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and FEP(bw) is high, and FEP(fw) and FEP(bw) differ by≈21 kcal/mol (see Tab. 3.5). Unfor-
tunately, as with with FEP, JAR(fw) and JAR(bw) results are also not immediately trustwor-
thy, with one sided Π values of -0.65 and -0.47 for JAR(fw) and JAR(bw), respectively, and
discrepancy between JAR(fw) and JAR(bw) of≈5kcal/mol (see Tab 3.6). However, by utiliz-
ing data from bothMM → 3ob and 3ob→MM switching simulations, i.e. CRO, we are able
to calculate amarginally converged∆AMM→3ob

gas . Overlap between nonequilibriumwork dis-
tributions (23.95%) is much improved compared to ∆UMM→3ob distributions (0.00%), c.f.
Figure 3.25.

(a) Pmm = p(U3ob − UMM ), P3ob = −p(UMM −

U3ob)

(b) Pmm = p(WMM→3ob), P3ob =

−p(W 3ob→MM )

Figure 3.21: (a) 6’s Potential energy “forward” (Pmm) and “backward” (P3ob) distributions plotted as“offset” from the∆UMM→3ob to simplify the x-axis. (b) 6’s nonequilibriumwork “forward” (Pmm) and“backward” (P3ob) distributions plotted as “offset” from theWMM→3ob to simplify the x-axis.

Again, qualitatively comparing dihedral distributions illuminates possible causes for
JAR convergence failures (Figure 3.22). Although most of the dihedral populations appear
largely similar for 6, χ3 may be distinct enough to cause convergence errors, certainly with
FEP/BAR as trans-χ3 is vastly overrepresented from MM simulations. This may also be

212



the case in JAR(fw) and JAR(bw) results, asMM → 3ob switching simulations are unable to
replicate the near degeneracy of the trans- and gauche-χ3 conformations as seen in 3ob sim-
ulations. However, pooling together all switching simulations may provide enough gauche-
χ3 conformations to achieve convergence.

(a) χ1 (b) χ2

(c) χ3 (d) χ4

Figure 3.22: Dihedral populations for 6’s dihedral degrees of freedom, see Figure 3.15 for dihedral
lables.

Once again, we should point out that FEP(fw) predicts ∆AMM→3ob
gas to be -109.58

kcal/mol, while CRO predicts∆AMM→3ob
gas to be -140.17 kcal/mol, an error of≈30 kcal/mol,

and an error which would not necessarily be resolved in error cancellation within the indi-
rect cycle. Thus using convergencemetrics, likeΠ, is important for evaluating the reliability
of a data set.
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The Ugly: Finally, there were three molecules for which we observed severe conver-
gence issues even when using CRO: molecules 8, 9, and 20. We will focus our discussion
here onmolecules 8 and 9.

Molecule 8: (ZINC ID 00107778, 4,6-dichloro-2H-chromene-3-carbaldehyde oxime) is
another oxime species similar to molecule 2. As mentioned earlier, oxime species have
been used recently as promising anti-cancer agents, and thus the computational commu-
nity should ensure ourmethods can properly model such compounds [430, 432–434].

As in earlier cases, FEP/BAR results again are unconvincing. Yet, interestingly, the met-
rics do not indicate there should be much more of a convergence problem than as seen for
the “Bad” molecules. Π values illustrate the ∆UMM→3ob distributions are unreliable as ex-
pected, and yet FEP(fw) and FEP(bw) differ by only ≈6 kcal/mol, and ∆UMM→3ob distribu-
tions do exhibit barely enough overlap for a converged result at 3.74% (Figure 3.23). Sur-
prisingly this potential energy overlap percentage indicates equilibrium results for8 should
result in marginally converged∆AMM→3ob

gas , and yet other analyses of∆U distributions indi-
cate these are unreliable datasets. Despite the fact thatWMM→3ob distributions do overlap
considerably better than∆UMM→3ob, at 24.92%,Π evaluations ofWMM→3ob(fw and bw) dis-
tributions indicate only marginally improved reliability, and not enough to be sufficiently
confident in JAR or even CRO results. Additionally, the W distributions in Figure 3.23b
seem to be oddly polymodal. Considering the difficulties in convergence observed, we con-
ducted longer switching simulations (5 ps) in the hopes of improving convergence by allow-
ing longer relaxation times. Data from5 ps switching simulations is given in Table 3.6 in row
“8(5ps)”, and distributions are shown in Figure 3.23c. Unfortunately, even conducting 5 ps
switching simulations did not allow for significantly improvedWMM→3ob distributions.
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(a) Pmm = p(U3ob − UMM ),
P3ob = −p(UMM − U3ob)

