
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

June 2020 

Theory, Fabrication, and Characterization of Perovskite Theory, Fabrication, and Characterization of Perovskite 

Phototransistor Phototransistor 

Fatemeh Khorramshahi 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Scholar Commons Citation Scholar Commons Citation 
Khorramshahi, Fatemeh, "Theory, Fabrication, and Characterization of Perovskite Phototransistor" (2020). 
USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/8959 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F8959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 

 

 

 

 

Theory, Fabrication, and Characterization of Perovskite Phototransistor 

 

 

 

by 

 

 

 

Fatemeh Khorramshahi 

 

 

 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy in Electrical Engineering  

Department of Electrical Engineering 

College of Engineering 

University of South Florida 

 

 

 

Major Professor: Arash Takshi, Ph.D. 

Ioanniss Kymissis, PhD. 

Chris Ferekides, Ph.D. 

Jing Wang, Ph.D. 

Rasim Guldiken, Ph.D. 

Xiaomei Jiang, Ph.D. 

 

 

Date of Approval: 

May 12, 2020 

 

 

 

Keywords: Methylammonium Lead Iodide, Capillary Motion, Photodetector, Microfluidic, 

Piezoelectricity 

 

Copyright © 2020, Fatemeh Khorramshahi



 

 

 

 

 

Dedication 

To my parents for their absolute love, support, and motivation. 



 

 

 

 

 

Acknowledgments 

First and foremost, this work would be impossible to finish without the endless support, 

guidance, and advice from my major professor Dr. Arash Takshi. He has thought me the 

methodology to carry out the research and to present the research work. I would like to thank him 

for his friendship, empathy, and his patience during continuous hours of discussion. I am extending 

my heartfelt thanks to his wife, and family for helping me during my stressful time. 

I wish to express my deepest gratitude to my committee member, professor John Kymissis 

who trusted me after I talked to him for few minutes in the SPIE Optics + Photonics conference, 

on the most difficult moment of my studies without him knowing, he gave me extraordinary 

support, encouraged me and gave me the opportunity of working with his esteemed research group 

in his lab at the Columbia University for two months. He motivated me beyond what I thought was 

possible. 

I would also like to thank my committee members Dr. Rasim Guldiken, Dr. Xiaomei Jiang, 

Dr. Jing Wang and Dr. Chris Ferekides who provided guidance and insightful feedback for my 

research. A warm thank you to Dr Shengqian Ma and Dr. Lukasz Wojtas for helping me in X-ray 

diffraction measurements, NREC’s staffs, Richard Everly, Robert Tufts, Sclafani Louis-Jeune and 

Dr. Yusuf Emirov for their generous help and making the cleanroom such a good place to work.  

I owe a great debt of gratitude to Seyedmorteza Hosseyni for being such a wonderful 

mentor and role model to me, students in Bio-Organic Electronics lab, CLUE lab students, Dr. 

Zachary Lamport, and Chrissy McGinn. 



 

 

Above ground, I am indebted and forever grateful to my parents whose value to me only 

grows with age. Without their motivation, kind understanding and their full support I could have 

never accomplished all I have. I am also thankful for my brothers Ehsan, Mohammad, and Ali, 

and all my friends who bring happiness to my life. 

 



i 

 

 

 

 

 

 

Table of Contents 

List of Tables ................................................................................................................................. iii 

List of Figures ................................................................................................................................ iv 

Abstract ........................................................................................................................................ viii 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Aims and Objectives .................................................................................................. 1 

1.2 Literature Survey ....................................................................................................... 4 

Chapter 2: Perovskite Background and Properties ..................................................................... 8 

2.1 Metal Halide Perovskites Basics ................................................................................ 8 

2.2 Methylammonium Lead Iodide Structure, and Properties ......................................... 9 

2.2.1 Optical Properties ......................................................................................... 10 

2.2.2 Electrical Properties ..................................................................................... 10 

2.2.3 Piezoelectricity ............................................................................................. 11 

2.3 Fabrication Techniques ............................................................................................ 12 

2.3.1 Microfluidic Methods .................................................................................. 13 

2.4 Stability .................................................................................................................... 15 

2.5 Ion Migration ........................................................................................................... 16 

Chapter 3: Two-Terminal Photodetectors ................................................................................ 18 

3.1 Perovskite Photodetector by Mechanical Machining .............................................. 18 

3.1.1 Experimental ................................................................................................ 19 

3.1.1.1 Sample Fabrication ....................................................................... 19 

3.1.1.2 Characterization ............................................................................ 20 

3.1.2 Results and Discussion ................................................................................ 21 

3.1.3 Conclusion ................................................................................................... 25 

3.2 Perovskite Photodetector by Laser Ablation............................................................ 25 

3.2.1 Experimental ................................................................................................ 26 

3.2.2 Result and Discussion .................................................................................. 27 

3.2.3 Conclusion ................................................................................................... 31 

Chapter 4: Stability in Photodetectors ...................................................................................... 32 

4.1 Experimental ............................................................................................................ 32 

4.2 Characterization ....................................................................................................... 34 

4.3 Result and Discussion .............................................................................................. 35 

4.4 Conclusion ............................................................................................................... 39 

Chapter 5: Ion Migration and Piezo-Photocurrent Modulation ................................................ 40 

5.1 Experimental ............................................................................................................ 41 



ii 

 

5.2 Device Characterization ........................................................................................... 42 

5.3 Results and Discussion ............................................................................................ 44 

5.4 Conclusion ............................................................................................................... 52 

Chapter 6: Methylammonium Lead Iodide Transistor ............................................................. 53 

6.1 Fabrication of Perovskite Transistors Using Laser Ablation ................................... 53 

6.1.1 Experimental ................................................................................................ 54 

6.1.2 Result and Discussion .................................................................................. 55 

6.2 Fabrication of Perovskite Transistor Using Pneumatic Nozzle Printer ................... 58 

6.2.1 Ink Development .......................................................................................... 59 

6.2.2 Device Fabrication ....................................................................................... 60 

6.2.3 Results and Discussion ................................................................................ 61 

6.3 Conclusion ............................................................................................................... 62 

Chapter 7: Conclusion and Future Works ................................................................................ 64 

7.1 Conclusion ............................................................................................................... 64 

7.2 Future Works ........................................................................................................... 65 

References ..................................................................................................................................... 68 

Appendix A: Supplementary Information for Chapter 5 .............................................................. 81 

Appendix B: Copyright Permissions ............................................................................................ 85 

About the Author ............................................................................................................... End Page 

 

 

  



iii 

 

 

 

 

 

 

List of Tables 

Table 1.1  Comparison between different materials of fabricating visible light 

phototransistors. ............................................................................................................ 3 

Table 1.2  Summary of fabricated MAPbI3 based phototransistors. ............................................... 5 

Table 3.1  Comparison between figures of merit in fabricated samples. ...................................... 24 

Table 3.2  Laser engraving parameters of the fabricated samples. ............................................... 28 

Table 4.1  The average of the percentage of the change in the photocurrent. .............................. 38 

 

  



iv 

 

 

 

 

 

 

List of Figures 

Figure 1.1 A schematic of the optofluidic microchip consisting of the microfluidics circuit 

and the optical part [8]. ................................................................................................. 2 

Figure 1.2  2019 market snapshot of the printed, organic and flexible electronics industry 

[18]. ............................................................................................................................... 4 

Figure 2.1 A general schematic of the perovskite structure and the energy levels in 

perovskite materials [69]............................................................................................... 9 

Figure 2.2 UPS measured energetic levels of perovskite films formed by one-step method 

with different precursor ratios [81]. ............................................................................ 11 

Figure 2.3 The three waves of capillary circuits with notable developments highlighted in 

the timeline [104]. ....................................................................................................... 14 

Figure 3.1 Fabrication steps of two different photodetectors using capillary motion and 

spin coating. ................................................................................................................ 20 

Figure 3.2 a) The custom-designed setup which was used to make the micro-channel. .............. 20 

Figure 3.3 Top view SEM images of the fabricated sample using capillary motion. ................... 21 

Figure 3.4 (a,b, and c) Dektak profile of the grooved ITO sample across the channel at the 

beginning, middle, and end of the channel (marked as A, B, and C in Figure 

3.1), respectively. ........................................................................................................ 22 

Figure 3.5 Transient photoresponses of the samples biased at 2.0 V. .......................................... 23 

Figure 3.6 I-V characteristics of the fabricated samples a) in dark, b) under illumination. ......... 24 

Figure 3.7 Impedance spectroscopy measurement ot the fabricated samples, a) amplitude 

and b) phase. ............................................................................................................... 25 

Figure 3.8 Schematic showing laser engraving of ITO coated PET and the schematic of the 

fabricated photodetector. ............................................................................................. 27 

Figure 3.9 The SEM image of the microchannels engraved at different laser powers and 

speeds (images are taken at 44 degrees tilt angle): (a) 0.6 watt, 25.4 mm.S-1, (b) 

0.6 watt, 38.1 mm.S-1, (c) 1.2 watt, 38.1 mm.S-1 and (d) 1.2 watt, 50.8 mm.S-1. ....... 28 



v 

 

Figure 3.10 The cyclic voltammetry of the fabricated samples, (a and b) in dark and (c) 

under 80 mwatt.cm-2 light exposure............................................................................ 29 

Figure 3.11 Current response of the photodetectors to light pulses at 2.0 V bias. ....................... 30 

Figure 3.12 The bode (a) phase and (b) amplitude diagram of the fabricated photodetectors 

in dark condition. ........................................................................................................ 30 

Figure 3.13 The simulated equivalent circuit bode plot fitted on sample B data points. .............. 31 

Figure 4.1 Schematic of the fabrication steps of the samples. ...................................................... 33 

Figure 4.2 SEM image of the (a) the laser-engraved microchannel, (b) the perovskite layer 

inside the microchannel. ............................................................................................. 34 

Figure 4.3 X-ray diffraction pattern of the arrays of CH3NH3PbI3 microchannels formed 

on the PET substrate and coated with (a) CYTOP and kept in the desiccator, (b) 

CYTOP and kept under ambient condition, (c) FluoroPel and kept in the 

desiccator, and (d) FluoroPel and kept under ambient condition. .............................. 35 

Figure 4.4 I-V characteristics of the ITO-CH3NH3PbI3-ITO microchannels formed on the 

PET substrate and coated with (a) CYTOP and kept in the desiccator, (b) 

CYTOP and kept under ambient condition, (c) FluoroPel and kept in the 

desiccator, and (d) FluoroPel and kept under ambient condition, and in dark. .......... 36 

Figure 4.5 I-V characteristics of the ITO-CH3NH3PbI3-ITO microchannels formed on the 

PET substrate and coated with (a) CYTOP and kept in the desiccator, (b) 

CYTOP and kept under ambient condition, (c) FluoroPel and kept in the 

desiccator, and (d) FluoroPel and kept under ambient condition, and under light 

illumination. ................................................................................................................ 37 

Figure 4.6 Comparison between the percentage of the change in the photocurrent of the 

samples at 2 V over the time. ...................................................................................... 37 

Figure 5.1 Schematic of (a) the fabrication process steps, (b) the setup used for bending the 

device and (c) the setup used for applying normal forces. ......................................... 42 

Figure 5.2 (a, b and c) Top view SEM image of the fabricated perovskite microchannel at 

different zooming levels. ............................................................................................ 43 

Figure 5.3 I-V characteristics of the fabricated device in the dark (no pressure and flat 

condition) and under ~80 mW/cm2 light exposure while the device was tested 

(a) under different normal pressures and (b) at different bending curvatures 

(inward and outward bending curvatures are shown with positive and negative 

numbers, respectively). ............................................................................................... 45 

Figure 5.4 Current response of the photodetector to light pulses at 2.0 V bias under different 

compressive/tensile pressures. .................................................................................... 46 



vi 

 

Figure 5.5 Dynamic photocurrent response of the fabricated sample at 2.0 V bias under 

continuous illumination to (a) a normal force and releasing for 3 cycles, (b) 

manually bending into inward position and flattening for 2 cycles. ........................... 46 

Figure 5.6 I-t responses of the device in dark, (a) under different normal pressures and (b) 

at different bending curvatures. .................................................................................. 48 

Figure 5.7  The responsivity of the device (a) under different normal pressures, (b) under 

different curvatures. .................................................................................................... 49 

Figure 5.8 Energy diagrams of the device (a) in equilibrium and (b) under the DC biasing.

