create a copy of K′r+1 unless:

(α) there exists u ∈ V (T ) such that µ(v∗u) = 0 in G or;

(β) u1, u2 ∈ V (T ) are light neighbours of v∗ in G and either

(a) u1u2 is a light edge or;

(b) u1 and u2 are incident with distinct light edges in T .

So we may suppose that one of (α) and (β) holds whenever d(v∗, T ) = 2r − 2.
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A. Czygrinow et al. 22

Let
B∗i := {u ∈ T ∈ T : d(v∗, T ) = 2r − 2 and µ(v∗u) = i}.

Set B∗ := B∗0 ∪ B∗1 . Let T ∗ to be the set of tiles in T which contain a vertex
from B∗. Call an edge of G useful if it either has both endpoints in B∗0 , or it has
one endpoint in B∗0 and the other in B∗1 , or it is a heavy edge with both endpoints
in B∗1 .

Given distinct T, T ′ ∈ T ∗, we say that the ordered pair (T, T ′) is bad if

(i) there exists b ∈ B∗ ∩ T such that d(b, T ′) 6= 2r − 2 or failing this;

(ii) there exists some b′ ∈ B∗∩ T ′ such that d(b′, T ) = 2r −2, and some x ∈ T
such that b′x is not a heavy edge and d(x, T ′) 6= 2r − 2.

If neither (T, T ′) nor (T ′, T ) are bad, then we say that {T, T ′} is good.
First we show that nonextremality guarantees that there is a useful edge bb′

between a good pair {T, T ′}. Then we show how to use such a configuration to
get the desired tiling which uses v∗.

Define an auxiliary digraph D with vertex set T ∗ where there is an edge from
T to T ′ if (T, T ′) is bad.

Note that if there exists a b ∈ B∗ where b ∈ T ∈ T ∗ and a T ′ ∈ T \ {T } such
that d(b, T ′) > 2r − 1, then we obtain our desired perfect (K′r ∪ K′r+1)-tiling
by moving b to T ′ to create a K̂r+1 and then moving v∗ to T to create a K̂r (b
was a problem vertex for v∗; moving it out of T means that we can move v∗ in).
So we may assume that such a b does not exist. Therefore, for all b in B∗, by a
computation similar to (5), we have that d(b, T ′) = 2r − 2 for all but at most 3τn
of the T ′ ∈ T . In particular, for a fixed T ∈ T ∗ there are at most 6τn T ′ ∈ T ∗
such that (T, T ′) satisfies (i) in the definition of bad.

Given distinct T, T ′ ∈ T ∗, suppose there exists b′ ∈ B∗ ∩ T ′ such that d(b′,
T ) = 2r − 2, and some x ∈ T such that b′x is not a heavy edge and d(x, T ′) >
2r − 1. By the previous paragraph, x 6∈ B∗. So T ∪ T ′ ∪ {v∗} spans two disjoint
copies of K̂r and K ′r+1. (The vertex set of the former tile is T − x + b′, the latter
T ′ − b′ + x + v∗.) In particular, we obtain our desired perfect (K′r ∪K′r+1)-tiling.
So we may assume that such an x does not exist.

Given distinct T, T ′ ∈ T ∗, suppose there exists b′ ∈ B∗ ∩ T ′ such that d(b′,
T ) = 2r − 2, and some x ∈ T such that b′x is not a heavy edge. Further, suppose
there exists T ′′ ∈ T \ {T, T ′} such that d(x, T ′′) > 2r − 1. We can move x to
T ′′ to create a K̂r+1, move b′ to T to create a K̂r and move v∗ to T ′ to create a
K̂r . In particular, we obtain our desired perfect (K′r ∪ K′r+1)-tiling. Thus, we may
assume that this is not the case.

Fix T ∈ T ∗. Suppose there are at least 3rτn T ′ ∈ T ∗ such that (T, T ′) satisfies
(ii) in the definition of bad. Then there exists some vertex w ∈ T that plays the
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role of x in (ii) for at least 3τn such T ′. But then the previous two paragraphs
imply that

dG(w) 6 3τn(2r − 3)+ (|T | − 3τn)(2r − 2)+ 2 < δ(G),

a contradiction.
Altogether this implies that D has maximum outdegree at most 6rτn and so

e(D) 6 6rτn2.
We now show that there are more than 6rτn2 (unordered) pairs {T, T ′} where

T, T ′ ∈ T ∗ and so that there is a useful edge in G with one endpoint in T and
the other in T ′. Then for at least one such {T, T ′} we have that neither (T, T ′) nor
(T ′, T ) is a bad pair.

By the nonextremality of G, if |B∗0 | > (1 − γ ′)(n/r) we have at least γ ′n2
�

6rτn2 useful edges in G[B∗0 ]. If |B∗| > (1 − γ ′)(2n/r), then we have at least
γ ′n2
� 6rτn2 heavy edges in G[B∗], all of which are useful (and at most n of

these edges go between vertices in the same tile from T ∗). Note that there are at
most 4 useful edges between any T and T ′ from T ∗. So we can assume that both
|B∗0 |< (1−γ

′)(n/r) and |B∗|< (1−γ ′)(2n/r). With the fact that |T | = (n−1)/r ,
(5) implies that,

|B∗| + |B∗0 | = 2|B∗0 | + |B
∗

1 | = 2|T ∗| > 2(|T | − 3τn) >
(

1−
γ ′

4

)
2n
r
. (6)

So |B∗| < (1 − γ ′)(2n/r) implies that |B∗0 | > γ ′n/r , and |B∗0 | < (1 − γ ′)(n/r)
implies that |B∗| > (1+γ ′/2)(n/r). Therefore, each of the at least γ ′n/r vertices
in B∗0 is incident to at least |B∗|+ δ(G)/2− n > (γ ′n)/(4r) useful edges. In total
we have at least (1/2)× (γ ′n)/(4r)× (γ ′n)/r � 6rτn2 useful edges in G which
ensures we find our desired pair {T, T ′}.

Now that we have a useful edge between a good pair, the next two claims show
that this is sufficient to give us the desired perfect (K′r ∪K′r+1)-tiling.

CLAIM 7.4. Let T, T ′ ∈ T ∗ be distinct and let X ⊆ T and X ′ ⊆ T ′ such that for
all x ∈ X, d(x, T ′) = 2r − 2 and for all x ′ ∈ X ′, d(x ′, T ) = 2r − 2.

(i) If there exist x ∈ X and x ′ ∈ X ′ such that µ(xx ′) = 0, then T − x + x ′ and
T ′ − x ′ + x are both copies of K̄r .

(ii) If there exist x ∈ X and x ′ ∈ X ′ such that µ(xx ′) = 1, then T − x + x ′ and
T ′ − x ′ + x are both copies of K̂r .

(iii) If the bipartite graph of light edges induced by X, X ′ is 2-regular, then T −
X + X ′ and T ′ − X ′ + X are both copies of K̄r .
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The claim follows immediately if µ(xx ′) = 0. If µ(xx ′) = 1, then each vertex
x, x ′ has one other light neighbour, each of which would create a K̂r after the
switch. In the last case, all of the light neighbours of each vertex x, x ′ are being
moved to the other side.

CLAIM 7.5. Suppose T, T ′ ∈ T ∗ are distinct and there is a useful edge bb′ where
b ∈ T , b′ ∈ T ′ such that d(b, T ′) = 2r−2 and d(b′, T ) = 2r−2. Further suppose
that for all w ∈ T , if wb′ is not heavy, then d(w, T ′) = 2r − 2 and for all w′ ∈ T ′

if w′b is not heavy, then d(w′, T ) = 2r − 2. Then there is a (K′r ∪K′r+1)-tiling in
G covering precisely the vertices in V (T ) ∪ V (T ′) ∪ {v∗}.

To prove the claim, we split the argument into three cases.

Case 1. There exists w ∈ T \ {b} or w′ ∈ T ′ \ {b′} such that either µ(bw′) = 0
or µ(b′w) = 0. Without loss of generality, suppose µ(b′w) = 0. Switch b′ and w.
By Claim 7.4(i), T −w + b′ and T ′ − b′ +w are K̄r s. Since bb′ is a useful edge,
v∗ sends at least 2r − 2 edges to T ′ − b′ + w. If v∗ sends at least 2r − 1 edges
to T ′ − b′ + w then T ′ − b′ + w + v∗ is a copy of K̂r+1. If v∗ sends precisely
2r − 2 edges to T ′ − b′ +w then w must be a light neighbour of v∗ in G. Further,
as µ(b′w) = 0 and d(w, T ′) = 2r − 2, we have that w sends all possible edges
to T ′ − b′ +w, that is d(w, T ′ − b′ +w) = 2r − 2. In particular, (α) and (β) do
not hold (where T ′ − b′ + w is playing the role of T ). Thus, T ′ − b′ + w + v∗ is
a copy of K′r+1.

Case 2. b ∈ B∗0 or b′ ∈ B∗0 .

Without loss of generality, suppose b ∈ B∗0 . Since we are not in the first case, b has
two light neighbours in T ′. In particular, there exists x ′ ∈ V (T ′)\B∗0 that is a light
neighbour of b. Switch b and x ′. By Claim 7.4(ii), T − b+ x ′ and T ′− x ′+ b are
copies of K̂r . In particular, T − b+ x ′ has the property that if T − b+ x ′ contains
a light path on 3 vertices, then x ′ is an endpoint of this path. Furthermore since
x ′ /∈ B∗0 and µ(v∗b) = 0, v∗ sends at least 2r − 1 edges to T − b + x ′. Moreover,
if d(v∗, T − b + x ′) = 2r − 1, then µ(v∗x ′) = 1 and thus T − b + x ′ + v∗ is a
copy of K′r+1.

Case 3: b, b′ ∈ B∗1 .

Let B∗1 ∩ T = {b1, b2} and B∗1 ∩ T ′ = {b′1, b′2} with b1 = b and b′1 = b′. By the
definition of a useful edge, µ(b1b′1) = 2. Since we are not in Case 1, there exists
x ′ ∈ V (T ′) \ B∗1 that is a light neighbour of b1 and there exists x ∈ V (T ) \ B∗1
that is a light neighbour of b′1 (see Figure 3(i)). Since T ′ − x ′ + b1 ∈ K̂r , we may
assume that T−b1+x ′+v∗ /∈ K′r+1 – this implies that the other light neighbour of
x ′ in T must be b2 and that b2 must have a light neighbour in T −b1. Similarly, we
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Figure 3. Case 3: Note that the light edges in T and T ′ (not shown) form a
matching.

can assume T ′ − b′1 + x + v∗ /∈ K′r+1, so xb′2 is a light edge and b′2 has a (unique)
light neighbour in T ′ − b′1. Therefore, both b1b2 and b′1b′2 are heavy edges (see
Figure 3(ii)).

