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Abstract 

 

Microfluidic reconfiguration of microwave devices has emerged as a potentially attractive 

alternative to integrated semiconductor (ICs/MMICs) and microelectromechanical systems 

(MEMS) based technologies. On the one hand, MMICs suffer from low power handling 

capabilities, high IL, non-linear effects, and elevated costs; on the other hand, MEMS are limited 

by their complex packaging requirements, and relatively low reliability from stiction-based effects. 

However, microfluidic reconfiguration provides low insertion loss (IL) due to its mechanical 

nature and it is not limited by power saturation effects. These attributes are especially valuable for 

applications at mm-waves, potentially reducing costs and increasing power efficiency capabilities. 

Microfluidic reconfiguration of microwave devices is possible by repositioning a volume of liquid 

metal or a metallized plate near the component geometry. Initial research within our group 

introduced microfluidically reconfigurable focal plane arrays (MFPAs) to demonstrate 

microfluidic beam-steering applications at 30 GHz. The first concept involves a patch antenna that 

was microfluidically positioned along the focal plane of a lens. However, the total movement for 

this design is ~40 mm, providing long reconfiguration times. Moreover, available bandwidth was 

limited by array size due to the use of resonant transmission lines. This dissertation solves these 

limitations by introducing a metallized plate inside a microfluidic channel and exploiting 

capacitive coupling effects to produce RF short-circuit conditions. The capacitive coupling is 

investigated via microfluidically switched microstrip lines that demonstrate RF switching 

operation from 20 GHz to 40 GHz. The coupling provides low-loss (<0.2 dB) and wideband (~20 
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GHz) performance. Furthermore, the RF switching concept is implemented in a 30 GHz 8-element 

MFPA. The MFPA exhibits ~12 GHz bandwidth and reconfiguration time of ~270 ms (as 

compared to ~1 GHz and 5 s respectively in previous work). Nevertheless, a remaining setback of 

microfluidic reconfiguration was the need for external micropumps to enable fluid motion. Such 

pumps are bulky as compared to the microwave components, or hard to integrate within the device. 

Therefore, miniaturization is necessary to achieve higher reconfiguration speeds and reliable 

operation. To achieve these goals, this work presents a novel integrated actuation mechanism in 

the form of piezoelectric bending actuators, eliminating the need for pumps. With the integrated 

actuation a miniaturized single-pole single-throw microfluidically reconfigurable switch is 

demonstrated, and it is scalable to single-pole four-throw configurations. The miniaturized switch 

performs with low losses (i.e. ~ 0.7 dB) and wide bandwidth (i.e. >20 GHz). The integrated 

actuation allows for reconfiguration speed and reliability tests that were not possible before with 

external micropumps. Experiments demonstrated reconfiguration times of 1.1 ms and reliable 

operation of the device over 3 million cycles. Moreover, the switch is expected to handle up to 30 

W of continuous RF power, with experimental verification performed up to 2 W at 32 GHz. 

Successful realization of this compact actuation mechanism provided a path for mm-wave 

microfluidically reconfigurable filters with improved reconfiguration speeds and integrated 

microfluidic actuation. Specifically, a microfluidically reconfigurable bandpass filter that exhibits 

relatively low loss (i.e. up to 3.1 dB), reconfiguration speeds of 285 ms/MHz, and reliable 

operation up to 12 million cycles is demonstrated. The filter is reconfigurable both in frequency 

(from 38 GHz down to 28 GHz) and bandwidth (from 7.6% up to 16.8%) and is expected to handle 

up to 5 W of continuous RF power. 
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Chapter 1: Motivation 

 

Bandwidth limitations, a crowded frequency spectrum, and an increased market for 

electronic devices have created the need for wireless systems operating at millimeter-wave (mm-

wave) frequencies. However, radio frequency (RF) signal transmission/detection at these 

wavelengths introduces challenges due to increased effects of diffraction, attenuation and material 

non-linearity. Therefore, efficient technologies that provide a solution to these problems are highly 

desirable and greatly needed. 

Specific hardware that helps mitigate these issues are beam steering antenna arrays. 

Similarly, reconfigurable filters provide a solution to interference and non-linearity issues that 

become detrimental at these wavelengths. Common technologies used to design such hardware 

rely upon the use of semiconductors in the form of RF integrated circuits (RFICs), monolithic 

microwave integrated circuits (MMICs), RF silicon over insulator (RF SOI); or through micro-

scale mechanical actuation in micro electro-mechanical systems (MEMS). Yet, both 

semiconductors and MEMS require the assessment of different trade-offs. On the one hand, 

semiconductor technology has the advantage of mass scale manufacturing techniques and benefits 

from fast reconfiguration speeds (i.e., tenths of ns or less), making it a widely popular and attractive 

solution for beam-steering applications [1-3]. Still, semiconductors suffer from non-linear effects 

and material limitations that lead to higher losses and low power handling as frequency increases 

[4]. On the other hand, MEMS technology offers improvements due to its micro-scale mechanical 

actuation mechanisms (i.e., high efficiency and low loss) [5], but it presents stiction related effects 
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that limit device reliability and slower reconfiguration times as compared to semiconductors [6]. 

Furthermore, both technologies need additional design considerations such as additional RF 

components and/or DC bias/control lines that further increase costs and limit design flexibility. 

All these limitations become more prominent as the device’s operating frequency increases, 

especially close to and above mm-wave bands. Macro-scale mechanical beam-steering solutions 

have been introduced as well as an alternative to electronic scanning of semiconductors or MEMS. 

These solutions involve the integration of actuators that spatially re-position the antenna by 

utilizing  gimbaled assemblies [7, 8], and yet, this results in bulky structures and considerably slow 

reconfiguration times. To address these problems, this dissertation focuses on investigating a 

promising novel alternative that potentially solves the loss, costs, power handling and design 

complexity problems faced by current state-of-the-art mm-wave devices. Specifically, a solution 

can be found by using the concept of microfluidic technology to provide reconfiguration of beam-

steering antenna arrays and filters. 

Microfluidic loading of RF devices has emerged as a low-cost, all-passive and versatile 

technology alternative for component reconfiguration by offering relatively cheap base materials, 

highly linear behavior and potentially high-power handling capabilities [9]. The concept of 

microfluidic reconfiguration of RF devices is to utilize fluidic channel walls that contain a 

dielectric and/or conductive material, which in turn loads (or modifies) the RF component 

geometry. Several devices such as filters [10-12], antennas [13, 14], antenna arrays [15, 16] and 

switches [17-20], already proved the feasibility of microfluidic reconfiguration of RF components 

by utilizing some form of liquid metal (e.g., mercury or Galinstan). However, the long-term use 

of liquid metals presents major drawbacks such as health/environmental risks and oxidization; 

limiting the applicability of liquid metal loaded RF devices [21]. Additionally, recent literature has 
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shown limited uses of liquid-metal to no more than 15 GHz for loaded antennas [22] and to 26 

GHz for switches in waveguide applications [23]. To address the limitations imposed by liquid 

metals, our group has proposed the introduction of metallized plates inside microfluidic channels 

[24]. Different components such as reconfigurable filters [25] and antennas [26] have been 

demonstrated using the metallized plate approach. By taking advantage of standard PCB photo-

lithography it is possible to design selective metallization patterns on these moving plates, thus 

providing extra degrees of freedom on component design [14, 25]. Reconfigurable antennas and 

filters utilizing the selectively metallized plate (SMP) approach have proven to provide high power 

capabilities for antennas [26] and filters [27].  

Promising advances in beam-steering applications of microfluidic reconfiguration at mm-

waves have also been done by our group through recent publications. Specifically, by introducing 

microfluidic based focal plane arrays (MFPAs) in [16]. The initial MFPA design offered beam-

steering capabilities without the need of active RF devices, potentially reducing costs and 

providing higher efficiency performance. The MFPA concept of [16] was demonstrated by 

microfluidically positioning a patch antenna at the focal plane of an extended hemispherical 

dielectric lens. This MFPA performs with low insertion loss (IL) (e.g. IL < 3 dB for an 8-element 

MFPA) and 5.25 s beam-steering time to cover the ~60° field of view (FoV). As expected, it 

performs with very low loss as compared to traditional beam-steering implementations. However, 

a slow reconfiguration time and limited bandwidth was observed as the trade-off.   

1.1. Research Goals and Contributions 

In this work, the concept of microfluidic switching of microstrip lines utilizing selectively 

metallized plates (SMPs) at mm-wave frequencies is presented. Specifically, a microfluidically 

switched microstrip line utilizing the SMP approach is designed and experimentally verified from 
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15 GHz up to 40 GHz. This demonstrated the potential of this technology to improve switching 

and bandwidth capabilities of the first generation of MFPAs that relied upon antenna movement 

instead of feed network switching operations. Then, the design and implementation of a wideband 

low-loss feed network for a 30 GHz microfluidic focal plane array (MFPA) are given. It will be 

shown that by introducing a novel, microfluidically switched feed network it is possible to 

maintain a wideband performance (~38%) and accommodate >32 antenna elements in a 1D 30GHz 

Ka-band focal plane array setting. In addition, the required microfluidic motion range is 

significantly reduced (~10x) for higher beam-steering speeds and a compact layout is maintained 

for enabling realization of 2D MFPAs when compared to previous publications. 

To further advance the practical applications of microfluidic technology at mm-waves, 

low-loss miniature single-pole multi-throw switches are introduced. Additionally, this work 

provides the first compact piezoelectrically actuated microfluidic device working at mm-waves in 

one single package. A single-pole single-throw (SPST) switch is used to demonstrate 

miniaturization capabilities of SMP-based microfluidic devices and implement the piezoelectric 

actuation mechanism. Experimental results show that wide-band (~20 GHz) and low-loss (<0.3 

dB) performance in maintained by the switch. Experiments demonstrated reconfiguration times of 

1.12 ms and reliable operation of the device over 3 million cycles. Moreover, the switch is expected 

to handle up to 15 W of continuous RF power, with experimental verification performed up to 2 

W at 32 GHz. Consequently, the SPST switch is expanded into single-pole four-throw (SP4T) 

configuration and it is included in a beam-forming network to demonstrate beam-steering 

applications and potentially provide high power-handling capabilities. 

Finally, after having successfully integrated the piezoelectric actuation mechanism into a 

compact microfluidic device, a reconfigurable filter with frequency and bandwidth tuning is 
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designed at mm-waves. Specifically, a microfluidically reconfigurable bandpass filter with low 

loss (i.e. up to worst-case 3.1 dB IL), a reconfiguration speed of 285 ms/MHz, and reliable 

operation up to 12 million cycles is demonstrated. The filter is reconfigurable both in frequency 

(from 38 GHz down to 28 GHz) and bandwidth (from 6.8% up to 16.8%) and is expected to handle 

up to 5 W of RF power. All these advances position microfluidic technology for reconfiguration 

of microwave devices in an advanced terrain enabling faster reconfiguration speeds, the ability of 

performing reliability and repeatability tests, and provide a solid path for expanding the technology 

into mm-wave applications. 

1.2. Content Outline 

This dissertation is organized as follows: 

i. Chapter 2 offers a brief review of the state-of-the-art technologies utilized for 

reconfiguration of microwave devices. 

ii. Chapter 3 presents a microfluidically switched microstrip line and the development of its 

equivalent circuit model. Specifically, a microfluidically switched microstrip line is 

designed and characterized to exhibit <0.3 dB IL and wideband (>20 GHz) performance. 

iii. Chapter 4 implements the microfluidic switching concept via a selectively metallized plate 

in a microfluidically reconfigurable focal plane array. The switching operation and its 

equivalent circuit model are employed for designing a feed network for a focal plane array 

at 30 GHz that performs with 38% bandwidth and low loss. Additionally, the circuit model 

is used to demonstrate the scalability of the design for antenna arrays with up to 64 elements 

with no bandwidth performance degradation. 

iv. Chapter 5 introduces a miniaturized version of the microfluidically switched microstrip 

line, along with its expansion to a single-pole four-throw configuration. In addition, 
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integrated piezoelectric actuation is utilized for the first time in a microfluidically 

reconfigurable device. The switch performs with 0.3 dB IL, 1.12 ms reconfiguration time, 

up to 15 GHz bandwidth, and is actuated up to 3 million times with no noticeable 

degradation in performance. Furthermore, the switch is expanded into a single-pole multi-

throw operation. Specifically, a single-pole four-throw switch is designed and 

experimentally verified to provide <0.9 dB IL while maintaining the wideband 

performance (i.e. >18 GHz bandwidth) as the SPST. The SP4T is then implemented into a 

compact beam-steering array design within a 4×4 Butler matrix beam-forming network. 

v. Chapter 6 describes the application of integrated piezoelectric actuation into the first 

bandwidth and frequency reconfigurable bandpass filter at mm-wave frequencies. 

Specifically, a band pass filter with independent frequency and bandwidth tuning 

capabilities is designed at mm-wave frequencies. The filter can be reconfigured from 38 

GHz initially, down to 28 GHz, and its bandwidth can be increased from 6.8% up to 16.8% 

at 38 GHz and from 7.6% up to 12.8% at 28 GHz. This bandpass filter implementation 

represents the first application of microfluidic reconfiguration for a filter at mm-wave 

frequencies. 

vi. Chapter 7 offers the final remarks or this dissertation. 

 

 

 

  



7 

 

 

 

 

 

 

Chapter 2: Review of Reconfigurable RF/Microwave Devices 

 

Recent advances in wireless communications requirements has generated a greater need 

for faster data rates, increased bandwidths for high data throughput between devices, and 

components that perform efficiently and provide multiple functionalities. These features demand 

reconfigurable microwave devices that are able to operate with advanced performance at multiple 

frequencies, and that have the capability to re-direct its electromagnetic energy towards 

specific/multiple locations [28]. These types of reconfigurable devices are required to exhibit: 

 Dynamic reconfiguration with the minimum possible number of additional components. 

 Seamless operation either through a diverse range of frequencies allocated next to each 

other or in different non-continuous frequency bands. 

 Maintain or improve their performance after reconfiguration. 

 Achieve a satisfactory change between states in the shortest amount of time. 

This translates in devices that can provide frequency reconfiguration, dynamic redirection 

of their electromagnetic energy, improved/adjusted performance via feedback control (e.g. 

temperature change compensation), seamless switching (ON/OFF) operations, and dynamic signal 

phase change; to name a few of the required features. All of this, while offering small unified 

packaging, exhibiting low-loss (i.e. high efficiency) performance, and being able to handle high 

amounts of electrical power. 

Several methods have been proposed, investigated and characterized to present solutions 

to the reconfiguration challenge. Among these, one can mention the physical modification of a 
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device's structure via mechanical actuation, the use of semi-conductor (SC) and integrated circuits 

(IC) elements [29], micro-scaled mechanical techniques making use of micro electro-mechanical 

systems (MEMS) components [30] and –more recently– the introduction of hydraulic actuation in 

fluids that modify device characteristics [21]. To this extent, it is possible to group these solutions 

in two main classes: 

 Active electronic reconfiguration, i.e. the use of SC technology to provide an electronic 

input and modify an electrical variable. 

 Mechanical (passive) reconfiguration, by introducing mechanical actuation to modify a 

passive electrical component through mechanical or electrical inputs. 

Between the suggested methods, the most popular to-date is the use of active electronics to 

realize switching or loading mechanisms. With the caveats of added design complexity, extra 

components, increased power consumption and non-linear behavior in the microwave device 

(µWD) response. By utilizing IC technology, it is possible not only to achieve extremely fast 

reconfiguration speeds (i.e. tenths of ns), but also to offer unified packaging, scalability and have 

a single connection interface for signals and control in a compact chip. Due to the development of 

advanced fabrication techniques that made monolithic microwave integrated circuits (MMICs) 

relatively cost-effective and more reliable, it is possible to have mostly all the µWD 's components 

integrated into a single package. With all these advancements, IC/MMIC technology has proven 

to be dependable in the design of switches [31-34], active electronically scanned arrays (AESA) 

[35, 36], tunable frequency selective surfaces (FSS) [37] that can be used as reflectors/absorbers, 

among other applications. 

It is possible now to design a complete TX/RX element (up/down converter, amplifier, 

filters and antenna) for an AESA radar in a single chip, needing only biasing voltage for the DC 
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part and, an intermediate frequency (IF) input/output and an external local oscillator (LO) signal 

on the RF side [38]. However, in the realm of mm-wave frequencies, low output impedances that 

limit matching capabilities, considerably high insertion loss (IL), reduced antenna efficiency (i.e. 

η < ~35%), non-linearities and extremely high testing costs are the main drawbacks in the 

realization of these fully integrated chips [39-41]. Even though efforts are being made to bring the 

manufacturing and testing costs down and increase their power efficiency. 

Passive reconfiguration is the alternative that has none of the added problems of the active 

method (i.e. reduced power consumption, highly linear behavior and simpler design) at the cost of 

slower response times (from tenths of ms to tenths of μs), and up until a few years ago, reduced 

scalability and device integration [42]. The development of MEMS actuator devices (micro-scaled 

mechanical components that benefit from the micro-fabrication process utilized in IC technology) 

introduced linear and highly power efficient elements that could do the same operations –although 

at a slower speed– performed by most of their electronic counterparts, while having the possibility 

to provide component integration [43]. The use of MEMS has been proven feasible on designing 

RF switches [39, 44-46], antennas and phased arrays [47, 48], and reconfigurable FSS [49], to 

name a few applications. However, problems on: operation reliability, device packaging and the 

high voltage range sometimes needed to provide actuation; added to the improvements achieved 

in SC technology with silicon on insulator (SOI) and silicon on sapphire (SOS), have held back 

the full adoption of MEMS devices (despite their low IL and high linearity as compared to SCs) 

as a replacement for active-non-linear components [40, 43]. Thus, it is important to offer an 

overview on the current state-of-the-art of microwave device reconfiguration using active 

technologies such as RFICs, and passive methods such as MEMS. This will offer additional insight 

when these technologies are compared to the alternative of microfluidic reconfiguration that is 
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proposed in this dissertation. Specifically, current methods for developing RF switches and beam 

steering arrays will be discussed.  

2.1. State of the Art of Reconfigurable Microwave Devices Using MMIC and MEMS 

Technology 

Among the most relevant literature to-date related to active reconfiguration of microwave 

devices, the designs proposed by Rebeiz et al. in their different publications present themselves as 

the most viable approaches when unified packaging is desired [50]. Besides their research, one can 

find published literature that spans across the fields of MMIC and MEMS, and in some cases, 

hybrids between both [42, 51]. These publications have repeatedly demonstrated the possibility of 

providing complete device functionality in one package, such as complete transmit/receive units 

with integrated up/down conversion, filtering, amplifying and antenna elements. Since the work 

done in this area is extensive, only the most recent and relevant publications that have 

demonstrated significant advances on MMIC and MEMS applied for switches, antenna arrays and 

filters will be discussed. However, it is worth mentioning that for many MMIC applications, most 

of the operational principles of reconfigurable devices rely on one of the most basic actuator 

components in electrical engineering: the switch. Per its simplest definition, a switch is a device 

that makes or breaks and electrical connection; and the way to achieve that effect at microwave 

frequencies has been a matter of research for many years.  

2.1.1. Active Electronic Switching of RF Signals 

Due to the nature of high-frequency harmonic signals (i.e. electromagnetic coupling 

between nearby, non-touching conductors), a mechanical disconnection between two conductive 

materials does not guarantee a satisfactory open-circuit condition. Thus, achieving ON and OFF 
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states in RF devices needs to be studied from the perspective of electromagnetic interaction of 

charges between the two conductive surfaces.  

A simple way to represent an RF switch is by studying its inherent capacitance. One can 

investigate the electrostatic field between two conductive surfaces (let us call them 1 and 2) of area 

𝐴 and separated a distance d by a dielectric material of relative permittivity 𝜀𝑟 (as seen in Figure 

2.1), that have superficial charge distribution 𝜌𝑠 and, find the electric potential between the two as 

[52]: 

𝑉12 = −∫ 𝐸̅
𝑑

𝑙=0

⋅ 𝑑𝑙̅ (2.1) 

 

If one considers the solution of Equation 2.1 by neglecting fringing fields at the plate edges 

and then finds the ratio from the net amount of stored charge between the plates (𝑄) and the electric 

potential (𝑉12), it can be proved that the capacitance (𝐶), can be defined as: 

𝐶 =
𝜀𝐴

𝑑
 

This result is known as the capacitance of a parallel plate capacitor [52]. Now, since the 

impedance for a capacitive load 𝑍𝑐 changes with frequency by the form: 

Figure 2.1. Parallel plate capacitor representation. 
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𝑍𝑐 =
1

𝑗𝜔𝐶
 

For any given frequency, it is possible to design a capacitive load with high enough 

impedance to be considered an open-circuit (i.e. small capacitance) or low enough to be considered 

a short-circuit (i.e. large capacitance). This is possible by designing for a certain dielectric constant 

or by modifying the component geometry. This approach allows for modeling RF switches through 

equivalent capacitive loads and gives additional insight on the limitations of SC devices –that is, 

the frequency dependent impedances affect device performance as frequency increases1. 