..................................................................................................................................... 52 

Figure 6.1 The schematic of the fabricated perovskite transistor by laser engraving. .................. 55 

Figure 6.2 (a) The SEM image of the laser engraved microchannel ( the image is taken at 

44 degrees tilt angle), (b) the XRD spectra of the perovskite channel. ...................... 55 

Figure 6.3 Transfer and output characteristics of the fabricated flexible transistor (a and b) 

under light illumination, (c and d) in dark. ................................................................. 56 

Figure 6.4 The top-view SEM image of MAPbI3 printed on polyethylene naphthalate 

(PEN) showing inhomogeneous ink resulted in crystal size difference due to 

variation in ethanol concentration. .............................................................................. 59 

Figure 6.5 The schematic of the fabricated perovskite transistor by the pneumatic nozzle 

printing method. .......................................................................................................... 60 

Figure 6.6 The transfer characteristic of the fabricated transistor at Vds 10 V and under 

ambient light. .............................................................................................................. 61 

Figure 6.7 The output characteristics of the fabricated transistor. ................................................ 62 

Figure S 1 The setups used for the I-V measurements under light illumination……………………81 

Figure S 2 Thickness profile of the cut layer (microchannel) across the channel and at the 

different spots along the channel. ............................................................................... 82 

Figure S 3 Thickness profile of the perovskite layer across the channel and at the different 

spots along the channel. .............................................................................................. 82 

Figure S 4 Single photocurrent response cycle of the device at 2.0 V bias with light 

irradiation on and off, at different normal pressures (illumination for ~20 s, 

manually started at ~2nd second, 80 mW/cm2). ........................................................... 83 

Figure S 5 Single photocurrent response cycle of the device at 2.0 V bias with light 

irradiation on and off, at different bending curvatures (illumination for ~20 s, 

manually started at ~2nd second, 80 mW/cm2). ........................................................... 83 



vii 

 

Figure S 6 I-V characteristics of the device in dark before applying compressive/tensile 

stress on the device as the first test and after all measurements (compressive 

normal force and concave/convex bending) as the last test, 50 mV/sec scan rate.

..................................................................................................................................... 84 

 

  



viii 

 

 

 

 

 

 

Abstract 

In recent years, there has been a significant interest in making electronic devices with low-

cost techniques and materials for both industrial and medical applications. Methylammonium lead 

iodide perovskite (MAPbI3) is one of the novel materials which has drawn much attention owing 

to its outstanding optical and electrical properties along with inexpensive, simple, and easy 

fabrication methods. In this work, the feasibility of using microfluidic device fabrication 

techniques on making a perovskite phototransistor has been studied. The fabrication method well 

addresses challenges such as lead toxicity and instability. 

In the first step, mechanical micromachining and laser engraving were employed to make 

two-terminal flexible perovskite photodetectors with an indium tin oxide (ITO)–MAPbI3–ITO 

horizontal structure. Photodetectors were made by filling engraved microchannels using the 

capillary motion of the solution containing the perovskite precursors. In addition to studying the 

photoelectric response of the devices with a solar simulator, potentiostat, and a Keithley source 

measure unit (SMU), the fabricated samples were characterized using scanning electron 

microscopy (SEM), X‐ray diffraction (XRD), and atomic force microscopy (AFM) methods.  

Long term stability was observed when encapsulating the devices with either FluoroPel or 

CYTOP. Also, the effect of external normal and transverse forces on the photoelectric response of 

the devices were investigated, proving the piezotronic property of MAPbI3. In the highest state, 

when the normal force of 340 kPa was applied the photocurrent of the two-terminal photodetector 

increased by 97%. At this condition, the device exhibited a sensitivity (Iphoto/Idark) of 3250 with a 
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photocurrent of ≈6.9 µA at 2.0 V bias and responsivity of 14.56 mA.W−1 under white light 

illumination of 80 mW.cm-2. 

Finally, a perovskite phototransistor was fabricated following the optimized parameter of 

the laser ablation method to form the microchannel on an ITO coated polyethylene terephthalate 

(PET) substrate. The transistor characteristic proved the formation of a depletion-mode field-effect 

transistor (FET) with a conductive channel at 0 V gate-source voltage (Vgs) entering the saturation 

mode when the drain-source voltage (Vds) was above 10.0 V. 

The proposed fabrication method is fairly simple and can contribute to the integration of 

perovskite photovoltaic devices with optofluidic circuit elements which may help in the further 

development of low-cost and disposable medical devices. 
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Chapter 1: Introduction 

1.1 Aims and Objectives 

Nowadays, photodetectors have spanned a vast range of applications from the integrated 

optical microfluidic biosensor [1] to inter-satellite communications [2]. The large market size of 

photodetectors in consumer electronics, industrial equipment, automobile applications, aerospace, 

and defense has led to intense research interest and studies on finding the best material and 

structure to make a high-performance photodetector. Semiconductor-based photodetectors have 

been made in three main configurations: photodiode, photoresistor, and phototransistors [3-5].  

While every configuration has its unique assets, phototransistors are three-terminal devices 

that produce higher current and therefore larger photoresponsivity. Moreover, phototransistors 

photocurrent can remain constant in a wide range of voltage which can be beneficial in specific 

applications. Although the fabrication of transistors requires more steps than diodes and resistors, 

the signal-to-noise ratio is higher in phototransistors due to their internal amplification mechanism. 

On the other hand, the recently developed optofluidic technologies allow the integration of 

optical components and microfluidic devices to manipulate or measure liquid, light, and matter 

[6]. Optofluidic devices combine the advantages of microfluidic and optics. The optical 

measurements provide the advantage of contactless measurement which is mainly beneficial in 

biosensing and analysis applications [7].  

As is shown in Figure 1.1, optofluidic circuits composed of two parts, a microfluidic circuit 

and an optical part which includes optical components, a light source, and a photodetector to 

monitor the photoabsorption of the liquid in the microchannels  [8]. The optical part can be fully 
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integrated with the microfluidic circuit using optofluidic laser sources and optofluidic waveguides 

[9, 10]. 

 

Figure 1.1 A schematic of the optofluidic microchip consisting of the microfluidics circuit and the 

optical part (used with permission [8]). 

In biosensing applications, factors such as size, power, cost, and ease of implementation 

are of importance in the design of a photodetector. To reduce the cost and enable the production 

of a portable device, ambient light could be used as a natural light source. However, a highly 

sensitive photodetector would be needed to be integrated with the microfluidic circuit part of the 

optofluidic device. Various medical testing products including some pulse oximetry [11] and 

immunosensing [12] devices are examples using ambient light and highly sensitive photodetectors 

to reduce the size and cost. 

On the other hand, metal halide perovskites are highly photosensitive and inexpensive 

semiconductors. Also, their various solution-based deposition methods have been employed for 

solar cells and visible light photodetectors [13]. Therefore, metal halide perovskites can be used 

as the photodetector component in optofluidic circuits for industrial or medical applications.  

Particularly, perovskite photodetectors can be used in lab-on-a-chip (LOC) optofluidic 

devices for photo-spectroscopic measurement of analytes. A simple and low-cost fabrication 
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method will allow fast production of inexpensive, disposable devices to be used for detecting 

contaminants in drinking water, testing blood or saliva [14-16].  

Both organic and inorganic semiconductors have been used as photoactive materials for 

making photodetectors. Defect-free single crystals of inorganic materials such as silicon can be 

used to make photosensors. Although organic semiconductor-based photodetectors have shown 

lower performance, their fabrication process is low-cost and solution-based. Organic-inorganic 

perovskites offer both low-cost fabrication process and better performance than organic 

semiconductors [17]. Some of the challenges that hinder large-scale fabrication of high-

performance perovskite devices are instability, the toxicity of lead and the existence of trap states 

and defects in the crystalline structure of the materials. Table 1.1 summarized the features and 

challenges scientists face when using different materials to make photodetectors.  

Table 1.1 Comparison between different materials of fabricating visible light phototransistors. 

Material Fabrication and Features Challenges 

Crystalline 

Inorganic 

Semiconductors 

• The most mature conventional 

fabrication process 

• Proper control 

• Defect-free 

• Integration 

• Resolution 

• Mainly high temperature, 

complicated fabrication 

process 

• Rigid substrate 

• Expensive 

 

Organic 

Semiconductors 

• Low cost 

• Simple, low-temperature 

fabrication 

• Low performance 

• Defects  

• High recombination rate 

Metal Halide 

Perovskites 

• Low cost 

• Simple, low-temperature 

fabrication 

• Bandgap tuning 

• High performance 

• Instability 

• Defects 

• Toxicity 

The majority of reported perovskite-based sensors are using thin-film fabrication methods 

such as spin coating that spread the toxic materials. Another challenge in the fabrication is in 
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patterning the semiconductor for building devices, due to the high sensitivity of perovskites to the 

solvents used for photolithography. The objective of this work was to study the feasibility of 

fabricating perovskite-based photosensors using a novel method that employs the capillary force 

to fill patterned microfluidic channels with perovskite precursor solutions 

Although the research focus in this dissertation is on MAPbI3, the studied fabrication 

method is applicable for fabricating various forms of flexible electronic devices and circuits. The 

total market of flexible electronics will be $41.2 billion in 2020 and it has been projected that it 

will grow to $74 billion in 2030 [18]. As is shown in Figure 1.2, printed and flexible sensors are 

one of the majority segments.  

 

Figure 1.2  Market of the printed, organic, and flexible electronics industry in 2019 (open access 

article [18]). 

1.2 Literature Survey 

MAPbI3-based phototransistor’s structures are categorized into three general structures, 

photo-field effect transistor (photo-FET), hybrid photo-FET, and barristor-type [19]. Photo-FET 

structure can be top or bottom-gate while having top or bottom-contacts [20]. MAPbI3 hybrid 

photo-FETs combine high absorption and slow recombination rate of MAPbI3 with high mobility 
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properties of another semiconductor to enhance the functionality of pure MAPbI3 phototransistor. 

Gate-modulated Schottky barrier or barrister-type employs 2D materials such as graphene to 

interchange the nature of the gate-dielectric and gate electrode junction between Schottky barrier 

and ohmic contact [19]. 

The first pure MAPbI3-based phototransistor which was able to modulate drain-current by 

varying applied gate-voltages was introduced by Li et al [21]. They reported an ambipolar carrier 

transport with the mobility of 0.18 (0.17) cm2V-1s-1 for holes (electrons) at room temperature.  

While most of the research groups have used SiO2 as the gate oxide layer [21-27], 

poly(perfluorobutenylvinylether) (CYTOP) [28], HfO2 [29, 30], Ta2O5 [31], and AlOx [32]have 

also been used as the insulator layer between the gate contact and the semiconducting channel. In 

the work by Mohite et al., higher gate modulation and lower hysteresis were obtained using high 

dielectric constant HfO2 (HfO2 relative dielectric constant ɛr is 23.5) [30]. However, due to the 

presence of traps at the interface of HfO2/perovskite, a very low mobility of 10-3 cm2V-1s-1 was 

reported. On the other hand, fluoropolymer CYTOP (ɛr ~ 2) yields a low density of electronic trap 

states at its interface with the semiconductors and consequently produce high-mobility organic 

field-effect transistors (OFETs) exhibiting minimal bias-stress effects [20]. The summary of 

fabricated MAPbI3 based phototransistors is shown in Table 1.2. 

Table 1.2 Summary of fabricated MAPbI3 based phototransistors. 

Year Material Substrate Method Carrier 

transport 

Ref. 

2015 MAPbI3 thin-film Si Two-step vapor-

assisted 

Ambipolar [21] 

2015 MAPbI3−xClx  One-step spin coating Ambipolar 

No current 

modulation 

[28] 
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Table 1.2 (Continued) 

2015 Hybrid graphene 

MAPbBr2I 

Si One-step spin coating Ambipolar 

No current 

modulation 

[33] 

2015 Tetragonal 

MAPbI3 thin-film 

Si One-step spin coating LT** current 

modulation 

[22] 

2016 2D MAPbI3 Si Combined solution 

process and vapor-

phase conversion 

No current 

modulation 

[23] 

2015 MAPbI3 microplate 

crystals 

Si Seeded growth process  [34] 

2016 Hybrid C8BTBT* onto 

MAPbI3 

Si Co-evaporating Unipolar [35] 

2016 MAPbI3 Si Modified vapor-

assisted solution 

process 

Unipolar 

No current 

modulation 

[24] 

2016 Orientationally pure 

crystalline MAPbI3 

Si Thermal-gradient-

assisted directional 

crystallization 

Ambipolar [26] 

2017 MAPbI3 thin-film Glass Doctor blade No current 

modulation 

[36] 

2017 MAPbI3 microplates Si Vapor phase 

intercalation 

Process 

P-type to 

ambipolar to 

N-type by 

thermal 

annealing 

LT current 

modulation 

[27] 

2017 Hybrid 

MAPbI3−xClx/CNT 

Si One-step spin coating Ambipolar [37] 

2017 MAPbI3 thin-film Glass Two-step spin coating No transfer 

characteristic 

[38] 

2017 MAPbI3 thin-film Si and 

Glass 

One-step spin coating Ambipolar at 

LT 

Unipolar at 

HT*** 

[39] 

2018 MAPbI3 single crystal   Ambipolar 

No Saturation 

Regime 

[40] 

2018 MAPbIxCl3−x Si Multi-step annealing 

process 

Ambipolar 

No Saturation 

Regime 

[41] 

2018 MAPbI3 thin-film Glass One-step spin coating Vertical 

structure with 

ITO contact 

[29] 



7 

 

Table 1.2 (Continued) 

2019 MAPbI3 thin-film Glass One-step spin coating Ambipolar [32] 

2019 
MAPbI3 

micro/nanowire Si  Unipolar/P-

type 

[42] 

2019 MAPbI3 Glass One-step spin coating Ambipolar [43] 

2019 MAPbI3 thin-film Si Hot-casting method Unipolar/P-

type 

[30] 

2019 MAPbIxCl3−x Si One-step spin coating Ambipolar [44] 

2020 MAPbI3/PDVT-10 and 

MAPbI3/N2200 

nanowire 

heterojunctions 

Si/Glass Cast and mold 

cleanroom microfluidic 

fabrication 

Ambipolar [45] 

* Dioctylbenzothieno[2,3-b]benzothiophene, ** Low temperature, ***High temperature 

In this dissertation, the motivation and literature review are discussed in Chapter 1. Chapter 

2 covers the background of the material structure and perovskite electro-optical properties along 

with the methods that were used for designing, fabricating, and characterizing sensors. In Chapter 

3, the feasibility of fabricating a two-terminal perovskite photodetector by microfluidic techniques 

is demonstrated. The stability and electro-mechanical properties of the fabricated photodetectors 

are studied in Chapter 4 and Chapter 5 respectively. The designed perovskite phototransistor is 

introduced in Chapter 6. Chapter 7 includes the conclusion and suggested works for the future. 
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Chapter 2: Perovskite Background and Properties 

In general, perovskite is a class of material with a chemical formula of ABX3. Where A is 

an organic or inorganic large cation, B is usually a medium-size cation that can be a metal ion, and 

X is an anion such as a halide or any mixture of different halides [46]. The name perovskite had 

been given by G. Rose in 1839 [47]. Materials with perovskite structure are classical systems for 

phase transition which depends on the tilting and rotation of the BX6 polyhedra in the lattice [48, 

49]. Reversible phase transition may be induced by different stimuli such as electric field [50, 51], 

pressure [52, 53], and temperature [54, 55]. 