Suppose b1b′2 is not a light edge, so b1 has a light neighbour x ′2 ∈ V (T−x ′)\B∗1 .
As in the previous case, since T ′−x ′2+b1 ∈ K̂r we may assume that T −b1+x ′2+
v∗ /∈ K′r+1. So it must be that x ′2b2 is a light edge. Now b1x ′b2x ′2 forms a 4-cycle
of light edges and by Claim 7.4(iii), we can switch b1, b2 for x ′, x ′2 and then add
v∗ to T − b1 − b2 + x ′ + x ′2 to obtain disjoint copies of K̄r and K̄r+1. Likewise,
we would be done if b′1b2 is not a light edge. So suppose both b1b′2 and b′1b2 are
light edges (see Figure 3(iii)). Then b1b′2xb′1b2x ′ forms a 6-cycle of light edges;
we simultaneously switch b1, b2, x for b′1, b′2, x ′ to obtain two disjoint copies of
K̄r . Recall b1b2 is a heavy edge so they both have distinct light neighbours in T .
Hence, at most one of b1 and b2 is a light neighbour of x . Therefore, we can add
v∗ to T ′− b′1− b′2− x ′+ b1+ b2+ x to form an element of K′r+1. This completes
the proof of the claim and thus the lemma.

We now combine Corollary 6.6 and Lemma 7.3 to obtain the following result.

PROPOSITION 7.6. Let n, r ∈ N where r > 2 and η, γ > 0 such that 0 < 1/n �
η � γ � 1/r and let G be a multigraph on n vertices. If G is not (1/r, γ )-
extremal and

δ(G) > 2(1− 1/r − η)n,

then G contains a perfect (K′r ∪K′r+1)-tiling.

Proof. Choose τ, γ ′ so that η � τ � γ ′ � γ � 1/r . By Corollary 6.6 there
exists a K̄r -tiling T covering all but at most 4r 2ηn vertices. Set U := V (G) \
V (T ).

To construct a perfect (K ′r ∪ K ′r+1)-tiling in G, we perform the following
iterative procedure. For each vertex v∗ uncovered by T we apply Lemma 7.3 once.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.2
Downloaded from https://www.cambridge.org/core. University of South Florida Libraries, on 26 Feb 2020 at 20:02:42, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.2
https://www.cambridge.org/core


A. Czygrinow et al. 26

In each iteration, we modify at most three elements of T . Each time we apply
Lemma 7.3, the multigraph under consideration is the subgraph of G induced by
V (T ′)∪ {v∗} where T ′ ⊆ T is the set of tiles in T that have not been modified in
any of the previous steps.

Suppose we have performed this procedure for every vertex in some U ′ ⊆ U .
Let G ′ be the subgraph under consideration and note that |G ′| > n − 3r |U ′| −
(|U | − 1), so

δ(G ′) > 2(1− 1/r − η)n − (n − |G ′|) > 2(1− 1/r − τ)|G ′|.

Furthermore, if S ⊆ V (G ′) and ||S|−|G ′|/r | 6 γ ′|G ′| or ||S|−2|G ′|/r | 6 γ ′|G ′|,
then ||S| − n/r | 6 γ n or ||S| − 2n/r | 6 γ n, respectively. Therefore, G ′ is not
(1/r, γ ′)-extremal, because γ n2 > γ ′|G ′|2. Hence, we may apply Lemma 7.3 a
total of |U | times to complete the proof.

We now apply the regularity lemma together with Proposition 7.6 to prove
Theorem 7.2.

Proof of Theorem 7.2. Define additional constants ε, d and M ′ ∈ N so that 1/n�
1/M ′ � ε � d � α. Apply Lemma 5.3 with parameters ε, d and M ′ to G to
obtain clusters V1, . . . , Vk , an exceptional set V0 and a pure multigraph G ′. Set
m := |V1| = · · · = |Vk |. Let Γ be the reduced multigraph of G with parameters
ε, d and M ′. Lemma 5.4 implies that

δ(Γ ) > 2(1− 1/r − 2η)k.

Suppose that there exists S ⊆ V (Γ ) such that ||S| − k/r | < γ k/4 and
e(Γ [S]) < γ k2/4. Let S = {Vi1, . . . , Vit } and S′ := Vi1 ∪ · · · ∪ Vit . Then
||S′| − km/r | < γ km/4 and so by Lemma 5.3(ii), ||S′| − n/r | < γ n.
Moreover, by Lemma 5.3(iv) and the definition of the reduced multigraph Γ ,
e(G ′[S′]) < (γ k2/4) · 2m2 6 γ n2/2. Thus, by Lemma 5.3(iii), e(G[S′]) < γ n2, a
contradiction as G is not (1/r, γ )-extremal. A similar argument shows that there
is no set S ⊆ V (Γ ) such that ||S| − 2k/r | < γ k/4 and e2(Γ [S]) < γ k2/4. Thus,
Γ is not (1/r, γ /4)-extremal.

Therefore, by Proposition 7.6, Γ contains a perfect (K′r ∪K′r+1)-tiling T . Note
that every induced subgraph of a copy of K′r+1 of size r is itself a copy of K′r .
Since ε � d � α, by repeatedly applying Lemma 5.2 for each of the tiles in T
we obtain a K′r -tiling in G covering all but at most αn vertices, as required.

8. The absorbing lemma

Let G be a multigraph and H be a collection of multigraphs. We call a set M ⊆
V (G) an H-absorbing set for W ⊆ V (G) if both G[M] and G[M ∪ W ] contain

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.2
Downloaded from https://www.cambridge.org/core. University of South Florida Libraries, on 26 Feb 2020 at 20:02:42, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.2
https://www.cambridge.org/core


Tiling directed graphs with tournaments 27

perfect H-tilings. Suppose that a nonextremal multigraph G as in Theorem 1.8
contains a small set M ⊆ V (G) that is a K′r -absorbing set for any very small set
W ⊆ V (G). Theorem 7.2 ensures that G \M contains an almost perfect K′r -tiling;
let W denote the set of uncovered vertices in G \ M . Then G[M ∪W ] contains a
perfect K′r -tiling, and thus G contains a perfect K′r -tiling, as required.

The next result gives a condition which forces a multigraph to contain an
absorbing set.

LEMMA 8.1 (Lo and Markström [22]). Let h, t ∈ N and let γ > 0. Suppose that
H is a collection of multigraphs, each on h vertices. Then there exists an n0 ∈ N
such that the following holds. Suppose that G is a multigraph on n > n0 vertices
so that, for any x, y ∈ V (G), there are at least γ nth−1 (th − 1)-sets X ⊆ V (G)
such that both G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings. Then V (G)
contains a set M so that

• |M | 6 (γ /2)hn/4;

• M is an H-absorbing set for any W ⊆ V (G) \ M such that |W | ∈ hN and
|W | 6 (γ /2)2hhn/32.

Lo and Markström [22] proved Lemma 8.1 for hypergraphs, however, the proof
of this result for multigraphs is identical.

We show that an absorbing set M exists if G is nonextremal and if additionally,
in the case when r = 4, G is not ‘splittable’. We use the following definition to
make this precise.

DEFINITION 8.2. Given γ > 0 and r = 2, 4, a multigraph G on n vertices is
(r, γ )-splittable if there exist disjoint sets U1,U2 ⊆ V (G) such that

• |U1|, |U2| > (1/2− γ )n and;

• if r = 2 then e(U1,U2) 6 γ n2; if r = 4 then e2(U1,U2) 6 γ n2.

To see why r is included in Definition 8.2 as it is, note that if δ(G) is ‘close’
to 2(1 − 1/2)n and G is (2, γ )-splittable, then G is ‘close’ to the multigraph
M3 that was defined in the introduction with r = 2 (see Figure 2). Similarly, if
δ(G) is ‘close’ to 2(1− 1/4)n and G is (4, γ )-splittable, then G is ‘close’ to the
multigraph M4 with r = 4.

The next result (Lemma 2.1 restated) together with Lemma 8.1 implies our
multigraph G contains an absorbing set.
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A. Czygrinow et al. 28

LEMMA 8.3. Let r > 3, 0 < 1/n � η, φ � γ � 1/r , and let G be a multigraph
on n vertices. If δ(G) > 2(1−1/r−η)n and G is not (1/r, γ )-extremal and either
r 6= 4 or G is not (4, γ )-splittable, then for all distinct x1, x2 ∈ V (G) there exist
at least (φn)r−1 (r − 1)-sets Y ⊆ V (G) such that G[Y ∪ {x1}] and G[Y ∪ {x2}]

both contain K′r .

We need the following lemma in the proof of Lemma 8.3.

LEMMA 8.4. Let 0 < 1/n � η � λ � γ � 1, and let G be a multigraph on
n vertices with δ(G) > (3/2 − 2η)n which is not (1/4, γ )-extremal and not (4,
γ )-splittable. For any disjoint sets U1,U2 ⊆ V (G) such that |U1|, |U2| > (1/2−
γ /5)n, there exists a collection T of copies of K̄3 in G[U1 ∪U2] such that |T | >
λn3 and for every T ∈ T , both V (T ) ∩ U1 and V (T ) ∩ U2 are nonempty, and if
T contains a light edge u1u2, then u1 ∈ U1 and u2 ∈ U2.

Proof. For T ∈ K̄3 such that T ⊆ G[U1 ∪ U2], we say that T is nice if both
V (T ) ∩ U1 and V (T ) ∩ U2 are nonempty, and either T has no light edges or T
has exactly one light edge u1u2 with u1 ∈ U1 and u2 ∈ U2. Since G is not (4,
γ )-splittable, there exist at least γ n2 heavy edges in G with one endpoint in U1

and one endpoint in U2. For each such edge u1u2, we either find (i) at least γ n/2
vertices u such that u1u2u is a nice K̄3, or (ii) at least γ n2 edges e such that ui e is
a nice K̄3 for some i ∈ [2]. A simple calculation then implies that we obtain our
desired collection of nice K̄3.

Let u1u2 be an edge in E2(U1,U2) such that ui ∈ Ui for i ∈ [2]. Pick i so that
d2(ui) > d2(u3−i) and note that

(3/2− 2η)n 6 |N 2(u3−i)| + |N (u3−i)| 6 |N 2(ui)| + |N (u3−i)|,

so |N 2(ui) ∩ N (u3−i)| > n/2− 2ηn. Since for every u ∈ N 2(ui) ∩ N (u3−i) ∩Ui ,
u1u2u is a nice K̄3, if |N 2(ui) ∩ N (u3−i) ∩Ui | > γ n/2 we are done. Otherwise,

|N 2(ui) ∩U3−i | > |N 2(ui) ∩ N (u3−i) ∩ (U1 ∪U2)| − |N 2(ui) ∩ N (u3−i) ∩Ui |

> [n/2− 2ηn + 2(1/2− γ /5)n − n] − γ n/2 > (1/2− γ )n.