2.1.2. PIN Diodes 

A simple way to realize a controllable capacitance (and with it an RF switch) is through a 

diode. A PIN diode can be forward biased to achieve conduction (ON state) or it can be reversed 

biased to prevent it (OFF state), thus by placing such component in either a series or parallel 

configuration, it is possible to form a single-pole, single-throw RF switch [53]. Its behavior can be 

studied from an equivalent circuit model which contains the equivalent impedance of the diode in 

either state. When ON, the diode impedance can be represented as 

𝑍𝑑𝑂𝑁 = 𝑅𝑂𝑁 + 𝑗𝜔𝐿𝑖 

and when OFF, diode impedance can be written as 

𝑍𝑑𝑂𝐹𝐹 = 𝑅𝑂𝐹𝐹 + 𝑗 (𝜔𝐿𝑖 −
1

𝜔𝐶𝑗
) 

where the inductance 𝐿𝑖 and the capacitance 𝐶𝑗 model the parasitic behavior at the junction in the 

semi-conductive material. Observing that the equivalent impedance for a diode is frequency 

dependent, and its underlying relation to the material behavior of the component, helps to 

understand the limitations of SC technology when it comes to RF device design and to infer which 

 
1 For an in-depth discussion on these topics the reader can refer to [52, 53]. 
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are the parameters that ultimately affect diode performance at microwave frequencies (i.e. inherent 

inductive and capacitive effects present at the diode junction).This capacitive behavior of the diode 

can be advantageous when one considers that by reverse biasing this component, conduction of 

current is prevented. This implies electrical charge build-up at the SC junction and results in the 

possibility of designing a voltage-controlled capacitor by modifying the bias voltage applied to the 

diode. However, it is important to mention that the simplified model and explanation offered 

earlier are considering, for simplicity, a linear behavior for the diode. Since diode current behaves 

in a non-linear fashion (which in turn means a non-linear diode impedance), these types of devices 

carry an inherent limitation on the amount of power they can handle. The higher the RF power 

transmitted through the diode, the stronger the non-linear effects will be. These effects mostly 

translate to charge saturation within the devices, which means limits on transmitted power and 

sometimes breakdown of the diode substrate material. Trying to mitigate these effects have led to 

a wide range of RF switch designs. In practice, transistors are cascaded in several configurations 

to realize more efficient, faster, wideband and reliable RF switches. But they are still governed by 

the same material and non-linear restrictions as the simple PIN diode. 

2.1.3. Current RF/Microwave Switching Technology 

An MMIC device with 0.25 µm GaN HEMT technology was recently proposed by Kaleem 

et al. in [54]. They report a 40 dBm 𝑃1dB compression point at 20 GHz, isolation above 28 dB and 

IL <1 dB for a 17 to 22 GHz band. It is worth noting the return loss at just 10 dB values across 

most of the band, highlighting the matching limitation of SC devices. 

Howell et al. have presented a new approach that offers reduced losses and improved 

bandwidth for SC-based RF switches [32, 55]. They report a design that allows formation of 

multiple parallel current paths on a field effect transistor (FET) channel. By this method, it seems 
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possible to decrease the ON resistance of the RF switch while limiting the impact on the OFF 

capacitance. The median ON resistance measured by this group is 0.38 Ω-mm and an OFF 

capacitance of 0.21 pF/mm. This translates to switch performance of <0.3 dB IL and >30 dB 

isolation, cut-off frequency of 2 THz and response time faster than 100 ns. All this while being 

able to handle over 10 W at 10 GHz without presenting compression. 

In other work, Cho et al. introduced a wideband active double-pole double-throw (DPDT) 

switch for applications from 2 through 22 GHz [34]. The interesting approach taken by this group 

is the introduction of gain in the ON state of the switch. However, this seems to come with the cost 

of reduced return loss since they report a measured figure of 9 dB in the operation band. Measured 

isolation is over 15 dB and output 𝑃1dB at -6.2 dBm. 

2.1.4. Active Phased-Arrays  

MMIC technology has allowed for unified chip integration of RF devices, although 

elevated costs, unique requirements in each design and non-linear behavior keep limiting this 

technology. Major advancements have been made in this field and some of the most recent designs 

are proposing an aggressive approach with a full system-on-chip integration. 

Kang et al. present a single-element and four-element phased arrays that are capable to 

operate at both transmit and receive mode with 5-bit phase and amplitude control [56]. They utilize 

a 4:1 power combining/dividing network along with amplifying and phase shifting stages, all 

integrated in one chip. These arrays perform with an average gain of 0 dB per channel along with 

a noise figure of 9 dB. In receiving mode, they present a 𝑃1dB of -16 dBm per channel and third-

order intercept of -5.9 dBm while consuming 142 mW, and in transmission mode the output 𝑃1dB 

is between 4 to 5 dBm across the 35-36 GHz band with 171 mW power consumption.  
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A single-chip approach by Ku et al. in [57] present a 16-element phased array receiver at 

W-band for automotive radar applications. The SiGe chip is attached to a linear microstrip array 

by bond wires and results in a 29.3 dB antenna directivity and 18 dB gain at 77-81 GHz [57]. The 

system presents beam-steering capabilities in a 100° sweep by 1° steps thanks to their integrated 

phase shifter elements. As a receiver, the chip exhibits 7 dB gain with variable gain amplifiers that 

compensate gain error vs. phase states when it is matched to a 50 Ω load, while being capable to 

achieve 22.5 dB for higher load impedances. Overall chip power consumption is 1.2 W in a 5.5×5.8 

mm2 area and the simulated noise figure is 18 dB. 

2.1.5. Applications of MEMS Technology on Switching Elements and Beam-Steering Devices  

Most of RF MEMS devices have been proven to operate seamlessly from RF to mm-wave 

frequencies (i.e. 0.1 to 100 GHz) and several studies demonstrated operation with considerably 

better performance than MMIC components. And even though the adoption of this technology is 

still lacking, due to several reasons laid out earlier, research groups continue to propose new ideas 

and innovative designs. 

Sterner et al. demonstrate through their switching approach [58] the low loss capabilities 

of MEMS devices by measuring 0.08 dB IL at 20 GHz and isolation above 25 dB for the two-port 

configuration. For a three-port switch, they show 0.31 dB and 0.68 dB IL at 1 and 10 GHz 

respectively, with isolation of 43 and 22 dB. The switches are actuated by voltage ranges from 23 

to 89 V with negligible power consumption.  

Another design presented by Zhu et al. in [46], reports operation up to 40 GHz with less 

than 0.5 dB IL with 22.5 dB isolation. One of the main goals of this project was to offer improved 

isolation at the OFF state while aiming to reduce the actuation voltage. The authors proposed the 

use of a bi-directional motion actuator that operates by thermal effects, in a three-state switch 
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design. Thanks to this electrothermal actuation approach, the drive voltage for the switch is 

reduced to 0.5 V.  

An antenna array design demonstrated in [59] proposed a mm-wave lens-array antenna 

with 2-bit programmable antenna-filter-antenna (AFA) unit cells. The fabricated device is 

composed of 2420 switching elements scattered among 484 AFA elements (22×22 array). The 

fabrication is realized in quartz wafers utilizing adhesive bonding for packaging. Beam-steering is 

achieved by micro-positioning of each lens element towards specific locations, which in turn 

redirects the beam of the main feed (i.e. a horn antenna). The measured gain of this array is around 

9.2 dB, however, a reported IL for the beam-steering lens array is noted as 8 dB. The group 

indicates that the high losses are mostly due to the low yield obtained during fabrication (~50%) 

and that by improving this metric, reduction of the IL up to 2 dB is possible. 

In other work, Luo et al. propose an interesting approach for the use of MEMS cantilevers 

for phase modulation [60]. The idea is to design a tunable periodic structure which allows for phase 

control of the propagating wave inside the material. Tuning is achieved by actuation of a set of 

MEMS structures (referred to as J-units) that modify the impedance of each of unit cell, thus 

allowing for beam-steering capabilities since the antennas are integrated within the unit cells 

themselves. Beam-steering is demonstrated between ±15° as the J-units are sequentially actuated. 

2.2. Microfluidically Reconfigurable Microwave Devices 

As an alternative to both MEMS and MMICs, fluidic reconfiguration of microwave devices 

either through liquid or solid metals –or through dielectric materials contained inside a fluidic 

channel, has proved promising in applications where component flexibility or low-loss and high 

efficiency is required. While dielectric loading of RF components has been investigated, the 

preferred method for tunability is the use of liquid or solid metals due to its inherent advantage as 
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conductive material. Microfluidic loading of microwave devices has emerged as a low-cost, fully 

passive and versatile alternate technology [21] due to the limitations presented by SC/MMIC and 

MEMS technology, the increasing demand for additional system flexibility on wireless devices 

and the current need for wireless wearable gadgets. The concept of microfluidics applied on RF 

reconfiguration is simple: fluidic channels walls (at the mm and micron scale) that contain certain 

quantity of dielectric or conductive (in fluid or solid form) material loads or modifies the RF 

component geometry. In the same manner as MEMS, the field of microfluidics has flourished as 

an alternative to active reconfiguration with different groups investigating liquid metal loaded 

filters [61-63], antennas [15, 64-66], antenna arrays [67-69], reflectarrays [70, 71] and switches 

[17, 18, 72]. However, liquid metal has shown to have some major drawbacks such as being 

harmful for human health and the environment (i.e. in the case of mercury), and oxidization and 

low conductivity (with alloys such as Galinstan) [21, 73]. 

2.2.1. Liquid Metal Applications for Microfluidic Reconfiguration of Microwave Devices 

Even though the use of liquid metals comes with certain drawbacks as discussed above, 

several designs have been fabricated, thus demonstrating promising applications of microfluidic 

technology. Nevertheless, further research is needed to address concerns regarding system 

integration, repeatability and packaging.  

Among some of the relevant work in microfluidic applications, Chen et al. in [17], showed 

the wideband and low loss behavior of liquid metal switches. Different approaches were 

considered by using mercury, Galinstan and ultrapure ionic water. S-Parameter characterizations 

of the proposed switches placed within a 1500 μm CPW line was done from 2 to 100 GHz. For 

mercury and Galinstan, results showed that the IL was maintained below 1.3 dB for the whole 

range and 20 dB isolation. In the case of water, the switch transforms into an absorptive 
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component, showing 1.3 dB IL and above 10 dB RL in its off-state and 27.5 dB isolation when the 

channel is filled. 

Similarly, Gough et.al demonstrate the viable application of continuous electro-wetting 

(CEW) for RF reconfiguration [74]. By introducing a liquid metal droplet inside a dielectric liquid, 

and then applying an external voltage, it is possible to produce a pressure imbalance that results in 

the motion of the liquid metal. A tunable antenna was designed and fabricated in order to 

demonstrate the applicability of this phenomenon in RF devices. It consisted of a slot antenna with 

center frequency at 2.65 GHz fed by a microstrip and liquid metal coupled to the feed via a 

microfluidic channel. Dynamic reconfiguration was achieved by extending the feed length as the 

microfluidic channel was filled with liquid metal. The antenna gain was approximated to 2 dB and 

tunable bandwidth was around 15.2 %.  

Reconfiguration of an FSS was proposed by Lei et al. in [75] by using liquid metal inside 

periodically spaced PTFE tubes. The group used mercury to produce movable slugs inside an oil 

filled tube. It was shown that it is possible to model the liquid metal slugs as inductors, whereas 

the dielectric oil acts as capacitor. A parallel array of these tubes, along with the pressure control 

at the input of each channel, constitutes the FSS. Measurements showed the tunable capabilities of 

the design between 4 to 17 GHz. 

2.2.2. Microfluidic Reconfigurable RF Devices Via the Metallized Plate Approach 

Although liquid metal reconfiguration has shown some great progress in the recent years, 

there are still oxidization concerns when devices are fabricated using Galinstan. For these reasons, 

the use of metallized plates inside microfluidic channels has been proposed as an alternative to 

solve the problems encountered in liquid metal applications [24]. Different components such as 

reconfigurable filters [27, 76], antennas [77], and a 1D mm-wave microfluidic based focal plane 
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array [78] (MFPA) have been demonstrated using the plate metallization approach. Selective 

metallization of off-the-shelf RF substrates (e.g. Rogers RT/Duroid®, RO4000®) addresses the 

limitations of liquid-metals. By taking advantage of standard PCB photo-lithography it is also 

possible to design selective metallization patterns on these moving plates, thus providing extra 

degrees of freedom on component design [25, 65]. These devices have also shown great promise 

to handle high amount of power due to their materials and highly linear behavior [76, 77]. 

Dynamic bandpass filter reconfiguration is presented by Palomo et al. in [27]. The authors 

report low IL and wideband reconfiguration by using a selectively metallized plate approach. The 

filters were designed to operate between 0.8 to 1.5 GHz, achieving almost 2:1 tuning. Measured 

response shows 4.5 IL and constant fractional bandwidth within a margin of 5%. 

A tunable monopole antenna from 1.7 to 3.5 GHz and over 2.4 realized gain was also 

demonstrated in [77]. Reconfiguration is accomplished by moving a metallized plate that acts as 

the main radiator. Power handling characterization were made, and the device proved to be able to 

handle at least 15 W at its highest operation frequency. One of the advantages of using the plate 

metallization approach is the highest thermal conductivity achieved by both substrate and 

insulator, as compared to using liquid metal for reconfiguration. 

The microfluidic focal plane array (MFPA) proposed by Gheethan et al. in [78], was the 

first reported beam-steering application of microfluidics at mm-wave frequencies. The MFPA is 

composed of a metallized plate inside a microfluidic channel, which acts a patch antenna at 30 

GHz. The antenna moves along the focal plane of an extended semi-hemispherical dielectric lens. 

The necessary considerations on feed network design for these MFPAs were thoroughly addressed 

in [78]. Measured gain was 23.5 dB, however, bandwidth limitations were clearly noted due to the 

resonant nature of the feed networks used and, when non-resonant networks are employed, 
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insertion losses are considerably high. All these advantages position microfluidic reconfiguration 

of microwave devices via the selectively metallized approach as a very attractive alternative to the 

use of liquid metals. The SMP approach allows for achieving successful design of microfluidically 

reconfigurable microwave with reliable and repeatable operation. Additionally, the use of SMPs 

allows for expanding microfluidic reconfiguration up to mm-wave frequencies thanks to the use 

of standard PCB techniques that avoid liquid metals with reduced conductivity and oxidization 

problems. 

2.3. Chapter Summary 

A general review about the field of RF device reconfiguration through MMIC, MEMS and 

microfluidic technology has been presented, and the advantages for each alternative have been 

noted. Current technology utilized for reconfiguration of microwave devices such as RFICs 

dominates most of today’s applications thanks to their capabilities for high integration and 

extremely fast response times. However, RFICs still are limited by the elevated costs, limited 

performance in power handling, and considerably high losses. Whereas MEMS on the other hand, 

presents advantages of device integration, and low loss performance. Still, MEMS devices need to 

improve their reliability and simplify packaging challenges. As an attractive alternative to MEMS 

and RFICs, microfluidic technology promises low loss, highly linear, and high-power handling 

performances. In addition, it is inherently low cost due to is fabrication processes and it has been 

proven as a great approach for realizing flexible circuitry. Nevertheless, the field of microfluidics 

is still in its infancy although gaining momentum as new design approaches and solutions are 

proposed by different research groups.  

Therefore, several concerns must be addressed if microfluidic technology aims to gain a 

solid foothold as a reliable application. Mainly: device packaging, repeatability and 
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reconfiguration speeds. The rest of this dissertation focuses on addressing these problems. 

Primarily, reconfiguration speeds are improved from the order of several seconds to millisecond 

ranges. Additionally, integrated actuation techniques are employed to demonstrate device 

operation in the order of millions of cycles. Furthermore, all the proposed solutions are offered at 

mm-wave bands, which represent the future of wireless communications technology. Proving that 

microfluidic reconfiguration can potentially be competitive when compared to current applications 

of MEMS or RFICs. 
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Chapter 3: Microfluidically Switched Microstrip Lines Using 

Selectively Metallized Plates2 

 

Microfluidic technology has been demonstrated in the past as switching mechanism for 

microstrip lines [81], waveguides [82], and coplanar waveguides [18]. However, these applications 

use liquid-metal inside the microfluidic channels. When there is no need for substrate elasticity, 

introducing a Selectively Metallized Plate (SMP) inside the channel helps to circumvent the 

limitations of liquid-metals [14]. Additionally, the SMP approach avoids oxidization and channel 

contamination problems that have been noted to be present when liquid metal is used. Moreover, 

the use of readily available PCB technology for manufacturing the SMPs provides design 

flexibility and simplicity. All of this while maintaining the advantage of high conductivity of 

copper traces of the PCB. Therefore, realizing a microfluidically controlled switch via the SMP 

approach, increases the flexibility in application areas of this technology. The fundamental 

switching approach exploited for this purpose is the one of strong capacitive coupling between the 

metal traces of the SMP and the PCB metals. This allows for control of loss and isolation of the 

RF switch by properly designing the switch geometry and substrate stack-up. This chapter presents 

such approach and demonstrates the low loss and wide band capabilities of these types of switches. 

3.1. Microfluidically Switched Microstrip Line Design and Equivalent Circuit Model 

A microstrip line that is microfluidically switched by an SMP can be designed by 

considering a structure shown in in Figure 3.1(a). Moving the SMP along the channel makes it 

 
2 Portions of this chapter have been published in [79, 80]. Copyright permissions can be found in Appendix B. 
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possible to enable or interrupt the energy flow along the microstrip. The OFF and ON states of the 

switch are depicted in Figures 3.1(b) and 3.1(c), respectively. The gap does not only interrupt the 

energy flow but also provides control over the isolation. Microstrip gap discontinuities have been 

widely studied in the past, and there are closed-form expressions already available in [83] that 

model their behavior as capacitive 𝜋-network under certain circumstances (i.e. specific microstrip 

width, gap spacing, substrate height and permittivity). When the dimensions of the microstrip gap 

or substrate properties fall outside of the readily available formulae in [83], EM modeling can be 

utilized to extract the equivalent Y-Parameters and calculate the corresponding capacitance values 

as in [84]. In either case, the circuit model for the gap discontinuity consists of coupling capacitor 

(𝐶𝑔) between the open ended microstrip lines and the two capacitors (𝐶𝑑) to ground from each 

open end. Similarly, the coupling between the SMP and the microstrip lines can be modeled by 
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Figure 3.1. Microfluidically switched microstrip line design layout. (a) Isometric view of the 

microfluidically switched microstrip line stack-up, the materials used are PDMS for the fluidic 

channel, BCB for the thin dielectric layer, Rogers RO4003C™ for the microstrips and 

RT/Duroid® 5880 (εr = 2.2, tanδ = 0.0004) for the SMP with hmp = 0.254 mm, h = 0.203 mm 

and d = 6 μm. Top views of the ON (b) and OFF (c) states of the switch. 
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two capacitors (𝐶𝑐) in the overlap areas. The SMP area over the gap can be represented by a low 

pass 𝜋- network consisting of series inductor 𝐿𝑠 and shunt capacitors 𝐶𝑠. Consequently, the 

equivalent circuit model for the switch becomes as shown in Figure 3.2(a). It is important to note 

that this model exhibits slight difference with respect to the ones presented in [66, 85] for liquid 

metal loaded structures. Reference [85] models a microfluidically switched slot antenna with 
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Figure 3.2. Equivalent circuit model and performance of the switch. (a) Circuit model; (b) 

scattering parameters obtained from EM and schematic simulations for 𝐿𝑜𝑣 = 0.5 mm (Circuit 

Model: 𝑍0𝑚 = 50 Ω, 𝐿𝑜𝑣 = 0.736 mm, 𝐶𝑠 = 12.53 fF, 𝐿𝑠 = 128.26 pH, 𝐶𝑔 = 0.398 fF, 𝐶𝑑 =

11.734 fF and 𝐶𝑐 = 0.856 pF); (c)  𝑆11 and (d) 𝑆21 performances within 10 – 40 GHz band for 

varying 𝐿𝑜𝑣 values. 
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transmission lines, while the liquid-metal loading the slot is modeled by a shunt capacitance. 