Over the past decade, metal halide perovskites (MHPs) and particularly methylammonium 

lead iodide (CH3NH3PbI3 or MAPbI3) have attracted a lot of attention in solar cell research. This 

arises from two key characteristics: their excellent electro-optical properties and feasibility of 

using them to fabricate devices with low-cost and simple methods. In this chapter, perovskite 

material and its properties are discussed in detail.  

2.1 Metal Halide Perovskites Basics 

Metal halide perovskites are semiconductors. In their ABX3 structure, A site is 

Methylammonium (MA) CH3NH3
+, Formamidinium (FA) CH(NH2)2

+, Guanidinium (GA) 

C(NH2)3
+ or Cs+, B site is Pb2+ or Sn2+ and X is I-, Br- or Cl- [56-61]. The optical bandgap and 

electronic properties can be tuned by changing the materials. It has been shown that, in the A-site 

of ABX3 structure of MHP, by changing MA to mixed MA-FA or substituting a different mixture 

of any halide to X, the bandgap of perovskite can be tuned and crystal structure changes due to the 

different cation size [62]. 
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Single crystal MHPs have a remarkably low density of trap-states [63]. MHPs have variety 

of applications such as solar cells (SCs) [64], light-emitting diodes (LEDs) [65], thin-film 

transistors (TFTs) [66], photodetectors [67], and Laser diodes [68]. Figure 2.1 shows the schematic 

of the perovskite crystal structure and the energy levels in some perovskite materials. 

 

Figure 2.1 A general schematic of the perovskite structure and the energy levels in perovskite 

materials (open acess article [69]). The numbers at the top and bottom of each column show the 

edge of conduction and valence bands in the materials, respectively.  

2.2 Methylammonium Lead Iodide Structure, and Properties  

MAPbI3 is the most common perovskite considered for photovoltaic applications. It has 

been extensively studied and employed in solar cells, due to the rapid growth of power conversion 

efficiency (PCE) reported for MAPbI3-based devices already exceeding 20% [70, 71]. 

Three phases have been identified in MAPbI3 single crystals: orthorhombic, tetragonal, and 

cubic Polymorphs. Indeed it has been suggested that MAPbI3 crystalizes in the tetragonal phase at 

room temperature, a tetragonal to orthorhombic transition occurs below ∼160 K with a cubic phase 

being stable from around 330 K and above [49]. It should be mentioned that the chemical and 

physical properties of lead halide perovskites strongly depend on its preparation method [72]. 
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2.2.1 Optical Properties 

While the unique optical properties of perovskite semiconductors had been studied many 

years back [73], since the first MAPbI3 based solar cell was reported by Miyasaka and his group 

in 2009 [74], a tremendous effort has been made by researchers to investigate these properties in 

a variety of forms of lead halide perovskite with deposition techniques. The direct bandgap of 

about 1.55-1.65 eV which is suitable for visible light absorption, has been reported by several 

research groups [75-77]. 

A broad absorption spectrum covering both visible and near-infrared regions has been 

observed in MAPbI3 [78]. The reported absorption coefficient at visible wavelengths ranged 

between 104 and 105 cm−1 [79]. Single crystal MAPbI3 has a low number of defects and lower 

density of trap states, thus unlike polycrystalline form, it has long exciton diffusion length (>175 

µm under 1 sun) and high carrier recombination lifetime (τ=92 µs under 1 sun) [80].  

2.2.2 Electrical Properties 

To predict some electrical characteristics such as conductivity, maximum photovoltaic 

potential, energy bending at the interfaces, and formation of Schottky or Ohmic contacts, it is 

needed to understand the doping mechanism of the semiconductor [81]. While in non-ionic 

crystalline semiconductors such as silicon or germanium, substitutional impurities can replace the 

host atoms and change the Fermi level and conductivity of the semiconductor, due to high ionicity 

of MAPbI3, ambipolar characteristics or preferential p-type or n-type transport characteristics 

might be observed from MAPbI3-based devices without any external dopant [32]. Substitutional 

impurities have been used in MAPbI3 based devices as well. In a study by Yang et al., MAPbI3 

was doped by a group of polarized ferroelectric polymers [82]. 
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Different processes such as thermal annealing and growth condition or precursor ratio 

(MAI/PbI2) may impact self-doping and change in the material type of MAPbI3. Field-induced and 

photoinduced self-doping effects have been also introduced to be responsible for the change in 

MAPbI3 Fermi level [83]. In the work by Huang et al. it was shown that MAI-rich and PbI2-rich 

perovskite films are p and n self-doped, respectively. Ultraviolet photoelectron spectroscopy 

(UPS) of MAPbI3 samples formed by one-step spin coating method is shown in Figure 2.2 [81]. 

 

Figure 2.2 UPS measured energetic levels of perovskite films formed by one-step method with 

different precursor ratios (used with permission [81]). 

To determine the material type, some research groups considered MAPbI3 as a 

conventional semiconductor and then methods such as Kelvin probe [84] and Hall effect [85] were 

employed.  Yet, the ambipolar characteristic has been reported by several researchers testing the 

materials in  a transistor structure [21, 28]. Very large charge mobility higher than 100 cm2V-1s-1 

has been observed in MAPbI3 single crystals [80]. 

2.2.3 Piezoelectricity 

As it was mentioned before, MAPbI3 has three crystalline phases: cubic, tetragonal, and 

orthorhombic. The most stable phase at room temperature is the tetragonal phase [86], which has 
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been ascribed to a polar space group I4cm [87] and is shown to be ferroelectric [87] and 

piezoelectric [88-92]. Polarized domains have been observed in both single crystal and thin-film 

polycrystalline forms of MAPbI3 [89, 92].  

2.3 Fabrication Techniques 

The feasibility of fabricating devices with low-cost methods using inexpensive precursor 

materials is one of the main advantages of lead halide perovskite-based devices. While spin coating 

as a low-cost method is the most common technique for thin-film deposition of MAPbI3 [93, 94], 

a wide range of techniques have been introduced to make high-quality perovskite films. That 

includes co-evaporation [95], vapor-assisted solution process (VASP) [96], sputtering [97], 

doctor‐blading [98], spray coating [99] and inkjet printing [100].  

Spin coating of perovskite can be done in two-steps or one-step. In both methods, MAI and 

PbI2 are being used as precursors. In the one-step method, a precursor solution can be prepared by 

dissolving PbI2 and MAI in a polar solvent such as N,N-dimethylformamide (DMF), dimethyl 

sulfoxide (DMSO) and/or γ-butyrolactone (GBL). A thin film of perovskite can be made by spin 

coating the solution on a substrate and curing the sample. In the two-step method, first, a solution 

containing PbI2 is spun coated on a substrate, and then the MAI solution will be dip coated or spun 

coated on a sample. 

Despite the ease of fabrication and cost-effectivity of spin coating, this method is generally 

limited to a scale of <10 cm, and a large portion (>90%) of the precursor solution is wasted in the 

process [101]. On the other hand, spin coating is suitable for forming a thin coating layer of 

perovskite on the entire surface area and impossible to form different patterns of perovskite by 

spin coating. Also, hydrophobicity of some substrates makes the use of spin coating difficult for 

perovskite deposition [102]. 
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In addition to above-mentioned drawbacks of spin coating method, in the case of MAPbI3, 

there is a growing concern regarding the lead toxicity driven by the result of the restriction of 

hazardous substances directive (RoHS) regulations. Lead toxicity related concerns lead to 

employing a method which does not waste the precursor and requires as low as possible amount 

of MAPbI3 precursor. 

Different groups have tried to form perovskite patterns. Gu et al. introduced a vapor–solid–

solid reaction (VSSR) process to grow ordered three‐dimensional (3D) MAPbI3 nano-wire arrays 

using a nanoengineered template [103]. Despite the feasibility of forming arrays of perovskite, the 

vapor deposition methods are complicated and require a high vacuum and high-temperature 

equipment [104]. The solution processability of halide perovskites has motivated to use novel 

fabrication methods. In this project, microfluidic methods have been suggested for patterning the 

perovskite precursor solution to fabricate photosensors.  

2.3.1 Microfluidic Methods 

Microfluidic devices employ surface tension effect encoded by the geometry and surface 

chemistry of a microchannel to deliver liquid. The liquid flows through capillary action and it 

happens when the adhesion to the surface material is more powerful than the cohesive forces 

between molecules of a liquid [105]. Since the first microfluidic device was made in 1979 [106], 

many different approaches were employed to make capillary channels and chips including 

micromachining, cleanroom fabrication techniques, and rapid prototyping. Notable developments 

in capillary circuits are represented in Figure 2.3. 
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Figure 2.3 The three waves of capillary circuits with notable developments highlighted in the 

timeline (open acess article [105]). 

Cleanroom fabrication of capillary circuits is expensive and needs complicated equipment 

to make cast and mold. Cast and mold degrade over time and the material wastes. On the other 

hand, mechanical micromachining is cast/mold- and cleanroom-free. It is easy to use on various 

types of substrates.  This method is suitable for rapid fabrication, both mass production and 

prototyping of microfluidic devices.  

In addition, over the last few years, with the high development of laser technology, laser 

ablation has been considered as an alternative technique to traditional lithography in the fabrication 

of microfluidic devices. Since MAPbI3 has the solution-based deposition method, the capillary 

motion of the one-step method perovskite precursor can be used for filling a laser-engraved 

patterned conducting layer.  

In general, laser engraving or laser ablation can be performed by melting or vaporizing the 

target material using a focused laser beam on a material surface or inside the bulk part and 

removing the intended parts of the target through heating.  Sor far, to fabricate microfluidic 

devices, CO2 [107], Nd:YAG [108] and Q-switched solid state [109] lasers have been employed. 

Among different types of laser sources, CO2 source provides low-cost advantage [110]. The 

desirable microchannel dimensions can be fabricated by manipulating several factors, including 
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focus length, the pulse repetition rate, machining speed, and the absorption coefficient of the 

materials [111].   

Different polymers such as polymethyl methacrylate (PMMA) [112], PET [113] and 

polydimethylsiloxane (PDMS) [114] have been ablated by CO2 laser to make a microchannel. 

Surface tension effect helps the fluid to flow in a microchannel which is called capillary motion. 

According to fluid mechanics, the flow resistance within a microchannel and the flow rate can be 

calculated using Equation (1) and (2) respectively [105]: 

𝑹 =  
∆𝑷

𝑸
     (2-1) 

𝑸 = 𝑨 × (𝒗̅)    (2-2) 

where A is the cross-section area, ΔP is the difference in capillary pressure across the 

microchannel, and 𝑣̅ is the average velocity of the fluid. The contact angles and microchannel size 

determine the capillary pressure [105]. Once microchannels are made,  the one-step method 

precursor of lead halide perovskites can fill the engraved channels and after solidifying make the 

perovskite crystal inside the channel [102].  

2.4 Stability 

Although perovskite solar cell is the fastest developing photovoltaic technology [115, 116] 

since 2010, the instability of organic-inorganic halide perovskites has hindered its implementation 

for large scale industrial applications. Humidity, heat, light, oxygen, and electric field can induce 

decomposition of methylammonium lead iodide perovskite. The responsible process for the 

potential initial step of the moisture-induced decomposition of CH3NH3PbI3 is the following 

chemical reactions [69, 117]:  

CH3NH3PbI3(s) ⇆ PbI2(s) + CH3NH3I(aq.)  (2-3)  

CH3NH3I(aq.) ⇆ CH3NH2+ + HI(aq.)  (2-4)  



16 

 

4HI(aq.) + O2 ⇆  I2 (s) + 2H2O   (2-5)  

2HI(aq.) ⇆  H2 + I2(s)     (2-6) 

Some strategies such as minimizing the exposure to environment by encapsulation 

techniques [118, 119], improving film qualities [120], and engineering thermally stable, water-

repelling interlayers [121] have been proposed to suppress the decomposition of perovskite and 

improve the stability of device.  