Therefore, since G is not (1/4, γ )-extremal, there are at least γ n2 heavy edges in
G[N 2(ui) ∩U3−i ] and for each such edge e, ui e is a nice K̄3.

We are now ready to prove Lemma 8.3.

Proof of Lemma 8.3. Define λ so that η, φ � λ � γ . Fix distinct vertices x1,
x2 ∈ V (G) and let X := {x1, x2}. For any U ⊆ V (G) (with 0 6 |U | 6 r ) and
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integer i > 0, let

Si(U ) := {v ∈ V (G) \U : d(v,U ) > 2|U | − i}.

Note that when U = ∅, we trivially have Si(U ) = V (G). By the degree condition,

(2r − 2)|U |n/r − 2|U |ηn − |U |(|U | − 1) 6 eG(U, V (G) \U )
6 |S0(U )| + |S1(U )| + (2|U | − 2)n.

Therefore,
|S0(U )| + |S1(U )| > (2r − 2|U |)n/r − 3|U |ηn. (7)

So since |S1(U )| 6 n and S0(U ) ⊆ S1(U ),

|S0(U )| > (r − 2|U |)n/r − 3|U |ηn and (8)
|S1(U )| > (r − |U |)n/r − 3|U |ηn/2. (9)

Call an (r − 1)-set Y ⊆ V (G) good if both G[Y + x1] and G[Y + x2] contain
K′r . For t > 0 and 0 6 l 6 bt/2c, we say that a t-set Y ⊆ S0(X) is l-acceptable if
G[Y ] has exactly l light edges and either:

• t = 0;

• t > 0 and G[Y ] ∈ K̄t ; or

• t = r − 3 and G[Y ] ∈ K̂t .

If Y is l-acceptable for some 0 6 l 6 bt/2c, then we say that Y is acceptable; note
that if Y is an acceptable t-set, then both G[Y + x1] and G[Y + x2] contain K̂t+1.
For any acceptable t-set Y , let S∗1 (Y ) be the set of vertices v ∈ S1(Y ) ∩ S0(X)
such that if y is the unique light neighbour of v in Y , then y is incident to a light
edge in Y . Note that if Y is an l-acceptable t-set, v ∈ S∗1 (Y ) and y is unique
light neighbour of v in Y , then Y ′ := Y − y + v, is either (l − 1)-acceptable or
(l − 2)-acceptable depending on whether y is incident to one or two light edges
in Y . Recall that y can only be incident to two light edges in Y if t = r − 3 and y
is the middle vertex of a path on three vertices in Y that consists of light edges.

For 0 6 t 6 r − 3 and 0 6 l 6 bt/2c, say that an l-acceptable t-set Y is
λ-extendible if at least one of the following four conditions holds:

(i) t = 0, r is even and |S0(X)| > λn;

(ii) t = 0, r = 4, and there are at least (λn)3 3-sets Z such that Z is a good
3-set;
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(iii) (r − 1)− t is even, and there are at least (λn)2 2-sets Z such that Y ∪ Z is
either an acceptable (t + 2)-set or a good (r − 1)-set; or

(iv) |S∗1 (Y )| > λn.

If we assume that (iv) never holds, then Claim 8.5 below will imply that there
exists at least (φn)r−1 good (r − 1)-sets. Indeed, in this case

• if r is odd, then we can build good (r − 1)-sets two vertices at a time by
repeatedly using (iii);

• if r is even and (i) holds, then we can construct good (r − 1)-sets by first
selecting any of the λn vertices in S0(X) and then finish the construction by
repeatedly applying (iii); and

• if r is even and (i) does not hold, then (ii) must hold which immediately implies
that there are (λn)r−1 good (r − 1)-sets.

CLAIM 8.5. Let 0 6 t 6 r−3 and 0 6 l 6 bt/2c, and Y be an l-acceptable t-set.
If t = 0 or (r − 1)− t is even, then Y is λ-extendible.

To prove the claim, we may assume that (iv) does not hold throughout, that is

|S∗1 (Y )| < λn. (10)

Note that, by (8),
|S0(X)| > (r − 4)n/r − 6ηn. (11)

First assume that (r − 1)− t is even and let

U := S0(X) ∩ S0(Y ) = S0(X ∪ Y ).

Also define

U ′ := (S0(X) ∩ S1(Y )) \ S∗1 (Y ) when t 6 r − 5, or
U ′ := S1(X ∪ Y ) \ S∗1 (Y ) when t = r − 3.

When t 6 r − 5, (7), (10) and (11) imply that

|U | + |U ′| > (|S0(Y )| + |S0(X)| − n)+ (|S1(Y )| − |S∗1 (Y )| + |S0(X)| − n)
> 2(r − t − 4)n/r − 2λn. (12)

Assume that t 6 r − 7. If |U | > γ n/2, then first pick any z ∈ U , and then pick
any vertex z′ ∈ N 2(z) ∩ U ′ and note that Y + z + z′ is an acceptable (t + 2)-set.
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By (12), the minimum degree condition and the fact that U ⊆ U ′, we have that
there are at least

3n/r − λn − (2/r + 2η)n > n/r − 2λn

choices for z′. Note that there are at least (γ n/2)× (n/r − 2λn)× (1/2) > (λn)2

choices for {z, z′}, so (iii) in the definition of λ-extendible holds, as required. If
|U | < γ n/2, then pick any z ∈ U ′ \U and let y ∈ Y be the unique light neighbour
of z in Y . Recall that since z /∈ S∗1 (Y ), y has no light neighbours in Y . By (12),
|U ′ \ U | > 6n/r − 3λn and for any of the at least 2n/r − 2γ n vertices z′ ∈
N 2(z) ∩ N 2(y) ∩ U ′, Y + z + z′ is an acceptable (t + 2)-set. Note that there are
at least (6n/r − 3λn)× (2n/r − 2γ n)× (1/2) > (λn)2 choices for {z, z′}, so (iii)
in the definition of λ-extendible holds, as required.

When t = r − 5, (12) implies that

|U | + |U ′| > 2n/r − 2λn,

and when t = r − 3, (7) and (10) give that

|U | + |U ′| > |S0(X ∪ Y )| + |S1(X ∪ Y )| − |S∗1 (Y )| > 2n/r − 3(r − 1)ηn − λn.

Therefore, when t ∈ {r − 3, r − 5},

|U | + |U ′| > 2n/r − γ n/3. (13)

We either find at least λn2 light edges zz′ where z ∈ U and z′ ∈ U ′, or at least λn2

heavy edges in G[U ′]. Note that, in either of these two cases, when |Y | = r − 5,
G[Y + z + z′ + xi ] ∈ K̂r−2 for i ∈ [2], and when |Y | = r − 3, G[Y + z + z′ + xi ]

∈ K′r for i ∈ [2], so this will prove the claim. Suppose that we cannot find at
least λn2 such edges. By nonextremality, this implies that |U | < (1/r − γ )n and
|U ′| < (2/r − γ )n. Hence, by (13), |U | > 2γ n/3 and |U ′| > (1/r + 2

3γ )n.
Therefore, by the degree condition, any vertex in z ∈ U , is adjacent to at least
γ n/2 vertices z′ ∈ U ′, a contradiction.

We now show that if r is even and t = 0 and (i) in the definition of λ-extendible
does not hold, then (ii) must hold. So assume t = 0, r is even and |S0(X)| < λn.
This, with (8), implies that r = 4 so G is not (r, γ )-splittable. By the degree
condition, |S0(X)| < λn implies that

2n/r − 2ηn 6 |N 2(xi)| 6 2n/r + 2λn and |N (xi)| > (1− 3λ)n for i ∈ [2].

Therefore, if we let

Ui := (N 2(xi) ∩ N (x3−i)) \ N 2(x3−i) for i ∈ [2],
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then U1 and U2 are disjoint, and

|Ui | > (|N 2(xi)| + |N (x3−i)| − n)− |S0(X)| > (2/r − 5λ)n for i ∈ [2].

By Lemma 8.4, there are at least λn3 nice copies of K̄3 in G[U1 ∪ U2] (that is,
copies of K̄3 that intersect both U1 and U2 and that have at most one light edge
and such a light edge has one endpoint in U1 and the other in U2). The vertex set
of any such nice K̄3 is a good (r − 1)-set, as desired. This completes the proof of
the claim.

Assume for a contradiction that there are at most (φn)r−1 good (r − 1)-sets.
Let 0 6 t 6 r − 3 be the maximum t for which we have (φn)t acceptable t-sets
and either t = 0 or (r − 1) − t is even. Such a t exists, since ∅ is an acceptable
0-set. We can also assume that t > 0, since if Y = ∅, then S∗1 (Y ) = ∅ and (iv)
cannot hold, so Claim 8.5 implies that one of (i), (ii) or (iii) must hold, which
violates the maximality of t or the assumption that there are at most (φn)r−1 good
(r − 1)-sets. Let l be minimal such that if Y is the set of l-acceptable t-sets, then
|Y|> λ(λ/16)bt/2c−l(φn)t . There exists such an l, because λ� 1/r . By Claim 8.5,
each set Y ∈ Y is λ-extendible in one of two ways, so in particular there is some
subset of Y of order at least |Y|/2 for which all elements are extendible in the
same way, either (iii), or (iv). If the elements in this subset are all λ-extendible by
(iii), then, because φ � λ� 1/r , we have at least

(λn)2 · |Y|/2(t+2
2

) >
λ2/2 · λ(λ/16)bt/2c(t+2

2

) · φ−2
· (φn)t+2 > (φn)t+2

acceptable (t + 2)-sets or, if t = r − 3, more than (φn)r−1 good (r − 1)-sets. This
contradicts the maximality of t or the assumption that there are at most (φn)r−1

good (r − 1)-sets. (We divide by
(t+2

2

)
in the above calculation to account for the

fact there are
(t+2

2

)
different ways a (t + 2)-set can be constructed by adding 2

vertices to a t-set.)
Now assume that there are at least |Y|/2 l-acceptable t-sets that are extendible

by (iv). Let Y ′ be the collection of (l−1)-acceptable and (l−2)-acceptable t-sets
and set

Z := {Y + z : Y ∈ Y and z ∈ S∗1 (Y )}.