Reference [66] represents the coupling effect of the liquid-metal-filled microfluidic channel with 

equivalent shunt open-circuited stubs. The model utilized here retains the microstrip lines under 

the overlap areas as transmission lines with characteristic impedance 𝑍0𝑚. These lines are modeled 

as microstrips placed in the multi-layer substrate stack-up (ADS TLines-LineType library). The 

coupling at the overlap areas is represented by the series capacitors 𝐶𝑐 in contrast to the circuits in 

[66, 85] that utilize transmission lines. This circuit model is expected to have accuracy for 

electrically short overlap lengths (𝐿𝑜𝑣 ≤ 𝜆𝑔/4 = 1.31 mm) due to this series capacitance 

approximation. 

The validity of this circuit model is verified in Figure 3.2(b) by comparing the scattering 

(𝑆) parameters obtained from the EM model (Keysight Advanced Design System [ADS] 

Momentum) for  𝐿𝑜𝑣= 0.5 mm and circuit schematic simulations. The initial value of 𝐶𝑐 is extracted 

from the well-known parallel plate capacitor equation, 𝐿𝑠 and 𝐶𝑠 are calculated from equation (1) 

of [86], 𝐶𝑔 and 𝐶𝑑 are evaluated from equation (5.20) in [84]. The gap length 𝐿𝑔 is selected as 0.8 

mm to achieve > 28 dB isolation at 30 GHz with a compact size. The final component values of 

the circuit model are obtained by matching the S-Parameter response of the circuit to the one from 

the EM simulation through optimization. The variables that are optimized in the circuit model are 

the coupling capacitance (𝐶𝑐), the equivalent inductance (𝐿𝑠) and capacitance (𝐶𝑠), and (𝐿𝑜𝑣). The 

optimization compensates for the fringing fields and multilayered substrate that are not considered 

in the calculation of the initial component values. Appendix A demonstrates the optimization 

process chosen to validate the assumptions made within this circuit model. Figure 3.2(c) and 3.2(d) 

depict the 𝑆11 and 𝑆21 performances of the switch for different 𝐿𝑜𝑣 values. As expected, large 𝐿𝑜𝑣 

values correspond to larger coupling capacitances, lower insertion losses, and wider bandwidth 
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performances. It is observed that insertion loss (IL) at 30 GHz remains < 0.2 dB for 𝐿𝑜𝑣 > 0.3 mm. 

For the switch implementation, an 𝐿𝑜𝑣 value of 0.5 mm is selected to achieve a wide bandwidth 

performance (|𝑆11| < -10 dB above 10 GHz) and accommodate fabrication/positioning 

uncertainties. Figure 3.2(c) and 3.2(d) also demonstrate the 𝑆11 and 𝑆21 performances of the switch 

obtained from EM simulation for half guided wavelength overlap length (𝐿𝑜𝑣 = 𝜆𝑔/2). It is clearly 

seen that the performance is significantly deteriorated due to the realization of a broadside resonant 

coupled line structure. 

3.2. Fabrication and Experimental Verification 

To experimentally verify the simulated switch performance, a device prototype is 

fabricated by utilizing the micro-molding techniques. For the microfluidic channel, a photoresist 

(SU8-2075) mold is fabricated by standard photolithography on a dummy silicon wafer. Then, a 

10:1 mixture of PDMS is poured on top in order to produce a 2 mm thick microfluidic chip housing 

a 2 mm wide by 0.3 mm high microfluidic channel. The microstrip and metallized trace of the 

moving plate is 𝑤 = 0.42 mm wide to realize 50 Ω lines. After patterning the microstrip via 

standard photolithography, the substrate is spin-coated with a 6 µm thick insulating layer of BCB 

and cured in a programmable convection oven attending to the manufacturer guidelines. Following 

the curing process, the substrate is exposed to oxygen plasma activation (50 W for 30 s at < 0.7 

Torr), submerged in a 5% (3-Aminopropyl)triethoxysilane (APTES) solution kept at 70 °C for 20 

minutes, and dried with a nitrogen gun. Subsequently, the SMP is positioned on top of the 

substrate, which is then brought in contact with the PDMS chip that has been exposed to plasma 

activation. To ensure a strong bond between the substrate and the PDMS chip, the device is placed 

in a convection oven at 110 °C for 30 min.  In addition to the microfluidically switched microstrip 

line, a continuous reference microstrip line is also fabricated under the identical substrate stack-up 
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for performance comparison. Figure 3.3 shows the fabricated lines and their measured 

performances. Specifically, the microfluidically switched line performs almost identical with the 

continuous line above 16 GHz exhibiting an |𝑆11| < -10 dB. The IL difference is less than 0.2 dB 

over a wide frequency range (> 20 GHz) as predicted by the circuit model. 

3.3. Chapter Summary 

Microfluidically switched microstrip lines utilizing the selectively metallized plate 

approach are introduced to demonstrate low loss and wideband performance of microfluidic 

reconfiguration of microwave devices at mm-wave frequencies. The microfluidic switch performs 

with less than 0.2 dB IL over 20 GHz bandwidth and an equivalent circuit model is developed to 

aid in the design of such switches. Specifically, the equivalent circuit model can be employed to 

develop complex networks with several switches as it will be demonstrated in the next chapter. By 

utilizing this type of switching mechanism with microfluidic technology, it will be possible to 

reduce device reconfiguration time from the order of seconds to a few hundreds of milliseconds.  

Figure 3.3. Microfluidically switcher microstrip prototype and its measured performance. 

Microfluidically switched and reference microstrip line prototypes (a) with measured 𝑆11 and 𝑆21 

performances (b). 
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Chapter 4: Millimeter-Wave Beam-Steering Focal Plane Arrays3 

 

Microfluidic beam-steering focal plane arrays (MFPAs) offer beam-steering capabilities 

without the need of active RF devices, potentially reducing costs and providing higher efficiency 

performance. The concept of MFPAs was demonstrated by microfluidically positioning a patch 

antenna (in the form of liquid metal [16] or metallized plate [78]) at the focal plane of an extended 

hemispherical dielectric lens. However, the feed networks of [78] needed to accommodate the 

position variation of the antenna element by making use of multiple resonance mechanisms. 

Consequently, this made the bandwidth of the arrays dependent on array size. To solve this 

limitation, a Selectively Metallized Plate (SMP) was introduced within a microfluidic channel to 

implement a microfluidically switched feed network. This feed network utilizes the microfluidic 

switching concept presented in Chapter 3. With this approach, same beam-steering range and 

antenna gain as in [78] is achieved while providing reduced reconfiguration times. This was 

possible by decreasing the motion range by a factor of about 10 times with a compact switching 

mechanism. In addition, because the feed network does not rely on multiple resonant elements, a 

better bandwidth performance is possible. Specifically, the need for resonant feed networks is 

alleviated by resorting to a microstrip line feed network exhibiting gap discontinuities that can be 

switched on/off by microfluidically repositioning an SMP. To be able to utilize a single bi-

directional micropump unit, the gap discontinuities and SMP metallizations are arranged 

strategically to sequentially direct the RF power to the antenna elements of the focal plane array. 

 
3 Portions of this chapter have been published in [79, 80, 87]. Copyright permissions can be found in Appendix B. 
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Furthermore, a position sensing approach integrated with the microfluidically repositionable SMP 

is introduced for the first time to enable closed-loop precise positioning control. 

It was experimentally verified that the MFPA exhibits 22.6 dBi peak gain corresponding 

to < 3 dB feed network loss. The measured data agrees quite well with the expected device 

performance extracted from a mixture of full-wave electromagnetics (EM) and circuit simulations. 

These studies demonstrate that the microfluidically switched feed network performs with wide 

bandwidth (~38%) and low insertion loss (IL). Hence, the feed antenna of the MFPA becomes the 

major limiter of the bandwidth (as compared to the bandwidth limitation associated with the feed 

network resonances presented in [78]). An integrated sensing approach for detecting the SMP 

position is also demonstrated for the first time to facilitate the use of presented MFPAs with closed-

loop position controllers. The significantly reduced microfluidically actuated motion range (4.2 

mm vs. 40 mm of [78]) is also experimentally shown to result in a much faster beam-scanning 

performance (270 ms vs. 5.25 s of [78]). 

4.1.  Operation Principle of the Microfluidically Switched MFPA 

The substrate stack-up of the MFPA is presented in Figure 4.1(a) along with the external 

piezoelectric micropump actuation mechanism. Rogers RO4003C™ (𝜀𝑟  = 3.38, tanδ = 0.0022) 

laminates with 0.203 mm thickness and 17.5 µm of copper cladding are used as the substrates for 

the patch antenna elements, microstrip line feed network, and the SMP located inside the 

microfluidic channel. The patch antennas are excited with aperture coupling and designed to 

operate at a center frequency of 30 GHz with an 8% fractional bandwidth (FBW). The antennas 

are located at the back surface (i.e. focal plane) of an extended semi-hemispherical dielectric lens. 

The lens is 8 cm in diameter with 4.32 cm extension length and made from Rexolite® (𝜀𝑟 = 2.55, 

tanδ = 0.00085). Based on ray-tracing [78] and Tai & Pereira’s approximation [88], it provides 
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28.4 dBi directivity and ±30° beam-scanning capability. The microstrip line feed network is 

designed with a specific set of gap discontinuities. The microfluidic channel that carries the SMP 

is bonded to the surface of the feed network by utilizing a low loss thin benzocyclobutene (BCB, 

εr = 2.65, tanδ = 0.00088 [89]) insulator layer. Consequently, the metallizations of the SMP are 

brought near the feed network. To generate strong capacitive coupling (and a potential RF short-

Figure 4.1. Operational principle and design layout of the 8-element MFPA. (a) Substrate stack-

up; (b) selectively metallized plate (SMP) positioned to excite first antenna element; (c) SMP 

positioned to excite last antenna element; (d) detailed layout with dimensions 𝑤 = 0.39, 𝐿1= 2.25,  

𝐿𝑜𝑣= 0.5, 𝐿𝑔= 0.8, 𝐿𝑔2= 0.3, 𝐿𝑝= 2.86, 𝐿𝑝𝑤= 2.16, 𝐿𝑠= 1.97, 𝐿𝑠𝑤= 0.18, 𝐿𝑓= 1.7, 𝑆𝑚𝑡= 0.3, and 

𝜆𝑔 = 5.23 (all units are in mm). 
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based switch) between the two, the BCB thickness is selected as small as possible (6 µm for the 

Cyclotene™ 3022-57 BCB resin available in our laboratory). The 270 𝜇m microfluidic channel is 

prepared from a 2 mm thick Polydimethylsiloxane (PDMS, 𝜀𝑟 = 2.7, tanδ = 0.045 [90]). Motion 

of the SMP is possible by filling the microfluidic channel with a low-loss dielectric liquid (Sigma-

Aldrich FC-40, εr = 1.9, tanδ = 0.0003) and using a pair of parallel-connected piezoelectric 

micropumps (Bartel mp6 30×15×3.8 mm3, ~200mW). A 1 mm thick soda-lime glass, (𝜀𝑟 = 6.2, 

tan 𝛿 = 0.023) is bonded to the top of the microfluidic channel in order to prevent bulging of 

PDMS due to the fluid pressure and its elastic nature. 

The SMP carries sets of horizontal (x-directed) and vertical (y-directed) metallization strips 

as shown in Figures 4.1 (b)-(d). The positions of horizontal and vertical strips are adjusted to 

overlap with the microstrip feed line discontinuities at specific SMP positions. The horizontal 

strips are placed in sets with changing element numbers. This is to ensure a sequential switching 

functionality among the antenna elements. As an example, Figure 4.1(b) depicts the initial position 

of the SMP that activates the antenna element in position #1 (𝑃1). Moving the SMP in a certain 

increment along the y-axis [i.e. 𝑆𝑚𝑡 + 𝑤 based on the layout shown in Figure 4.1(d)] directs the 

RF power from antenna element at 𝑃1 to 𝑃2. Multiple increments or decrements in SMP position 

can be used to activate any antenna element within the array. As an example of another state, 

Figure 4.1(c) depicts the position of the SMP that directs the RF power towards the antenna 

element at 𝑃8. Layout details of the microstrip line feed network, SMP, and aperture coupled patch 

antennas are presented in Figure 4.1(d). 

4.2. Microfluidically Switched Feed Network Design 

The main concept of this design utilizes the microfluidically switched microstrip lines that 

were introduced in Chapter 3. Several switched line elements are strategically cascaded to form a 
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feed network for beam-steering MFPAs. Figure 4.1 has already presented the detailed layout for 

an 8 element MFPA. The performance of this feed network (or similar networks designed for larger 

Figure 4.2. Figure 4.2. MFPA feed network layout and simulated performance for increasing 

number of elements. (a) Subnetworks from the feed network of 8-element MFPA when the SMP 

is positioned to direct RF power towards the antenna at position 𝑃5; (b)  transmission line model 

of the feed network with equivalent circuits in Figure 4 representing the switch behaviors (𝐶𝑠 =
13.13 fF, 𝐿𝑠 = 119.58 pH, 𝐶𝑔 = 2.11 fF, 𝐶𝑑 = 13.83 fF, 𝐶𝑐 = 0.863 pF, 𝐿𝑜𝑣 = 0.764 mm, 

𝐿1𝑂𝐹𝐹 = 𝜆𝑔/2 = 2.65 mm, 𝐿1𝑂𝐹𝐹 = 2.15 mm, 𝐿2 = 1.82 mm); (c) |𝑆𝐼𝑛 𝐼𝑛| performance and (d) 

|𝑆𝑃𝑖 𝐼𝑛| for an 8-element array when SMP is positioned to excite each port 𝑃𝑖. 
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1D arrays) can be investigated by considering the subnetworks shown in Figure 4.2(a). 

Specifically, these subnetworks correspond to the regions of the feed network between antenna 

positions 𝑃4-𝑃5 (state #1) and 𝑃5-𝑃6 (state #2) when the SMP is positioned to direct RF power 

towards the antenna at position 𝑃5. These states provide a Single-Pole-Double-Throw (SPDT) 

switching functionality by directing RF power to flow towards x-axis from Port 1 to Port 2 (state 

#1) or towards y-axis from Port 1 to Port 3 (state #2). From Figure 4.2(a) it can be noted that the 

overlap length (𝐿𝑜𝑣) at the vertical switching position is equal to the width of the 50 Ω microstrip 

line. This is done to provide design simplicity and to avoid extra coupling/mismatch effects at the 

T-junction. Moreover, it is important to note that a half-wavelength 𝜆𝑔/2 open circuited stub is 

utilized to generate an open-circuit condition at the vertical switch junction to maximize the RF 

power flow through the 90° bend. This 𝜆𝑔/2 stub is therefore the main limiting factor for the 

bandwidth of the feed network. Nevertheless, since any excited antenna within the array only 

utilizes one of these stubs (except the last element that does not need the stub), the bandwidth of 

the feed network is extremely wide as compared to the resonant feed networks of prior work that 

require multiple wavelength long stubs [78].    

The IL and bandwidth performance of the feed network can be conveniently analyzed for 

varying array sizes by making use of transmission line theory and the equivalent circuit model of 

the switch that was developed in Chapter 3 [as seen in Figure 4.2(b)]. The component values of 

the equivalent circuit model are updated and optimized to match the switch placed in the substrate 

stack-up of the MFPA. The antennas are replaced with ideal 50 Ω terminations to investigate the 

antenna-independent performance of the feed network. The length of the transmission line that 

corresponds to the half-wavelength stub (𝐿1) is modified from 𝐿1𝑂𝐹𝐹  to 𝐿1𝑂𝑁 depending on each 

state of the switch. Figure 4.2(c) presents the |𝑆𝐼𝑛 𝐼𝑛| performance of the 8-element array (𝑁 = 8) 
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as SMP is positioned to excite ports 𝑃1 to 𝑃8  It is seen that the bandwidths of the ports 𝑃1 − 𝑃7 

are almost identical. The bandwidths of these ports are limited by the 𝜆𝑔/2 stub. Since any excited 

port only utilizes one stub (except the last element that does not need the stub), the bandwidth of 

the feed network is still extremely wide (38%) as compared to the resonant feed networks that 

require multiple wavelength long stubs [78]. The bandwidth of the last element is determined by 

the switch performances. Figure 4.2(d) depicts the |𝑆𝑃𝑖 𝐼𝑛| performance of the 8-element array 

(𝑁 = 8) as SMP is positioned to excite ports 𝑃1 to 𝑃8. At the center frequency of 30 GHz, it is 

clearly observed that the IL increases from 𝑃1 to 𝑃8 and therefore IL can be attributed to the 

microstrip line losses. The worst-case IL (1.58 dB) is observed for the last port (i.e. 𝑃𝑁 = 𝑃8) since 

the last port is excited by the longest microstrip line. 

Since 𝑃𝑁 exhibits the largest IL, Figure 4.3(a) presents the |𝑆𝑃𝑁 𝐼𝑛 | performance for varying 

array sizes to investigate the worst-case feed network loss. Clearly a low loss performance is 

achieved as compared to conventional SP2T switch loaded feed network implementations. For 

example, a 16-element conventional beam-scanning FPA can be implemented with 15 SP2T 

switches. Each excited element within this array would require RF power to pass through 4 SP2T 

Figure 4.3. Insertion loss and bandwidth performance of the MFPA for different array sizes (i.e. 

N=4, 8, 16, 32 and 64).  (a) 𝑆21 performance of the feed network for different array sizes; (b) 

Bandwidth performance as a function of array size. 
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switches.  The IL is expected to be well above 4 dB (assuming 0.9 dB loss per switch [91]) due to 

the interconnect and transmission line losses. In addition, the DC bias and switch state control lines 

are expected to result in complex high-cost feed network assemblies. On the other hand, the 𝑁 = 

16 MFPA feed network exhibits a simplified design and about 4 dB loss based on the transmission 

line study discussed above. Figure 4.3(b) presents the |𝑆11| < -10 dB bandwidth performance of 

the feed network for varying array sizes. The (𝑁 − 1)𝑡ℎ element of the array and all the preceding 

elements utilize a single 𝜆𝑔/2 open circuited stub when the SMP is positioned to excite them. 

While for the last element (𝑁𝑡ℎ) of the array, the bandwidth is limited by the switches connected 

in series, since there are no resonant lines. This results in a worst case ~38% bandwidth (~12 GHz 

at 30 GHz) performance independent of the array size.  

It is important to mention that the spacing between the metallized traces (𝑆𝑚𝑡) of the SMP 

also plays a role in the feed network performance. 𝑆𝑚𝑡 design is carried out by considering 

reconfiguration speed and RF performance (i.e. isolation and IL). Larger 𝑆𝑚𝑡 values increase the 

reconfiguration time needed when switching the excited antenna element, whereas smaller 𝑆𝑚𝑡 

values negatively affect the RF performance due to coupling between adjacent metallized traces. 

Figure 4.4. Effect of metallized trace position and overlap length on insertion loss and isolation of 

the feed network of the MFPA.  𝑆21 (a) and 𝑆32 (b) performances as a function of 𝑆𝑚𝑡 in State #1 

and State #2 subnetworks shown in Figure 4.2(a), respectively.  
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The coupling effect is investigated by carrying out EM simulations of the state #1 subnetwork 

shown in Figure 4.2(a) by assuming horizontal metallized traces exist on both sides of the 

microstrip line. Figure 4.4(a) shows that the impact on 𝑆21 becomes negligible for 𝑆𝑚𝑡 > 0.2 mm. 

For state #2,  𝑆32 (i.e. isolation) gets worse by smaller values of 𝑆𝑚𝑡 as shown in Figure 4.4(b). In 

the presented 8-element MFPA layout, 𝑆𝑚𝑡 was selected to be 0.2 mm to ensure > 20dB isolation. 