(b) Pmm = p(WMM→3ob),
P3ob = −p(W 3ob→MM )

(c) Pmm = p(WMM→3ob),
P3ob = −p(W 3ob→MM )

Figure 3.23: (a) 8’s potential energy “forward” (Pmm) and “backward” (P3ob) distributions plotted as“offset” from the ∆UMM→3ob to simplify the x-axis. (b) 8’s nonequilibrium work “forward” (Pmm)and “backward” (P3ob) distributions from 1 ps switching simulations plotted as “offset” from the
WMM→3ob to simplify the x-axis. (c) 8’s nonequilibriumwork “forward” (Pmm) and “backward” (P3ob)distributions from 5 ps switching simulations plotted as “offset” from theWMM→3ob to simplify the
x-axis.

Examining8’s dihedral populationsmayprovide insight into thismolecule’s convergence
issues: although χ1 is fairly consistent betweenMM and 3ob distributions, χ2 is quite dis-
tinct between MM and 3ob (see Fig 3.24). MM and 3ob simulations agree there is a low
energy cis-χ2 conformation, however 3ob simulations also predict the gauche- and trans-χ2

conformation is populated, whileMM simulations do not visit this region. It should also be
noted, as will be described in the Methods, equilibrium simulations were launched by initi-
ating randomized dihedrals to ensure thorough dihedral sampling. Even after randomizing
χ2,MM simulations did not visit trans regions that were shown to be energetically stable
in 3ob simulations. Furthermore, even afterMM → 3ob switching simulations of 1 ps and
5 ps,MM configurations are not able to relax into the trans- and gauche-χ2 conformations
predicted by 3ob. Thus, the barrier to rotation around χ2 must be too high to overcome,
even during longer/slower switching protocols. This is a case where intramolecular force
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matching may improve low-level classical parameters and thus overlap to the higher level
of theory.

(a) χ1 (b) χ2

Figure 3.24: Dihedral populations for 8’s dihedral degrees of freedom, see Figure 3.15 for dihedral
lables.

Finally, FEP(fw) predicts ∆AMM→3ob
gas = -944.00 kcal/mol, JAR(fw, 1ps) gives -991.95

kcal/mol, JAR(fw, 5ps) gives -995.88 kcal/mol, and CRO(5ps) gives -995.87 kcal/mol. Thus,
although conducting lengthened switching simulations in this case does appear to im-
prove convergence (Π values improve marginally from 1 ps to 5 ps switching protocols, i.e.,
JAR(fw,5 ps) and CRO(5 ps) are in closer agreement than their 1 ps counterparts), it is clear
from visualizing theWMM→3ob distributions that these values are not converged. Addition-
ally, FEP(fw) is ≈50 kcal/mol from the CRO(5 ps) result, although even CRO(5 ps) result
cannot be entirely trusted. Thus, molecule 8 is truly one of the toughest convergence cases
in our HiPen dataset.

Molecule 9: (ZINC ID 00123162, 1-phenyl-1,2,3-butanetrione 2-[N-(4-
chlorophenyl)hydrazone]), contains chemical features seen in thousands of molecules
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available in the PubChemdatabase, and therefore ensuring appropriate FESmodelingwith
9 could ensure appropriate FESmodeling of many other compounds in the near future.