Our aim is to find a lower bound on |Y ′| which contradicts the minimality of l.
Let Z ∈ Z and let Y ∈ Y and z ∈ S∗1 (Y ) such that Y + z = Z . Note that the

choice of Y is not necessarily unique. Let z′ be the unique light neighbour of z in
Y and note that Y ′ = Y − z′ + z is in Y ′. Therefore, for every Z ∈ Z there exists
Y ′ ∈ Y ′ and z′ ∈ V (G), such that Z = Y ′ + z′ which implies that |Y ′| · n > |Z|.

Any Z ∈ Z is constructed by adding to some Y ∈ K̂t a vertex z ∈ S∗1 (Y ). So in
any Z ∈ Z there are most four vertices z′ ∈ Z such that there exists z′′ ∈ Z such
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that z′z′′ is a light edge and z′′ has at least two light neighbours in Z . Therefore,
for every Z ∈ Z , there are at most four different pairs (Y, z) such that Y ∈ Y ,
z ∈ S∗1 (Y ) and Z = Y + z. This implies that

|Z| > |Y|/2 · λn
4

> (λ/8) · λ(λ/16)bt/2c−l(φn)t · n,

so |Y ′| > (λ/8) · λ(λ/16)bt/2c−l(φn)t . Therefore, there are at least

λ(λ/16)bt/2c−(l−1)(φn)t

(l − 1)-acceptable t-sets or (l − 2)-acceptable t-sets, a contradiction to the
minimality of l.

9. The stability result

We now combine Lemmas 8.1 and 8.3 together with Theorem 7.2 to prove the
following result which ensures that Theorem 1.8 holds in the case when G is
nonextremal and additionally if r = 4, nonsplittable.

THEOREM 9.1. Let n, r ∈ N where r divides n and define η, γ > 0 such that
0 < 1/n � η � γ � 1/r . Let G be a multigraph on n vertices. If δ(G) >
2(1− 1/r − η)n and G is not (1/r, γ )-extremal and either r /∈ {2, 4} or G is not
(r, γ )-splittable, then G contains a perfect K′r -tiling.

Proof. First assume that r > 3. Define α, φ, η′, γ ′ > 0 so that 0 < 1/n � α �

φ � η � η′ � γ ′ � γ . Let G be as in the statement of the theorem. By
Lemma 8.3, given any x1, x2 ∈ V (G), there exist at least (φn)r−1 (r − 1)-sets
Y ⊆ V (G) such that both G[Y ∪ {x1}] and G[Y ∪ {x2}] contain elements of K′r .
Thus, by Lemma 8.1, V (G) contains a set M so that

• |M | 6 ((φ)r−1/2)r n/4;

• M is a K′r -absorbing set for any W ⊆ V (G) \ M such that |W | ∈ rN and
|W | 6 ((φ)r−1/2)2rrn/32.

Let G ′ := G \ V (M) and n′ := |G ′|. So as φ � η � η′,

δ(G ′) > 2(1− 1/r − η′)n′.

Further, as φ � γ ′ � γ , G ′ is not (1/r, γ ′)-extremal. Thus, by Theorem 7.2, G ′

contains aK′r -tiling covering all but at most αn′ < ((φ)r−1/2)2rrn/32 vertices. Let
W denote the set of these uncovered vertices. Then by definition of M , G[M∪W ]
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contains a perfect K′r -tiling. Altogether this implies that G contains a perfect K′r -
tiling, as desired.

Now assume that r 6 2. If r = 1 the theorem is trivial. For r = 2, we show
that there exists a perfect matching in H , the graph underlying the multigraph
G, that is H is the graph on V (G) in which there is an edge between x and y
if and only if there is either a light or heavy edge between x and y in G. We
have that n is even, η � γ � 1/2, δ(H) > (1/2 − η)n, G is not (1/2, γ )-
extremal and G is not (2, γ )-splittable. Let M be a maximum matching in H
and suppose M is not perfect. Note that the vertices unsaturated by M form an
independent set. Let w1, w2 be two vertices unsaturated by M and for i ∈ [2],
define Si := {v : uv ∈ M and u ∈ N (wi)}. Note that |S1|, |S2| > (1/2 − η)n
and there are no edges in H with one endpoint in S1 and the other in S2 as this
would give us an M-augmenting path, contradicting the maximality of M . Since
G is not (2, γ )-splittable, it cannot be the case that S1 and S2 are disjoint, so let
v ∈ S1∩ S2. We have N (v)∩ (S1∪ S2) = ∅ and thus |S1∪ S2| 6 (1/2+η)n which
implies |S1 ∩ S2| > (1/2 − 3η)n > (1/2 − γ )n, contradicting the fact that G is
not (1/2, γ )-extremal.

10. The extremal case

In this section we prove the following theorem.

THEOREM 10.1. For any r ∈ N, there exists n0 ∈ N such that the following holds.
If G is a multigraph on n > n0 vertices, n is divisible by r and

δ(G) > 2(1− 1/r)n − 1, (14)

then G contains a perfect K′r -tiling.

Note that Theorem 10.1 immediately implies Theorem 1.8 (and thus
Theorem 1.4). Our results from the previous sections will ensure Theorem 10.1
holds in the ‘nonextremal’ cases. Therefore, most of the work in this section
concerns the extremal cases.

Throughout this section we consider a standard multigraph G on n vertices that
satisfies the hypothesis of Theorem 10.1. In particular, we may assume 1/n �
1/r . We denote the vertex set of G by V .

10.1. Preliminary claims. We use the following well-known and simple
lemma in this section. A proof is included for completeness.
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LEMMA 10.2. For any graph H there is a matching of order at least
min{b|H |/2c, δ(H)}.

Proof. Let M be a maximal matching in H and suppose that |M | < min{b|H |/2c,
δ(H)}. Let U be the vertices incident to an edge in M and let W := U . Note that
|W | > 2 and that, by the maximality of |M |, W is an independent set. Therefore,
there exist distinct x, y ∈ W where d(x,U )+ d(y,U ) > 2δ(H) > 2|M |. Hence,
there exists e ∈ M such that d(x, e) + d(y, e) > 3, and this implies that there
exists a matching of order |M | + 1 in H .

The next claim gives us a minimum degree condition for G[U ] where U is any
set of size close to sn/r for some s ∈ N.

CLAIM 10.3. Suppose 0 < 1/n � c � 1/r and s ∈ N where 1 6 s 6 r . Let
v ∈ V and U ⊆ V . If

sn/r − cn 6 |U | 6 sn/r + cn,

then
d(v,U ) > 2(1− 1/s − rc/s)|U |.

Proof. When s = 1 the statement is trivially true, so assume s > 2. Therefore,

(1/s+rc/s)|U |> (1/s+rc/s)(s/r−c)n = (1/r+(s−1)c/s−rc2/s)n > n/r+1.

Hence, by (14),

d(v,U ) > δ(G)− 2|U | > 2(|U | − (n/r + 1)) > 2(1− 1/s − rc/s)|U |.

Let c be a constant such that 0 < c < 1. We call a set U ⊆ V ,

• a (1, c)-independent set if |U | = n/r and e(G[U ]) < cn2; or

• a (2, c)-independent set if |U | = 2n/r and e2(G[U ]) < cn2.

If U,U ′ ⊆ V are vertex-disjoint, we say that the pair {U,U ′} is

• a (1, c)-disconnected pair if |U | = |U ′| = n/r and e(U,U ′) < cn2; or

• a (2, c)-disconnected pair if |U | = |U ′| = 2n/r and e2(U,U ′) < cn2.

If 1 6 s 6 r and U ⊆ V , we call U an (s, c)-tolerant set when |U | = sn/r and

• for t ∈ {1, 2}, U does not contain a (t, c)-independent set; and

• if s ∈ {2, 4}, then U does not contain an (s/2, c)-disconnected pair.
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The preceding definitions are closely related to the notion of being (1/r, γ )-
extremal (Definition 7.1) or (r, γ )-splittable (Definition 8.2) which the following
simple claim makes explicit.

CLAIM 10.4. Let 1 6 s 6 r where s ∈ N, 0 < 1/n � c′ � γ � c � 1/r ,
U ⊆ V such that |U | = sn/r and U ′ ⊆ U such that |U4U ′| 6 c′n. If U ⊆ V is
(s, c)-tolerant, then G[U ′] is not (1/s, γ )-extremal and, when s ∈ {2, 4}, G[U ′]
is not (s, γ )-splittable.

Proof. Suppose that G[U ′] is (1/s, γ )-extremal. So there exists W ⊆ U ′ such
that either e(G[W ]) < γ |U ′|2, and |W | > (1/s − γ )|U ′| > (1/r − 2γ )n, or
e2(G[W ]) < γ |U ′|2, and |W | > (2/s − γ )|U ′| > (2/r − 2γ )n. Because c′ �
γ � c � 1/r and |U4U ′| 6 c′n, it is easy to see we can add vertices from U
to W ∩ U or delete vertices from W ∩ U to create either a (1, c)-independent or
(2, c)-independent set in U . This implies that U is not (s, c)-tolerant.

A similar argument implies that when s ∈ {2, 4}, if G[U ′] is (s, γ )-splittable,
then U is not (s, c)-tolerant.

Claim 10.5 below is meant to capture all of the necessary facts about (s, c)-
tolerant sets in a form that will be convenient. In some sense, Claim 10.5 is just a
restatement of the main theorems from the previous sections.

With Claim 10.3, (i) and (ii) follow from Corollary 6.6, and (iii) and (iv) follow
from Proposition 7.6 and Theorem 9.1, respectively. Note that, after the proof of
this claim, we do not appeal to Corollary 6.6, Proposition 7.6 and Theorem 9.1
again.

CLAIM 10.5. Let 1 6 s 6 r where s ∈ N and suppose 1/n� η� φ� γ � 1/r ,
U ⊆ V such that U is (s, γ )-tolerant and U ′ ⊆ V such that |U4U ′| 6 ηn.

(i) If W ⊆ U ′ such that |W | > (s − 1)n/r + φn then G[W ] contains a copy of
K̄s .

(ii) If v ∈ V such that d(v,U ′) > 2(s − 1)n/r + φn, then G[U ′] contains a
copy T of K̄s to which v sends at least 2s − 1 edges, so G[T + v] contains
a copy of K̂s+1.

(iii) There exist at least φn vertex-disjoint copies of K′s+1 in G[U ′].

(iv) If |U ′| is divisible by s, then there exists a perfect K′s-tiling in G[U ′].