4.3. Experimental Verification of MFPA Performance 

Two MFPA prototypes were characterized, one corresponding to the design layout 

described in Section 4.2 [see Figure 4.1(d)], and another one including additional features for 

position sensing and control that will be described in Section 4.4. Both prototypes exhibit similar 

performances. The MFPAs were fabricated by utilizing micro-molding, photolithography and 

multilayered printed circuit board assembly techniques. The feed network is first fabricated by 

standard photolithography and then the antenna coupling apertures are patterned onto the ground 

plane by employing an optical mask aligner (EVG 620) for back-side alignment. This feed network 

substrate is then bonded to the antenna substrate (with one side of its copper cladding removed) 

by using a 100 µm thick Rogers RO4450F™ prepreg layer. The bonding is performed with a press 

that keeps the substrates under the pressure and temperature rise guidelines recommended by 

Rogers Corp. Following the bonding process, the patch antennas are patterned by standard 

photolithography and feature alignment. The SMP shape is realized with a milling machine (LPKF 

S63) and metallized traces are patterned via standard photolithography. The BCB deposition, 

preparation of the microfluidic PDMS chip, and bonding the PDMS chip with the feed network 

substrate is identical with the procedures discussed previously for the microfluidic switch. The 

glass and the PDMS are bonded together through plasma activation with similar parameters used 

in PDMS to BCB bonding.  
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The fabricated prototype is presented in Figure 4.5(a) and the measured 𝑆11 and 30 GHz x-

z plane normalized gain patterns of the array are shown in Figures 4.5(b) and 4.5(c), respectively, 

for SMP positions corresponding to different antenna excitations. The measured 𝑆11 performances 

demonstrate that the MFPA bandwidth (i.e. 8% |𝑆11| < -10 dB) is established solely by the antenna 

element in contrast to prior work that was limited by the resonant feed network itself (i.e. 3%). EM 

simulations carried out by Keysight ADS Momentum predict similar 𝑆11 performances when all 

substrate discontinuities exhibited in the prototype are accounted for (i.e. the extension line needed   

to accommodate the edge connector for experimental purposes does not completely lie under the 

PDMS chip and crosses over different substrate stack-up regions). The measured gain values are 

observed to remain almost constant across the bandwidth. The beam-steering capability is 

                          

               

   

   

   

   

   

 

  
 

 
  

  
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 4.5. Fabricated MFPA and its measured performance. Isometric, top and bottom views of 

the prototype (a). Measured  𝑆11 performance as the SMP is positioned to excite the antennas at 

locations 𝑃1 to 𝑃8 (b) and x-z plane normalized gain at 30 GHz (c).   
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demonstrated in Figure 4.5(c). The patterns exhibit 7° half-power beamwidth with > 20 dB realized 

gain at 30 GHz. The simulated and measured gain values agree within 1dB. These differences may 

be due to the minor misalignments in microfluidic channel bonding, FC-40 presence below the 

SMP, and minor uncertainties/errors in anechoic chamber measurements. Nevertheless, even when 

the losses introduced by the edge connector, lens, extension line, antenna efficiency are considered, 

and the 1 dB gain disagreement is assigned to feed network loss (i.e. the worst-case scenario), the 

measured feed network loss remains equal or less than 3 dB. A summary of the measured data 

compared to the expected theoretical results is presented in Table 4.1.  

4.4. Closed-Loop-Control Considerations for SMP Positioning 

The small motion range (4.2 mm total) and positioning accuracy needed for the RF 

switching functionality (0.6 mm increments) is expected to necessitate a reliable technique for 

sensing/controlling the SMP position. The SMP technique provides a convenient way to 

implement non-destructive sensing schemes since the plate size/shape can be adjusted to include 

metallization traces for sensing purposes. To demonstrate this possibility, the SMP shape was 

modified to include a trapezoidal metallization area as shown in Figure 4.6(a).  This metallization 

area interacts with an inductive spiral coil (13.9 mm diameter, double layer, 19 turns/layer, 0.15 

mm trace width and spacing) that is interfaced with the Texas Instruments (TI) LDC1614 

inductance to digital converter chip (LDC) as shown in Figure 4.6(b) [92]. The inductance of the 

coil is modified as the position of the trapezoidal metallization within the microfluidic channel is 

varied. The trapezoidal shape of the metallized pattern allows for a smooth change in the 

inductance as the SMP is repositioned. The LDC1614 features 28 bits of resolution and potentially 

provides sub-micron position sensing accuracy [92]. The sensing coil and inductance-to-digital 

converter used in Figure 4.6 are from the TI evaluation module (TI-EVM) which provides the  
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Table 4.1. Measured gain performance of the MFPA. 

Excited Antenna # 1 2 3 4 5 6 7 8 

Steering Angle 

(Measured / Calculated) 
24.5⁰ / 25⁰ 18° / 18° 11.5⁰ / 11⁰ 3.5⁰ / 4⁰ -4⁰ / -4⁰ -10.5⁰ / -11⁰ -17.5⁰ / -18⁰ -25.5⁰ / -25⁰ 

Theoretical Gain (dB) 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 

Connector Loss (dB) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ext. Line Loss (dB) 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 

Lens Loss (dB) 2.2 1 0.4 0.7 0.7 0.4 1 2.2 

Feed Network Loss (dB) 0.16 0.37 0.58 0.8 1.05 1.23 1.45 1.58 

Antenna Efficiency (dB) 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

Expected Gain (dB) 22.47 23.46 23.85 23.33 23.08 23.20 22.38 21.05 

Measured Gain (dB) 21.9 22.2 22.4 22.6 22.5 22.2 21.0 20.2 
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LDC1614 along with a micro processing unit. In addition, the measured inductance values can be 

easily accessed via the vendor-provided software through USB interface. 

Figure 4.6(c) presents the measured inductance by the TI-EVM as the SMP is moved across 

all switching positions (i.e. from 𝑃1 to 𝑃8). Specifically, the coil inductance varies by ~0.6 nH as 

the switching position is changed. The position-based variation observed in inductance values 

clearly demonstrates that the SMP position can be accurately controlled in a closed-loop control 

system. Further improvements in inductance variation range and shape could be potentially 

achieved by redesigning the metallized trace, sensor coil and substrate thicknesses. With the shown 

SMP configuration and micropumps, the reconfiguration time between two switched beams is 

tested to be about ~39 ms. The travel time from the first position (𝑃1) to the last (𝑃8) is measured 

to be ~270 ms. This speed is significantly improved as compared to prior work that needed a large 

motion range (270 ms vs. 5.25 s [78]). This application demonstrates the flexibility of the SMP 

approach to integrate sensing schemes that can provide closed-loop control of the SMP position. 

Additionally, with the achievements on improved bandwidth and much shorter reconfiguration 
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Figure 4.6. Position sensing implementation within the SMP of the MFPA. (a) Modified SMP and 

microfluidic channel shape to achieve position sensing by using TI inductor to digital converter 

chip; (b) Experimental setup for position sensing; (c) Detected inductance values as the SMP is 

re-positioned from 𝑃1 to 𝑃8. 
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speed performances, it is now possible to expand the MFPA concept into high-gain two-

dimensional beam-steering arrays at mm-wave frequencies.  

4.5.  Millimeter-Wave 2D Beam-Steering Focal Plane Array with Microfluidically 

Switched Feed Networks 

The need for high-gain beam-steering arrays at mm-wave frequencies, makes it necessary 

to integrate a high number of antenna elements which can be reconfigured on-demand to provide 

control over the antenna beam direction. Having demonstrated a compact application for 1D beam-

steering MFPAs in the previous section, it is now possible to extend the microfluidically switched 

feed network concept to 2D beam-steering. This application will be discussed through an 8×8 array 

design.  

4.5.1. 2D Beam-Steering MFPA Design 

The 1D beam-steering MFPA concept presented in the previous section can be extended 

into 2D beam-steering by employing an array of the feed network of Figure 4.2(a). As seen in 

Figure 4.7(a), independent beam-steering in two orthogonal planes can also be achieved by 

utilizing two distinct microfluidic channels each connected to their own bi-directional micropump 

unit. In the layout shown in Figure 4.7(a), the micropumps of the microfluidic channel on the left 

allows for row selection. On the other hand, the micropumps of the microfluidic channel on the 

right is utilized to excite antenna elements within a desired column. The larger size of the 

selectively metallized plate within this microfluidic channel allows such operation. The total 

movement needed by the plates is equal to 4.2 mm. Based on the capabilities of the piezoelectric 

micropumps utilized in our experiments, it is expected that the worst-case beam-steering scenario 

(i.e. sequential excitation of elements in ends of a diagonal) will be completed in ~140 ms. 

Switching among adjacent elements (i.e. beams) is expected to take about ~20 ms. Figure 4.7(b) 
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presents the simulated |𝑆21| performance for the worst-case scenarios (i.e. last antenna location 

within each row of the array). Specifically, the loss is < 5.2 dB and promising for impelemntation 

of low-cost efficient large format high gain beam-steering mm-wave antenna arrays.  

4.6. Chapter Summary 

A low-loss and wideband microfluidically switched feed network is presented for mm-

wave beam-steering applications. For this purpose, the microfluidically switched microstrip line 

Figure 4.7. Design layout and simulated S-Parameter performance of the 8×8 1-D beam-steering 

MFPA. Layout of the 8×8 MFPA (a). The selectively metallized plate states are shown for the case 

when the aperture coupled patch antenna in row 4-column 8 is excited. Simulated worst case |𝑆21| 
for the 8×8 MFPA feed network (b). 
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design introduced in Chapter 3 is implemented in a cascaded SP2T configuration. As compared to 

previous microfluidic beam-steering focal plane arrays designs, the switching time, bandwidth, 

and loss performances are significantly improved by replacing the need for resonant microstrip 

lines with microfluidic switches. With this compact microfluidically switched feed network 

design, a microfluidically switched beam-steering focal plane array concept has been extended for 

2D beam-steering. Specifically, a simulated feed network loss < 5.2 dB is demonstrated for a 64 

element (8×8) MFPA configuration. 

Thanks to these advances, microfluidic reconfiguration technology demonstrated 

promising advantages as compared to current existing technologies (i.e. MEMS and RFICs) at 

mm-wave frequencies. It is possible now to reconfigure the MFPA in about 40 ms, as compared 

to over 5 s in previous designs. This compact ranges allow for integrated actuation mechanisms 

that will help solve the integration and reliability test challenges of microfluidic technology, as it 

will be demonstrated in the following chapters. 
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Chapter 5: Integrated Piezoelectric Actuation and Miniaturization 

of Millimeter-Wave Microfluidically Switched Microstrip Lines4 

 

Although microfluidic technology has been shown to be promising for mm-wave 

applications in previous chapters, the lack of an integrated actuation mechanism with fast 

reconfiguration time continues to limit its practical use. Development of integrated actuation 

mechanism can also allow for long-term testing of the microfluidically reconfigurable microwave 

devices in order to fully assess their applicability. To address this need, a piezoelectric actuation 

concept is introduced to operate a miniaturized version of the microfluidically switched microstrip 

line from Chapter 3. The switch in Chapter 3 operated in mm-wave band width a microfluidically 

reconfigurable Selectively Metallized Plate (SMP) actuated within (~10 µm) microfluidic channel 

walls using bulky external piezoelectric pumps. However, the switch needs only an SMP 

displacement of 0.6 mm to provide the ON and OFF capabilities with <0.3 dB insertion loss (IL) 

and 20 dB isolation. These micro-scale actuation ranges needed for mm-wave device operation 

also motivates to pursue an integrated compact actuation mechanism that is expected to provide 

much smaller motion range as compared to the external pumps, but yet offer a satisfactory range 

for operation in mm-wave band. 

Actuation of microfluidically reconfigurable RF devices has so far been performed with 

electrowetting [95], external micropumps [17] or syringes [81]. Among these, electrowetting has 

been the only technique available for integration. However, electrowetting has been applied for 

 
4 Portions of this chapter have been published in [93, 94]. Copyright permissions can be found in Appendix B. 
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liquid metals and resulted in low device efficiencies  (due to inclusion of electrolytes) and slow  

actuation speeds (2.25 s due to long actuation distance needs [95]). Motivated from these aspects, 

an SMP-based mm-wave single-pole single-throw (SPST) switch is integrated with a piezoelectric 

actuator. Specifically, the switch layout of Chapter 3 is first redesigned to exhibit a smaller 

footprint to reduce the actuation distance between the ON and OFF states. The new design 

maintains wideband and low-loss performance at mm-wave band. A switch prototype confirms the 

wide-band (18 GHz) and low-loss (<0.42 dB) performance while operating with rise/fall times 

down to 1.12 ms. The prototype has also been actuated up to 3 million cycles with no performance 

degradation before the test is terminated. 

5.1. Microfluidic Switch Miniaturization 

The substrate stack-up and layouts of the SPST switch in its ON/OFF states are presented 

in Figure 4.1. The stack-up consists of a single layer of printed circuit board (PCB) and material 

layers used to form microfluidic channels at the top and bottom surfaces of the PCB. Microstrip 

line exhibiting a gap discontinuity is patterned on the top surface of the PCB. Sidewalls of a 

microfluidic channel are fabricated around this discontinuity and closed from the top with a solid 

fused silica slide after the SMP placement. The SMP metallization faces towards the microstrip 

line discontinuity. The SMP is covered with a 2 µm thin dielectric layer and capacitively loads the 

microstrip line discontinuity to approximate an RF short-circuit condition. The microfluidic 

channel is filled with low loss dielectric liquid Sigma-Aldrich Fluorinert FC-40 (𝜀𝑟 = 1.9, tan 𝛿 = 

2×10-4). Current fabrication approach within our group results in ~8 µm surface roughness on 

microfluidic channel sidewall height. This brings the separation between the SMP metallization 

and microstrip line into the ~10 µm range where majority of the volume being filled by the liquid 

FC-40. Switching occurs as the SMP is positioned on top of the gap (ON) or moved away from 
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the gap (OFF) actuated by the fluid motion [see Figure 5.1(b-c)]. A secondary microfluidic channel 

is placed below the ground plane of the PCB to realize the integrated actuation mechanism. This  

channel is formed from a layer of Polydimethylsiloxane (PDMS, 𝜀𝑟 = 2.7, tan 𝛿 = 0.045) and 

bonded to the PCB using the treatment reported in [26]. It contains two fluidic reservoirs with one 

of them being loaded by a piezoelectric actuator. This construction allows for a compact device 

since the area on the top surface of the PCB remains available for other RF functionalities. The 

Figure 5.1. Substrate stack-up detail and design layout of the miniaturized SPST  microfluidic 

switch.  Substrate stack-up (a) and design layouts in ON (b) and OFF states (c). 
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microstrip lines are designed to exhibit 50 Ω characteristic impedance at 30 GHz [78] and 

fabricated by standard photolithography on a 0.4 mm thick Rogers RO4003C substrate (𝜀𝑟 = 3.55, 

tan 𝛿 = 2.2×10-3) with 17.5 µm copper cladding. The microfluidic channel sidewalls are fabricated 

from a 250 µm thick SU-8 2075 (MicroChem) layer (𝜀𝑟 = 3.25, tan 𝛿 = 0.017) through standard 

photolithography and mask alignment features. The SMP is processed on a 0.2 mm thick Rogers 

RO4003C via photolithography. After etching the metallized traces, a 2 µm thin-film of Parylene 

N (𝜀𝑟 = 2.4, tan 𝛿 = 2×10-4) is deposited on the SMP substrate and then cut with a dicing saw. 

The microfluidic channel is sealed using a 1 mm thick fused silica slide (𝜀𝑟 = 3.81, tan 𝛿 =

4 × 10 4) by SU8 adhesion bonding process after the SMP placement.  

An important design goal is to minimize the SMP and microstrip overlap areas. A small 

SMP size reduces the reconfiguration time when switching between the ON and OFF states. 

However, overlap areas must also be large enough to meet desired IL and impedance matching 

performance (|𝑆11| < -10 dB). The design starts with selecting the width of the overlap areas 

(𝑤𝑜𝑣). Based on the smallest feature size that can be fabricated very reliably in available facilities, 

𝑤𝑜𝑣 = 0.15 mm is selected. The initial estimation for the overlap length (𝐿𝑜𝑣) is based on the 

parallel plate capacitance of the overlap area (𝐶𝑜𝑣) neglecting fringe fields. To ensure |𝑆11| < -10 

dB above 25 GHz, a series 0.18 pF capacitor is required. This implies a 𝐶𝑜𝑣 = 0.36 pF by 

approximately representing the two overlap areas as two capacitors connected in series. From the 

𝐶𝑜𝑣 value, overlap length is calculated as 𝐿𝑜𝑣 = 1.4 mm by considering a 10 µm thin dielectric 

layer (i.e., Parylene + FC-40) between the overlap areas and employing the parallel plate capacitor 

equation. Spacing between the microstrip lines (𝐿𝑔) is selected as 0.8 mm to ensure >20 dB 

isolation at 30 GHz. The transition from 50 Ω lines to the thin overlap trace can be achieved 

gradually with a tapered line as seen in Figures 5.1(b) and 5.1(c). From these initial considerations, 
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parameterized full wave simulations are carried with Keysight ADS Momentum to identify the 

best overall performance of the switch under different overlap and taper lengths. The dimensions 

obtained from these simulations are 1.25 mm for taper length and 0.25 mm for the overlap length. 

This implies that the metallization area of the SMP in the switch is being miniaturized from 

0.49×1.8 mm2 to 0.15×1.3 mm2 (i.e., ~73% area reduction) as compared to the prior design 

demonstrated in Chapter 3.  

Although 𝐿𝑔 = 0.8 mm provides >20 dB isolation, the vicinity of SMP to the microstrip 

line gap reduces the isolation. From simulations, it is determined that SMP needs to be displaced 

by 0.3 mm away from the gap to achieve 20 dB isolation. Hence, SMP actuation range is 0.3 mm 

Figure 5.2. Simulated performance of the SPST microfluidic switch, and detail of the integrated 

actuation concept. (a) Simulated performance of the switch and comparison to a continuous 50 Ω 

microstrip line under the same substrate stack-up. (b) Layout of the proposed actuation mechanism 

with no voltage and (c) with voltage applied. 
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and implies a 50% reduction as compared to the switch of Chapter 3. The simulated performance 

of the switch at the reference planes is presented in Figure 5.2(a) while being compared to a 

continuous 50 Ω microstrip line constructed under the same substrate stack-up. The IL 

performance of the switch is confirmed as 0.25 dB at 30 GHz and exhibits |𝑆11| < −10 dB 

bandwidth from 22 GHz up to 40 GHz, along with 20 dB isolation. 

5.2. Integrated Piezoelectric Actuation for Microfluidic Reconfiguration 

Figures 5.2(b) and 5.2(c) depict the operation principle of the piezoelectric actuation. To 

place the  piezoelectric disk over the reservoir, a 25 µm thick copper cladded flexible liquid-crystal 

polymer (LCP)  (Rogers ULTRALAM 3850)  was patterned and bonded on top of the PDMS 

reservoir using the procedures reported in [26]. The copper cladding on the LCP provides a 

convenient technique for applying the driving voltage to the actuator. The piezoelectric actuator is 

bonded to the copper side of the LCP using silver epoxy (Epotek H20E). For this SPST prototype, 

an actuator with diameter of 12.7 mm was used. The aspect ratio variation from reservoir to the 

channel amplifies the out-of-plane displacement of the actuator (max 19 µm) into an in-plane SMP 

displacement of 0.3 mm. The liquid reservoirs are 12.5 mm in diameter, and they are connected to 

the top microfluidic channel by holes drilled through the microstrip substrate. Applying an 

actuation voltage bends the actuator and causes the fluid to push the SMP along the channel. The 

secondary PDMS membrane flexes to allow volume displacement. The use of hard materials in 

the construction of the microfluidic channel hosting the SMP avoids losses in pressure and 

potentially maximizes the SMP motion. 

5.3. SPST Switch Protype Performance 

Figure 5.3(a) shows the SPST switch prototype from the top and bottom. The S-Parameter 

performance of the switch is verified at the reference planes where RF edge connectors are placed. 
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The IL performance is measured after applying voltage to the piezoelectric actuator and placing 

the SMP to its ON position. From simulations, the total IL of the microstrip extension lines are 

expected to be 1.25 dB at 30 GHz. Each connector introduces 0.47 dB IL based on experimental 

   1.12 ms

   

   

Figure 5.3. SPST switch prototype and its measured performance. Prototype (a); S-Parameter 

response of the test set-up (b); Measured rise time (c); Measured and simulated steady state 

maximum temperature on device for changing RF power (d); IR image under 20 minutes of 

continuous 2 W 32 GHz RF input power (e). 
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characterization. The measured IL of the SPST switch prototype is 2.61 dB as shown in Fig 5.3(b). 

This implies 0.42 dB IL from the switch and agrees well with simulation-based expectation (0.25 

dB). The 0.17 dB difference can be attributed to inaccuracy in material properties and errors in 

measurements. To test reconfiguration speed, repeatability and reliability; a measurement setup 

like the one reported in [96] was used. A 25 Hz square-wave signal is used to actuate the 

piezoelectric actuator. The lowest peak voltage (𝑉𝑝𝑘) that can reliably actuate the SPST switch is 

observed to be ±27 𝑉𝑝𝑘 . Under this actuation voltage, switch reconfiguration time is 3.65 ms. 

Increasing the actuation voltage is observed to lower this reconfiguration time. However, 

exceeding ±52 𝑉𝑝𝑘  actuation voltage yields practically no other improvement for the 

reconfiguration time. Specifically, with ±52 𝑉𝑝𝑘  actuation voltage, the reconfiguration time is 1.12 

ms as shown in Figure 5.3(c). This indicates a 36× faster switching speed with respect to pump-

based actuation in Chapter 3. Fast reconfiguration speed also allows investigating the lifetime of 

the switch. The switch is actuated up to 3 million cycles under RF excitation before terminating 

the experiments. As shown in Figure 5.3(b), the switch operates with no considerable degradation 

in performance. Future work will consider acquiring dedicated RF sources to investigate switch 

lifetime for considerably larger number of actuation cycles.  