Hydrophobic fluoropolymers such as CYTOP provide a water repellant layer that does not 

let water molecules penetrate the perovskite layer. These polymers can be used for encapsulation 

in perovskite devices [122, 123]. FluoroPel is another type of fluoropolymer thin film coating fluid 

which is manufactured by Cytronix corporation [124]. FluoroPel dielectric strength and contact 

angle are higher than CYTOP [125]. FluoroPel is a true solution fluid and does not carry micron-

sized solids therefore results in much thinner, smoother coats than fluid based on carrying 

suspended solids [124]. Also, it has sufficient adhesion to the surface even without thermal curing.  

2.5 Ion Migration 

Among all factors that cause the instability of MAPbI3, ion migration has been recently 

introduced as intrinsic to the perovskite polycrystalline films and cannot be removed by 

encapsulation methods [126].   

The I-V hysteresis loop of the perovskite devices which can be capacitive and partly non-

capacitive [127-131] is believed that arises from three major mechanisms: charge 

trapping/detrapping process on the surface and grain boundaries of the perovskite, ion migration 

[132], and polarization [130].  

Extraction of photogenerated charge, recombination, and polling can cause a non-

capacitive effect in perovskite-based devices [129, 130]. The contact material determines the 
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activation energy required for ion migration at the interface and the rate of the ion migration at the 

interface of the perovskite layer depends on the contact material as well [133]. 
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Chapter 3: Two-Terminal Photodetectors 

Methylammonium lead halide perovskites have shown outstanding electrical and optical 

properties which make them excellent candidates to be used as the photoactive layer in 

photodetectors[134]. Different structures have been introduced for fabricating MAPbI3-based 

photodetectors such as Schottky junction [135] and heterojunction [136] in vertical [137] or lateral 

[138] structures. Non-ohmic contacts provide low dark-current which leads to high sensitivity (the 

ratio of photocurrent to dark-current) and low shot noise in photodetectors [139]. By employing a 

mechanism that maintains the junction barrier in the dark but reduces it in the light, the sensitivity 

can be further improved. 

In this chapter, two different photodetectors with lateral structures are introduced by using 

two non-lithographic and low-cost methods to make high aspect ratio MAPbI3 microchannels on 

a flexible substrate. In the first method, manual mechanical machining was used to make a 

capillary microchannel. The second method uses a laser engraving tool which showed remarkable 

enhancement in the reproducibility of fabricated capillary channels.*  

3.1 Perovskite Photodetector by Mechanical Machining 

As it was discussed in the second chapter, mechanical micromachining is one of the fastest 

methods to make microchannels. These channels can be used to be filled with the perovskite 

precursor and form a lateral structure. The experimental details are presented in the next sections. 

  

 
* Sections 3.1.1-3.3 are as presented in the published work at Organic and Hybrid Sensors and Bioelectronics 

XI. Vol. 10738. International Society for Optics and Photonics, 2018. 
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3.1.1 Experimental 

3.1.1.1 Sample Fabrication 

Flexible photodetector devices were fabricated by cutting ITO coated polyethylene 

terephthalate, PET, (60 Ωsqr, Sigma-Aldrich) to 1 cm×2 cm pieces. The perovskite precursor 

solution was prepared by dissolving a mixture of equimolar 0.5 M lead iodide (98.5%, Alfa Aesar) 

and methylammonium iodide (Lumtec) in gamma-butyrolactone (99%, Aldrich). The solution was 

stirred overnight at 1200 rpm and kept at 50 °C. 

As shown in Figure 3.1, two different methods were used to make a channel on the ITO 

coated PET. In one method (similar to the conventional lithography), the entire surface of the ITO 

sheet was covered by the permanent marker as a mask. The tip of a tweezer was used to remove a 

part of the permanent marker by simply slipping the tip over the sample to make a straight line 

pattern with a width of ~200 µm and a length of 2 cm. Afterward, the sample was dipped into 

hydrochloric acid (1:2 HCl to DI water) to etch the exposed part of ITO. After removing the marker 

by acetone, two conductive ITO pads with a gap between was obtained. The sample was used to 

make a device by spin coating (500 rpm for 45 s) the perovskite precursor and heating on a hotplate 

for 10 minutes at 90°C. 

In the other method, a custom-designed blade set up was used to make a groove on the ITO 

coated PET sample with a controlled depth (Figure 3.2.a). The groove formed a channel between 

the two sides (i.e. ITO pads) with a width of ~100 µm. Instead of spin coating the perovskite 

solution, 2 µl of the perovskite precursor was placed on one end of the channel. The droplet 

immediately spread into the channel under the action of the capillary force. Then the sample was 

placed on the hotplate and heated to 90°C. The schematic in Figure 3.2.b shows the structure of the 

device with the capillary method of fabrication.  
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As the final step, spin coating at 2000 rmp for 45 s was employed to deposit a 50 nm 

transparent layer of CYTOP on both samples for stability enhancement of the devices during the 

characterization step [122]. Then the samples were heated to 90°C for 40 minutes and kept in the 

desiccator for 24 hours to remove any residual solvent. 

 

Figure 3.1 Fabrication steps of two different photodetectors using capillary motion and spin 

coating. Certain areas of the sample made by using capillary motion are labeled as A, B, and C 

referring to the beginning, middle, and end of the channel, respectively. 

           

Figure 3.2 a) The custom-designed setup which was used to make the micro-channel. b) Schematic 

of the structure of the fabricated photodetector. 

3.1.1.2 Characterization 

Scanning electron microscopy (SEM) images were taken by an Hitachi S800 Scanning 

Electron Microscope. Thickness profile of the sample was measured by Dektak D150 profiler. The 

I-V characteristics (photocurrent, and dark current) were carried out using a VersaSTAT 4 

potentiostat. All measurements were performed in a dark box connected to a solar simulator (RST, 

a) b) 

A 

B 

C 
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Radiant Source Technology) via an optical fiber. The light intensity at the sample location was 

measured to be ~80 mW/cm2. 

3.1.2 Results and Discussion 

The quality of the perovskite in the micro-channel was studied via optical microscopy and 

SEM methods. The optical images showed a fairly uniform coverage of perovskite along the 

micro-channel. SEM images of the fabricated sample using capillary motion are shown in Figure 

3.3. The width of the channel was measured to be 100 µm. The zoomed picture in Figure 3.3.b 

shows perovskite grain size of ~2-5 µm.  

        

Figure 3.3 Top view SEM images of the fabricated sample using capillary motion. 

Using a Dektak profilometer, the profile of the channel was studied at different points along 

the groove. Specifically, the profiles were measured at the beginning, middle, and end of the 

channel (regions A, B, and C in Figure 3.1). The measurement results are shown in Figure 3.4. a, b 

and c. Thickness profile of the sample was also measured after filling the channel with perovskite 

and spin coating 50 nm of CYTOP, which are shown in Figure 3.4. d, e, and f. As it can be observed 

the cut has made a channel with walls as high as ~30 µm and depth of ~20 µm. At the beginning 

of the channel (area which is marked by “A” in Figure 3.1) perovskite covered the entire depth of 

the channel. Moving along the channel, the thickness of the perovskite was lowered.  

a) b) 
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Figure 3.4 (a, b, and c) Dektak profile of the grooved ITO sample across the channel at the 

beginning, middle, and end of the channel (marked as A, B, and C in Figure 3.1), respectively.  (d, 

e, and f) The profile of the sample at area A, B, and C after crystallization of perovskite which was 

formed due to the capillary motion of the liquid along the channel. 

To explore the photoelectric properties of the samples, first, the transient photoresponse of 

the samples was measured and compared with the one made with the spin coating method. As 

shown in Figure 3.5, the device made by using capillary motion showed almost three times higher 

photocurrent while the device was biased at 2.0 V. The detail characteristic study was conducted 

by measuring the I-V characteristics under 80 mW/cm2 visible light illumination and compared 

with the dark condition. As it can be observed in Figure 3.6.a, the photodetectors fabricated using 

capillary motion and spin coating showed the dark current as low as 2 nA and 0.5 nA at 2.0 V, 

respectively. The photocurrent at 2.0 V reached to 211 nA in the sample made by the capillary 

motion while it was only 76 nA in the spin coated sample. Light absorption at the surface of the 

perovskite layer causes electron and holes to be generated. Under the existence of electric field, 

generated charges were transported toward the electrodes. The non-symmetry I-V curves can be 

due to formation of Schottky barrier between CH3NH3PbI3 and ITO.   

a) b) c) 

d) e) f) 



23 

 

 

Figure 3.5 Transient photoresponses of the samples biased at 2.0 V. 

In order to compare the two photodetectors, three figures of merit (i.e. sensitivity, 

responsivity, and normalized detectivity) were calculated as it is suggested in the literatures [140]. 

At 2 V the spin coated device reached the responsivity of 0.036 A/W, sensitivity of 40 and 

detectivity of 7.5×107 Jones. While the device made by capillary motion showed a superior 

performance. At 2.0 V, the sensitivity of 172, responsivity of 0.1 A/W and normalized detectivity 

2.6×108 Jones were calculated for the other sample made by capillary motion. Which are 

respectively 4.3, 2.8 and 3.5 times higher than those in the spin coated sample (Table 3.1). The 

calculated responsivity in visible light for sample made using capillary motion is higher than the 

amount reported previously for the flexible photodetectors having lateral topology using 

ITO/CH3NH3PbI3/ITO structure [141]. 
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Figure 3.6 I-V characteristics of the fabricated samples a) in dark, b) under illumination. 

Table 3.1 Comparison between figures of merit in fabricated samples. 

 Responsivity            

(A/W) 

Sensitivity Normalized detectivity 

(Jones) 

Capillary 0.1 172 2.5×108 

Spin Coated 0.036 40 7.5×107 

To further understand the difference in the nature of the junction made between perovskite 

and ITO when two different methods of fabrication was used to make a channel on ITO, the 

impedance of the samples were measured in the dark. As shown in Figure 3.7, the absolute value 

of impedance (at low frequencies) for the capillary used sample is one order of magnitude lower 

than the spin coated sample. This can be an indication of lower contact resistance between 

perovskite and ITO in the capillary sample. This lower impedance may explain the higher dark 

current in the capillary device. Nevertheless, the superior response from the device made with the 

capillary method is promising particularly for reducing the consumption of the toxic materials.   

a) b) 
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Figure 3.7 Impedance spectroscopy measurement ot the fabricated samples, a) amplitude and b) 

phase. 

3.1.3 Conclusion 

A novel method was introduced to pattern perovskite crystal along a micro-channel using 

the capillary force motion. This method was employed for fabrication of a photodetector. Another 

photodetector was made employing spin coating of perovskite precursor on a gap between two 

electrodes. The optical and electrical properties of the two devices were measured and compared. 

The sample made by capillary motion showed the better photoelectric properties. This 

enhancement was attributed to existence of the better contact between perovskite and the 

electrodes as the result of capillary motion of the perovskite precursor through the channel’s walls. 

In future works, this novel method can be used for simple fabrication of low-cost devices based 

on perovskite micro-channels. 

3.2 Perovskite Photodetector by Laser Ablation  

Here a laser engraving technique for fast production of lead halide perovskite 

photodetectors is introduced. Several microchannels were fabricated using laser engraving of a 

a) b) 
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conductive flexible layer (ITO coated PET). The optimum laser parameters were found, and the 

photodetectors were fabricated by simply filling the microchannels by perovskite. † 

3.2.1 Experimental 

Several photodetectors were made by laser ablation of ITO coated polyethylene 

terephthalate, PET, (60 Ωsqr, Sigma-Aldrich) using a commercially available CO2 laser (Epilog 

Fusion M2, 60 watt) which provides a laser beam of 10.6 μm wavelength printing in the vector 

mode with lowest beam diameter of 76.2 μm. The maximum number of laser pulses that the laser 

(used in this experiment) fires per inch of travel was 5000 pulses per inch (PPI) and its maximum 

machining speed was 254 mm.s-1. The laser power, PPI and the machining speed were manipulated 

in order to fabricate the different microchannels. 

The perovskite precursor solution was prepared by a mixture of equimolar 0.5 M lead 

iodide (98.5%, Alfa Aesar) and methylammonium iodine (Lumtec) in gamma-butyrolactone (99%, 

Aldrich). The solution was stirred over night at 300 rpm and at 50 °C. 2 µl of the perovskite 

precursor was placed at one end of the laser engraved microchannel. The solution droplet was 

immediately pulled into the channel due to the capillary motion effect. Then the sample was placed 

on the hotplate and heated to 100 °C for 6 minutes. Afterward, a transparent layer of hydrophobic 

FluoroPel (CYNTONIX) was deposited by deep coating to protect the perovskite from degradation 

due to moisture. Finally, the sample was heated to 100 °C for 10 minutes and kept in vacuum in a 

desiccator for 24 hours to remove any residual solvent. 

The fabricated samples were characterized by an Hitachi S800 Scanning Electron 

Microscope. The cyclic voltammetry, photocurrent and impedance measurements were carried out 

using a VersaSTAT 4 potentiostat. The light intensity at the sample location was measured to be 

 
† Sections 3.2.1-3 are  as presented in the published work at Organic and Hybrid Sensors and Bioelectronics 

XII. Vol. 11096. International Society for Optics and Photonics, 2019. 
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80 mW/cm2. The light pulses were applied by switching on and off the light source. All 

experiments were performed at room temperature and under ambient condition. 

 

Figure 3.8 Schematic showing laser engraving of ITO coated PET and the schematic of the 

fabricated photodetector. 