Proof. Note that, by Claim 10.3,

δ(G[U ′]) > 2(1− 1/s − rη/s)|U ′|. (15)
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We first prove (i) and (ii), so let W and v be as in the statement of the claim.
When s > 2, Corollary 6.6 and (15) imply that there exists a K̄s-tiling T of G[U ′]
on all but at most 4srη|U ′| vertices, and when s = 1, this is trivially true. Let
Z := V (T ) be the vertices in U ′ that are covered by T . Note that

(s − 1)|T | 6 (s − 1)|U ′|/s < (s − 1)n/r + φn/3.

Since

|W ∩ Z | > |W |− |U ′ \ Z | > |W |−4srη|U ′| > (s−1)n/r +φn/3 > (s−1)|T |,

there exists T ∈ T such that V (T ) ⊆ W , and this proves (i). Because

d(v,U ′) > 2((s − 1)n/r + φn/3)+ φn/3 > 2(s − 1)|T | + 2|U ′ \ Z |

there exists T ∈ T such that d(v, V (T )) > 2s − 1, so v has at most one light
neighbour in T . This proves (ii).

We now prove (iii) and (iv). To this end, let U ′′ ⊆ U ′ such that

|U ′′| > |U ′| − (s + 1)dφne.

Note that

|U ′′4U | 6 |U ′′4U ′| + |U ′4U | 6 4(s + 1)φn/3+ ηn 6 3sφn

so, by Claim 10.3,

δ(G[U ′′]) > 2(1− 1/s − 3rφ)|U ′′|.

For γ ′ such that 1/n � 3rφ � γ ′ � γ � 1/s, by Claim 10.4 we have that
G[U ′′] is not (1/s, γ ′)-extremal and when s ∈ {2, 4} is not (s, γ ′)-splittable. If
s = 1, (iv) is vacuously true. So suppose s > 2. Then Proposition 7.6 implies that
G[U ′′] has a perfect (K′s ∪ K′s+1)-tiling and, when s divides |U ′′|, Theorem 9.1
implies that G[U ′′] has a perfect K′s-tiling.

Taking U ′′ = U ′ then gives (iv). Furthermore, we can greedily select dφne
copies of elements from K′s+1 from G[U ′], since any subset of U ′ that has order
greater than |U ′| − (s + 1)dφne contains a copy of K′s+1: When s > 2, this is
true because a perfect (K′s ∪ K′s+1)-tiling in a multigraph of order not divisible
by s implies the existence of an element from K′s+1, and, when s = 1, this is true
because G[U ′] not being (1, γ ′)-extremal implies that G[U ′] contains at least
γ ′|U ′|2 edges. This proves (iii).
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10.2. Initial partitioning and sorting. Suppose that

0 < 1/n � γ0 � γ1 � · · · � γr+2 � 1/r

and, in addition, for every i ∈ [r + 2], we have βi and ψi such that

γi−1 � βi � ψi � γi .

We start by trying to find, for either s1 = 1 or s1 = 2, an (s1, γ1)-independent set
which we call A1. We then try to find, for s2 = 1 or s2 = 2, an (s2, γ2)-independent
set A2 disjoint from A1. We continue in this manner for as long as possible, so in
the end we have (a possibly empty, in which case p = 0) collection of disjoint
sets A1, . . . , Ap and integers s1, . . . , sp, such that Ai is (si , γi)-independent for
each i ∈ [p]. Let U :=

⋃
i∈[p] Ai and set s := r − (s1 + · · · + sp). If s = 0, then

U = ∅ and we set q := 0 to indicate this case. If U is (s, γp+1)-tolerant, then
set Ap+1 := U , sp+1 := s and q := 1. Otherwise, U is not (s, γp+1)-tolerant and
because the initial process terminated, U contains neither a (1, γp+1)-independent
set nor a (2, γp+1)-independent set. By the definition of a tolerant set, it must
therefore be that s ∈ {2, 4} and that U has a partition {Ap+1, Ap+2} that is (s/2,
γp+1)-disconnected. We set sp+1 := sp+2 := s/2 and q := 2, to indicate this case.

If q = 1, set τ := γp, β := βp+1, ψ := ψp+1 and γ := γp+1. Otherwise, set
τ := γp+1, β := βp+2, ψ := ψp+2 and γ := γp+2. Therefore,

0 < 1/n � τ � β � ψ � γ � 1, (16)

and we have proved the following claim.

CLAIM 10.6. There exists a partition {A1, . . . , Ap+q} of V where p + q 6 r
and q ∈ {0, 1, 2}, and nonnegative integers s, s1, . . . , sp+q such that the following
holds:

(i) |Ai | = si n/r for i ∈ [p + q];

(ii) for every i ∈ [p], si ∈ {1, 2} and Ai is an (si , τ )-independent set;

(iii) if q = 0, then s = 0;

(iv) if q = 1, then s = sp+1 and Ap+1 is (s, γ )-tolerant; and

(v) if q = 2, then s ∈ {2, 4} and {Ap+1, Ap+2} is an (s/2, τ )-disconnected pair.

Note the relationship between Claim 10.6 and the examples shown in Figure 2.
In order to discuss the case when q = 2 and the case when q 6= 2 in a consistent

way, we define a permutation σ of [p + q] in the following way. If q 6= 2 we let
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σ be the identity permutation, and if q = 2 we let σ be the transposition of p + 1
and p + 2. Note that when p + 1 6 i 6 p + q , and q > 1, |Ai ∪ Aσ(i)| = sn/r .

When q 6= 1, we let Λ := [p + q], and when q = 1, we let Λ := [p]. We say
that a vertex v is (i, c)-typical if i ∈ Λ and

si = 1 and d(v, Aσ(i)) 6 cn, or si = 2 and d2(v, Aσ(i)) 6 cn;

or, if q = 1, i = p + 1 and d2(v, Ap+1) > |Ap+1| − cn.

CLAIM 10.7. For any i ∈ [p+q], if v is (i, c)-typical, then d2(v, Aσ(i))> |Aσ(i)|−
cn − 1, and, furthermore, if i ∈ Λ and si = 2, then |N (v)| > (1− c)n − 1.

Proof. Consider any i ∈ [p + q] and suppose v is (i, c)-typical. If q = 1 and
i = p+1, then, recalling that i = σ(i)= p+1, we have d2(v, Aσ(i))> |Aσ(i)|−cn
by definition.

Otherwise, using (14), if si = 1, we have that

d2(v, Aσ(i)) > δ(G)− |Aσ(i)| − d(v, Aσ(i)) > |Aσ(i)| − cn − 1

and if si = 2, we have that

d2(v, Aσ(i)) > δ(G)− (n − 1)− d2(v, Aσ(i)) > |Aσ(i)| − cn.

When si = 2, we also have that

|N (v)| > δ(G)− d2(v) > δ(G)− |Aσ(i)| − cn > (1− c)n − 1.

CLAIM 10.8. For any 0 < c 6 1 and i ∈ [p + q], there are at most 3rτn/c
vertices in Ai that are not (i, c)-typical.

Proof. Let i ∈ [p + q] and let t be the number of vertices in Ai that are not
(i, c)-typical. If i ∈ Λ, then we have that

tcn 6 e(Ai , Aσ(i)) 6 2τn2 when si = 1, and,

tcn 6 e2(Ai , Aσ(i)) 6 2τn2 when si = 2,

so t 6 2τn/c. Here we define e(Ai , Ai) := 2e(Ai) and e2(Ai , Ai) := 2e2(Ai).
If q = 1 and i = p + 1, then our assumption gives us

|Ap+1||Ap+1| − tcn > e2(Ap+1, Ap+1),
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so if we can show that

e2(Ap+1, Ap+1) > |Ap+1||Ap+1| − 3pτn2, (17)

this will imply t 6 3pτn/c, which will prove the claim. To show (17), let j ∈ [p],
and recall that j = σ( j) and |A j | ∈ {n/r, 2n/r}. Clearly,

e2(A j , A j) > |A j |δ(G)− e(A j , A j)− |A j ||A j |.

Therefore, when |A j | = n/r , δ(G) > 2|A j | − 1, and e(A j , A j) 6 2τn2, so

e2(A j , A j) > |A j ||A j | − |A j | − 2τn2 > |A j ||A j | − 3τn2.

When |A j | = 2n/r , δ(G) > 2|A j | + |A j | − 1, and e(A j , A j) 6 |A j |
2
+ 2τn2, so

e2(A j , A j) > |A j ||A j | + |A j |(|A j | − 1)− (|A j |
2
+ 2τn2) > |A j ||A j | − 3τn2.

Therefore,

e2(Ap+1, Ap+1) =

p∑
j=1

e2(Ap+1, A j) >
p∑

j=1

(|Ap+1||A j | − 3τn2)

= |Ap+1||Ap+1| − 3pτn2.

Let U = (U1, . . . ,Up+q) be an ordered collection of p + q pairwise disjoint
subsets of V . We say that an r -set T ⊆

⋃p+q
i=1 Ui is U -balanced, if

• G[T ] contains a copy of K′r ;

• |V (T ) ∩Ui | = si for all i ∈ [p]; and

• |V (T ) ∩ (Up+1 ∪Uσ(p+1))| = s when q > 0.

A set T is called U -well-balanced, if T is U -balanced, and when q = 2, T
intersects exactly one of the two sets Up+1 and Up+2, that is for some i ∈ {p + 1,
p + 2}, |V (T ) ∩ Ui | = s and |V (T ) ∩ Uσ(i)| = 0. Note that when q 6= 2 every
U -balanced set is a U -well-balanced set.

We say that a vertex is excellent for i if it is (i, β2)-typical and we say that a
vertex is good for i if it is (i, ψ2)-typical. We make the following definitions:

Bi := {v ∈ Ai : v is excellent for i} and B :=
⋃

i∈[p+q]

Bi ,
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and we let

Ci := Bi ∪ {v ∈ B : v is good for i} and C :=
⋃

i∈[p+q]

Ci .

We let B be the ordered collection (B1, . . . , Bp+q) and C be the ordered collection
(C1, . . . ,C p+q). Note that, by Claim 10.7, every vertex is good for at most one
index i ∈ [p + q], so the sets C1, . . . ,C p+q are pairwise disjoint. Note that, for
every i ∈ [p + q], each vertex v ∈ C is not good for i , so it has a large number
of edges into Bσ(i). Since each vertex v ∈ Bi is adjacent to almost everything in
Bσ (i), we can argue below that there exists a set T that is B-well-balanced and
such that G[T +v] contains a copy of K′r+1. As we see, this will allow us to easily
distribute the vertices in C to sets in C.

Claims 10.7 and 10.8 and the fact that τ � β � ψ � 1/r imply the following
claim.