Equilibrium FES methods were, once again, unable to calculate reliable ∆AMM→3ob
gas for

9: FEP(fw), FEP(bw), and BAR exhibited sample size hysteresis; FEP(fw) and FEP(bw) did
not agree in magnitude; Π values did not indicate well-behaved ∆U distributions at -4.27
and -4.77 for FEP(fw) and FEP(bw), respectively; and finally forward and backward∆U dis-
tributions exhibited only 0.02% overlap (see Figure 3.25a). Additionally, 1 ps nonequilib-
rium switching protocol did not improve according to convergence criteria as would be ex-
pected: JAR(fw,1ps), JAR(bw,1ps), and CRO(1ps) exhibit considerable sample size hystere-
sis; JAR(fw,1ps) and JAR(bw,1ps) differ in magnitude by ≈ 11 kcal/mol; and Π values are -
4.64and -2.48, for JAR(fw,1ps) and JAR(bw,1ps), respectively,with22.83%overlap (seeFig-
ure 3.25b). As such, we once again conducted longer nonequilibrium switching simulations
(5 ps). Much like with 8, such longer nonequilibrium switching simulations only marginally
improved results compared to 1 ps switching simulations. JAR(fw,5ps) and JAR(bw,5ps) still
do not agree in magnitude, although JAR(fw,5ps) agrees with CRO(5ps), and JAR(bw,5ps)
exhibits ≈ 10 kcal/mol in sample size hysteresis. Calculated Π values (-1.24 and -2.95, for
JAR(fw,5ps) and JAR(bw,5ps), respectively) indicateW distributions after 5 ps are still not
well behaved.

Given the difficulty in arriving at a converged ∆AMM→3ob
gas for 9 we again hoped to pin-

point convergence issues in dihedral degrees of freedom, Figure 3.26. As can be seen in
Figures 3.26a and 3.26b, χ1 and χ2 distributions between equilibriumMM and 3ob simu-
lations are fairly similar, low energy dihedral conformations are consistent between levels
of theory and relative populations between such angles are also consistent. However, for
χ3, χ4, χ5, and χ6 there are large discrepancies betweenMM and 3ob regarding the low en-
ergy dihedral values and their relative populations, such discrepancy is especially clear in

217



(a) Pmm = p(U3ob − UMM ),
P3ob = −p(UMM − U3ob)

(b) Pmm = p(WMM→3ob),
P3ob = −p(W 3ob→MM )

(c) Pmm = p(WMM→3ob),
P3ob = −p(W 3ob→MM )

Figure 3.25: (a) 9’s potential energy “forward” (Pmm) and “backward” (P3ob) distributions plotted as“offset” from the ∆UMM→3ob to simplify the x-axis. (b) 9’s nonequilibrium work “forward” (Pmm)and “backward” (P3ob) distributions from 1 ps switching simulations plotted as “offset” from the
WMM→3ob to simplify the x-axis. (c) 9’s nonequilibriumwork “forward” (Pmm) and “backward” (P3ob)distributions from 5 ps switching simulations plotted as “offset” from theWMM→3ob to simplify the
x-axis.

χ6 (Figure 3.26g). Furthermore, such discrepancies are not completely resolved within 1,
or even 5 ps nonequilibrium switching simulations, as is the case for χ3 and χ4. Thus, these
dihedrals likely represent the roadblock to converged ∆Alow→high for 9 and further likely
require intramolecular forcematching to be resolved.

3.3.5 Materials andMethods

All molecular modeling described herein was conducted using CHARMM (Chemistry at
HarvardMolecularModeling) software (version C43a2).[38]

Equilibrium Simulations: The complete Maybridge Hitfinder set, a curated online
database of “drug-like” (according to Lipinski rules) molecules (https://www.maybridge.
com) was scanned through ParmChem, an online tool for generating parameter and topol-
ogy files used in CHARMM (https://cgenff.umaryland.edu). Standard ParamChem out-
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(a) χ1 (b) χ2

(c) χ3 (d) χ4

(e) χ5 (f) χ6

Figure 3.26: Dihedral populations for 9’s dihedral degrees of freedom, see Figure 3.15 for dihedral
lables.

put includes listing “parameter and charge penalties”. These penalties represent how
trustworthy the output parameters and topologies are, thus higher penalties may indicate
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less trustworthy parameters and potential modeling inaccuracies. From the Maybridge
Hitfinder set, 22 molecules were chosen which returned high parameter or charge penal-
ties from ParamChem and these 22molecules constituted our “HiPen” dataset.