Power handling capability of the switch is evaluated with multiphysics simulations by 

employing ANSYS Workbench 19.1 and Electronics Desktop (HFSS). Based on steady-state 

thermal simulations, the switch can withstand up to 30 W of continuous RF power without 

requiring cooling, heat-sink attachment, or a thicker ground plane. The simulations predict a 

maximum temperature of 163°C under this power excitation, which is slightly below the boiling 

temperature (165°C) of the FC-40 liquid used inside the microfluidic channel. Other materials used 

within the switch construction can withstand higher temperatures. However, thermal expansion of  
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Reference Switch Type 
Freq. 

(GHz) 

IL max. 

(dB) 

Isolation 

(dB) 

DC Power 

(mW) 

Pout 

(dBm) 

Reconfiguration 

Time 

[97] 0.13µm CMOS 30-40 1.5 24 - 12 - 

[98] PCM (GeTe) 0-20 0.6 20 92 20 0.6 ms 

[17] Microfluidic CPW 10-40 1.3 27.5 100 - ~10 ms* 

[95] Microfluidic CPW 0-11 2 10 16 - 2.25 s 

This Work Microfluidic Microstrip 22-40 0.42 20 12 43* 1.12 ms 

*Simulated / Estimated 

 

 

 

 

Table 5.1. Performance comparison of different SPST switch technologies. 
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materials must also be considered, and this may be a limiting factor when operating with such 

higher temperatures. Figure 5.3(d) shows the simulated and measured maximum temperature 

observed inside the device as a function of input RF power. In experiments, the switch is kept in 

its ON state with 27 V actuation voltage and excited by a 2 W mm-wave power amplifier (Quinstar 

QPW-31403330-A0). Its thermal profile [see Figure 5.3(e)] was captured with a Keysight U5850 

TrueIR. For each excitation power level, the thermal profile was taken after 20 min. of operation 

when a steady-state temperature distribution was reached. The measured and expected 

temperatures are in good agreement. Table 5.1 presents a performance comparison between the 

presented SPST switch and other technologies. It demonstrates superior power handling capability 

when compared to semi-conductors and considerably fast reconfiguration speeds as compared to 

other microfluidic switches. 

5.4. Single-Pole Multiple-Throw Microfluidic Switches 

The SPST from the previous section can be extended to a single-pole four-throw (SP4T) 

design as shown in Figure 5.4(a). Its simulated performance is presented in Figure 5.4(b) for the 

position where Port 2 is activated. The wide-band and low-loss characteristics of this switch can 

Figure 5.4. Proposed SP4T design and its simulated performance. Design layout (a) and simulated 

performance when port 2 of the switch is connected (b). 
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be maintained in a SP4T configuration. Less than 0.7 IL at 30 GHz and over 18 dB isolation. 

Furthermore, such compact design will also allow for fast switching times when actuated by a 

piezoelectric bending disk. Additionally, these microfluidically actuated mm-wave switches can 

be implemented within applications towards mm-wave beam-steering. Packaging the actuator 

under the ground plane enables a compact footprint and allows to utilize available PCB area for 

other RF functionalities.  
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Figure 5.5. SP4T prototype and its measured S-Parameter performance. (a) SP4T prototype; (b) 

measured performance of the SP4T switch for its varying switch states. 
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5.4.1. Experimental Verification of the Single-Pole Four-Throw Microfluidic Switch  

The SP4T prototype is fabricated within a similar substrate stack-up as the SPST from 

previous section. The fabrication process is similar as explained above. The main difference is 

within the microfluidic channel. The channel for the SP4T is realized in a PDMS chip by soft-

photolithography for rapid-prototyping purposes. Below the switch PCB, a microfluidic channel 

with an integrated piezoelectric actuator, similar as with the SPST, enables the motion of the SMP. 

Figures 5.5(a) and 5.5(b) show a close-up view of the prototype and its measured performance 

respectively. The meandered lines observed for the SMP in Figure 5.5(a) improve isolation 

performance of the switch.  The SP4T switch exhibits <0.9 dB IL at each ON position and >18 dB 

isolation at 30 GHz. Additionally, it exhibits >18 GHz operational bandwidth (BW) with |𝑆11| <

−10 dB. 

5.4.2. Microfluidically Switched Beam-Forming Network with Integrated Actuation 

Having a compact microfluidic switching design allows for the integration of the switching 

mechanism into a beam-forming network at mm-wave frequencies. One such network can be 

Figure 5.6. Proposed SP4T design integrated within a 4×4 Butler matrix beam-forming network. 
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realized with 4×4 Butler matrix configuration such as the one presented in Figure 5.6. This design 

allows for 1D beam steering with a ±45° field-of-view within four beam positions as the switch is 

operated. Furthermore, the SP4T and actuation mechanism can be integrated to form a compact 

beam-steering antenna array as shown in Figure 5.7(a) and 5.7(b). This integration makes use of a 

4×4 Butler matrix similarly as shown in Figure 5.6. The design of the array is based on stacking 

two PCB substrates with a common ground plane. The bottom and top metallization surfaces of 

the PCB carry the two halves of the Butler matrix. These halves are connected to each other with 

metallized vias. The SP4T switch is placed on the opposite side of the antenna elements while 

piezoelectric disk is on the same surface with the elements [a detailed view of the PCB layers and 

actuation mechanism is offered in Figure 5.7(c)]. However, it is important to note that different 
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arrangements are also possible with the proposed switches. Beam-steering performance is shown 

in Figure 5.7(d). Based on full wave simulations, the array is expected to perform with 10.2 dBi 

realized gain and 13% |𝑆11| < −10dB BW. 

5.5. Chapter Summary 

 A low-loss and wideband microfluidic switch actuated with an integrated and compact 

piezoelectric mechanism is presented. The SPST switch prototype demonstrates 0.42 dB IL with 

an operating bandwidth from 22 to 40 GHz. A piezoelectric actuation mechanism is successfully 

integrated for the first time in an SMP-based microfluidic device. The integrated piezoelectric 

actuation enables reliability and reconfiguration time characterization of the prototype. The SPST 

switch demonstrates 1.12 ms switching time, making it the fastest microfluidically-actuated switch 

reported to date. Furthermore, the prototype is operated up to ~3×106 switching cycles with no 

apparent performance degradation. Additionally, power handling measurements show the 

potential of microfluidic switches based on the SMP approach to provide >43 dBm at mm-wave 

frequencies. The SPST design is demonstrated to be scalable for multi-throw operations with an 

SP4T design that maintains similar IL and wideband performance as the SPST in a compact 

package. The SP4T switch is subsequently used to develop a 4-element mm-wave beam-steering 

antenna array demonstrating the advanced capabilities of integrating the microfluidic actuation 

mechanism in compact device. 
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Chapter 6: Microfluidically Reconfigurable Millimeter-Wave Hairpin Band-Pass 

Filters with Integrated Actuation for Continuous Bandwidth and Frequency Control5 

 

The realization of integrated actuation of microfluidic devices via piezoelectric bending 

actuators [93], as demonstrated in Chapter 5, has eliminated the need for bulky external 

micropumps and provided a path for compact designs of microfluidically reconfigurable RF 

devices. Additionally, the integrated actuation is made possible due to the advantage of reduced 

device size at mm-wave frequencies, where small deflections by the piezoelectric actuator (e.g. 

tenths to hundredths of 𝜇m) can be transformed into several millimeters of liquid motion. This has 

enabled microfluidic devices with reconfiguration times of about 1 ms [93]. The integrated 

actuation provides additional design flexibility by allowing the microfluidic device to be fully 

packaged in one compact structure using thin-film and multi-layered fabrication techniques. 

Simultaneously, by utilizing integrated piezoelectric actuators that enable device reconfiguration 

times in the millisecond range, it is now possible to realize reliability and repeatability tests in the 

order of millions of cycles [93]. All these advantages allow the opportunity to expand the concept 

of microfluidic reconfiguration via Selectively Metallized Plates (SMPs) with integrated actuation, 

presented in Chapter 5, into reconfigurable filters with frequency tuning and bandwidth control. 

Piezoelectric actuators can be used to drive two separate microfluidic channels as seen in Figure 

6.1(a), to provide independent control of frequency and bandwidth while maintaining a relatively 

small footprint for mm-wave applications. 

 
5 Portions of this chapter were submitted to IEEE Transactions on Microwave Theory and Techniques.  
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The major contributions of this chapter are (i) to demonstrate, for the first time, the 

capabilities of SMP-based microfluidic reconfiguration of filters at mm-wave frequencies; (ii) 

introduce a microfluidically reconfigurable filter design with independent and continuous control 

of frequency and bandwidth at mm-wave frequencies; and (iii) investigate reliability, 

reconfiguration speed, and power handling performance of the microfluidically reconfigurable. 

For these purposes, this chapter discusses three separate filter designs and prototypes. The first 

design is a frequency tunable band pass filter (FT-BPF). The second design is a bandwidth tunable 

band pass filter (BT-BPF). The third design can be considered as combination of the two filters 

providing bandwidth and frequency tuning capabilities simultaneously (FBT-BPF). The filter 

topology is based on a third order coupled resonator BPF where resonance frequencies and inter-

resonator couplings must be simultaneously tuned for the desired functionalities [see Figure 

6.1(b)]. The frequency tuning range is selected to be 28 GHz – 38 GHz band due to emerging 

interest in mm-wave communications. The FT-BPF is designed to maintain a constant 7% 

fractional bandwidth (FBW) within the band. This is motivated from the bandwidth of 28 GHz 

(e.g. 27 GHz – 29 GHz and 26.5 GHz – 29.5 GHz) and 38 GHz (e.g. 36.5 GHz – 39.5 GHz and 

 

 

(a) (b) 

Figure 6.1. Microfluidically tunable filter design concept with frequency and bandwidth 

reconfiguration. Substrate stack-up of the frequency and bandwidth tunable filter with integrated 

actuation (a); Coupling diagram (b). 
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37 GHz – 41 GHz) frequency bands [16, 17]; however, different design specifications can also be 

pursued. The BT-BPF design carried out at 38 GHz. The filter offers 7% to 16% FBW control. 

The FBT-BPF design operates with frequency tuning range from 28 GHz to 38 GHz while 

achieving bandwidth tunability from 7% to 12% at 28 GHz and 7% to 16% at 38 GHz. It is shown 

that the filter prototypes perform with worst-case insertion loss (IL) of 3.1 dB at 38 GHz. They 

offer 7.8%–16.7% 3 dB FBW tunability at 38 GHz and 7%–12% 3dB FBW tunability at 28 GHz. 

A reconfiguration speed of 285 MHz/ms is achieved and actuation cycles up to 12 million are 

demonstrated. The FBT-BPF is characterized to handle up to 5 W of continuous RF power without 

needing thick ground planes or heat sinks. 

6.1. Frequency and Bandwidth Tuning Principles 

The coupling diagram in Figure 6.1(b) demonstrates the concept of achieving frequency 

and bandwidth tunability from a third order BPF. Resonance frequencies of the resonators and 

their inter-resonator coupling coefficients must be controllable. For a symmetrical filter response, 

the coupling coefficients 𝑀12 and 𝑀23 need to be equal along with synchronized resonance 

frequencies. External quality factor (𝑄𝑒)  and coupling coefficients can be determined from the 

coupled resonator filter theory [99] to achieve the desired filter response and FBW. For well-

known filter types (such as Chebyshev and maximally flat), the link between low-pass filter 

prototype and coupling coefficients is already established [99].  

Frequency tunability of microwave filters is commonly achieved by capacitively loading 

the resonators or modifying the physical dimensions of the resonators. A well-known approach for 

capacitive loading based frequency tunability is microstrip combline topologies implemented with 

varactors [100]. A similar capacitive loading approach is demonstrated with microfluidics in [25] 

where the repositionable SMP metallizations act as the varactors loading the resonators. A well-
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known approach for physical dimension variation based frequency tunability is the semiconductor 

[101] or MEMS switch loaded resonators [102].  Physical variation based frequency is tuning is 

also shown to be possible with microfluidics in [27] where repositionable SMP acts as the 

resonator itself. Bandwidth tunability of microwave filters is also commonly achieved with 

capacitive loading to modify the inter-resonator couplings. Simultaneous frequency and bandwidth 

control increases the number of the control elements (i.e. varactors and/or switches) and penalizes 

the IL of the filter. This becomes high in mm-wave frequencies with IL values reaching up to 9 

dB at 20 GHz (see Table 6.1 in Section 6.7 for comparison of state of the art and presented filters). 

On the other hand, frequency and/or bandwidth tunable filters have never been implemented in 

mm-wave frequencies with microfluidics. As will be shown, these filters can offer significant 

advantages in IL and power handling capability from a compact footprint.  

Implementing independent control for frequency and bandwidth tunability with 

microfluidics necessitates to utilize two distinct SMPs within two separate microfluidic channels. 

Therefore, the coupled resonator filter topology consisting of hairpin resonators is proposed as 

shown in Figure 6.1 and Figure 6.2. The hairpin resonators allow to use an SMP to simultaneously 

load the open ends of the resonators for achieving frequency tunability [see Figure 6.2(a) SMP 

#1]. Another SMP can be used at the opposite sides of the hairpin resonators to control inter-

resonator couplings through capacitive loading [see Figure 6.2(b) SMP #2]. Having SMPs at 

opposite sides of the resonators allows to realize the filter by making use of meandered 

microfluidic channels. The channel layout demonstrating this operation is also highlighted with 

dashed lines in Figure 6.2. Each microfluidic channel can be interfaced with a piezoelectric 

actuator at the back of the ground plane to provide individual control of the SMP positions as 

shown in 3D perspective view of the filter in Figure 6.1.  
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Figure 6.3(a) shows the equivalent circuit of two adjacent resonators loaded with the SMPs. 

In this circuit model, each hairpin resonator is represented with a parallel 𝐿0𝐶0 network. These 

resonators in general exhibit mixed magnetic and electric couplings. However, for the selected 

geometry and orientation of adjacent resonators, the electrical coupling dominates for small 

resonator spacing [103] and the performance of the equivalent circuit gets dominated by the 

electrical coupling capacitance 𝐶𝑚. Within the circuit, coupling is represented with an admittance 

inverter network. The capacitive loading between the two resonators generated by the metal trace 

of the SMP #2 is represented with a variable capacitor 𝐶𝐶  placed in parallel with the admittance 

inverter network. The capacitive loading introduced by the SMP #1 metal trace across the open 

ends of the resonator is represented with the variable loading capacitor 𝐶𝐿. The resonance 

frequency of the resonator is given by: 

 
(a) 

 
(b) 

Figure 6.2. Filter layouts demonstrating frequency and bandwidth reconfiguration. (a) Frequency 

reconfiguration with SMP #1 (SMP #2 is taken to be not loading the filter); and (b) bandwidth 

reconfiguration with SMP #2 (SMP #1 is taken to be not loading the filter). 
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𝑓0 =
1

2𝜋√𝐿0(𝐶0 + 𝐶𝐿)
(6.1) 

 

Keysight ADS Momentum suite is used for electromagnetics (EM) simulations to design 

the unloaded resonator operate at 38 GHz. Co-simulation is performed and the 𝐶𝐿 value that 

reduces the resonance frequency down to 28 GHz is identified as 0.3 pF (i.e. 0.3 pF > 𝐶𝐿 > 0 for 

28 GHz > 𝑓0 > 38 GHz). Co-simulations and Equation 6.1 is utilized at different operation 

frequencies to extract 𝐿0 and 𝐶0 as 48.314 pH and 0.363 pF, respectively. Afterwards, 𝐶𝐿 must be 

related to the SMP metallizations to realize the filter. For design simplicity, in this work, the 𝐶𝐶  

 
(a) 

 

 
(b)  

 

Figure 6.3. Equivalent circuit model and layout detail of a resonator pair. (a) Equivalent circuit 

model of a coupled resonator pair and (b) layout detail of the resonator pair when loaded with SMP 

metallizations (𝐿𝑟 = 0.95, 𝑤𝑟𝑎 = 0.25, 𝑤𝑟𝑏 = 0.16, 𝑔𝑟 = 0.18, 𝑔𝑐 = 0.1, 𝑆𝑓𝑥 = 0.105, 𝑆𝑓𝑦 = 0.3, 

𝐿𝑓𝑥 = 0.055, 𝐿𝑓𝑦 = 0.15, 𝑆𝑐𝑥 = 0.25, 𝑆𝑐𝑦 = 0.175, 0 ≥ 𝑠1 ≥ 𝑆𝑓𝑦, 0 ≥ 𝑠2 ≥ 𝑆𝑐𝑦; all units are in 

mm). 
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and 𝐶𝐿 are related to SMP metallizations through the parallel plate capacitor equations. As shown 

in Figure 6.3(b), the metal trace of SMP #1 overlaps with the open ends of the hairpin resonator 

with an area proportional to 𝑆𝑓𝑥 × 𝑆𝑓𝑦 , where 𝑆𝑓𝑥  and 𝑆𝑓𝑦  denote the maximum horizontal and 

vertical overlap lengths of the SMP #1 metallization with respect to the resonator, respectively. 

Parameter 𝑠1 defines the position of SMP #1 relative to the resonator (e.g. 𝑠1 = 0 implies no overlap 

and 𝑠1 = 𝑆𝑓𝑦  implies maximum overlap). The shape of the metal traces of SMP #1 is partially 

trapezoidal to linearize the frequency tuning with respect to 𝑠1 as was similarly employed in [27]. 

The parameters 𝐿𝑓𝑥 and 𝐿𝑓𝑦 shown in Figure 6.3(b) describe the shape of the partial trapezoidal 

area. The relationship between the total overlap area (𝐴𝐶𝐿) and 𝐶𝐿 is: 

 

 𝐶𝐿 =
𝜀𝑟𝜀0𝐴𝐶𝐿  

4𝑑
(6.2) 

 

where 𝑑 is the vertical separation between the SMP metallizations and printed circuit board (PCB) 

traces forming the resonators (𝑑 = 10 µm); and 𝜀𝑟 is the relative dielectric constant of the material 

separating the SMP metallizations and PCB traces (𝜀𝑟 = 2.15). From the described geometry in 

Figure 6.3(b), 𝐴𝐶𝐿  is linked to the geometry as: 

𝐴𝐶𝐿 = {
2(𝑆𝑓𝑥 − 𝐿𝑓𝑥)𝑠1 + 

𝐿𝑓𝑥𝑠1
2

𝐿𝑓𝑦
   for  𝑠1 < 𝐿𝑓𝑦

2𝑆𝑓𝑥𝑠1 − 𝐿𝑓𝑥𝐿𝑓𝑦    for  𝑠1 ≥ 𝐿𝑓𝑦

 . (6.3) 

 

The factor of 4 in Equation 6.2 appears due to the 𝐶𝐿 being formed through the series 

connection of two capacitors defined by the half of the total overlap area.  Figure 6.4(a) presents 

the relationship between 𝑠1 and 𝑓0. This relationship is obtained from EM simulations. Frequency 
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variation with 𝑠1 can be linearized by utilizing the 𝐿𝑓𝑥 and 𝐿𝑓𝑦 parameters. In the design, 𝑆𝑓𝑥  is 

selected as 0.11 mm due to the need to include coupling compensation traces in SMP #1 (see 

Section 6.2 for coupling compensation discussion). With this value of 𝑆𝑓𝑥 ,  𝐿𝑓𝑥= 50 µm and 𝐿𝑓𝑦 = 

0.15 mm achieves an almost linear frequency variation behavior with respect to 𝑠1. Subsequently, 

𝑆𝑓𝑦  is determined as 0.3 mm from Equations 6.2 and 6.3 by making using of the maximum value 

of 𝐶𝐿 = 0.3 pF at 𝑠1 = 𝑆𝑓𝑦 . 