CLAIM 10.9. The following holds:

(i) |C | 6 |B| 6 β2n, and, in particular, for every i ∈ [p + q],

|Ai4Ci |, |Ai4Bi | 6 β2n and |Ci \ Bi | 6 β2n;

(ii) for every i ∈ [p + q],
v ∈ Bi H⇒ d2(v, Bσ(i)) > |Bσ(i)| − βn, and
v ∈ Ci H⇒ d2(v, Bσ(i)) > |Bσ(i)| − ψn;

(iii) for every i ∈ Λ, if si = 2, then

v ∈ Bi H⇒ |N (v)| > (1− β)n and v ∈ Ci H⇒ |N (v)| > (1− ψ)n.

Looking ahead, we construct an ordered collection D = (D1, . . . , Dp+q) such
that {D1, . . . , Dp+q} is a partition of V and such that there exists a perfect K′r -
tiling in G such that every element in the tiling is D-well-balanced. This trivially
implies that D must have the following properties:

(i) for every i ∈ [p] and for i = p + 1 when q = 1, |Di | = si · n/r ;

(ii) when q = 2, both |Dp+1| and |Dp+2| are divisible by s and |Dp+1∪Dp+2| =

sn/r .

For any multigraph G ′ ⊆ G, call D = (D′1, . . . , D′p+q) a proper ordered collection
of G ′ if the sets in D form a partition of V (G ′) and it meets conditions (i) and
(ii) (with n replaced by |G ′|). Let ci := |Ci | − si n/r for every i ∈ [p + q], so
|C | + c1 + · · · + cp+q = 0.
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In order to make the rest of the section easier to understand, we now give a
brief, informal description of the remainder proof for the case when q 6= 2. It is
very similar to the approach taken by Komlós, Sárközy and Szemerédi in their
proof of the Alon–Yuster conjecture [17]. We ignore the case when q = 2 in this
description to avoid technical details.

Our main goal is to balance the sizes of the sets C1, . . . ,C p+q . We begin by
considering the sets that are too large, that is for every i ∈ [p+q] such that ci > 0,
we move exactly ci vertices out of Ci to form the set Di . We want to ensure that
the vertices which are moved out of Ci can eventually be covered by a copy of K′r
that has si other vertices in Ci . Therefore, we argue that we can find a K′si+1-tiling
in G[Ci ] of size ci . From each element of this tiling we arbitrarily select a vertex
v to remove from Ci when forming Di , and, temporarily, place v into a set we
call F ′. Then we extend each element of this tiling to form a copy of K′r+1 that
has exactly s j vertices in C j for each j ∈ [p+ q] \ i , and use the label Tv for this
copy of K′r+1. So Tv − v is C-well-balanced . We let T = {Tv : v ∈ F ′}. Note that,
after this process has completed, we have that, for every ci > 0, Di = Ci \ F ′ and
|Di | = si n/r .

Next, we prepare to distribute the vertices that were not assigned to some set
Ci . To do this, for every such v ∈ C , we find a B-well-balanced r -set T ′ such that
G[T ′ + v] contains an element of K′r+1. We then label T ′ + v as Tv, and add Tv
to T . Throughout, we ensure that the elements in T are vertex-disjoint. We let
F = F ′ ∪ C .

Note that by Claim 10.9(i),

|F | =
∑

i∈[p+q]; ci<0

−ci 6 |B| 6 β2n.

So we can distribute the small number of vertices in F arbitrarily to every Di

such that |Di | < si n/r until |Di | = si n/r for every i ∈ [p + q]. Suppose v ∈ F
has been assigned to Di ; so Tv has exactly si vertices in Ci and, with v, has si + 1
vertices in Di . We can then arbitrarily remove one element from Tv∩Ci to create a
D-well-balanced set. After this has been done for every v ∈ F , we have that T is
a K′r -tiling in which every element corresponds to a D-well-balanced r -set. We let
G ′ = G−V (T ) and D′i = Di \V (T ) for every i ∈ [p+q]. So (D′1, . . . , D′p+q) is
a proper ordered collection of G ′ and D′i ⊆ Ci for every i ∈ [p+ q]. Claim 10.10
below will then complete the proof. When q = 2, our approach is similar. The
main difference is that we have to be somewhat careful to ensure that |Dp+1| and
|Dp+2| are both divisible by s. The details for all cases are in Section 10.3.

We now continue the proof of Theorem 10.1 by proving Claim 10.10 which
will be used at the very end of the proof to construct the vast majority of elements
of our tiling of G.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.2
Downloaded from https://www.cambridge.org/core. University of South Florida Libraries, on 26 Feb 2020 at 20:02:42, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.2
https://www.cambridge.org/core


Tiling directed graphs with tournaments 43

CLAIM 10.10. Let G ′ be an induced subgraph of G such that |G ′| > |G| − βn,
and let D′ = (D′1, . . . , D′p+q) be a proper ordered collection of V (G ′). If D′i ⊆ Ci

for every i ∈ [p + q], then there exists a perfect K′r -tiling in G ′.

Proof. For i ∈ [p], we let Ti be a perfect K̄si -tiling of G[D′i ]. When si = 1 such a
tiling trivially exists, and, when si = 2, it exists by Claim 10.9(iii). When q > 1,
we let Tp+1 be a perfect K′s-tiling of G[D′p+1 ∪ D′σ(p+1)]. By Claim 10.9(ii), this is
easy to find when q = 2 by, say, applying the Hajnal–Szemerédi theorem to the
graph induced by the heavy edges of D′p+1 and then to the graph induced by the
heavy edges of D′p+2. (Actually the use of the Hajnal–Szemerédi theorem here is
overkill; it is very easy to directly argue the desired perfect tiling in G[D′p+1 ∪

D′σ(p+1)] exists.) When q = 1, it is implied by Claim 10.5(iv), because β � γ and

|Ap+14D′p+1| 6 |Ap+14C p+1| + (|G| − |G ′|) 6 (β2
+ β)n.

Let t = p when q = 0, or let t = p + 1, when q > 1, and let H be a t-partite
graph with vertex classes T1, . . . ,Tt such that, for every distinct i, i ′ ∈ [t], T ∈ Ti

and T ′ ∈ Ti ′ , T is adjacent to T ′ when every vertex in T is heavily adjacent
to every vertex in T ′. Note that H is balanced with each vertex class of size
m = |G ′|/r . So we are done if there is a perfect K t -tiling in H . By Claim 10.9(ii),
when i, i ′ are distinct and T ∈ Ti , the number of neighbours of T in Ti ′ is at least

m −
∣∣∣∣⋃

u∈T

(D′i ′ \ N 2(u))
∣∣∣∣ > m − rψn > (1− 2r 2ψ)m. (18)

For some 1 6 t ′ < t , assume we have a perfect K t ′-tiling K of H [T1∪· · ·∪Tt ′].
We extend K to a perfect K t ′+1-tiling of H [T1 ∪ · · · ∪ Tt ′+1] by finding a perfect
matching in the bipartite graph with vertex classes K and Tt ′+1 in which K ∈ K is
adjacent to T ∈ Tt ′+1 when K + T is a copy of K t ′+1 in H . By (18), this bipartite
graph has minimum degree at least (1 − 2r 2t ′ψ)m > m/2, so Hall’s theorem
implies that it has a perfect matching. Since this holds for every t ′ < t , there
exists a perfect K t -tiling in H .

In Claim 10.11(i) below we establish that, for some k ∈ [p+q], we can extend
a copy of K′sk+1 (respectively K′sk

) that is contained in some Ck where k 6 p or
extend a copy of K′s+1 (respectively K′s) contained in C p+1 ∪ Cσ(p+1) to a copy
of K′r+1 (respectively K′r ) with the correct number of vertices in every C j for
j ∈ [p + q] − i . This is used when we remove elements from the sets Ck that are
too large as described in the overview above. When q = 2, we use Claim 10.11(i)
with t = 0 when |C p+1 ∪ C p+2| > sn/r to move vertices between C p+1 to C p+2

to make the order of both sets divisible by s. The second part of the lemma, (ii),
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which is only used when q = 2, is similar but we start with a copy of K′sk+1 in
some Ck with k 6 p and extend it only into a copy of K′r . Furthermore, for any
0 6 ` 6 s − 1, this K′r will have exactly ` vertices in C p+1 and s − `− 1 vertices
in C p+2. This is used because sometimes when we must move a vertex from some
Ck with order greater than skn/r , to C p+1 because the order of C p+1 ∪ C p+2 is
slightly less than sn/r , we may also have to move some vertices in C p+2 to C p+1

to ensure that both sets are divisible by s.

CLAIM 10.11. Let W ⊆ V such that |W | 6 βn, let k ∈ [p + q] and t ∈ {0, 1}.
When k 6 p, let S ⊆ Ck such that |S| = sk + t and when k > p + 1, let S ⊆
Ck ∪ Cσ(k) such that |S| = s + t . Suppose that G[S] contains an element of K′

|S|.

(i) There exists a set T that avoids W such that T ∪S is C-balanced when t = 0,
or, when t = 1, T ∪(S−v) is C-balanced for any v ∈ S. Furthermore, when
q = 2, the set T does not intersect C p+2.

(ii) When q = 2, t = 1, and k /∈ {p+ 1, p+ 2}, for any j ∈ {p+ 1, p+ 2} and
1 6 ` 6 s−1, there exists a set T that avoids W such that G[T ∪S] contains
an element of K′r , |T ∩ C j | = `, |T ∩ Cσ( j)| = s − 1− ` and |T ∩ Ci | = si

for each i ∈ [p] − k.

Proof. We construct T iteratively, and throughout, we let

C ′i := (Ci \W ) ∩

( ⋂
u∈T∪S

N 2(u)
)
.

Assuming T ⊆ C , Claim 10.9(ii) implies that for all i such that Cσ(i) ∩ (S ∪ T )
= ∅,

|C ′i | > |Ci | − |W | − |T ∪ S|ψn > |Ci | − 2rψn. (19)

We start the construction by adding vertices from C ′p+1∪ C ′σ(p+1) to T . If q = 0,
or q > 1 and k > p + 1, we do not add any vertices from C ′p+1 ∪ C ′σ(p+1) to T .
Otherwise, we know |C ′p+1∪C ′σ(p+1)| is large by (19) since (C p+1∪Cσ(p+1))∩ S =
∅. If q = 1, then, since β � ψ � γ , Claim 10.5(i) and Claim 10.9(i) imply that
we can let T ⊆ C ′p+1 such that |T | = s and G[T ] contains an element of K̄s .
To prove (i) when q = 2, note that (19) and Claim 10.9(ii), imply that we can
let T induce a clique of size s on heavy edges in C ′p+1. To prove (ii), we start
by using (19) and Claim 10.9(ii) to find vertices u1, . . . , u` ∈ C ′j that form a
clique on heavy edges and add these vertices to T . If s − 1 − ` = 0, we are
done, so assume that this is not the case, which implies that s = 4. Therefore,
Claim 10.9(ii) and Claim 10.9(iii), imply that we can find s − 1 − ` vertices in
N (u1)∩ · · ·∩ N (u`)∩C ′σ( j) that form a clique on heavy edges. We then add these
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vertices to T . Note that in this case when s = 4 either ` = 1 and s − 1 − ` = 2
or ` = 2 and s − 1 − ` = 1. So in this case currently G[T ] contains all possible
edges except that it may have a light path on 3 vertices.