Initial 3D coordinates of each HiPen molecule were collected from the ZINC12 Struc-
tural Database (http://zinc.docking.org [435]); see Table 3.4 for the ZINC IDs. As men-
tioned, CGenFF (CHARMMGeneralized Force Field [39]) parameter and topology files for
each molecule were obtained through the ParamChem web interface (https://cgenff.
umaryland.edu [118, 119]). The starting coordinates were optimized by 1000 steps of
Steepest Descentminimization, followed by 1000 steps of Adopted Basis Newton Raphson
minimization. To calculate ∆AMM→3ob

gas according to the various methods compared in this
work (FEP, BAR, JAR, and CRO), Langevin Dynamics (LD) simulations were performed at
the two levels of theory, MM and SCC-DFTB/3ob. In all cases, a friction coefficient of 5ps-1
was applied to all atoms, and random velocities were added at each step corresponding to a
temperature bath of 300K.

MM simulations: For each molecule ten LD simulations were carried out, which were
started from different initial random velocities. Additionally, to enhance sampling, we em-
ployed different starting coordinates if/when the molecule contained rotable bonds (cf.
Fig. 3.15). First, all rotatable bonds were randomized. Next, 1000 steps of Adopted Ba-
sis Newton Raphson minimization were carried out while restraining the dihedral angles
harmonically (k = 100 kcal/mol/A2) to their randomized value(s). Finally, restraints were
removed and 10 ps of LDwere carried out as equilibration. Asmolecules were simulated in
the gas phase, all nonbonded interactions were calculated explicitly during the simulation;
neither switching nor shifting functions were applied. Following these preparation steps,
10 million steps of LD were carried out with a timestep of 1 fs; this corresponds to 10 ns
per run, and a cumulative simulation length of 100 ns for the ten runs permolecule. Restart
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files (containing both coordinates and velocities) were saved every 100 steps, resulting in 1
million coordinate and velocity sets per molecule. For use in FEP and BAR, the energies for
each coordinate set were computed at both the MM and SCC-DFTB/3ob levels of theory.
We further computed the instantaneous dihedral angles of all rotable bonds considered.

SCC-DFTB3/3ob simulations: All simulations employing the SCC-DFTB/3ob potential en-
ergy function, were conducted according to a protocol closely mirroring what was just de-
scribed for the MM simulations. However, in the case of SCC-DFTB/3ob simulations, the
simulation length per run (again, 10 runs permolecule) was only 1 ns (a timestep of 1 fs was
used); the cumulative simulation length, therefore, was 10 ns. Coordinate and velocity in-
formation was saved every 100 steps resulting in a total of 100,000 restart files. As in the
MM case, for each of the coordinate sets we computed the energy at the force field and
SCC-DFT3/3ob levels of theory, as well as the instantaneous values of the dihedrals of the
rotable bonds.

Nonequilibrium “switching” simulations: To compute∆AMM→3ob
gas using JAR (Eq. 70) or

CRO (Eq. 71), one must repeatedly compute the nonequilibrium work for switching from
the MM Hamiltonian to the SCC-DFTB/3ob Hamiltonian and/or vice versa. In CHARMM
this can be accomplished using the program’s MSCALE [323] and PERT [38] functionali-
ties. The multi-scale (MSCALE) modeling module of CHARMM allows the user to treat
a system, in part or whole, according to two (or more) different energy functions. In the
present case, MSCALE is employed to mix the MM and SCC-DFTB/3ob energy functions
as needed. In combination with the PERT free energy facility of CHARMM in slow-growth
mode, the degree of mixing can be changed continuously from 100% MM to 100% SCC-
DFTB/3ob. Since during switching over any finite time window the system is not at equi-
librium, the “energy differences” obtained in slow-growth calculations really are nonequi-
libriumwork values. This is even more the case when switches are carried out very quickly
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(within a few ps or less) to avoid excessive computational cost, as is the case when switch-
ing to (S)QM/MM Hamiltonians. For full details, we refer the reader to our earlier work
[47, 51]; additionally, a recent general review about nonequilibrium work methods can be
found inRef. 376. Switching simulations in both forward (MM→ SCC-DFTB/3ob) andback-
ward (SCC-DFTB/3ob→MM) direction where started from the restart files saved during
the respective equilibrium simulations (see above). The timestep during all switching simu-
lations was 1 fs.