 
(a) 

 
(b)  

Figure 6.4. Frequency linearization of the hairpin resonator and coupling factor variation with 

respect to the coupling capacitances introduced in the design.  (a) Resonance frequency variation 

of the hairpin resonator as a function of SMP #1 position 𝑠1 with different 𝐿𝑓𝑥 and 𝐿𝑓𝑦 parameters 

used in defining the SMP #1 metallization;  (b) Coupling as a function of 𝐶𝐿 and 𝐶𝐶 . 
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To achieve the desired minimal FBW tunability of 9.5% ± 2.5%, the tunability range of 

𝐶𝐶  must be determined. 𝐶𝐶  is proportional to the area 𝑆𝑐𝑥 × 𝑆𝑐𝑦  formed by overlapping metal trace 

of SMP #2 with the hairpin resonator. Here, 𝑆𝑐𝑥 and 𝑆𝑐𝑦  denote the maximum horizontal and 

vertical overlap lengths of the SMP #2 metallization with respect to the resonator. Parameter 𝑠2 

defines the position of SMP #2 with respect to the resonator (e.g. 𝑠2 = 0 implies no overlap and 

𝑠2 = 𝑆𝑐𝑦 implies maximum overlap). The total overlap area 𝐴𝐶𝐶 for 𝐶𝐶  is rectangular since this 

shape is found to readily provide a linear coupling variation with 𝑠2. The relationship between 𝐴𝐶𝐶 

and 𝐶𝐿 is: 

𝐶𝐶 =
𝜀𝑟𝜀0𝐴𝐶𝐶  

4𝑑
 (6.4) 

From the described geometry in Figure 6.3(b), 𝐴𝐶𝐶 is linked to the geometry as: 

𝐴𝐶𝐶 = 2𝑆𝑐𝑥𝑠2 (6.5) 

From the equivalent circuit of Figure 6.3(a), with the approach described in [99], the 

electrical coupling factor 𝑘𝐸  is expressed as: 

𝑘𝐸 =
𝑓𝑚
2 − 𝑓𝑒

2

𝑓𝑚2 + 𝑓𝑒2
 (6.6) 

where: 

𝑓𝑒 =
1

2𝜋√𝐿0(𝐶0 + 𝐶𝑚 + 𝐶𝐿 + 2𝐶𝐶)
(6.7) 

𝑓𝑚 =
1

2𝜋√𝐿0(𝐶0 + 𝐶𝐿 − 𝐶𝑚)
(6.8) 

Equations 6.1 and 6.6 – 6.8 show that 𝐶𝐿  reduces 𝑘𝐸 while also reducing 𝑓0. Therefore, 

dependence of 𝑘𝐸 to 𝐶𝐶  must be extracted for different values of 𝐶𝐿 as shown in Figure 6.4(b). To 

determine required 𝑘𝐸, a filter topology must be selected. In this manuscript, we pursue a third-
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order 0.1 dB ripple Chebyshev filter with minimal FBW tunability from 7% to 12%. From  [84],  

low-pass prototype element values can be obtained as 𝑔0 = 𝑔4 = 1, 𝑔1 = 𝑔3 = 1.0316 and 𝑔2 =

1.1474. For FBW of 7%, 𝑄𝑒 = 14.74, 𝑀12 = 𝑀23 = 0.06434. For FBW of 12%, 𝑄𝑒 =

8.597 𝑀12 = 𝑀23 = 0.1103.  Therefore, 𝑘𝐸 needs to be tunable within the range of 0.064 – 0.11. 

Minimum FBW is achieved when 𝐶𝐶  = 0. As described in introduction, a design goal is to maintain 

minimum FBW as 7% at all possible center frequencies. To achieve this, 𝐶𝐿 = 0 and 𝐶𝐶  = 0 point 

in Figure 6.4(b) is adjusted with the choice of 𝐶𝑚 = 23.36 fF to provide the minimum required 𝑘𝐸 

of 0.064. As seen in Figure 6.4(b), for 𝐶𝐿 = 0, 𝐶𝐶  must be varying from 0 to 20 fF to increase the 

FBW from 7% to 12%. In the case of 𝐶𝐿 = 0.30 pF, 𝐶𝐶  needs to vary from 20 fF to 60 fF to tune 

FBW from 7% to 12%. In the following section, coupling capacitive loading ranging from 0 to 20 

fF will be provided with SMP #1 metallizations to ensure a constant FBW filter with minimum of 

7% FBW. SMP #2 metallizations will be designed to provide coupling capacitance tunability 

ranging from 0 fF to 40 fF. For realizing 𝐶𝐶 , 𝑆𝑐𝑥 is  chosen as the resonator arm width 𝑤𝑟𝑎 = 0.25 

mm. and 𝑆𝑐𝑦  is calculated from Equations 6.4 and 6.5 for 𝐶𝐶  = 40 fF at 𝑠2 = 𝑆𝑐𝑦  . Figure 6.4(b) 

also demonstrates that 𝑘𝐸 depends almost linearly to 𝐶𝐶 , thus, justifying the use of rectangular area 

for coupling capacitors.     

Figure 6.5 presents the substrate stack-up used to design the filter in Keysight ADS 

Momentum. A 203 µm Rogers RO4003C substrate (𝜀𝑟 = 3.55, tan 𝛿 = 2.7×10-3) with 17.5 µm 

copper-cladding is used for the PCB hosting the resonators. A 5 µm thick layer is used to represent 

the liquid between the PCB and SMP metallizations. The liquid is Sigma-Aldrich Fluorinert FC- 

40 (𝜀𝑟 = 1.9, tan 𝛿 = 2×10-4). The thickness of this liquid layer is due to the fabrication tolerances 

in realizing the height of the microfluidic channels. A 5 µm thick Parylene N (𝜀𝑟 = 2.4, tan 𝛿 =

 2×10-4) layer is deposited on the SMP metallizations to ensure a dielectric insulation between 
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SMP and the PCB metallizations.  A 0.305 mm thick Rogers RO4003C substrate is selected for 

the SMP. The channel is sealed with a 0.5 mm thick fused silica substrate (𝜀𝑟 = 3.81, tan 𝛿 = 

4×10-4). 

Figure 6.3(b) shows the physical dimensions of the resonator designed to operate at 38 

GHz in its unloaded state within the selected substrate stack-up. Through EM simulations, inter-

resonator spacing is determined to be 𝑔𝑐 = 0.1 mm to provide the desired 𝑘𝐸. The SMP 

metallization dimensions determined from the circuit analysis are slightly tuned in ADS 

simulations to provide the desired frequency and bandwidth tuning. The finalized dimensions of 

the SMP metallization areas are also provided in Figure 6.3(b). The resonator is expected to 

provide an unloaded quality factor of 𝑄𝑢   115.  

6.2. Frequency Tunable Constant FBW Filter Design 

The design of the resonator is already detailed in previous section. The constant 7% FBW 

frequency tunable filter layout is shown in Figure 6.6(a). As detailed before, SMP #1 metallization 

includes traces to compensate for the inter-resonator coupling coefficient as the frequency is 

lowered with 𝑠1 motion. The range of the compensation is 0 to 20 fF and should be varying linearly 

with 𝑠1. Therefore, the dimensions of these coupling compensation metallizations can be initially 

determined by making use of Equations 6.3 and 6.5 as 𝑆𝑓𝑥 = 0.1 mm and 𝑆𝑓𝑦 = 0.3 mm. The 

finalized dimensions obtained through simulations is given in Figure 6.6(a). 

Additionally, maintaining a constant 7% FBW across the entire frequency tuning range 

requires to stabilize the 𝑄𝑒. The filter is fed with a capacitively coupled microstrip line that is 

 

Figure 6.5. Substrate stack-up used for Keysight ADS Momentum EM simulations.  
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terminated in a shunt open-circuited stub.  The stub serves two purposes: (i) stabilize the 𝑄𝑒  for 

lower frequencies similarly as in [3]; and (ii) provide a point where additional capacitive coupling 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6.6. Layout of the FT-BPF and extracted external quality and coupling factors for filter 

design. (a) Layout for the FT-BPF filter with 7% constant FBW; (b) 𝑄𝑒 compensation scheme; (c) 

𝑄𝑒  and 𝑘𝐸 with and without SMP #1 coupling compensation metallizations. (𝐿1 = 0.6, 𝑤1 = 0.39, 

𝐿𝑟 = 0.95, 𝑤𝑟𝑎 = 0.25, 𝑤𝑟𝑏 = 0.16, 𝑔𝑟 = 0.18, 𝑔𝑐 = 0.1, 𝑆𝑓𝑥 = 0.105, 𝑆𝑓𝑦 = 0.3, 𝐿𝑓𝑥 = 0.055, 

𝐿𝑓𝑦 = 0.15,  𝐿𝑠 = 0.56, 𝑤𝑠𝑞 = 0.1, 𝑔𝑠𝑞 = 0.04, 𝑆𝑓𝑥𝑞 = 0.4,  𝑆𝑓𝑥2 = 0.08, 𝑆𝑓𝑥3 = 0.11, 0 ≤ 𝑠1 ≤

𝑆𝑓𝑦; dimensions are in mm). 
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can realized between the input/output line and the resonator through SMP #2 metallizations (see 

Section 6.3). The stub dimensions 𝐿𝑠 and 𝑤𝑠𝑞 are designed to provide a stable 𝑄𝑒  as 𝑠1 increases, 

following a similar approach as in [3]. Without any modifications, 𝑄𝑒  increases as resonance 

frequency of the filter is lowered. This is similar to the inter-resonator coupling and associated 

with the reduction in coupling capacitance. Therefore, additional metallization traces are added 

into the SMP #1 to gradually compensate for the reduced coupling ta the input ports of the filter. 

The detailed layout of the input side of the filter is provided in Figure 6.6(b). For stabilizing 𝑄𝑒 , 

𝑆𝑓𝑞𝑥  = 0.4 mm is selected to maximize the capacitance between SMP #1 trace and input feed line. 

This allows to use smallest possible overlap length 𝑆𝑓𝑥3. Through simulations this length is found 

as 0.11 mm. Figure 6.6(c) demonstrates that the effectives of coupling compensation traces 

included in the SMP #1. Specifically, the variation of the 𝑄𝑒  is stabilized to be around 16.6±2. 

Likewise, 𝑘𝐸 is maintained within the 0.058±0.006 range. The simulated S-Parameters of the filter 

are shown in Figure 6.7 for 𝑠1 varying from 0 to 0.3 mm in 0.05 mm steps. The filter operates as 

desired with 28 GHz to 38 GHz frequency tunability. It operates with almost constant FBW at 

7.68±0.39% due to the slight variations in 𝑘𝐸 and 𝑄𝑒 . The IL of the simulated filter is 1.37 dB at 

28 GHz and 1.83 dB at 38 GHz.  

  

    (a) (b) 

Figure 6.7. Simulated performance of the FT-BPF.  (a) |𝑆21| and |𝑆11|; (b) close-up view of |𝑆21| 
as a function of SMP #1 position 𝑠1. 
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6.3. Bandwidth Tunable Filter Design 

The design of the bandwidth tunable filter follows from the constant FBW frequency 

tunable filter presented in the previous section. The layout of the filter is shown in Figure 6.8(a). 

SMP #1 that is responsible for the frequency tuning functionality is removed. Hence, the center 

frequency of the filter is that of the unloaded filter and it is 38 GHz. SMP #2 is included in the 

 
(a) 

 
(b) 

 
(c) 

Figure 6.8. Layout of the BT-BPF and extracted external quality and coupling factors for filter 

design. (a) Layout of the BT-BPF; (b) 𝑄𝑒  compensation scheme; (c) 𝑄𝑒  and 𝑘𝐸 with and without 

SMP #2 coupling compansation metallizations. (𝐿1 = 0.6, 𝑤1 = 0.39, 𝐿𝑟 = 0.95, 𝑤𝑟𝑎 = 0.25, 

𝑤𝑟𝑏 = 0.16, 𝑔𝑟 = 0.18, 𝑔𝑐 = 0.1, 𝑆𝑐𝑥 = 0.25, 𝑆𝑐𝑦 = 0.175, 𝐿𝑠 = 0.56, 𝑤𝑠𝑞 = 0.1, 𝑔𝑠𝑞 = 

0.04, 𝑆𝑐𝑥𝑞 = 0.25, 0 ≤ 𝑠2 ≤ 𝑆𝑐𝑦; dimensions are in mm). 
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layout for bandwidth tunability. Two of the SMP #2 rectangular traces are responsible for tuning 

the inter-resonator couplings. The size of these traces (i.e. 𝑆𝑐𝑥 and 𝑆𝑐𝑦) are designed in Section 6.1 

to provide FBW tuning from 7% to 12% at 28 GHz. At 38 GHz, these traces increase 𝑘𝐸  from 

0.062 to 0.12 as SMP #2 is repositioned. Therefore, the FBW tunability extends from 7.6% to 

17.6% when 𝑄𝑒  of the input/output resonators are properly adjusted.  

Relative position of SMP #2 with respect to the resonators on the PCB is denoted with 𝑠2 

as explained in Section 6.1.  To maintain impedance matching across different values of 𝑠2 (i.e. 

different values of FBW), a 𝑄𝑒  reduction scheme is introduced similar to the approach followed in 

the design of the constant FBW frequency tunable filter. Specifically, SMP #2 hosts metallized 

traces that overlap with the input/output microstrip lines/stubs and resonators to provide increased 

capacitance as 𝑠2 is increased. The overlap area is defined with parameters 𝑤𝑠𝑞, 𝑆𝑐𝑥𝑞, and 𝑠2. 𝑤𝑠𝑞 

is set with the design of the coupling stub placed at the input/output microstrip lines. 𝑆𝑐𝑥𝑞 is 

designed through simulations to provide the required 𝑄𝑒  reduction from 14.74 to 8.6 as 𝑘𝐸 is 

increased. The layouts used for  𝑄𝑒  extraction and reduction are presented in Figure 6.8(b). 

Designed 𝑄𝑒  and 𝑘𝐸 variation with respect to SMP #2 position 𝑠2 is shown in Figure 6.8(c). 

Simulated S-parameters of the filter is presented in Figure 6.9. It is observed that filter bandwidth 

  

(a) (b) 

Figure 6.9. Simulated performance of the BT-BPF.  (a) |𝑆21| and |𝑆11|; (b) close-up view of |𝑆21| 
as a function of SMP #2 position 𝑠2. 
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can be tuned from 7.6% up to 17.6%.  The filter performs with mid-band 1.8 dB IL for the 7.6% 

FBW position and mid-band 0.95 dB IL for the 17.6% FBW position. 

6.4. Frequency and Bandwidth Tunable Filter 

The frequency and bandwidth tunable filter can be implemented as the combination of the 

frequency tunable constant FBW design presented in Section 6.2 and bandwidth tunable filter 

design presented in Section IV. Since the frequency and bandwidth tunable filter is loaded with 

both SMP #1 and SMP #2, two distinct microfluidic channels are needed. Consequently, the 

microfluidic channels need to be meandered as previously illustrated in Figure 6.2. The 

microfluidic channel dimensions used for prototype development are provided in the flowing 

section. The layout of the filter is presented in Figure 6.10(a) along with its dimensions. The 

 
(a) 

  

(b) (b) 

Figure 6.10. Simulated performance of the FBT-BPF and its simulated S-parameter performance.  

(a) Layout of the FBT-BPF; (b) Simulated |𝑆21|, |𝑆11|, and (c) close-up view of |𝑆21| as a function 

of SMP #2 position 𝑠2. (𝐿1 = 0.6, 𝑤1 = 0.39, 𝐿𝑟 = 0.95, 𝑤𝑟𝑎 = 0.25, 𝑤𝑟𝑏 = 0.16, 𝑔𝑟 = 0.18, 𝑔𝑐 = 

0.1, 𝑆𝑓𝑥 = 0.105, 𝑆𝑓𝑦 = 0.3, 𝐿𝑓𝑥 = 0.055, 𝐿𝑓𝑦 = 0.15, 𝑆𝑐𝑥 = 0.25, 𝑆𝑐𝑦 = 0.175, 𝐿𝑠 = 0.56, 𝑤𝑠𝑞 = 

0.1, 𝑔𝑠𝑞 = 0.04, 𝑆𝑓𝑥𝑞 = 0.4,  𝑆𝑓𝑥2 = 0.08, 𝑆𝑓𝑥3 = 0.11, 𝑆𝑐𝑥𝑞 = 0.25, 0 ≤ 𝑠1 ≤ 𝑆𝑓𝑦 , 0 ≤ 𝑠2 ≤ 𝑆𝑐𝑦; 

dimensions are in mm). 
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simulated S-parameter performance of the filter is shown in Figure 6.10(b) for sampled states The 

maximum bandwidth is 17.6% and 12.5% at the highest (i.e. 𝑠1 = 0 mm) and lowest resonance 

frequencies (i.e. 𝑠1 = 0.3 mm), respectively. The frequency of operation can be tuned from 38 

GHz down to 28 GHz with near constant FBW of 7.68 ± 0.39% for 𝑠2 = 0. The IL performance of 

the filter is presented in Figure 6.10(c). IL is less than 1.8 dB for all states. The worst-case IL is 

observed for the lowest FBW at highest operation frequency.  

6.5. Fabrication  

Filter prototypes are fabricated with the substrate stack-ups shown in Figure 6.1(a) and 

Figure 6.5. The resonators and SMPs are realized with standard photolithography. All dimensions 

of the resonators, microstrip lines, coupling stubs, and SMP metallizations are oversized by 10 µm 

in mask generation to account for wet etching related undercut. The substrate of the resonators is 

bonded with a double-side copper-cladded 0.762 mm thick FR4 substrate using silver epoxy and 

a bonding press in order to provide mechanical rigidity. This completes the PCB preparation for 

the resonators. The SMPs are cut with a dicing saw from their main substrate. The metallization 

surfaces of the SMPs are deposited with 5 µm thick Parylene N by using a PDS 2010 Parylene 

Deposition System. The microfluidic channel walls with 360±10 µm height are fabricated on top 

of the PCB. These walls are formed by spin-coating the PCB with SU8 photoresist (𝜀𝑟 = 3.25, 

tan 𝛿 = 0.017) and applying standard photolithography for patterning. The processing of the walls 

is done in two-steps of spin-coating by following the procedures described in [104, 105] for 

optimal exposure and baking times. The holes needed for channel inlets and outlets are drilled 

along with the holes needed for mounting the edge connectors. The SMPs are placed within the 

microfluidic channel walls. Sealing the microfluidic channel with fused silica layer is carried out 

with the tenting technique [25]. Specifically, a ~50 µm thick film of soft-baked SU8 resist is placed 
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on top of the channel walls to form the tented structure. Fused silica slide is coated with ~50 µm 

layer of SU8 photoresist for adhesive bonding. PCB and the dry film are heated to 48 °C and 

brought in contact with the coated fused silica slide to complete the sealing. 48 °C is below the 

glass transition of SU-8. It ensures that the dry film does not melt and flow inside the channel [26]. 

Following this process, the PCB is exposed and hard baked to complete the microfluidic channel 

sealing process. 

The microfluidic channel reservoirs that will be placed under the bottom side of the PCB 

are fabricated with PDMS using soft-photolithography processes [69].  The thickness of the PDMS 

used for the microfluidic reservoirs are 3 mm. A 1 mm diameter punch is used to realize the 

channel filling ports in the PDMS substrate that will enable fitting of flexible hoses for introducing 

the FC-40 liquid into the microfluidic channel. Bonding of the PDMS with the copper layer at the 

bottom surface of the PCB is carried out with O2 plasma (50 W, 30 s) treatment of the PDMS and 

APTES treatment of the copper layer. The copper layer is submerged in a 5% APTES solution for 

20 minutes at 70 °C and dried out with a nitrogen gun before brought in contact with the plasma 

treated PDMS to form the irreversible bond [106]. In order to place the piezoelectric actuators on 

top of the PDMS based microfluidic channel reservoirs, the reservoir areas are first bonded with 

25 µm thick LCP (Rogers ULTRALAM® 3850 with 9 µm copper cladding on both sides) 

following the APTES process described above. The piezoelectric actuators are bonded to the LCP 

layers using silver epoxy (EPO-TEK® H20E). This completes the fabrication process. As a final 

step, the microfluidic channels are filled with the FC-40 dielectric liquid. For this, flexible hoses 

are fit into the channel reservoirs, and the FC-40 liquid is introduced into the microfluidic channel 

with syringes connected to one-way stopcock valves with Luer connections (Cole-Parmer). After 

filling the channels, the valves are closed and Luer sealing plugs are connected to finalize closing 
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the fluidic system. Prototypes maintain the valves and the plugs in case emptying/refilling of the 

microfluidic channels are needed. These components could be removed for stand-alone operation. 