3.2.2 Result and Discussion 

SEM images of the four different microchannels made by laser engraving are shown in 

Figure 3.9. Laser machining speed and power were varied in order to find the optimum values for 

each parameter. As the power increased (from 0.6 watt to 1.2 watt) the microchannel width 

increased, and deeper cracks were observed. The speed had a different effect, by increasing the 

laser speed (from 25.4 mm.S-1 to 50.8 mm.S-1), a more uniform and shallower microchannel was 

made. The channel width of the microchannels shown in Figure 3.9 (a to d) are 117 μm, 100 μm, 

197 μm, and 227 μm, respectively. 

The four microchannels were filled with perovskite in order to make a photodetector. In 

addition, another photodetector was fabricated by forming a microchannel which was made by 

using the highest machining speed and PPI of the CO2 laser. Using the highest speed and PPI 
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provided a higher degree of freedom in the choice of laser power which was increased to 2.4 watts. 

The fabricated samples were named as A, B, C, D, and E which are shown in Table 1.  

 

Figure 3.9 The SEM image of the microchannels engraved at different laser powers and speeds 

(images are taken at 44 degrees tilt angle): (a) 0.6 watt, 25.4 mm.S-1, (b) 0.6 watt, 38.1 mm.S-1, (c) 

1.2 watt, 38.1 mm.S-1 and (d) 1.2 watt, 50.8 mm.S-1. 

Table 3.2 Laser engraving parameters of the fabricated samples. 

Sample Speed 

(mm.S-1) 

Power 

(watt) 

PPI 

A 25.4 0.6 2500 

B 38.1 0.6 2500 

C 254 2.4 5000 

D 38.1 1.2 2500 

E 50.8 1.2 2500 

Sample D and E showed a poor performance therefore we omit them from the rest of the 

study. The cyclic voltammetry of the samples A, B, and C measured in dark and under light 

(a) (b) 

(c) (d) 
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exposure are presented in Figure 3.10. Sample A and B showed a lower dark current. In the light 

condition, sample B presented the highest photocurrent of ~2.7 μA. The lower photocurrent of 

sample C while having a higher dark current is most likely because the perovskite precursor has 

gone over the ITO, cover a part of the electrodes, and made better contact. As a result, no 

significant change in the current was observed when the sample was under light illumination. 

In addition, in dark condition, a hysteresis loop was observed in the I-V characteristics of 

all three samples. For samples A and B, the observed hysteresis loops were clockwise, but sample 

C showed a partly clockwise and partly counterclockwise loop (in larger bias voltages). As it can 

be seen in Figure 3.10.a, the area of the hysteresis loop of sample A was clearly larger than the 

observed loop in I-V characteristic of sample B, indicating a larger capacitive effect which can be 

due to the cracks and pores formed on the PET substrate during the laser engraving affecting the 

perovskite channel. 

 

 

Figure 3.10 The cyclic voltammetry of the fabricated samples, (a and b) in dark and (c) under 80 

mwatt.cm-2 light exposure. 

(a) (b) 

(c) 
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The current response of the samples was measured at 2.0 V bias voltage when the light 

pulses of 20 seconds were illuminated to the samples (Figure 3.11). As it was expected, sample B 

showed the highest photocurrent and sample A showed the lowest photocurrent. 

 

Figure 3.11. Current response of the photodetectors to light pulses at 2.0 V bias. 

The amplitude and phase of the samples impedances were measured using the potentiostat. 

As shown in Figure 3.12, all sample had a pole which can be due to the capacitive effect exists 

between the perovskite grains. Sample C has shown a lower impedance which also confirms the 

I-V plot in dark condition. 

 

Figure 3.12 The bode (a) phase and (b) amplitude diagram of the fabricated photodetectors in dark 

condition. 

As sample B represented the best performance, an equivalent circuit was proposed to model 

the impedance behavior of the device and the simulated data was fitted to the bode amplitude plot 

(a) (b) 
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of the impedance (Figure 3.13). The simulation was performed by EIS Spectrum Analyser 

software. For frequency ranges below 5000 Hz, a RC circuit model can be fitted to the bode 

amplitude plot. As it was seen in Figure 3.12.a the phase increased to values over 90 degrees in 

the higher frequencies (>2500 Hz). In order to model a circuit to get impedance phases higher 

than 90 degrees and considering potentiostat calculated all phases as positive numbers, an inductor 

can be added to the equivalent circuit. More studies are required to investigate the inductive 

behavior of the fabricated samples in high frequencies. 

 

Figure 3.13 The simulated equivalent circuit bode plot fitted on sample B data points. 

3.2.3 Conclusion 

In conclusion, we fabricated several perovskite photodetectors by laser engraving ITO 

coated PET substrates to form a microchannel and then filling the channel by perovskite precursor. 

The most promising result was obtained by using the laser power of 0.6 watts, the laser speed of 

38.1 mm.S-1, and the laser pulse per inch of 2500 to engrave the microchannel. Along with 

simplicity, low cost, and cleanroom free advantages, our proposed fabrication method profits a 

clean and speedy micromachining which is beneficial for mass production. 
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Chapter 4: Stability in Photodetectors 

The objective of this chapter is to study the stability of CH3NH3PbI3 under CYTOP and 

FluoroPel coatings. In order to achieve this goal, a lateral structure photodetector was employed 

to facilitate fully encapsulation of perovskite. Here, as of our knowledge, for the first time, 

FluoroPel was used as a water repellent layer to enhance CH3NH3PbI3 stability.‡  

4.1 Experimental 

The samples were made on 1 cm × 2 cm pieces of ITO coated polyethylene terephthalate, 

PET, (60 Ωsqr, Sigma-Aldrich). The substrates were laser engraved using a commercially 

available CO2 laser (Epilog Fusion M2, 60 watts) which provides a laser beam of 10.6 μm 

wavelength printing in the vector mode with the lowest beam diameter of 76.2 μm. The macro 

channels were laser engraved when the laser fired 5000 pulses per inch (PPI) at the power of 0.6 

watts and machining speed of 38.1 mm.s-1.  

The perovskite precursor solution was prepared by a mixture of equimolar 0.5 M lead 

iodide (98.5%, Alfa Aesar) and methylammonium iodide (Lumtec) in gamma-butyrolactone (99%, 

Aldrich). The solution was immersed in a bath of water and stirred overnight at 300 rpm and at 

60 °C. 2 µl of the perovskite precursor was placed at one end of the laser engraved microchannel. 

The capillary motion helped the solution droplet to pull into the channel. Then the sample was 

placed on the hotplate and heated to 90 °C for 6 minutes.  

 
‡ Sections 4.1-4.4 are as presented in the published work in the journal of MRS Advances, 2020. 
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One group of four samples was prepared for the purpose of X-ray diffraction (XRD) 

characterization and another group of four samples were prepared for electrical and optical 

characteristics measurement. A 50 nm of CYTOP was spin-coated on two samples from each 

group and a 50 nm of hydrophobic FluoroPel (CYNTONIX) was spin-coated on the rest of the 

samples, to protect the perovskite from degradation due to moisture.  

Four samples (one coated with CYTOP and one coated with FluoroPel from the first group 

and one coated with CYTOP and one coated with FluoroPel from the second group of samples) 

were kept in vacuum inside a desiccator and four other samples were kept under the ambient 

condition in order to study the effectiveness of hydrophobic coatings.   

The fabricated samples were characterized by an Hitachi S800 and Hitachi SU70 Scanning 

Electron Microscopes. The cyclic voltammetry was carried out using a VersaSTAT 4 potentiostat. 

The light intensity at the sample location was measured to be 80 mW/cm2. The light pulses were 

applied by switching on and off the light source. All experiments were performed at room 

temperature, under ambient condition and at the same time for all the samples. The schematic of 

the fabrication steps is shown in Figure 4.1.  

 

Figure 4.1 Schematic of the fabrication steps of the samples. 
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4.2 Characterization 

The tilted (44 tilt degrees) view SEM image of the channel made by laser ablation is shown 

in Figure 4.2.a. Also, the top view SEM image of the perovskite layer grown inside the channel is 

presented in Figure 4.2.b.  

 

Figure 4.2 SEM image of the (a) the laser-engraved microchannel, (b) the perovskite layer inside 

the microchannel. 

In order to estimate the crystalline quality of the perovskite layer, four samples were made 

by laser ablation of 19 microchannels (with a distance of 1 mm from each other) on the ITO coated 

PET substrates. XRD was performed over 22 days period on the mentioned samples as shown in 

Figure 3.  

It has to be noted that the full XRD spectra had been shown in our previous work [[104]]. 

Therefore, here to simplify the comparison, the first two peaks are presented. The sharp peaks at 

2Ɵ of 13.95 and 14.22 degrees were assigned to (002) and (110) planes of tetragonal CH3NH3PbI3, 

space group I4/mcm [[142]]. In all samples, the perovskite crystal quality enhanced over 6 days. 

In addition, the PbI2 diffraction peak at 2Ɵ of 12.6 degrees [[143]] which is known as a clear sign 

of the perovskite degradation, was not observed in any of the XRD data. 
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Figure 4.3 X-ray diffraction pattern of the arrays of CH3NH3PbI3 microchannels formed on the 

PET substrate and coated with (a) CYTOP and kept in the desiccator, (b) CYTOP and kept under 

ambient condition, (c) FluoroPel and kept in the desiccator, and (d) FluoroPel and kept under 

ambient condition. 

4.3 Result and Discussion 

I-V characteristics of the sample were measured in dark and under light illumination of 80 

mW/cm2. In order to investigate the effectiveness of the two fluoropolymer coatings on the 

stability of the samples, the measurements were repeated over the 38 days.  
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The dark current of all samples (shown in Figure 4.4) dropped below 2 nA after the first 

week from the fabrication date. Afterward, no significant changes were observed in all the samples. 

On the other hand, the photocurrent (the current under illumination) varied over the time. The I-V 

plots of the sample under light exposure are presented in Figure 4.5. To clearly display the 

photocurrent variation for samples, the percentages of the change in the photocurrent is shown in 

Figure 6. 

 

Figure 4.4 I-V characteristics of the ITO-CH3NH3PbI3-ITO microchannels formed on the PET 

substrate and coated with (a) CYTOP and kept in the desiccator, (b) CYTOP and kept under 

ambient condition, (c) FluoroPel and kept in the desiccator, and (d) FluoroPel and kept under 

ambient condition, and in dark. 

As can be seen in Figure 4.6 both the samples which were kept under ambient conditions 

(coated by CYTOP or FluoroPel) showed a significant increase in the photocurrent for 22 days 

after the fabrication. Also, regardless of the fluoropolymer coating material and the storage 

conditions, all the samples showed higher photocurrent frequently.  
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Figure 4.5 I-V characteristics of the ITO-CH3NH3PbI3-ITO microchannels formed on the PET 

substrate and coated with (a) CYTOP and kept in the desiccator, (b) CYTOP and kept under 

ambient condition, (c) FluoroPel and kept in the desiccator, and (d) FluoroPel and kept under 

ambient condition, and under light illumination. 

 

Figure 4.6 Comparison between the percentage of the change in the photocurrent of the samples 

at 2 V over the time. 

Equation 1 was used to calculate the average measured changes in the photocurrent over 

38 days for each sample. The Table 4.1 shows the calculated values. The two samples kept under 
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ambient condition were found to be more unstable and showed higher variation in the 

photocurrent. This may prove that the coating layers are not fully defect-free. The sample coated 

with FluoroPel and kept in vacuum was the most stable sample and showed the lowest average 

change in the photocurrent.  

ΔIph= 

𝐼day1−𝐼day1

𝐼day1
 + 

𝐼day6−𝐼day1

𝐼day1
 + 

𝐼day15−𝐼day1

𝐼day1
 + 

𝐼day22−𝐼day1

𝐼day1
 + 

𝐼day29−𝐼day1

𝐼day1
 + 

𝐼day38−𝐼day1

𝐼day1

6
× 100     (4-1) 

Table 4.1 The average of the percentage of the change in the photocurrent. 

 
CYTOP 

Vacuum 

CYTOP 

Air 

FluoroPel 

Vacuum 

FluoroPel 

Air 

Avg. 

ΔIph(%) 10.79 18.21 7.71 70.26 

The unusual behavior of the raise in the photocurrent over the time needs to be investigated 

along with the higher peak intensity in X-Ray diffraction data. The absence of the PbI2 diffraction 

peak at 2Ɵ of 12.6 degrees confirms that the formation of PbI2 due to the perovskite decomposition 

in this unique lateral structure is unlikely. Since the perovskite layer is encapsulated from the two 

walls of the microchannel and the PET substrate underneath. In addition, the perovskite upper part 

is coated by a fluoropolymer.  

On the other hands, it has been reported that the high dipole moment of the strong polar C-

F bond in fluoropolymers can favorably change the electrical characteristics of the device [144]. 

As it was discussed before, the grown perovskite is in the tetragonal phase which is ferroelectric 

[123]. Since the light was illuminated from the top-side of the samples, it passes through the 

polymer coating, and is mainly absorbed by the part of the perovskite which is in contact with the 

fluoropolymer. The enhance in the photocurrent over a long period of time can be due to the effect 
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of the high dipole moment of the strong polar C-F bond in fluoropolymers on aligning of the 

domains in the ferroelectric perovskite layer.  