MM to 3ob Switching simulations:MM → 3ob switching simulations were launched from
every 10,000th MM simulation step, i.e., from snapshots saved at 10 ps intervals during
theMM equilibrium simulations. Per molecule, this resulted in a total of 10,000MM →

3ob nonequilibrium switches. Unless otherwise noted, all switching simulations were con-
ducted for 1 ps (1000 steps). WMM→3ob was recorded per switch and post-processed using
JAR andCRO. For each of the final coordinateswe also computed the dihedral angles of the
rotable bonds.

3ob to MM Switching simulations: 3ob → MM switching simulations were launched from
every 1,000th 3ob simulation step, or every 1 ps. Per molecule, this resulted in a total of
10,000 3ob→MM nonequilibrium simulations. Unless otherwise noted all switching simu-
lations were conducted for 1 ps (1000 steps).W 3ob→MM was recorded per switch and post-
processed according to JAR and CRO. As was done at the end of theMM → 3ob switching
simulations, dihedral angle values were recorded.
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3.3.6 Conclusions

We present here a new dataset to be used for future method development in the
QM/MMFES community. In particularwehave calculated∆AMM→3ob

gas for 22 drug-like small
molecules obtained from the Maybridge Hitfinder set. In compiling our dataset, we ob-
served 3 categories of molecules emerge: “good”, molecules for which JAR(fw) could ob-
tain a reliably converged ∆AMM→3ob

gas , “bad”, molecules for which JAR(fw) results proved
unreliable but CRO results were reliably converged, and “ugly” molecules for which even
CRO could not produce reliably converged results. Although we have yet to derive any
strict/concrete patterns quantitatively relating our convergence criteria to how “wrong” a
calculated ∆Alow→high may be (i.e. we cannot yet tell from a one sided Π value calculated
from∆UMM→3ob distribution howwrong the resultant FEP(fw) will be), we have illustrated
that several convergencemetrics should always be evaluated and comparedbefore trusting
a∆A, especially those calculated from equilibrium FES.We have also seen, once again, how
discrepancies in “stiff” and “soft” degrees of freedom between levels of theory can result in
drastic convergence errors which may not always be ameliorated via nonequilibrium work
(even extended) switching simulations, as was seen in the case of “ugly” molecules 8 and 9.
We intend touse this data in thenear future for furthermethoddevelopment aswell as eva-
lutating the same criterion/metrics in solvent phase free energy simulations. Furthermore,
we hope this dataset will prove as useful to FES practitioners in providing standardized re-
sults as theBEGDBandMNDB2.0datasets are to thequantummechanical calculation com-
munity.
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MM MolecularMechanics
QM QuantumMechanics
SQM Semiempirical QuantumMechanics
QM/MM QuantumMechanical/MolecularMechanical hybrid methods
SQM/MM Semiempirical QuantumMechanical/MolecularMechanical hybrid methods
FEP Free Energy Perturbation
BAR Bennett’s Acceptance Ratio
JAR Jarzynski’s equation
CRO Crooks’ equation

3.4 QM/MMFree Enery Simulations and Application to pKa Prediction

Fiona L. Kearns, Stefan Boresch, H. LeeWoodcock
Written: February 10, 2020

3.4.1 Abstract

pKa is a critical property tomany phenomena in chemistry. Accurate and robust predic-
tion of pKa via computation remains an elusive yet worthwhile goal, as such a tool would
be of great benefit to experimental and computational practitioners. Free energy simu-
lations (FES) would provide a rigorous means for computing free energies of deprotona-
tion. With new insights in (S)QM/MM FES, we take another look at applying an indirect
cycle to calculating DFT/MMquality pKas. Herein, we calculate pKas of a test set of amino
acid analogs (acetic acid, ethylthiol, methylammonium, ethylammonium,methanol, ethanol,
4-methylimidazole(Nε), and p-cresol) according to several DFT functionals (BLYP, B3LYP,
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OLYP, ωB97x-D, and M06-2X), at two different basis sets (6-31G(d) and 6-31++G(d,p))
and with or without Grimme third order dispersion corrections. We also introduce an
interaction energy correction scheme to our total QM/MM energy (ĤQM/MM