6.6. Experimental Verification  

The prototypes for the bandwidth reconfigurable and frequency reconfigurable filters are 

shown in Figure 6.11. Filters that exhibit only the frequency or bandwidth tuning capabilities are 

fabricated with single microfluidic channel that contain either the SMP #1 or SMP #2. Figure 

6.11(a) presents top and bottom views of the frequency tunable constant FBW filter. The SMP 

sizes and metallizations are shown in Figures 6.11 (d) and 6.11(e). The measured S-parameter 

 
(a) 

 
(b) (c) 

  
(d) (e) 

Figure 6.11. Detail of the FT-BPF and BT-BPF prototypes. (a) Top-side (left  and center) and 

bottom-side views (right) of the FT-BPF/BT-BPF prototypes; (b) Microfluidic channel details of 

the FT-BPF; (c) Microfluidic channel details of BT-FPF; (d) SMP #1 of FT-BPF; (e) SMP #2 of 

BT-BPF. 
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performance of the frequency tunable filter is shown in Figure 6.12(a). It is found that SMP #1 

completes its motion range with piezoelectric actuation voltage varying from 0 V to 129 V. The 

center frequency of the prototype is shifted to 41 GHz for the unloaded case (i.e. 𝑠1 = 0 mm). This 

~8% resonance frequency shift is due to the substrate stack-up used in Keysight ADS (see Figure 

 
(a) 

 
(b) 

 
(c) 

Figure 6.12. Measured performance of the FT-BPF prototype for actuation voltages 𝑉𝐹𝑁. (a) 26 

GHz – 44 GHz response; (b) 24 GHz – 64 GHz response; (c) Close-up 𝑆21 response (𝑉𝐹0 = 0, 𝑉𝐹1 

= 56, 𝑉𝐹2 = 66, 𝑉𝐹3 = 70, 𝑉𝐹4 = 77, 𝑉𝐹5 = 86, 𝑉𝐹6 = 95, 𝑉𝐹7 = 105, 𝑉𝐹8 = 114, 𝑉𝐹9 = 124, and 𝑉𝐹10 

= 129 V). 
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6.5). The substrate stack-up maintains a uniform RO4003C substrate inside the microfluidic 

channel. However, the channel is partially filled with this substrate due to the physical size of the 

SMP. In the unloaded case, the SMP is completely removed, leaving the channel filled with the 

FC-40 dielectric liquid over the resonators. In addition, the channel walls partially overlap with 

resonators and this contributes to frequency and IL variation with respect to the simulations. 

Modeling non-uniform 2D substrate-stack-up and substrate stack-up variation as a function of 

SMP position requires employment of full-wave 3D EM simulators. However, due to the 

significant simulation times needed by 3D EM simulators, the presented filter design has been 

carried out with Keysight ADS Momentum suite under a fixed substrate stack-up configuration. 

Simulating the unloaded filter layout in Keysight ADS with a 315 µm thick FC-40 liquid 

layer replacing the RO4003C layer shows a resonance frequency shift up to 42 GHz. Modeling the 

filter layout in 3D EM simulator Ansys HFSS shows the resonance frequency at 41 GHz. These 

simulations verify the reasoning behind the 8% resonance frequency shift observed in experiments. 

The filter is found to be tunable from 28 GHz to 41 GHz with SMP #1 position varied from 𝑠1 = 

0 mm to 𝑠1 = 0.3 mm. The lower end of the frequency band is unchanged because the substrate-

stack-up chosen in the Keysight ADS model is most accurate for the maximally loaded case of the 

resonators.  

The measured IL of the filter is 3 dB and 4 dB at 38 GHz and 28 GHz, respectively. IL is 

better than 3 dB in majority of the frequency tuning range (i.e. 31 GHz – 41 GHz). The data 

represents ~1.2 dB increase in IL with respect to the simulations. This is mostly related to the half 

of the resonators being covered with lossy SU8 side walls. 3D EM simulator Ansys HFSS 

determines IL as 2.1 dB for the unloaded case and fits with measurements. Figure 6.12(b) presents 

the measured performance within 24 – 64 GHz band. Out of band rejection of the filter is better 
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than 25 dB for majority of the states. Second harmonic of the resonators are contributing to the 

degradation in the out of band rejection. Improvement may be possible by carrying out the design 

on thinner substrates and considering alternative resonators arrangements/types.  Figure 6.12(c) 

presents the close up view of the IL performance when SMP #1 is actuated with voltages ranging 

 
(a) 

 
(b) 

 
(c) 

Figure 6.13. Measured performance of the BT-BPF prototype for actuation voltages 𝑉𝐵𝑁. (a) 28 

GHz – 44 GHz response; (b) 24 GHz – 64 GHz  response; (c) Close-up 𝑆21 response (𝑉0  = 0, 𝑉𝐵1  = 

54, 𝑉𝐵2  = 78, 𝑉𝐵3 = 88, 𝑉𝐵4 = 96 , 𝑉𝐵5 = 104, 𝑉𝐵6 = 115 V). 

 



80 

 

from 0 V to 129 V. The filter maintains an almost constant 7.8% ± 0.75% FBW. This is in very 

good agreement with the simulated performance. 

The measured S-parameter performance of the bandwidth tunable filter is shown in Figure 

6.13(a) and (b). It is found that SMP #2 completes its motion range with piezoelectric actuation 

voltage varying from 0 V to 115 V. Figure 6.13(c) presents the close-up view of the IL performance 

for different bandwidth tuning actuation voltages. The SMP #2 can tune the filter bandwidth from 

7.8% up to 16.7%. This is in good agreement with simulations. The filter performs with 2.6 dB IL 

at the lowest bandwidth and 1.9 dB IL at the highest bandwidth. The increase in IL and introduction 

 
(a) 

 
(b) 

Figure 6.14. Detail of the FBT-BPF prototype. (a) Prototype and (b) microfluidic channel details. 
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of 1 dB ripple within the passband is associated with the differences in simulation-based substrate 

stack-up vs. the actual fabricated devices. These differences have been already explained for the 

frequency tunable filter.  

The prototype of the frequency and bandwidth tunable filter is shown in Figure 6.14(a). A 

detailed view of the microfluidic channel dimensions is given in Figure 6.14(b). The measured S-

parameter performance is shown in Figures 6.15 (a)-(d). The bandwidth can be reconfigured from 

7.8% to 16.7% at 38 GHz. Worst-case IL is 3.1 dB at 38 GHz and 1.95 dB at 28 GHz. The measured 

IL performance matches much better with the Keysight ADS simulated IL performance due to the 

minimized SU8 channel walls on the filter resonators to host two distinct SMPs. SMP #1 and SMP 

  

(a) (b) 

  
(c) (d) 

  

Figure 6.15. Measured performance of the FBT-BPF prototype for different actuation voltages 

𝑉𝐹𝑁 and 𝑉𝐵𝑀 . (a) 24 GHz – 44 GHz 𝑆21 detailed response; (b) 24 GHz – 44 GHz  𝑆11 response; 

(c) 24 GHz – 44 GHz 𝑆21 response; (d) 24 GHz – 64 GHz 𝑆21 response (𝑉𝐹0 = 0 V, 𝑉𝐹1 = 64 

V, 𝑉𝐹2 = 87 V,   𝑉𝐹3 = 125 V, 𝑉𝐹4 = 142 V, 𝑉𝐵0 = 0 V, 𝑉𝐵1 = 127 V). 
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#2 complete their full motion ranges with piezoelectric actuation voltages varying within 0 V – 

142 V and 0 V – 127 V, respectively. It is noticed that the actuation voltages are slightly increased 

in this filter with respect to the stand-alone frequency and stand-alone bandwidth tunable filters. 

This can be attributed to the shape of the microfluidic channels used within this design. 

Meandering the microfluidic channels within the available circuit area has a consequence of 

employing narrower channel widths. This necessitates a larger fluidic pressure for mobilizing the 

SMPs [107], resulting in higher actuation voltages. 

6.7.  Reliability and Power Handling Characterization 

The prototypes are tested for their reconfiguration speed, reliability and power handling 

capability. In these tests, 1.85 mm end launch connectors were replaced with 2.92 mm end launch 

connectors. Therefore, this section shows the measured data up to 40 GHz. Reconfiguration speed 

is measured by using the set-up described in [93]. For this measurement, the frequency 

reconfigurable filter is used. The filter is excited with continuous single tone RF signal at 28 GHz. 

SMP is actuated with a 50% duty cycle rectangular waveform (0 V to 127 V) while tracking the 

output of a mm-wave power detector diode (Krytar 203AK) connected to the output of the filter. 

Figure 6.16 presents the detected voltage from the power detector. With the given setup, the signal 

received at the detector input was measured and set as -10 dBm at 28 GHz. This translates into 

~46.4 mV received voltage at the detector output. At -25 dBm, the detected voltage measured is 

~5 mV. With this information, reconfiguration speed can be estimated after the center frequency 

of the filter has shifted up enough to provide 15 dB attenuation at 28 GHz. This condition occurs 

after approximately 22.8 ms where the filter is estimated to have shifted ~6.5 GHz from its center 

frequency. Thus, reconfiguration speed for the filter is calculated as 285 MHz/ms.  Additionally, 

the entire SMP actuation is expected to be within 35.8 ms.  
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For reliability testing, both stand-alone bandwidth tunable and stand-alone frequency 

tunable filters are actuated with a 20 Hz 50 % duty cycle rectangular waveform (0 V to 127 V) for 

7 days. S-parameters of the filters are measured approximately after they are actuated 100×103, 

1×106, 5×106 and 12×106 times. Figure 6.17 and Figure 6.18 show the measured performance for 

the stand-alone bandwidth tunable and stand-alone frequency tunable filter, respectively. For 

simplicity, the measured response is only shown at 3 possible actuation voltages (56 V, 86 V and 

129 V and 54 V, 88 V and 115 V for the frequency reconfigurable and bandwidth reconfigurable 

filters respectively). It is observed that filters operate without major degradation in IL performance. 

For a given actuation voltage, center frequency shows variations less than 1%. This is likely due 

 

Figure 6.16. Measured reconfiguration time for the frequency reconfigurable filter. 

  

(a) (b) 

Figure 6.17. FT-BPF prototype performance for different actuation cycles. Close-up detail (a) and 

expanded range view (b) of S21 performance after different actuation cycles (𝑉0 = 0 V, 𝑉𝐹1 = 56 

V, 𝑉𝐹2 = 86 V, 𝑉𝐹3 = 129 V). 
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to the mechanical nature of the reconfiguration scheme used. The repeatability test is stopped at 

~12,000,000 cycles due to the frequency tunable filter developing a leak at the bonding interface 

between the fused silica and the SU8 channel walls. More investigations and repeatability testing 

are needed to fully understand if this is an isolated case associated with bonding parameters.  

The filter prototype with simultaneous frequency and bandwidth tunability capability is 

used for power handling characterizations. This is motivated from the fact that this filter operates 

with the lowest measured IL. The experiment setup is similar to the one described in [94]. The 

filter is excited with continuous RF power at 38 GHz. The actuation condition selected for the 

power characterization is when the SMP #2 does not load the filter (i.e. smallest possible FBW). 

SMP #1 is actuated to shift center frequency of the filter to 38 GHz. These actuation voltage 

settings make the dual-tunable filter operate at its highest IL state to maximize the RF power 

dissipation. The filter is excited with RF power varying from 0.5 W to 2 W. Temperature 

measurements are taken after a steady-state condition is achieved for the given input power by 

using a thermal camera. Multiphysics simulations are performed with Ansys 19.2 Workbench to 

verify the experiments. Measured temperatures at filter surface and simulated temperatures agree 

quite well as shown in Figure 6.19. Simulations indicate that at 5 W of input RF power, the internal 

  

(a) (b) 

Figure 6.18. BT-BPF prototype performance for different actuation cycles. Close-up detail (a) and 

expanded range view (b) of S21 performance after different actuation cycles (𝑉0 = 0 V, 𝑉𝐵1 = 54 

V, 𝑉𝐵2 = 88 V, 𝑉𝐵3 = 115 V). 
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temperature of the device rises to 162 °C. This is slightly below the boiling temperature of FC-40 

(i.e. 165 °C). Therefore, 5 W can be considered as the maximum continuous RF power handling 

level of this filter. Power handling can further be enhanced by resorting to thicker ground planes 

and/or heat sinks. Table 6.1 presents a performance comparison of several state-of-the-art 

reconfigurable filters. IL performance of the microfluidic reconfiguration approach benefits from 

the lack of active components. Typical IL performance for implementations of reconfigurable 

filters with varactor/PIN diodes is in the order of >7 dB, which can be expected to further increase 

in the 38 GHz band. Similarly, power handling capabilities are expected to be higher for the 

microfluidic technology than for varactors.  

6.8. Chapter Summary 

The implementation of a microfluidically reconfigurable 3-pole coupled combline filter at 

mm-wave frequencies with integrated actuation is demonstrated for the first time. Three filters are 

designed, fabricated and characterized to demonstrate the capabilities of microfluidic actuation at 

observed mm-wave frequencies. Specifically, a constant FBW frequency tunable filter, a 

bandwidth tunable filter, and a frequency and bandwidth reconfigurable filter are demonstrated. It 

was shown that the frequency and bandwidth tunable filter performs with worst-case 3.1 dB IL,   

 
 

(a) (b) 

Figure 6.19. Power handling performance characterization of the FBT-BPF prototype. Infrared 

image captured after steady-state temperatures with 2W input RF power (a); and measured 

temperatures at different input RF powers (b). 
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Reference Technology 

Frequency 

Range 

(GHz) 

IL (dB) 
Tuning 

Type 

FBW (%) Tuning 

Ratio 

Continuous 

Power (W) 

Reconfig. 

Speed Constant Tunable 

[108] 
Microstrip 

(Varactor) 
0.7–1.1 7–1.5 

Continuous 

(Freq. Only) 
- 7–27 1.6:1 0.32 - 

[109] 
Microstrip 

(PIN Diode) 
20.5–21.3 9–8 

Discrete 

(Freq. Only) 
4.2±0.6 No 1.04:1 - - 

[110] MEMS 18.6–21.4 4.2–3.9 
Discrete 

(Freq. Only) 
7.5±0.1 No 1.15:1 - - 

[111] 
EVA 

(MEMS) 
20–40 2.9 

Continuous 

(Freq. Only) 
3.3±1.4 No 2:1 - 10–60 µs* 

[112] SIW 20–26.5 3.2–3.4 
Continuous 

(Freq. Only) 
3±0.2 No 1.33:1 - - 

[113] BST 28–34 3.8–2.8 
Continuous 

(Freq. Only) 
12.1±1.1 No 1.21:1 - - 

[114] 
Microfluidics 

(CPW) 
3.4–5.5 2.35–4.8 

Discrete 

(Freq. Only) 
5±0.35 No 1.6:1 10 - 

[63] 
Microfluidics 

(Microstrip) 
3.75–4.75 0.6 

Discrete 

(Freq. Only) 
39±2.5 No 1.19:1 - 70±20 ms 

[27] 
Microfluidics 

(Microstrip) 
1.5–4.0 2.5–4 

Continuous 

(Freq. Only) 
5 No 2.7:1 15 2.5 MHz/ms 

This 

Work 

Microfluidics 

(Microstrip) 
28–41 1.9–3.1 

Continuous 

(Freq. and 

FBW) 

7.8±0.75 7.8–16.7 1.46:1 5 285 MHz/ms 

 

 

 

 

Table 6.1. Performance comparison with state-of-the-art filters. 
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while exhibiting a constant 7.8% ± 0.75% FBW and bandwidth tunability within 7.8% to 16.7%. 

A 3-pole is selected for simplicity, however, the concepts demonstrated in this Chapter can be 

applied in a straight-forward manner for higher order filters. One only would need to compensate 

additional coupling factors with different capacitive values (i.e. this translates in different overlap 

areas in the SMP). Furthermore, the integrated actuation mechanism allows for extended testing 

of filter reconfiguration. Repeatability tests demonstrate that the filter performs with no major 

degradation in IL performance and can be reconfigured at 285 MHz/ms, implying about 35.8 ms 

reconfiguration for the whole frequency range of 28 GHz – 41 GHz. Power handling 

characterization shows that the filter could handle up to 5 W of continuous RF power without the 

need of a thick ground plane or external cooling. Further investigations could lead to optimization 

of reconfiguration speeds by employing different channel shapes or plate sizes. 
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Chapter 7: Final Remarks and Overview of Future Work 

 

Several applications of microfluidic technology for millimeter-wave device 

reconfiguration have been introduced, designed and their operation is successfully demonstrated 

with experimental verifications. Specifically, microfluidically switched microstrip lines utilizing 

selectively metallized plates were introduced to demonstrate low-loss and wideband 

reconfiguration at mm-wave frequencies. The novel microfluidic switch exhibits less than 0.2 dB 

IL over 20 GHz bandwidth. Additionally, an equivalent circuit model is developed to allow for 

designing complex networks with several microfluidic switches.  

The circuit model is utilized for designing a low-loss and wideband microfluidically 

switched feed network for mm-wave beam-steering applications. For this purpose, the equivalent 

circuit model and layout of the microfluidically switched microstrip line is cascaded in an SP2T 

configuration. When compared to microfluidic beam-steering focal plane array designs previously 

demonstrated; the switching time, bandwidth, and loss performances are significantly improved. 

This is made possible by replacing the need for resonant microstrip lines with the microfluidic 

switches. An 8-element 1-D beam-steering array is successfully demonstrated at 30 GHz. The feed 

network bandwidth is demonstrated to be 38% and low IL performance of <3 dB. Additionally, 

the feed network design can be expanded to up to 64 elements with no degradation in bandwidth 

performance. Utilizing this compact feed network design, the microfluidically switched beam-

steering focal plane array concept can be extended for 2D beam-steering. Something that was not 

possible with the previous work. More specifically, a 64 element (8×8) MFPA configuration 
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proves to offer simulated worst-case feed network losses < 5.2 dB. With the improvements 

demonstrated in this work, reconfiguring the MFPA in about 40 ms is now possible, as compared 

to over 5 s in previous designs. This compact reconfiguration allows for integrated actuation 

mechanisms that pave the way for enabling reliability testing and replace the bulky micropumps 

that were previously utilized for providing fluidic actuation. 

With the promising advantages of microfluidically switched microstrip line concept, a low-

loss and wideband microfluidic switch actuated with an integrated and compact piezoelectric 

mechanism is presented. This is possible by extending the initial concept of microfluidically 

switched lines from Chapter 3 and miniaturizing the switch area by about 73%. The miniaturized 

SPST switch prototype exhibits 0.42 dB IL with an operating bandwidth from 22 to 40 GHz. A 

piezoelectric actuation mechanism is successfully integrated for the first time in an SMP-based 

microfluidic device. The SPST switch is characterized to perform with 1.12 ms reconfiguration 

time, the prototype is operated up to ~3×106 switching cycles with no apparent performance 

degradation, and power handling measurements show the potential to provide >43 dBm at mm-

wave frequencies. The SPST design is demonstrated to be scalable for multi-throw operations with 

an SP4T design that maintains similar IL and wideband performance. Additionally, the SP4T 

switch is used to develop a 4-element mm-wave beam-steering antenna array demonstrating the 

advanced capabilities of integrating the microfluidic actuation mechanism in compact device. 

Continuing from the successful implementation of piezoelectric actuation within 

microfluidically reconfigurable devices in Chapter 5, the implementation of a microfluidically 

reconfigurable 3-pole coupled combline filter at mm-wave frequencies with integrated actuation 

is demonstrated for the first time. Three tunable filters are designed, fabricated and characterized 

to demonstrate the capabilities of microfluidic actuation at mm-waves. Specifically, a constant 
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FBW frequency tunable filter, a bandwidth tunable filter, and a frequency and bandwidth 

reconfigurable filter are implemented. The frequency and bandwidth tunable filter perform with 

worst-case 3.1 dB IL, while exhibiting a constant 7.8% ± 0.75% FBW and bandwidth tunability 

within 7.8% to 16.7%. Moreover, the concepts demonstrated in Chapter 6 can be applied in a 

straight-forward manner for higher order filters. One only would need to compensate additional 

coupling factors with different capacitive values (i.e. this translates in different overlap areas in 

the SMP). Furthermore, the integrated actuation mechanism allows for extended testing of filter 

reconfiguration. Repeatability tests proved filter performance over 12 million cycles with no major 

degradation in IL, and the capability to be reconfigured at 285 MHz/ms. Additionally, power 

handling characterization indicates potentially up to 5 W of continuous RF power without the need 

of a thick ground plane or any external cooling mechanisms. 

7.1. Future Work 

Considerable advances in microfluidic reconfiguration of RF devices with the selectively 

metallized plate approach have been introduced for the first time in this dissertation. Nevertheless, 

there is still plenty of work that can be done to further improve the performance of these devices 

and to fully understand their electromagnetic behavior. 

Specifically, several considerations can be taken for potentially improving the SMP speed 

and reducing the actuation voltages needed for transforming the piezoelectric displacement into 

fluidic pressure. Namely, investigating the impact of: (i) further reducing device size and SMP 

motion by depositing/utilizing thinner metal layers (e.g. <10 µm –since this work employed metal 

layers of 17.5 µm); (ii) utilizing different plates with varying sizes and materials that provide 

densities closer to the density of the liquid that fills the channels; and (iii) evaluating the impact of 

different microfluidic channel shapes that potentially can help distribute channel flow evenly 
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across the SMP. Figure 7.1(a) demonstrates the limitations for microfluidic channel height 

fabrication when considering PCB and SMP metallization thicknesses, assuming that the SMP is 

resting on top of the PCB before starting motion. Figure 7.1(b) presents possible channel shapes 

that can be investigated to improve the performance of the filter introduced in Chapter 6. Obtaining 

further knowledge in these areas will aid in optimizing the performance of microfluidically 

reconfigurable devices and provide an in-depth understanding of the physical machinations at 

work within the fluidic actuation of these devices. Furthermore, clear design criteria for choosing 

the right piezoelectric actuator size and microfluidic channels can be developed. 