Sharpening of the perovskite (002) and (110) planes diffraction peaks after 6 days from the 

fabrication time indicates more ordered crystalline domains by passing the time which can be as 

the result of nearly fully encapsulating the perovskite inside a microchannel and coating it by a 

fluoropolymer. More study is needed to investigate the effect of perovskite confinement during 

the growth and encapsulation. 

4.4 Conclusion 

In summary, we employed two fluoropolymers as the encapsulation layer to protect the 

perovskite microchannel from degrading due to exposure to oxygen and moisture. Four 

photodetectors were fabricated using laser micromachining. Two photodetectors were coated by 

CYTOP and the other two photodetectors were coated by FluoroPel. To investigate the effect of 

the ambient environment, one photodetector from each coating was kept in the vacuum inside a 

desiccator and one photodetector was kept under ambient environment.  

Unexpectedly, the average photocurrent of all four samples increased over 38 days from 

the fabrication time. The sample which was coated by FluoroPel and kept in the vacuum was the 

most stable sample. This study suggests the use of FluoroPel in perovskite solar cell applications.   
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Chapter 5: Ion Migration and Piezo-Photocurrent Modulation 

Recently, MAPbI3 has been found to have piezoelectricity. Alignment of polarized 

domains via the polling process can generate a permanent polarization in the material, but in such 

a form, both dark and photocurrents are expected to be increased by reducing barriers under an 

external force (leading to an insignificant improvement in the device sensitivity) [145]. 

Many efforts have been made to boost the functionality of fabricated lead halide perovskite 

photodetectors [146]. Recent investigations have revealed that the piezoelectric property of 

MAPbI3 [88-92] causes a piezo-phototronic effect. This effect can be employed to reduce the 

structural barrier under illumination to enhance the photoresponse of a MAPbI3 single crystal 

photodetector [91]. It has been shown that the piezoelectric coefficient increases by several-fold 

under illumination [90]. 

Ion migration has been suggested as a mechanism for photo-induced self-polling effect. 

This enhances the photocurrent in MAPbI3 based photovoltaic devices under illumination by 

accumulating ions at the interfaces and making a p-i-n homojunction in the perovskite layer [147-

149]. 

In this chapter, the effect of external forces in different directions on the photocurrent of 

the photodetector structure which was introduced in the previous chapters has been investigated. 

The device was also characterized by SEM, XRD, AFM, and profilometer.§ 

 
§ Sections 5.1-5.4 are as presented in the published work in the journal of Advanced Electronic Materials 

2019. 
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5.1 Experimental 

The perovskite precursor solution contained a mixture of equimolar 0.5 M lead iodide 

(98.5%, Alfa Aesar) and methylammonium iodine (Lumtec) in gamma-butyrolactone (99%, 

Aldrich). The solution was stirred over night at 1200 rpm and at 50 °C. 

1.5 cm×2 cm piece of ITO coated polyethylene terephthalate, PET, (60 Ωsqr, Sigma-

Aldrich) was cut and placed into a microcutting tool that comprises an X-Acto knife blade 

protruding wedge into the ITO coated PET substrate to form a micro-channel with ~100 µm width. 

2 µl of the perovskite precursor was placed at one end of the channel. The solution droplet was 

immediately pulled into the channel due to the capillary motion effect. Then the sample was placed 

on the hotplate and heated to 90 °C for 6 minutes. Afterward, a ~50 nm transparent layer of water 

repellent fluoropolymer CYTOP (AGC Chemicals) was deposited by spin coating to protect the 

perovskite [150]. Finally, the sample was heated to 100 °C for 90 seconds followed by another 

annealing process for 30 minutes at 90 °C and kept in the desiccator for 24 hours to remove any 

residual solvent. Figure 22.a illustrates the process of preparing the photodetector. SEM, XRD, 

AFM, and profilometer were employed to characterize the perovskite channel. 

For the I-V characterization under the light, dark, compressed and released conditions, a 

VersaSTAT 4 potentiostat was connected to the device electrodes inside a dark box. A solar 

simulator (RST, Radiant Source Technology) was used as the light source. The light intensity at 

the sample location was measured to be ~80 mW/cm2. In-house designed setups were used for 

bending the devices and applying normal forces while they were tested under the dark and light 

conditions. Figure 22.b shows the schematic of a home-made vice setup that was used for bending 

the device by turning the screw (Figure S1.a in the Supporting Information). For the normal tests 

(Figure 22.c), a pneumatic actuator was used to apply the pressure over the device while the light 
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was illuminated through the transparent window at the back of the device (Figure S1.b). Both 

setups were designed to be placed in the dark box connected to the light source.  

 

Figure 5.1 Schematic of (a) the fabrication process steps, (b) the setup used for bending the device 

and (c) the setup used for applying normal forces. 

5.2 Device Characterization  

The top view SEM image of the sample (Figure 5.2.a, b and c) showed that the channel is 

filled with a packed layer of perovskite. As it can be seen in Figure 5.2.b the grains sizes of the 

perovskite layer vary across the channel. Larger grains were observed at the edges of the channel 

which could be the result of the coffee ring effect [151]. For further investigation, the thickness 

profile of the channel was measured at different spots along the channel (Figure S2). The profile 

image showed a groove shape with two standing walls before the channel was filled with 

perovskite. After filling, at the beginning of the channel where the capillary motion started, 

perovskite fully filled the channel and crystalized over the walls. As it reached toward the end, the 

thickness of the perovskite decreased (Figure S.3).  

Using AFM in the contact mode, the morphology of the perovskite in the channel was 

studied on a sample without the CYTOP coating. The surface height morphology is shown in 

b) 

c) 

a) 
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Figure 5.2.d demonstrating a relatively rough surface. The XRD pattern (Figure 5.2.e) was 

measured on a sample with an array of parallel channels with 300 µm distance between them while 

all the channels were filled with perovskite using the capillary motion. The pattern displayed five 

sharp peaks at 2 of 14, 28.3, 31.8, 40.5 and 43 degree indicating the channels were filled with 

tetragonal-phase MAPbI3 [152]. The absence of a diffraction peak at 12.65 degrees suggests that 

the level of the PbI2 impurity phase is negligible [21]. The wide broad peak at 25 degrees is due to 

the PET substrate. 

 

Figure 5.2 (a, b and c) Top view SEM image of the fabricated perovskite microchannel at different 

zooming levels. (d) AFM height image of MAPbI3. (e) X-ray diffraction pattern of the arrays of 

MAPbI3 microchannels formed on the PET substrate. The inset picture shows the XRD pattern of 

the PET substrate. 
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5.3 Results and Discussion  

To study the effect of stress perpendicular to the applied electric field across the perovskite, 

the device was placed in the compressing setup shown in Figure 5.1.c (Figure S1.a ) that was 

equipped with a pressure regulator to adjust the applied stress to the sample. Then the I-V 

measurement was carried out with the voltage ranged between -2.0 V and +2.0 V under 

illumination while the device was compressed or released at different normal pressures. Also, the 

device was tested in the dark in the relaxed mode (no pressure) as the reference. As shown in 

Figure 5.3.a, a non-linear I-V characteristic was observed which is likely due to the formation of 

Schottky junctions between the ITO electrodes and MAPbI3 [141, 153]. The response under 

different pressures clearly shows that the current under illumination (photocurrent) increased with 

the pressure. Also, the low dark-current verifies the behavior of the device as a photodetector.  At 

+2.0 V biasing, the photocurrent magnitude reached from 3.5 μA at the no pressure condition to 

6.9 μA at the highest normal force of 340 kPa which is 97% higher than the released state. 

To investigate the effect of compressive and tensile forces across the channel, the setup 

shown in Figure 22.b (Figure S1.b) was used to bend the device inward (concave shape) and 

outward (convex shape), respectively. The I-V characteristics of the device were measured again 

in the voltage range of -2.0 V and +2.0 V and as an example under one curvature for each bending 

direction (inward or outward). The inverse of the curvature radius is reported as the curvature, κ, 

in Figure 5.3.b. The results showed a higher photocurrent when the device was under a 

compressive force (inward bending). At +2.0 V biasing, the photocurrent magnitude was 4.5 μA 

at the inward curvature of 0.3 cm-1, which was ~30% larger than that at the flat position. In contrast, 

the measured photocurrent at the outward curvature of -0.3 cm-1 had the lowest magnitude of 2.8 

μA which is ~20% lower than the photocurrent at the flat position.   
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Figure 5.3 I-V characteristics of the fabricated device in the dark (no pressure and flat condition) 

and under ~80 mW/cm2 light exposure while the device was tested (a) under different normal 

pressures and (b) at different bending curvatures (inward and outward bending curvatures are 

shown with positive and negative numbers, respectively). 

To study the transient response of the current, the sample was biased at 2.0 V and a constant 

normal pressure was applied when the light was switched on and off every 20 sec (Figure S4). The 

results from different experiments under different normal forces are presented in Figure 5.4.a. In 

the first few cycles of light exposure under no external pressure, the photocurrent showed a 

constant increase with time until it reached a stable value after a few cycles. The following cycles 

were tested when the sample was under a constant pressure. The current pulses show a higher 

photocurrent at higher pressures, after four steps of compression from 310 kPa to 340 kPa, the 

device was released, and the photocurrent was measured to be less than all photocurrents under 

pressure. However, its value was higher than the primary state before applying any pressure. To 

ensure that the change in the photocurrent is the effect of the normal force, the dynamic respond 

of the photocurrent to the normal forces was measured by compressing and releasing the device 

under light illumination (Figure 5.5.a). Fast and reversible response to the normal force was 

observed. 

a) b) 
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Figure 5.4 Current response of the photodetector to light pulses at 2.0 V bias under different 

compressive/tensile pressures. (a) under different normal pressures. (b) under different bending 

curvatures (inward bending is showed with the positive number and outward bending with a 

negative sign). 

 

Figure 5.5 Dynamic photocurrent response of the fabricated sample at 2.0 V bias under continuous 

illumination to (a) a normal force and releasing for 3 cycles, (b) manually bending into inward 

position and flattening for 2 cycles. 

Static and dynamic responses to the compressive and tensile forces aligned with the applied 

electric field were measured using the fabricated setup in Figure 22.b for bending the sample 

a) 

b) 

a) b) 
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inward and outward at different curvatures. Figure 5.4.b shows the effect of the static force under 

different curvatures. The higher inward curvatures resulted in the higher photocurrent. Changing 

the bending curvature from inward to outward resulted in a lower photocurrent. However, 

returning to the flat position, the photocurrent increased to a higher level than the primary flat state 

photocurrent. This can be due to the illumination history and electric field history as reported 

before [154]. To ensure that the change in the photocurrent is the effect of bending the device, 

dynamic response of the photocurrent was measured by bending the device under illumination 

(Figure 5.5.b).  

For the better understanding of this apparent piezoelectric effect in the perovskite 

photodetector, the device was tested in the dark under various pressures and bending conditions. 

The dark-currents versus time are shown in Figure 27 at +2.0 V bias voltage. Although some 

changes were observed in the dark-current when a mechanical stress was applied, the changes were 

not coherent with the magnitude and direction of the forces. More importantly, the variation in the 

dark-current was less than 12% under different normal forces (Figure 27.a) while a coherent 

change of photocurrent up to 30% was observed for the same range of the forces. Similarly, the 

dark-current under the bending conditions did not show any specific relation to the curvature. Even 

as shown in Figure 6.b, the dark-current was exactly the same for the flat position and the max 

inward bending at the curvature of κ=0.4 cm-1.  The coherent response of the photocurrent to the 

external forces and the lack of any relationship between the dark-currents and the forces clearly 

indicate that the change in the photocurrent is not due to the mechanical contacts between the 

perovskite and ITO. Furthermore, much larger boosts in the photocurrent and smaller changes in 

the dark-current suggest that the mechanism of governing the charge transport through the device 

is not a simple piezoresistive effect [155].  
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Figure 5.6 I-t responses of the device in dark, (a) under different normal pressures and (b) at 

different bending curvatures. 

To ensure the stability of the device during the measurement, the dark current-voltage 

characteristic of the device was measured by the scan rate of 50 mV/sec, once before starting the 

measurements and compared with the dark current-voltage characteristic of the device after more 

than 100 cycles of all tests that were performed including I-V measurements and I-t transient 

characteristics under light and at different pressures or bending positions. The results are shown in 

Figure S6. The I-V of the final test was in a good match with the first I-V measurements which 

proves that no significant cracking happened. 

The performance of the photodetector can be evaluated by sensitivity (S) and responsivity 

(R) [156], which are defined by the equations (5-1) and (5-2) respectively: 

𝑆 =  
𝐼𝑙𝑖𝑔ℎ𝑡−𝐼𝑑𝑎𝑟𝑘

𝐼𝑑𝑎𝑟𝑘
× 100 =  

𝐼𝑝ℎ

𝐼𝑑𝑎𝑟𝑘
× 100  (5-1) 

𝑅 =  
𝐼𝑝ℎ

𝑃
 (𝐴/𝑊)     (5-2) 

where, Ilight is the measured current under illumination, Idark is the dark-current, Iph is the difference 

between measured current under illumination and the dark-current (=Ilight - Idark) which in our 

device is almost equal to Ilight, P is the optical power received by the active area of the 

photodetector. The sensitivity and responsivity of the device were measured and calculated at +2.0 

V bias voltage while the device was exposed to nearly 80 mW/cm2 power density. As shown in 

a) b) 
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Figure 5.7, the device sensitivity and responsivity increased by bending into inward positions and 

applying normal forces while the sensitivity and responsivity of the device decreased when it was 

bended into outward positions. The sensitivity of 2.08×105 A/A and responsivity of 9.1 mA/W at 

+2.0 V flat position and no applied stress were calculated. As we increased the applied normal 

pressure the amount of sensitivity and responsivity raised to the highest point of 3.25×105 and 

14.56 mA/W while the device was under 340 kPa normal force. This level of sensitivity is two 

orders of magnitude higher than a previously reported device under a normal compressive 

pressures [91]. 