Now, for every i ∈ {1, . . . , p}− k, in turn we use (19), to add either one vertex,
when si = 1, or two adjacent vertices, when si = 2, from C ′i to T . When si = 2
we can easily find two adjacent vertices in C ′i using Claim 10.9(iii). Further, note
that by definition of C ′i , in this step any selected vertices in C ′i send heavy edges to
all previously selected elements of S ∪ T . This ensures that there are all possible
edges in G[S ∪ T ] except for perhaps a collection of vertex-disjoint light edges,
and at most one path on 3 vertices (in the case when s = 4). That is, G[S ∪ T ] is
a copy of K′

|S∪T |. It is now easy to see that the claim holds.

The main purpose of Claim 10.12(i) is to help distribute the vertices v ∈ C .
We construct a B-well-balanced set T such that G[T + v] contains an element of
K′r+1; thus we can then move v to any set Di and remove any element in Bi ∩ T
from T leaving a D-well-balanced set. When q = 2, we may need to move some
v ∈ C to one of Dp+ j for j ∈ {1, 2} and, at the same time, move some vertices
from Dp+3− j to Dp+ j to ensure that Dp+1 and Dp+2 are both divisible by s. This
is the reason for Claim 10.12(ii). Note that the following claim is essentially the
reason we define both the sets B1, . . . , Bp+q and the sets C1, . . . ,C p+q .

CLAIM 10.12. Let W ⊆ V such that |W | 6 βn and v ∈ C.

(i) There exists a B-well-balanced set T that avoids W such that G[T + v] ∈
K′r+1.

(ii) When q = 2, for j ∈ {p+ 1, p+ 2} and 1 6 ` 6 s − 1, there exists a set T
that avoids W such that G[T + v] contains an element of K′r , |T ∩ B j | = `,
|T ∩ Bσ( j)| = s − 1− ` and |T ∩ Bi | = si for each i ∈ [p].

Proof. For any i ∈ [p + q], if i ∈ Λ, since v it not (i, ψ2)-typical, Claim 10.9(i)
implies that

when si = 1, d(v, Bi) > ψ2n/2, and, when si = 2, d2(v, Bi) > ψ2n/2.

Similarly, when q = 1, since v is not (p+1, ψ2)-typical, d2(v, Ap+1) 6 |Ap+1|−

ψ2n and

d(v, Bp+1) > δ(G)− d(v, Bp+1)

> δ(G)− (|Ap+1| + d2(v, Ap+1)+ 2|Bp+1 \ Ap+1|)

> 2(1− 1/s)sn/r + ψ2n/2. (20)
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For i ∈ [p + q], let B ′i := Bi \W . We have that, by Claim 10.9(i),

|Ai4B ′i | 6 |Ai4Bi | + |W | 6 2βn. (21)

Let
I := {i ∈ Λ : si = 1 and d2(v, Bi) 6 ψ2n/2}

and note that there are at least
∑

i∈I (|Bi | − ψ
2n/2) > |I |(1/r − ψ2)n vertices

in
⋃

i∈I Bi that are not heavy neighbours of v. By (14), when r > 2, d2(v) >
δ(G)− (n − 1) > rψn/2, so there exists j ∈ [p + q] \ I , and

d2(v, B j) > δ(G)− (n − 1)− (|B j | − |I |(1/r − ψ2)n)
> |B j | − (2/r − |I |/r + |I |ψ2)n.

Hence, in all cases, |I | 6 2, and, for any j ∈ [p + q] \ I ,

d2(v, B j) > |B j | − 2ψ2n if |I | = 2. (22)

We prove (i) and (ii) simultaneously. Let t ∈ {0, 1}, so that s − 1 + t is the
number of vertices of T that will intersect Bp+1 ∪ Bσ(p+1), that is when we are
proving (i) we have t = 1 and when we are proving (ii) we have t = 0.

We now give a brief overview of our plan for constructing the set T . Clearly
we must construct T so that every pair of vertices in T + v are adjacent. We also
have that

(α1) the only light edges in G[T + v] that are not incident to v, are in the
subgraphs G[T ∩ B ′i ] where si = 2, or are in G[T ∩ (B ′p+1 ∪ B ′σ(p+1))]

when q > 1;

(α2) v is heavily adjacent to every vertex u in T ∩ B ′i when i ∈ Λ \ I ;

(α3) if q > 1, G[T ∩ (B ′p+1 ∪ B ′σ(p+1))+ v] will contain an element of K′s−1+t .

If v has at most one light neighbour in T , this is enough to give us that G[T + v]
contains an element of K′r+t , which would prove the claim. However, we can only
ensure that v has at most two light neighbours in T . To prove the claim, we then
also meet one of the following conditions when v has two light neighbours in T :

(β1) the two light neighbours of v are in different sets B ′i such that i ∈ I and
i 6 p and if q > 1, G[T ∩ (B ′p+1 ∪ B ′σ(p+1))] contains an element of Ks−1+t

except possibly when q = 2, s = 4, t = 0 and ` ∈ {1, 2}, and in this case it
contains an element of K̂s−1+t ; or

(β2) q = 2, s = 2, t = 1, I = {p + 1, p + 2} and the two light neighbours of
v are in some B ′i where i ∈ I and these two light neighbours are heavily
adjacent; or
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(β3) q = 2, s = 2, t = 0, |I | = 2, j ∈ I ∩ {p + 1, p + 2}, v has one light
neighbour in B ′j and the other light neighbour is in some B ′i where i ∈ I and
i 6 p; or

(β4) q = 1, |I | = 1, one light neighbour of v is in the set B ′i such that i ∈ I and
the other light neighbour of v is in B ′p+1 and G[T ∩ B ′p+1 + v] contains an
element of K̂s+t .

We build the set T iteratively. We start by adding vertices from B ′p+1 ∪ B ′σ(p+1)
to T , so when q = 0 we do not add anything to T . Recall that β � ψ � γ . If
q = 1 and |I | 6 1, then (20), (21) and Claim 10.5(ii), imply that we can choose
T ⊆ B ′p+1, such that |T | = s, G[T + v] contains an element of K̂s+1 and in
which v has one light neighbour. If q = 1 and |I | = 2, then by (21), (22), and
Claim 10.5(i) we can let T ⊆ B ′p+1 be such that T ⊆ N 2(v) and G[T ] contains
an element of K̄s .

Now assume q = 2. To prove (i), when I = {p+1, p+2}, we pick j ∈ {p+1,
p + 2} arbitrarily, otherwise we let j ∈ {p + 1, p + 2} \ I . Recall that j ∈ I
implies that s = 2. Let Z := N (v) ∩ B ′j when j ∈ I and let Z := N 2(v) ∩ B ′j
when j /∈ I . Note that, |Z | > ψ2n/2− |W | > ψ2n/3, in either case. We now use
Claim 10.9(ii) to find an s-set T ⊆ Z such that T induces a clique on heavy edges
in G.

To prove (ii), we assume j ∈ {p+1, p+2} is given. Note that if j ∈ I , then we
must have that s = 2 and ` = 1. Again, we let Z := N (v)∩ B ′j when j ∈ I and let
Z := N 2(v)∩ B ′j when j /∈ I , so |Z | > ψ2n/3. Now we use Claim 10.9(ii) to find
vertices u1, . . . , u` ∈ Z such that they induce a clique on heavy edges in G, and
we add these vertices to T . If s−1−` = 0, we are done, so assume that this is not
the case, which implies that s = 4. Therefore, Claim 10.9(iii) and Claim 10.9(ii),
imply that we can find s − 1− ` vertices in N (u1)∩ · · · ∩ N (u`)∩ N 2(v)∩ B ′σ( j)
that induce a clique on heavy edges in G. We then add these vertices to T . If
` = {1, 2}, then G[T ] contains an element of K̂3 and when ` = 3 it is a clique on
heavy edges.

Note that in all cases the way we have constructed T so far ensures that (α3)
holds.

Now, in turn for each i with 1 6 i 6 p, we add si vertices from B ′i to T . At
each step, when i ∈ I , we let

Z := B ′i ∩ N (v) ∩
(⋂

u∈T

N 2(u)
)
, and otherwise let

Z := B ′i ∩ N 2(v) ∩

(⋂
u∈T

N 2(u)
)
.
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(So the definition of Z gets updated at each step, as we add more elements to T .)
Note that, with Claim 10.9(ii), |Z | > ψ2n/2− |W | − rβn > ψ2n/3 in both cases.
When si = 1, we add one vertex from Z to T , and when si = 2, we can add two
adjacent vertices in Z to T , since Claim 10.9(iii) implies that there exists an edge
in G[Z ].

This completes the construction of T . Note that (α1) and (α2) immediately hold.
Further, one of (β1)–(β4) holds in each case. It is easy to see that in any case we
obtain a set T as desired.

10.3. Finishing the proof. We now finish the proof by constructing D =
(D1, . . . , Dp+q) a proper ordered collection of G and a collection T of vertex-
disjoint D-well-balanced sets as described above. We build the collection T
iteratively, and, at times, it may include (r + 1)-sets, as well as r -sets.

Let ci := |Ci | − si n/r for every i ∈ [p + q]. For each i ∈ [p] such that ci > 0,
we find a K̂si+1-tiling Si of G[Ci ] containing exactly ci elements. When si = 1,
each vertex in Ci has at least

d(δ(G)− 2|Ci |)/2e > |Ci | − n/r = ci

neighbours in Ci . Therefore, by Lemma 10.2, we can let Si be a matching of size
ci in G[Ci ]. Similarly, for i ∈ [p] such that si = 2 and |Ci | > 2n/r , there exists a
matching Mi containing at least

δ(G)− (n − 1)− |Ci | > |Ci | − 2n/r = ci

heavy edges in G[Ci ], and, by Claim 10.9(iii), we can pair each edge in e ∈ Mi to
a distinct vertex ve such that ve is a neighbour of both endpoints of e. Therefore,
we have a collection Si of ci vertex-disjoint elements of K̂3 in G[Ci ]. We let S be
the union of the sets Si constructed so far.