Tot ), in which
we treat the internal energy of the QM region according to ωB97x-D and correct the
QM/MM interaction energy, ĤQM/MM

inter , to the “less sophisticated” BLYP/6-31G(d). The re-
sulting interaction energy corrected free energy of deprotonation provided the most ro-
bust results compared to experiment with an average RMSE of 2.9 pKa across all analogs,
and RMSE of 1.5 pKa across analogs of the canonically titratable amino acids (i.e., acetic
acid, ethylthiol, methylammonium, ethylammonium, 4-methylimidazole(Nε), and p-cresol).
This interaction energy corrected method was the most robust with the following RMSEs
compared to experiment: acetic acid 0.4 pKa, ethylthiol 1.3 pKa, methylammonium 0.2,
ethylammonium 1.0, methanol 6.9, ethanol 7.3, 4-methylimidazole (Nε) 2.1, p-cresol 3.9.
While results for acetic acid, methylammonium, ethylammonium, and (to a lesser extent) 4-
methylimidazole(Nε) indicate excellent agreement with experiment, there is still quite a bit
of room for improvement especially for methanol and ethanol (all methods were precisely
inaccurate for these molecules). In this work we outline interesting trends with regards to
particular DFTmethod perfomance in predicting pKas and we note several conclusions re-
garding choice of method/basis (either can affect pKa prediciton on average by 0.6 pKa) or
use of added dispersion correction terms (added GD3 terms only improved calculation by
0.03 pKa). Finally, we discuss the unique challenge of ethlythiol pKa predictionwhich is the
most sensitive to choice of functional and basis set.

Keywords: pKa prediction, indirect QM/MM free energy simulations, DFTB3, Density
Functional Theory, Alchemical Free Energy Simulations
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3.4.2 Introduction

pKa is a central property to all aspects of chemistry. Acid/base equilibria certainly, but
also synthesis, material properties, and of course enzymmatic catalysis are often intrinsi-
cally entwined with pKa. Given the proportionality of a molecule’s pKa to it’s free energy
of deprotonation (∆AAH/A−), free energy simulations (FES) may seem to be an obvious tool
for pKa prediction. While the application of FES to pKa is direct and would be rigorous,
the ever dueling requirements of sampling and high level energetic evaluations have en-
sured high computational expense in past attempts at QM/MM FES based pKa prediction.
The pKa of a solute, as with any thermodynamic property, is dependent on an ensemble of
the conformational microstates; the more thoroughly sampled these microstates the more
likely a predicted value is to experiment. Furthermore, in many protein cases of interest,
protonation/deprotonation eventsmay result in drastic conformational changes to support
pKa shifts.

One such case, although there are many, is protonation of K102, a burried Lysine, in
T4 LysozymeM102Kmutant results in drastic conformational change resulting in unwind-
ing of the E108 to G113 α-helix. This is a well described phenomenon experimentally, and
therefore stands as a stringent test for free energy methods and pKa prediction. Riccardi
et al (2005) found pKa calculation of this burried K102 to be quite difficult as their simula-
tion region of the protein was minimal and restrained.[319] However, even with fully flexi-
ble protein simulations ofM102K-T4 Lysozyme, unfolding of an α-helix often requires hun-
dreds of nanoseconds, if not microseconds to capture. This is truly a challenging pKa test
case. Another example illustrating the importance of conformation (again there are many),
is the enzyme ferrochelatase. Ferrochelatase is responsible for the final step in the biosyn-
thesis of heme, a central biochemical cofactor to many lifeforms on Earth. Ferrochelatase
catalyzes biosynthesis of heme through a series of glutamate residues poised like an as-
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sembly line on a solvent facing α-helix. When ferrochelatase is ready to accept new Fe(2+)
from bulk, the pKa of the outermost Glu drops, Glu deprotonates causing a conformational
change from α- to π-helix. The outermost Glu then chelates the incoming Fe(2+), confor-
mation shifts back to α-helix and Fe(2+) is shuttled in to the heme binding site via another
two Glu residues. Fe(2+) is then placed at the center of porphyrin via distal His residues,
and biosynthesized heme leaves the active site.[436] For ferrochelatase, pKa induced con-
formational changes is central to the funciton of this enzyme.52