 

Figure 5.7  The responsivity of the device (a) under different normal pressures, (b) under different 

curvatures.  The sensitivity of the device (c) under different normal pressures and (d) under 

different curvatures. All plots are measures at +2 V forward bias and ~80 mW/cm2 illumination 

power density.  

 The effect of pressure on the optical and electrical properties of MAPbI3 has been 

investigated by several groups [52, 157-161]. It has been shown that increasing the pressure to few 

a) b) 

c) 
d) 
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GPa may affect carrier life time, bandgap, tilting of [PbI6]4- octahedra and yielding new phases 

[52, 162]. However, the applied pressure in our experiments was four orders of magnitude lower 

than the pressure level required for a crystalline change in the material.  

To explain the photocurrent modulation by the applied stress/pressure, the band-bending 

at the ITO-MAPbI3 was considered as a Schottky contact [141]. In the absence of any electric field 

(no DC biasing) and in the dark, the device is in equilibrium with a symmetrical band bending at 

the both ITO-MAPbI3 junctions (Figure 5.8.a). However, in the presence of light when an external 

electric field is applied across the perovskite channel (biasing at 2.0 V across 100 μm), migration 

of interstitial iodine accelerates and ions/vacancies drift toward the ITO electrodes [163, 164]. This 

break the symmetry of the band structure. As explained by Yuan et al. [148], the drift of 

ions/vacancies accumulates the positive ions at the proximity of the anode resulting in an n‐type 

doping of the MAPbI3 layer. Similarly, the accumulation of negative ions/vacancies close the 

cathode is expected to induce a p‐type doping region and consequently forms a p-i-n homojunction 

in the perovskite material that modifies the band bending at the ITO-MAPbI3 interfaces (Figure 

5.8.b). This process is known as light-induced self-poling (LISP) effect [147-149]. 

Illumination generates a large number of electrons and holes. Through the aforementioned 

mechanism, holes can more easily hop or tunnel through the narrowed barrier at n-MAPbI3/ITO 

side and electrons can pass though p-MAPbI3/ITO side. The time-scale of the ion-migration-

induced barrier modification is reported to be in the order of several minutes [130]. This can be 

the reason for the observed non-steady state increasing photocurrent in the first pulses in Figure 

5.4 and Figure 5.5. Also, the history effect observed after extended illumination time under a 

constant electric field can be due to the same ion migration effect. The fact that the tested sample 
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recovered its original characteristic in the dark (Figure S6) supports the theory of LISP being 

responsible for the suggested band diagram in Figure 5.8.b [164].  

However, the LISP effect alone does not explain the apparent piezo-photocurrent 

modulation. In general, electric polarization can have three primary contributions: electronic, 

ionic, and dipole reorientation-related [145]. The tetragonal phase of MAPbI3 has a natural 

polarized structure with the previously reported ferroelectric and piezoelectric properties [87, 89]. 

In the polycrystalline form, domains are randomly distributed. The low external electric field of 

0.02 V/μm which is also weakened by the internal electric field due to ion migration may not be 

large enough for the poling process. However, the accumulation of positive and negative ions near 

the ITO-MAPbI3 interfaces can establish a large electric field near the interfaces. This high electric 

field can align domains and make polarized structures at the perovskite sides close to the ITO-

MAPbI3 interfaces such as the polarization mechanism induced by the poling process in 

piezoelectric materials. With this light-induced self-poling at the interfaces, it is likely that the 

polarized regions near the interfaces have been formed that were responding to the external 

mechanical forces. Therefore, although we have not performed poling process purposely, the 

response of this polarized structure to the mechanical stresses can be called an apparent 

piezoelectric effect.   

Bending inward or compressing the perovskite induces an electric field in the same 

direction as the external field, resulting in further band bending in favor of lowering the barrier for 

a larger current to pass through the device. In contrast, the outward bending may generate an 

electric field opposite of the external field direction that reduces the current in the device. More 

studies are required for a better understanding of the possible mechanisms, and also measuring the 

piezo coefficients at different directions.  
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Figure 5.8 Energy diagrams of the device (a) in equilibrium and (b) under the DC biasing. Both 

light and mechanical stress can affect the band bending. (c) schematic of the device structure at 

three states of equilibrium, under light and applied electric field (ion/vacancies accumulate at the 

interfaces) and under applied stress. 

5.4 Conclusion 

In summary, here we fabricated an ITO–MAPbI3–ITO lateral structure. This unique 

structure demonstrated an apparent piezo effect for two different directions of stress. Also, the 

induced piezo electric field was found to be more effective under illumination perhaps due to the 

LISP effect. The photocurrent and consequently responsivity and sensitivity of the device were 

enhanced while the sample was under normal pressure and at inward bending positions. At the 

highest state, the responsivity enhanced from 9.1 mA W−1 to 14.56 mA W−1 and Iph/Idark from 2.08 

× 103 to 3.25 × 103. While more study is needed for better understanding of the mechanisms of 

charge transport and the effect of stress and light on the electrical behavior of the device, the 

observed apparent piezo-phototronic effect can be employed to design photosensors with a higher 

level of sensitivity. 
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Chapter 6: Methylammonium Lead Iodide Transistor 

As it was discussed in the previous chapters, motivation for using perovskite is their low-

cost. Additionally, the solution processability of lead halide perovskites is an advantage for making 

low-cost devices with simple fabrication methods. Yet, using their extraordinary electro-optical 

properties for making highly sensitive phototransistors.  

Several groups have reported on the different MAPbI3–based field-effect transistor (FET) 

structures [21, 22, 28, 30, 33, 44]. A challenge in fabrication of MAPbI3 FETs is the 

incompatibility of the standard patterning techniques such as photolithography and E-beam 

lithography to be applied for perovskites, due to the sensitivity of MAPbI3 to polar solvents [27] 

and their low activation energy for degradation [165]. The other challenges are instability of 

transistors under ambient conditions, biased at high electric fields [166] and a limited current 

modulation at room temperature [29].  

In this chapter, we introduced two different designs to make perovskite photodetectors. 

The first phototransistor is made on a flexible PET by laser engraving and the second designed 

phototransistor was made using a pneumatic nozzle printer. The electrical and electro-optical 

properties of the fabricated phototransistors are studied. 

6.1 Fabrication of Perovskite Transistors Using Laser Ablation 

Portable and wearable applications of transistors require the use of lightweight flexible 

substrates. Different technologies and materials have been employed to develop flexible 

phototransistors by low-temperature fabrication methods [167]. Among the materials that are 

compatible with low-temperature processes, organic semiconductors suffer from low mobility 
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[168] and metal oxide semiconductors have complicated and costly deposition techniques in order 

to reach a high-quality film [169].  

Thus, the combination of suitable perovskite transistor architectures with fast and 

reproducible patterning methodologies on flexible substrates can accelerate the progress towards 

industry-relevant applications [66]. Here we have demonstrated a MAPbI3 transistor with a lateral 

structure made using an extremely simple and low-cost fabrication process. As of our knowledge, 

the device is the first MAPbI3 channel transistor produced on a flexible plastic sheet. 

6.1.1 Experimental 

Perovskite precursor was prepared by mixing 0.5 M PbI2 (98.5%, Alfa Aesar) and 0.5 M 

MAI (Lumtec) in GBL (99%, Aldrich) and keeping it on the hotplate at 60°C overnight. The 

sample was fabricated using 1 cm×1 cm pieces of ITO coated PET sheet (60 Ωsqr, Sigma-Aldrich). 

A 200 µl of PMMA in chlorobenzene (0.369 g in 3 ml chlorobenzene) was spun coated at 1000 

rpm for 40 seconds. This layer was used as an isolating layer between ITO (drain and source 

contact material) and the gate contact.  

After chlorobenzene was evaporated, the sample was laser engraved (Epilog Fusion M2, 

60 watt) at the power of 0.6 watts, speed of 38.1 mm.s-1 and pulse per inch (PPI) of 5000. Then 

the laser engraved channel was filled with a 2 µl of the perovskite precursor solution using the 

capillary force when a droplet of the solution was placed at the one end of the channel. The sample 

was placed on the hotplate at 85°C for 6 minutes.  

After that, for making the gate dielectric, a 50 µl of CYTOP CTL-809M (AGC Chemicals, 

Tokyo, Japan) was spun coated at 2000 rpm for 40 seconds and formed a ~1 µm thick CYTOP 

layer. Afterward, the sample was kept inside the desiccator overnight in order to remove any 
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residual solvent. Then a very narrow piece of Cu tape was placed on the channel to serve as the 

gate contact. For better adhesion, a layer of Acrylic (MG Chemicals) was poured on the Cu tape.  

The sample was characterized by SEM (Hitachi SU70), XRD (Bruker D8 Advance) and a 

two channels source measure unit (SMU) (Keithley 2602A). All the measurements under light 

were performed when the sample was illuminated by a solar simulator (RST 300S) at 80 mW/cm2 

optical power. A schematic of the device structure is illustrated in Figure 6.1. 

 
Figure 6.1 The schematic of the fabricated perovskite transistor by laser engraving. 

6.1.2 Result and Discussion 

The SEM image of the laser engraved channel is shown in Figure 6.2.a. The channel width 

was measured to be ~60 µm. As it was expected from our previous devices [102, 104, 123], the 

crystallized precursor inside the microchannel formed tetragonal phase MAPbI3. 

      
Figure 6.2 (a) The SEM image of the laser engraved microchannel ( the image is taken at 44 

degrees tilt angle), (b) the XRD spectra of the perovskite channel. 

a) b) 
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The transistor characteristics were measured in dark and under white light illumination 

(power density of 80 mW.cm-2) which are represented in Figure 6.3. Since CYTOP surface 

hydrophobicity worsen at high electric field [170] and may cause degradation of the perovskite 

layer, the output characteristics (drain current (ID) versus drain voltage (VDS)) were measured from 

0 V to 20.0 V while varying gate voltage (VGS) from 10.0 V to 30.0 V by 10.0 V steps. The transfer 

characteristic (ID versus VGS) of the fabricated device was measured at VDS of 20 V.  

   

       

Figure 6.3 Transfer and output characteristics of the fabricated flexible transistor (a and b) under 

light illumination, (c and d) in dark.  

As the channel was well encapsulated by CYTOP, all measurements were performed in 

ambient condition. To minimize ion-migration and bias stress effect the overall time duration of 

each scan was set to ~8 seconds and the time interval of few minutes was set between every two 

measurements while the sample was kept in the dark condition. In order to ensure that the decrease 

in current is not as the result of time, the output characteristics measurements were repeated in the 

a) b) 

c) d) 
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reverse order as well (starting at VGS of 30 V and decreasing the VGS) and the same trend was 

observed. 

As can be seen from Figure 6.3, under light illumination condition, the current in both 

output and transfer characteristics is larger than the dark current at the equal bias voltages. From 

the output characteristics, the transistor reaches the saturation region when the drain-source voltage 

is above 10.0 V. As the gate voltage increased, the saturated drain current decreased. The same 

trend was observed from the transfer characteristics both in dark and light conditions. The drain 

current dropped when the gate voltage increased at a drain voltage of 20.0 V. 

In this design, as the channel is very thick (~40 µm), light is not able to penetrate the whole 

channel. Therefore, the top gate does not modulate the gate effectively. Positive gate voltage makes 

a temporary inverted area near the gate contact. This area has a higher conductivity and the overall 

drain current is dominated by this area.  

The crystallization of grains at low temperatures by solution-based fabrication process 

generates a large number of defects. These defects and trap states provide low activation energy 

and make a channel for intrinsic migration of I-, MA+, Pb2+, and in some cases H+ ions. These ions 

accumulate at the interfaces, screen the applied gate electric field, and they can reduce the mobile 

electrons concentration in the accumulation layer of FET [39]. Therefore ion migration plays an 

important role in carrier transport in lead halide perovskite [132].  The concentration of carriers 

changes mobility [171, 172]. As the saturation current is in direct relation with the mobility, 

decreasing the mobility lower the saturation current. The mobility of the fabricated device was 

calculated from the linear region of the transfer characteristic on using Equation 6-1 to be 1.7 

cm2V-1S-1. 

 𝜇 =  
𝐼𝑑𝑠

𝐶.𝑉𝑑𝑠

𝑙

𝑤
(𝑉𝑡ℎ − 𝑉𝑔𝑠)   (6.1) 
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where, C is the capacitor of CYTOP layer, l is the channel length, w is the channel width and Vth 

is the threshold voltage. 

This novel fabrication method provides a simple solution to make MAPbI3 transistor on 

flexible substrates with comparably high mobility. Under application of a positive gate voltage, 

the negative charged point defects drift toward the CYTOP/perovskite interface, screen the applied 

gate electric field. The transistor showed a p-type transport characteristic.   