If q = 1 and |C p+1| > sn/r , we can use Claim 10.5(iii) to find a K′s+1-tiling of
size cp+1 = |C p+1| − sn/r in G[C p+1], we call this tiling Sp+1 and we add it to S .

Now suppose q = 2 and |C p+1 ∪ C p+2| > sn/r ; we find a tiling consisting of
exactly |C p+1 ∪ C p+2| − sn/r copies of K′s+1 in C p+1. Note that this is trivial to
do, by Claim 10.9(ii). Indeed, we can easily find |C p+1 ∪ C p+2| − sn/r vertex-
disjoint (s+1)-sets in C p+1, each forming a clique in the heavy edges of G[C p+1].
We call this set Sp+1 and we add the sets in Sp+1, to S . Note that there is slack
in the argument here: given a single fixed set X ⊆ V where |X | 6 γ n we can
additionally ensure no tile in Sp+1 intersects X . We use this property shortly.

We have now completely defined S . Our next goal is to construct the sets D1,

. . . , Dp+q such that D = (D1, . . . , Dp+q) is a proper ordered collection of G.
We first define the Di for i such that ci > 0. Once we have done this we then
define the remaining Di .
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Suppose that q = 2 and |C p+1 ∪ C p+2| > sn/r . Remove cp+1 vertices from
C p+1 and call the resulting set Dp+1; we do this in such a way that these removed
vertices consist of precisely one vertex from each tile in Sp+1. Place these cp+1

vertices into a set F ′. Let Dp+2 := C p+2. This ensures that |Dp+1 ∪ Dp+2| = sn/r .
However, we also need to ensure that both |Dp+1| and |Dp+2| are divisible by s.
Therefore, we find a set X ⊆ C p+1 and a set Y ⊆ C p+2 such that, |X ∪ Y | = s,
G[X ∪ Y ] contains an element of K′s , and

|Y | ≡ |C p+2| (mod s).

We then move the vertices in Y from Dp+2 to Dp+1. We need the exact minimum
degree condition to construct these sets X, Y . So actually formally what we do is
first construct X and Y then the collection Sp+1 as before such that Sp+1 is disjoint
from the set X . Also, for consistency, we construct the sets X and Y even when
there is no divisibility issue, that is when |C p+2| is divisible by s. In this case, we
let Y = ∅ and X be a clique on s vertices in the heavy edges of G[C p+1], which
can be found easily using Claim 10.9(ii). Therefore, it only remains to show how
we construct X and Y when |C p+2| is not divisible by s. If s = 2, then, for some
i ∈ {p+1, p+2}, |Ci | > n/r , so δ(G)−2(|Ci |−1) > 1, which implies that every
vertex in Ci has a neighbour in Ci , and, in particular, there exists an edge xy such
that x ∈ C p+1 and y ∈ C p+2, and we let X := {x} and Y := {y}. If s = 4, then for
some i ∈ {p+1, p+2}, |Ci | > 2n/r , and δ(G)− (n−1)− (|Ci |−1) > 1, which
implies that every vertex in Ci has a heavy neighbour in Ci and we can let x1 y1 be
a heavy edge such that x1 ∈ C p+1 and y1 ∈ C p+2. Let j be such that 1 6 j 6 3
and j ≡ |C p+2| (mod 4). By Claim 10.9(ii)–(iii), we can find vertices y2, . . . , y j

in N (x1)∩ (C p+2 − y1), such that Y = {y1, y2, . . . , y j } induces a clique on heavy
edges, and then find vertices x2, . . . , x4− j in N (y1) ∩ · · · ∩ N (y j) ∩ (C p+1 − x1)

such that X = {x1, . . . , x4− j } induces a clique on heavy edges. Note that G[X∪Y ]
contains an element of K′4.

We have described how to define Dp+1 and Dp+2 in the case when q = 2
and cp+1 > 0. We now describe in general how to construct Di when ci > 0.
Using Claim 10.11(i), we can find, for each set in S ∈ S , a set T ′ such that
G[T ′ ∪ S] contains an element of K′r+1 and when we arbitrarily select a vertex
v ∈ S, the set T ′ ∪ (S − v) is C-balanced. We let F ′ be the set of these arbitrarily
selected vertices. Recall that when q = 2, the set S does not intersect C p+2,
so T ′ ∪ (S − v) is actually C-well-balanced. We label T ′ ∪ S as Tv and S
as Sv. By Claim 10.11(i), we can assume that, for every v ∈ F ′, the sets Tv
were constructed so as to be vertex-disjoint and, when q = 2, disjoint from
X ∪ Y . For every v ∈ F ′, we add Tv to T . When q = 2, using Claim 10.11(i),
we find a set T ′, disjoint from all of the previously constructed sets, such that
G[T ′∪X∪Y ] contains an element of K′r and |T ′∩Ci | = si for each i ∈ [p], and we
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add T ′ ∪ X ∪ Y to T . We now let

Di := Ci \ F ′ for all i ∈ [p + q],

and note that for every i ∈ [p], if ci > 0, then |Di | = si n/r . Furthermore, when
q > 1 and |C p+1 ∪ Cσ(p+1)| > sn/r , we have that |Dp+1 ∪ Dσ(p+1)| = sn/r , and,
when q = 2, we also have that both |Dp+1| and |Dσ(p+1)| are divisible by s.

For each vertex v ∈ C , we use Claim 10.12(i) to find a vertex set Tv that is
B-well-balanced and such that G[Tv + v] contains a K′r+1. We add Tv + v to T
and ensure that these sets are disjoint from the sets already in T .

Let F := F ′ ∪ C and recall that, for every i ∈ [p] such that |Ci | 6 si n/r , we
currently have that Di = Ci . At this point, every vertex in V is either in one of the
sets {D1, . . . , Dp+q} or is in F .

We now move vertices from F to sets in D that are ‘too small’ until we have the
desired proper ordered collection. When we do this we also make small changes
to the collection T so that every T ∈ T will be a D-well-balanced r -set.

In detail, for every v ∈ F and i ∈ [p + q], when we say we assign v to Di

we mean that we add v to the set Di and update Tv by removing one u ∈ Ci

from Tv and add v to Tv. This is only well defined when there is initially some
u ∈ Ci in Tv. Note that in this case the updated version of Ti is D-well-balanced.
If initially Tv contains no element from Ci then q = 2, i ∈ {p+ 1, p+ 2}, and Tv
intersects Cσ(i) instead of Ci . Furthermore, since we are moving a vertex to either
C p+1 or C p+2 from F , it must be that |C p+1 ∪C p+2| < sn/r , and so if v ∈ F ′ then
Sv ⊆ Ci for some i ∈ [p] such that ci > 0. In this case when we assign v to Di

we instead complete the following process: We first remove Tv from T . Then, if
v ∈ C , we use Claim 10.12(ii), to find a set T ′ ⊆ B \ V (T ) such that G[T ′ + v]
contains an element of K′r , |T ′ ∩ B j | = s j for every j ∈ [p], |T ′ ∩ Bi | = s − 1,
|T ′ ∩ Bσ(i)| = 0. Then let Tv := T ′ + v and add it T . Similarly, when v ∈ F ′, we
use Claim 10.11(ii) to find a set T ′ ⊆ C \ V (T ) such that G[T ′ ∪ Sv] contains an
element of K′r , |T ′ ∩Ck | = 0 where k ∈ [p] such that Sv ⊆ Ck , |T ′ ∩C j | = s j for
every j ∈ [p] − k, |T ′ ∩ Ci | = s − 1, |V (T ′) ∩ Cσ(i)| = 0, and let Tv := T ′ ∪ Sv
and add it T . We then add v to Di . Note that now Tv is D-well-balanced.

For any i ∈ [p + q] such that ci < 0, we then arbitrarily assign exactly −ci of
the remaining vertices in F to Di , except when q = 2 and i ∈ {p+1, p+2}. When
q = 2 and |C p+1 ∪ C p+2| < sn/r , we again have to be careful to ensure that, in
the end, both |Dp+1| and |Dp+2| are divisible by s. Therefore, assume that, when
q = 2, we assign vertices from F to Dp+1 and Dp+2 before we assign vertices in
F to any Di for i 6 p. Also, note that, because |Dp+1 ∪ Dp+2| < sn/r , |F | > 1.
To help us organize the assignment of vertices, we let j ∈ {p + 1, p + 2}, so that
if we let 1 6 k j , kσ( j) 6 s be such that

k j ≡ |D j | and kσ( j) ≡ |Dσ( j)| (mod s),
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then kσ( j) 6 k j . If |F | > s − k j , we assign s − k j vertices in F to D j and then
assign vertices from F to Dσ( j) until |Dp+1 ∪ Dp+2| = sn/r . Otherwise, we can
assume 1 6 |F | < s− k j , which implies s = 4, and |F | 6 2. Note that if |F | = 1,
then |F ∪ Dp+1 ∪ Dp+2| = 4n/r , so k j + kσ( j) = 3. Therefore, exactly one of the
two following conditions must hold:

(i) |F | = 2 and k j = kσ( j) = 1; or (ii) |F | = 1, k j = 2 and kσ( j) = 1.

In either case, we arbitrarily pick v ∈ F , add v to Dσ( j) and delete Tv from T . We
then use Claim 10.12(ii) (if v ∈ C) or Claim 10.11(ii) (if v ∈ F ′), to construct a
D-balanced set Tv containing v that has one vertex in Cσ( j) and two vertices in C j .
We then move both of the vertices in Tv ∩ D j from D j to Dσ( j). In both cases, we
now have that |Dσ( j)| is divisible by 4, and Tv is D-well-balanced. We then assign
the possibly one remaining vertex in F to D j , so |D j | is divisible by 4 as well.

For every i ∈ [p+q], we let D′i = Di \V (T ), and note that D′i ⊆ Ci . Therefore,
if G ′ = G − V (T ), then D′ = (D′1, . . . , D′p+q) is a proper ordered collection of
G ′, so, by Claim 10.10 there exists a perfect K′r -tiling T ′ of G ′, and T ∪ T ′ is a
perfect K′r -tiling of G.
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[10] F. Havet and S. Thomassé, ‘Oriented hamiltonian paths in tournaments: A proof of
Rosenfeld’s conjecture’, J. Combin. Theory B 78 (2000), 243–273.

[11] P. Hell and D. G. Kirkpatrick, ‘On the complexity of general graph factor problems’, SIAM
J. Comput. 12 (1983), 601–609.

[12] P. Keevash and R. Mycroft, ‘A multipartite Hajnal–Szemerédi theorem’, J. Combin.
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