Additionally, pKas are highly sensitive to subtle electrostatic perturbations in microen-
vironment. Our lab is particularly interested in pKa of serine in several serine hydrolase
enzymes. In recent work, our experimental collaborators have observed, and we have sup-
ported through QM/MM reaction path studies, β-Lactamase can be inhibited by a non-
covalently bound ligand. Whenbound to the active site, this ligand perturbs active site elec-
trostatics such that Ser-70 (the catalytic nucleophile in β-lactam hydrolysis) can no longer
be deprotonated by neighboring Lys-73.[437, 438] This example raises two points of inter-
est to our group: (1) it underscores the importance of accurate electrostatic treatment (i.e.
need for incorporating polarization and/or dispersion), and (2) it introduces the challenge
of calculating pKa as a function of ligand binding. Many classical pKa calculation tools can-
not accurately account for electrostatic effects induced by ligands as accurate parameter-
ization of said ligands is not a guarantee and methods such as PropKa cannot account for
conformational changes resultant from ligand binding.

It is also worth emphasizing that pKa is a highly sensitive property: it is directly pro-
portional to∆AAH/A− and therefore deviation/inaccuracy in∆AAH/A− by±1.3 kcal/mol re-
sults in deviation of predicted pKa by ±1.0 pKa unit. This translates to an order of mag-
52Perhaps the most famous example of protonation/deprotonation induced conformational changes is the

life-givingATP-Synthase in that protons falling down themitochondrial concentration gradient via aspartates,
turns the “wheel” of ATP Synthase, which triggers a subunit conformational change that inducesADP +P →
ATP .[177]
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nitude in error of predicted proton concentration, or predicted conjugate acid/bases con-
centration at a given pH. Due to the competing requirements of accurate energetic treat-
ment/sufficient sample, and the sensitive nature of this property: pKa is well known to be
one of themost challenging test cases by which to gauge the accuracy of any FESmethod.

The above challenging protein examples illustrate a need for high level energetic evalua-
tions (i.e., (S)QM/MM53) while still incorporating effects of conformational sampling. In this
workweaim to calculated∆AAH/A− according to density functional theory,while still incor-
porating sufficient sampling. We do this through use of indirect QM/MM free energy sim-
ulations as we[46–49, 51–54, 79] and others[55–59, 63, 79, 300, 318–320, 328, 371, 372]
have described in the past.

Indirect QM/MM Free Energy Simulations: While the requirements of energetic accu-
racy and sufficient sampling are often at odds, our past work[46–49, 51–54] as well as
the work of many others[55–59, 63, 79, 300, 318–320, 328, 371, 372] have shown that
when appropriate care is taken,∆A(S)QM/MM

A→B can be calculated indirectly (∆A(S)QM/MM
A→B =

∆AMM
A→B −∆A

(S)QM/MM
A + ∆A

(S)QM/MM
B ) as shown in Fig 3.27.

As emphasized in Chapters 3.1, 3.2, and 3.3, use of the indirect scheme to calculate
∆A

(S)QM/MM
A→B provides several advantages: the “low” level of theory canbe chosen such that

abundant sampling is affordable, and if MM is chosen as the low level of theory then sev-
eral “tricks” of the classical alchemical FES “trade” become available such as use of dummy
atoms, non-physical λ states, and soft-core potentials. As long as sampling is plentiful at the
chosen “low” level, any free energy estimator of interest can be used to calculate ∆AlowA→B

53As in past chapters, wewill use “QM” to refer to quantummechanical modeling, “MM” to refer tomolecu-
lar mechanical or classical mechanical modeling, “SQM” to refer to semi-empirical quantummechanical mod-
eling, “QM/MM” to refer to quantum mechanical/molecular mechanical hybrid modeling, “SQM” to refer to
semi-empirical quantummechanical/molecular mechanical hybrid modeling, and “(S)QM/MM” to refer to ei-
ther QM/MMor SQM/MMmodeling.
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