In the next section, a hybrid structure of zinc oxide (ZnO)/perovskite is studied. The 

perovskite thin film was deposited on the ZnO electron transport layer using a pneumatic nozzle 

printing method. 

6.2 Fabrication of Perovskite Transistor Using Pneumatic Nozzle Printer 

 Printing techniques are among fast, simple and low-cost methods for the fabrication of 

flexible electronic devices and sensors [173]. Contact and non-contact approaches are usually used 

to develop a printing system. Contact printing methods such as dry transfer printing [174], offset 

printing [175] and nano-imprinting [176] place pre-patterned parts of a module in contact with the 

flexible (or non-flexible) substrates and transfer the ink onto them.  

Non-contact printing techniques like inkjet printing [177], screen printing [178] and 

pneumatic nozzle printing [179] dispense the ink via openings or nozzles and define structures by 

moving the stage and/or nozzle.  

Ink formula, substrate physical and chemical properties, printing speed, nozzle size and 

distance, solvent evaporation during the deposition and annealing conditions are among the factors 

that influence the printing quality [177, 180, 181]. Here, we employed a pneumatic nozzle printer 

to make a thin layer of MAPbI3 and use this layer as the channel of a thin film transistor. 



59 

 

6.2.1 Ink Development 

Ink properties such as viscosity, surface tension, and wetting behavior influence the 

crystallization and the quality of the perovskite film [181]. Thus, developing a proper ink is of 

utmost concern. Unlike some materials that solvents are mainly solubilizing agents and 

evaporation of the solvent after printing results in the desired layer, perovskite crystallite 

morphology relies heavily on the solvent [181].  

Solvents may become incorporated into crystalline intermediate Phases. High coordinating 

solvents such as DMSO are beneficial to form homogeneous and pinhole-free thin films [181]. 

Also, while high boiling point solvents are favorable to stop early crystallization and clogging of 

the ink in the nozzle, a mixture of low and high boiling solvents can result in a homogeneous film 

formation [182]. Furthermore, the inhomogeneous mixture of solvents may adversely affect the 

reproducibility of the printed film with the same crystallization quality. For example, as ethanol 

ratio in the perovskite precursor can cause the formation of MAPbI3 microcrystals [183], using the 

inhomogeneous ink containing 0.75 M equimolar PbI2 and MAI, Acetic Acid, and ethanol, with 

the same printing parameters, resulted in the formation of perovskite microcrystals (Figure 6.4.a) 

and perovskite film with nano-size grains (Figure 6.4.b) due to different ethanol concentration.  

 
 Figure 6.4 The top-view SEM image of MAPbI3 printed on polyethylene naphthalate (PEN) 

showing inhomogeneous ink resulted in crystal size difference due to variation in ethanol 

concentration. 

a) b) 
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Molarity and hydrophobicity of the ink and substrate affect the film quality. Since PbI2 is 

known as a highly polar salt and raise in its concentration results in higher hydrophobicity. 

6.2.2 Device Fabrication 

To make the transistor, a heavily doped 4-inch p-type <100> silicon wafer (0.005 Ω.cm) 

with 285 nm dry chlorinated thermally grown silicon dioxide layer was used as the substrate. Prior 

to fabrication, the substrate was placed under ultraviolet–ozone treatment for 10 min. Thereafter, 

an 80 nm ZnO layer was deposited on SiO2 using RF-magnetron sputtering system.  

To make the drain and source contacts, the wafer was covered with a shadow mask and a 

5 nm layer chromium (adhesion layer) was thermally evaporated followed by 80 nm gold thermal 

evaporation. The gold and chromium evaporation rates were kept at 0.5 °A.s-1 and 0.4 °A.s-1 

respectively during the process.  

The perovskite precursor was prepared by mixing 1 M PbI2 and 2 M MAI in a solution 

containing GBL and DMSO with a 1:3 ratio and it was kept at 60°C overnight. The precursor was 

then loaded into the syringe with a 25 gauge needle. During the printing, the substrate temperature 

was set to 85°C. The printing speed was kept at 0.1 mm.s-1 and 0.7 and 0.7 psi of vacuum and 

forward pressure was applied, respectively. The width of the printed strip was ~470 µm. The 

transfer and output characteristics of the fabricated transistor were measured under ambient light. 

The schematic of the device is shown in Figure 6.5.  

 
Figure 6.5 The schematic of the fabricated perovskite transistor by the pneumatic nozzle printing 

method. 
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6.2.3 Results and Discussion 

Prior to the perovskite deposition, current-voltage characteristics of the gold contacts on 

the ZnO layer were measured and no current was observed by varying the gate voltage. Therefore, 

the ZnO layer is not performing as a transistor channel. As it can be seen in Figure 6.6, at the drain-

source voltage of 10.0 V and the gate-source voltage of 0 V, nearly 0.46 µA current passed through 

the semiconductor, showing that the device was a normally ON  transistor.  

As the gate-source voltage was increased, the Ids increased as well. However, the Ids/Vgs 

slope reduces at higher voltages and the current remains constant at the gate-source voltages above 

24.0 V suggesting that there is another mechanism hindering the transistor normal functionality.     

 

Figure 6.6 The transfer characteristic of the fabricated transistor at Vds 10 V and under ambient 

light. 

Figure 6.7 shows the output characteristics of the device. The drain-source current was 

measured at different constant gate-source voltages while increasing Vds. To limit the electric field 

induced degradation of the perovskite layer, we discontinued the measurement for the drain-source 

voltages higher than 20.0 V. However, the last test was performed to show that the transistor 

reaches the saturation mode at higher voltages. The drain-source current was measured at the drain-

source voltage of 40.0 V (Figure 6.7.b).  
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Although the transfer characteristics showed higher Ids as Vgs gets higher, no meaningful 

relation between Vgs and Ids was observed in the output characteristics which may imply an 

inevitable perovskite degradation while measurement was carried on under ambient condition 

when the device was not encapsulated.  

   

Figure 6.7 The output characteristics of the fabricated transistor. 

Since ZnO layer was not conductive before the perovskite deposition, change in the carrier 

transport type observed in Figure 6.6 in compare with the Figure 6.3.b and d can be due to the 

significant role of defect at the surface of ZnO which is in contact with the perovskite layer. As 

time passed, degradation became the dominant mechanism and the current reduced (Figure 6.7). 

More studies are needed to better understand the mechanism.  

6.3 Conclusion 

In conclusion, in this chapter, we studied the feasibility of fabricating perovskite transistors 

by non-spin coating and non-lithography techniques. In the first design, by laser engraving, 

MAPbI3 channel transistors were made.  

a) 

b) 



63 

 

In the second design, ZnO was placed between the gate oxide and the perovskite layer 

while having direct contact with the Au electrodes. This layer was aimed to drive excess carriers 

from the perovskite layer, to lower the concentration, and raise the mobility. Although the drain 

current increased by increasing Vds and Vgs, as time passed the decomposition became the dominant 

process. 

Both transistors operated in the ON state at zero gate-source voltage. Although cut off 

mode was not observed, at higher drain-source voltages, both transistors entered saturation mode. 

In addition, it was observed that encapsulation helps to suppress the perovskite decomposition rate 

by protecting it from moisture. However, degradation is an intrinsic process and can be electric 

field induced. Therefore, the perovskite transistor operation voltage has to be chosen at very low 

voltages. This study can facilitate a better understanding of charge carrier transport in MAPbI3. 
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Chapter 7: Conclusion and Future Works 

7.1 Conclusion 

Since the first reported perovskite solar cell, this material has expanded its application in 

different photovoltaic devices. Owing to the extraordinary optical properties and the direct 

bandgap in the visible region, one of the interesting applications of MAPbI3 can be an ambient 

light detector in a phototransistor configuration. Solution-based fabrication methods provide the 

capability to make perovskite devices and integrate them with capillary circuits for the label-free 

biosensing applications. 

In this work, first, to ensure the feasibility of the idea, different methods were employed to 

make two-terminal photodetectors. The capillary channels were made by mechanical 

micromachining and laser engraving. Photolithography was found to be incapable of producing a 

cost-effective device since it requires many fabrication steps to make cast and mold and making 

high-quality contact with perovskite is complicated and difficult. 

Mechanical micromachining was employed by using a custom-designed blade set up to 

engrave a wedge-shape capillary microchannel on an ITO coated PET substrate. An extremely 

small portion of the perovskite precursor filled the microchannel and made high-quality contact 

with ITO on both sides. The optical and electrical properties of the fabricated photodetector were 

characterized and compared with a photodetector with the same structure which was fabricated by 

lithography.  
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In a different approach, to enhance the reproducibility of the device, an industrial laser 

cutter was employed to engrave micro-channels on ITO coated PET substrates. This approach 

proved as a high-speed manufacturing method with the ability to produce devices in large scales.  

Stability, ion-migration, and toxicity are the main challenges in MAPbI3 based devices. 

The lead halide perovskite precursor can be prepared by mixing lead iodide and methylammonium 

iodide in a solution. All the proposed methods dramatically reduce the required amount of PbI2 in 

comparison to the conventional spin coating technique. Also, the precursor waste percentage is 

zero in these methods. Therefore, only a very small amount of lead was used. 

In another study, the stability of the fabricated photodetectors was examined by 

encapsulation technique using two different fluoropolymers (FluoroPel and CYTOP) and it was 

found that the photodetector’s photocurrent encapsulated with either of the polymers, does not 

drop in a time period of 38 days and the encapsulation is highly effective. However, due to higher 

sustainability, CYTOP was chosen as the encapsulation material for the rest of the study. We also 

showed stress-induced ion migration can greatly enhance the photocurrent of the fabricated 

photodetectors.  

Finally, perovskite phototransistor was made by using the top contact gate configuration 

and laser engraving method which was used to make the two-terminal photodetector. The 

perovskite layer was fully covered, and the gate contact did not require any photolithography steps 

and glove box condition. This design is extremely low-cost, reproducible, and simple.  

7.2 Future Works 

There are mainly 4 challenges we face in lead halide perovskite phototransistors which are: 

lead toxicity, instability, defects and current modulation. The proposed method effectively reduces 
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the amount of lead in a way that makes it far below the dangerous level defined by the U.S. standard 

and regulations for lead toxicity level, therefore the device can be counted as non-toxic [184]. 

Regarding stability, defects and current modulation more studies are needed to address 

many still open questions, such as (1) what is the effect of encapsulation of perovskite on the 

crystalline structure, phase and grains? (2) how does capillary motion affect element distribution 

in a microchannel? And does the stoichiometry vary across the channel? (3) does surface tension 

affect the crystal orientation during solidification of the precursor inside microchannels?  

For future works, it is suggested more characterization techniques to be performed such as 

piezo-force microscopy (PFM) to determine the piezoelectric coefficients. A higher resolution 

laser cutter can be employed to narrow the channel length of the transistor and increase the width-

to-length ratio. The crystal growth of the perovskite in curved or zig-zag shaped microfluidic 

channels is also feasible and encouraged to be studied. In addition, to fully understand ion 

migration impact to perovskite phototransistor performance, I-V characteristics can be measured 

at low to moderate temperatures to suppress the migration of ions or accelerate them and observe 

the related effect. Since a high electric field induces material to degrade, the upper limit voltage 

which indicates as a typical operation voltage of the device needs to be found. 

It was shown that perovskite transistor fabrication by pneumatic nozzle printer is possible. 

This method is simple, fast and cost-effective with the feasibility of large-scale fabrication and 

capability to make nonplanar structures. It has the potential to be one of the highest demanded 

industrial products.  

One of the main advantages of printing techniques is having the degree of freedom to 

manipulate many parameters and optimize crystallization. Developing the proper ink would help 
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to print a defect-free homogeneous film and optimize the ink printing behavior to make it 

independent of the substrate physical properties. 
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Appendix A: Supplementary Information for Chapter 5 

 

 

Figure S 1 The setups used for the I-V measurements under light illumination. (a) for different 

bending curvatures which were performed by turning the screw and changing the distance between 

the two plates, and (b) for applying the normal forces (two valves were using to push or release 

the piston connected to a pressure gauge). 

 

  

a) b) 
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Figure S 2 Thickness profile of the cut layer (microchannel) across the channel and at the different 

spots along the channel. 

 

 

Figure S 3 Thickness profile of the perovskite layer across the channel and at the different spots 

along the channel. 
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Figure S 4 Single photocurrent response cycle of the device at 2.0 V bias with light irradiation on 

and off, at different normal pressures (illumination for ~20 s, manually started at ~2nd second, 80 

mW/cm2). 

 

Figure S 5 Single photocurrent response cycle of the device at 2.0 V bias with light irradiation on 

and off, at different bending curvatures (illumination for ~20 s, manually started at ~2nd second, 

80 mW/cm2). 
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Figure S 6 I-V characteristics of the device in dark before applying compressive/tensile stress on 

the device as the first test and after all measurements (compressive normal force and 

concave/convex bending) as the last test, 50 mV/sec scan rate. 
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Appendix B: Copyright Permissions 

Below is permission for the use of Figure 1.1. 
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Below is permission for the use of Figure 2.2.
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Below is permission for the use of material in Chapter 3.
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Below is permission for the use of material in Chapter 4. 
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Below is permission for the use of material in Chapter 5 and Appendix A.
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