 

 

(a) 

 
(b) 

Figure 7.1. Microfluidic channel limitations and proposed shapes for potential improvements. (a)   

Detail of estimated SMP motion mechanism within the microfluidic channel. (b) Proposed 

microfluidic channel shapes to be investigated to potentially improve SMP motion and 

piezoelectric actuation. 
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Another area of further research is the accurate modeling of the electromagnetic 

phenomena occurring at the SMP overlaps. For this work, a parallel plate capacitance condition 

was assumed at the overlaps between the SMP and the microwave circuit metal traces. However, 

this approximation is not completely accurate as demonstrated by the need for optimization/tuning 

of certain final dimensions within the presented designs. It is suspected that additional parasitic 

behaviors that are not accurately modeled by the parallel plate capacitance approximation are 

  

(a) (b) 

  

(c) (d) 

 
(e) 

Figure 7.2. Different current distributions within the SMP #1 overlap trace at the resonator of the 

BPF presented in Chapter 6 for different overlap positions and metallization shape.  
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present and actively affecting the SMP coupling with the microwave circuit. Figure 7.2 offers the 

current distribution extracted for the SMP #1 overlap of the tunable filter of Chapter 6. 

Specifically, for the metallization area that has as a main purpose to reconfigure the resonator 

center frequency. Additionally, the metallization area is moved or meandered/modified to explore 

the changes in current distribution. As it is seen in Figure 7.2, the changes observed in the current 

imply a complex parasitic behavior that if completely understood will offer more accurate 

modeling and simplified design of these type of devices. Furthermore, this behavior can be present 

in the form of enhancements or degradations in various cases. Therefore, if one can understand the 

phenomena, SMP shape can become an additional tool to improve device performance. 

  



94 

 

 

 

 

 

 

References 

 

[1] M. Sayginer and G. M. Rebeiz, "An Eight-Element 2-16-GHz Programmable Phased Array 

Receiver With One, Two, or Four Simultaneous Beams in SiGe BiCMOS," IEEE 

Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4585-4597, Dec 

2016, doi: 10.1109/Tmtt.2016.2620144. 

[2] W. Shin, B. H. Ku, O. Inac, Y. C. Ou, and G. M. Rebeiz, "A 108-114 GHz 4 x 4 Wafer-

Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas," IEEE Journal 

of Solid-State Circuits, vol. 48, no. 9, pp. 2041-2055, Sep 2013, doi: 

10.1109/Jssc.2013.2260097. 

[3] Y. Yang, O. Gurbuz, and G. M. Rebeiz, "An 8-Element 400 GHz Phased-Array in 45 nm 

CMOS SOI," 2015 IEEE Mtt-S International Microwave Symposium (Ims), 2015. 

[4] G. M. Rebeiz and K. J. Koh, "Silicon RFICs for Phased Arrays," IEEE Microwave 

Magazine, vol. 10, no. 3, pp. 96-103, May 2009, doi: 10.1109/Mmm.2009.932078. 

[5] G. M. Rebeiz et al., "Tuning in to RF MEMS," IEEE Microwave Magazine, vol. 10, no. 6, 

pp. 55-72, Oct 2009, doi: 10.1109/Mmm.2009.933592. 

[6] G. M. Rebeiz, C. D. Patel, S. K. Han, C. Ko, and K. M. J. Ho, "The Search for a Reliable 

MEMS Switch," IEEE Microwave Magazine, vol. 14, no. 1, pp. 57-67, 2013, doi: 

10.1109/MMM.2012.2226540. 

[7] L. M. K. Timothy, M. L. Ownby, and D. G. Bowen, "Method and apparatus for an 

improved antenna tracking system mounted on an unstable platform," ed: Google Patents, 

2002. 

[8] N. Verkerk, "Gimbal system for satellite antenna," ed: Google Patents, 2003. 

[9] A. P. Saghati and K. Entesari, "A Tunable Quarter-Mode Substrate Integrated Waveguide 

Antenna," 2016 IEEE Antennas and Propagation Society International Symposium, pp. 

841-842, 2016. 

[10] F. Alibaz-Oner, M. Can, B. Ilhan, O. Polat, G. Mumcu, and H. Direskeneli, "Presence of 

Fibromyalgia in Patients with Takayasu's Arteritis," Internal Medicine, vol. 52, no. 24, pp. 

2739-2742, 2013, doi: 10.2169/internalmedicine.52.0848. 

[11]  O. L. Chlieh, W. T. Khan, and J. Papapolymerou, "L-band tunable microstrip bandpass 

filter on multilayer organic substrate with integrated microfluidic channel," in 2014 IEEE 

MTT-S International Microwave Symposium (IMS2014), 1-6 June 2014 2014, pp. 1-4, doi: 

10.1109/MWSYM.2014.6848341.  

[12] W. Zhou, H. Tang, and J. Chen, "Novel Microfluidically Tunable Differential Dual-Mode 

Patch Filter," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 461-

463, 2017, doi: 10.1109/LMWC.2017.2690874. 

 

 



95 

 

[13] S. J. Mazlouman, X. J. Jiang, A. N. Mahanfar, C. Menon, and R. G. Vaughan, "A 

Reconfigurable Patch Antenna Using Liquid Metal Embedded in a Silicone Substrate," 

IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4406-4412, 2011, 

doi: 10.1109/TAP.2011.2165501. 

[14] A. Dey, A. Kiourti, G. Mumcu, and J. L. Volakis, "Microfluidically Reconfigured 

Frequency Tunable Dipole Antenna," 2015 9th European Conference on Antennas and 

Propagation (EuCAP), 2015. 

[15] A. M. Morishita, C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma, "Two-octave tunable 

liquid-metal monopole antenna," Electronics Letters, vol. 50, no. 1, pp. 19-20, 2014, doi: 

10.1049/el.2013.2971. 

[16] A. Gheethan, R. Guldiken, and G. Mumcu, "Microfluidic Enabled Beam Scanning Focal 

Plane Arrays," 2013 IEEE Antennas and Propagation Society International Symposium 

(APS/URSI), pp. 208-+, 2013. 

[17] C. H. Chen and D. Peroulis, "Liquid RF MEMS wideband reflective and absorptive 

switches," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 12, pp. 

2919-2929, Dec 2007, doi: 10.1109/Tmtt.2007.910011. 

[18] C. H. Chen, J. Whalen, and D. Peroulis, "Non-toxic liquid-metal 2-100 GHz MEMS 

switch," 2007 Ieee/Mtt-S International Microwave Symposium Digest, Vols 1-6, pp. 363-

366, 2007, doi: Doi 10.1109/Mwsym.2007.380446. 

[19] P. Sen and C. J. Kim, "A Liquid-Metal RF Mems Switch with Dc-to-40 Ghz Performance," 

IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS 2009), 

pp. 904-907, 2009, doi: Doi 10.1109/Memsys.2009.4805530. 

[20] N. Vahabisani, S. Khan, and M. Daneshmand, "Microfluidically Reconfigurable 

Rectangular Waveguide Filter Using Liquid Metal Posts," IEEE Microwave and Wireless 

Components Letters, vol. 26, no. 10, pp. 801-803, Oct 2016, doi: 

10.1109/Lmwc.2016.2605450. 

[21] K. Entesari and A. P. Saghati, "Fluidics in Microwave Components," IEEE Microwave 

Magazine, vol. 17, no. 6, pp. 50-75, Jun 2016, doi: 10.1109/Mmm.2016.2538513. 

[22]  M. S. Anwar and A. Bangert, "3D printed microfluidics-based reconfigurable antenna," in 

2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and 

Processes for RF and THz Applications (IMWS-AMP), 20-22 Sept. 2017 2017, pp. 1-3, 

doi: 10.1109/IMWS-AMP.2017.8247364.  

[23] N. Vahabisani, S. Khan, and M. Daneshmand, "A K-Band Reflective Waveguide Switch 

Using Liquid Metal," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1788-

1791, 2017, doi: 10.1109/LAWP.2017.2679072. 

[24] T. Palomo and G. Mumcu, "Highly Reconfigurable Bandpass Filters Using 

Microfluidically Controlled Metallized Glass Plates," 2014 IEEE MTT-S International 

Microwave Symposium (IMS), 2014. 

[25] T. Palomo and G. Mumcu, "Microfluidically Reconfigurable Metallized Plate Loaded 

Frequency-Agile RF Bandpass Filters," IEEE Transactions on Microwave Theory and 

Techniques, vol. 64, no. 1, pp. 158-165, 2016, doi: 10.1109/TMTT.2015.2504473. 

[26] A. Dey and G. Mumcu, "Microfluidically Controlled Frequency-Tunable Monopole 

Antenna for High-Power Applications," IEEE Antennas and Wireless Propagation Letters, 

vol. 15, pp. 226-229, 2016, doi: 10.1109/Lawp.2015.2438863. 

 



96 

 

[27] T. Palomo and G. Mumcu, "Microfluidically Reconfigurable Microstrip Line Combline 

Filters With Wide Frequency Tuning Capabilities," IEEE Transactions on Microwave 

Theory and Techniques, http://doi.org/10.1109/TMTT.2017.2730181 vol. 65, no. 10, pp. 

3561-3568, 2017. 

[28] E. Lourandakis, R. Weigel, H. Mextorf, and R. Knoechel, "Circuit Agility," IEEE 

Microwave Magazine, vol. 13, no. 1, pp. 111-121, 2012, doi: 

10.1109/MMM.2011.2173987. 

[29]  N. J. Kolias, "Recent advances in Ga N MMIC technology," in Proc. IEEE Custom 

Integrated Circuits Conf. (CICC), 2015/september, pp. 1-5.  

[30]  G. M. Rebeiz, "RF MEMS for wireless-bands tunable networks," in Proc. Digest of 

Papers. 2006 Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems, 

2006/january, pp. 1-1 pp.  

[31]  R. L. Schmid, P. Song, and J. D. Cressler, "A compact, transformer-based 60 GHz SPDT 

RF switch utilizing diode-connected SiGe HBTs," in Proc. IEEE Bipolar/BiCMOS 

Circuits and Technology Meeting (BCTM), 2013/september, pp. 111-114.  

[32]  R. S. Howell et al., "The Super-Lattice Castellated Field Effect Transistor (SLCFET): A 

novel high performance Transistor topology ideal for RF switching," in Proc. IEEE Int. 

Electron Devices Meeting, 2014/december, pp. 11.5.1-11.5.4.  

[33]  F. Thome, M. Ohlrogge, A. Leuther, M. Schlechtweg, and O. Ambacher, "An 

investigation of millimeter wave switches based on shunt transistors including SPDT 

SWITCH MMICs up to 300 GHz," in Proc. IEEE MTT-S Int. Microwave Symp. (IMS), 

2016/05, pp. 1-4.  

[34] M. K. Cho, I. Song, J. G. Kim, and J. D. Cressler, "An Active Bi-Directional SiGe DPDT 

Switch With Multi-Octave Bandwidth," IEEE Microwave and Wireless Components 

Letters, http://doi.org/10.1109/LMWC.2016.2537055 vol. 26, no. 4, pp. 279-281, 2016. 

[35]  G. M. Rebeiz, "Millimeter-wave SiGe RFICs for large-scale phased-arrays," in Proc. 

IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2014/september, pp. 

56-59.  

[36] A. Valdes-Garcia et al., "A Fully Integrated 16-Element Phased-Array Transmitter in SiGe 

BiCMOS for 60-GHz Communications," IEEE Journal of Solid-State Circuits, 

http://doi.org/10.1109/JSSC.2010.2074951 vol. 45, no. 12, pp. 2757-2773, 2010. 

[37] D. Rodrigo, L. Jofre, and J. Perruisseau-Carrier, "Unit Cell for Frequency-Tunable 

Beamscanning Reflectarrays," IEEE Transactions on Antennas and Propagation, 

http://doi.org/10.1109/TAP.2013.2281375 vol. 61, no. 12, pp. 5992-5999, 2013. 

[38]  G. Rebeiz, "Large-scale millimeter-wave phased arrays for 5G systems," in Proc. IEEE 

16th Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 

2016/january, pp. 4-4.  

[39] G. M. Rebeiz and J. B. Muldavin, "RF MEMS switches and switch circuits," IEEE 

Microwave Magazine, http://doi.org/10.1109/6668.969936 vol. 2, no. 4, pp. 59-71, 2001. 

[40]  P. D. Grant, M. W. Denhoff, and R. R. Mansour, "A Comparison between RF MEMS 

Switches and Semiconductor Switches," in Proc. Int. Conf. MEMS, NANO and Smart 

Systems ICMENS 2004, 2004/august, pp. 515-521.  

[41]  E. Brookner, "Recent developments and future trends in phased arrays," in Proc. IEEE Int 

Phased Array Systems Technology Symp, 2013/october, pp. 43-53.  

http://doi.org/10.1109/TMTT.2017.2730181
http://doi.org/10.1109/LMWC.2016.2537055
http://doi.org/10.1109/JSSC.2010.2074951
http://doi.org/10.1109/TAP.2013.2281375
http://doi.org/10.1109/6668.969936


97 

 

[42] R. R. Mansour, "RF MEMS-CMOS Device Integration: An Overview of the Potential for 

RF Researchers," IEEE Microwave Magazine, 

http://doi.org/10.1109/MMM.2012.2226539 vol. 14, no. 1, pp. 39-56, 2013. 

[43] G. M. Rebeiz, C. D. Patel, S. K. Han, C. H. Ko, and K. M. J. Ho, "The Search for a Reliable 

MEMS Switch," IEEE Microwave Magazine, http://doi.org/10.1109/MMM.2012.2226540 

vol. 14, no. 1, pp. 57-67, 2013. 

[44]  W. H. Weedon, W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable 

antennas," in Proc. IEEE Antennas and Propagation Society Int. Symp, 2001/july, vol. 3, 

pp. 654--657 vol.3-657 vol.3.  

[45] H. Zareie and G. M. Rebeiz, "High-Power RF MEMS Switched Capacitors Using a Thick 

Metal Process," IEEE Transactions on Microwave Theory and Techniques, 

http://doi.org/10.1109/TMTT.2012.2226744 vol. 61, no. 1, pp. 455-463, 2013. 

[46] Y. Q. Zhu, L. Han, L. F. Wang, J. Y. Tang, and Q. A. Huang, "A Novel Three-State RF 

MEMS Switch for Ultrabroadband (DC-40 GHz) Applications," IEEE Electron Device 

Letters, http://doi.org/10.1109/LED.2013.2269993 vol. 34, no. 8, pp. 1062-1064, 2013. 

[47] N. Kingsley, D. E. Anagnostou, M. Tentzeris, and J. Papapolymerou, "RF MEMS 

Sequentially Reconfigurable Sierpinski Antenna on a Flexible Organic Substrate With 

Novel DC-Biasing Technique," Journal of Microelectromechanical Systems, 

http://doi.org/10.1109/JMEMS.2007.902462 vol. 16, no. 5, pp. 1185-1192, 2007. 

[48] K. V. Caekenberghe, "RF MEMS on the radar," IEEE Microwave Magazine, 

http://doi.org/10.1109/MMM.2009.933596 vol. 10, no. 6, pp. 99-116, 2009. 

[49] B. Schoenlinner, A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable 

low-loss RF MEMS Ka-band frequency-selective surface," IEEE Transactions on 

Microwave Theory and Techniques, http://doi.org/10.1109/TMTT.2004.837148 vol. 52, 

no. 11, pp. 2474-2481, 2004. 

[50]  G. M. Rebeiz et al., "Wafer-Scale Millimeter-Wave Phased-Array RFICs," in Proc. IEEE 

Compound Semiconductor Integrated Circuit Symp. (CSICS), 2014/october, pp. 1-4.  

[51] P. Rantakari et al., "Wide-band radio frequency micro electro-mechanical systems 

switches and switching networks using a gallium arsenide monolithic microwave-

integrated circuits foundry process technology," Antennas Propagation IET Microwaves, 

http://doi.org/10.1049/iet-map.2010.0434 vol. 5, no. 8, pp. 948-955, 2011. 

[52] William H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics. McGraw-Hill, 2001. 

[53] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken: Wiley,, 2012, p. 1 online resource 

(756 p.). [Online]. Available: http://usf.eblib.com/patron/FullRecord.aspx?p=2064708. 

[54]  S. Kaleem, J. Kühn, R. Quay, and M. Hein, "A high-power Ka-band single-pole single-

throw switch MMIC using 0.25 μm GaN on SiC," in Proc. IEEE Radio and Wireless Symp. 

(RWS), 2015/january, pp. 132-134.  

[55]  R. S. Howell et al., "Advances in the Super-Lattice Castellated Field Effect Transistor 

(SLCFET) for wideband low loss RF switching applications," in Proc. IEEE MTT-S Int. 

Microwave Symp. (IMS), 2016/05, pp. 1-3.  

[56] D. W. Kang, J. G. Kim, B. W. Min, and G. M. Rebeiz, "Single and Four-Element -Band 

Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control," 

IEEE Transactions on Microwave Theory and Techniques, 

http://doi.org/10.1109/TMTT.2009.2033302 vol. 57, no. 12, pp. 3534-3543, 2009. 

 

http://doi.org/10.1109/MMM.2012.2226539
http://doi.org/10.1109/MMM.2012.2226540
http://doi.org/10.1109/TMTT.2012.2226744
http://doi.org/10.1109/LED.2013.2269993
http://doi.org/10.1109/JMEMS.2007.902462
http://doi.org/10.1109/MMM.2009.933596
http://doi.org/10.1109/TMTT.2004.837148
http://doi.org/10.1049/iet-map.2010.0434
http://usf.eblib.com/patron/FullRecord.aspx?p=2064708
http://doi.org/10.1109/TMTT.2009.2033302


98 

 

[57] B. H. Ku et al., "A 77 --81-GHz 16-Element Phased-Array Receiver With Beam Scanning 

for Advanced Automotive Radars," IEEE Transactions on Microwave Theory and 

Techniques, http://doi.org/10.1109/TMTT.2014.2354134 vol. 62, no. 11, pp. 2823-2832, 

2014. 

[58] M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, "Static Zero-Power-Consumption 

Coplanar Waveguide Embedded DC-to-RF Metal-Contact MEMS Switches in Two-Port 

and Three-Port Configuration," IEEE Transactions on Electron Devices, 

http://doi.org/10.1109/TED.2010.2048239 vol. 57, no. 7, pp. 1659-1669, 2010. 

[59] C. C. Cheng, B. Lakshminarayanan, and A. Abbaspour-Tamijani, "A Programmable Lens-

Array Antenna With Monolithically Integrated MEMS Switches," IEEE Transactions on 

Microwave Theory and Techniques, http://doi.org/10.1109/TMTT.2009.2025422 vol. 57, 

no. 8, pp. 1874-1884, 2009. 

[60] Y. Luo, K. Kikuta, Z. Han, T. Takahashi, A. Hirose, and H. Toshiyoshi, "An Active 

Metamaterial Antenna With MEMS-Modulated Scanning Radiation Beams," IEEE 

Electron Device Letters, http://doi.org/10.1109/LED.2016.2565559 vol. 37, no. 7, pp. 920-

923, 2016. 

[61] G. Mumcu, A. Dey, and T. Palomo, "Frequency-Agile Bandpass Filters Using Liquid 

Metal Tunable Broadside Coupled Split Ring Resonators," IEEE Microwave and Wireless 

Components Letters, vol. 23, no. 4, pp. 187-189, Apr 2013, doi: 

10.1109/Lmwc.2013.2247750. 

[62]  O. L. Chlieh, W. T. Khan, and J. Papapolymerou, "L-band tunable microstrip bandpass 

filter on multilayer organic substrate with integrated microfluidic channel," in Proc. IEEE 

MTT-S Int. Microwave Symp. (IMS2014), 2014/june, pp. 1-4.  

[63] D. L. Diedhiou, R. Sauleau, and A. V. Boriskin, "Microfluidically Tunable Microstrip 

Filters," IEEE Transactions on Microwave Theory and Techniques, 

http://doi.org/10.1109/TMTT.2015.2435704 vol. 63, no. 7, pp. 2245-2252, 2015. 

[64] S. J. Mazlouman, B. C. M. Chang, A. Mahanfar, R. G. Vaughan, and C. Menon, "Beam-

Steering Antenna using Bending Fluidic Actuators," IEEE Transactions on Antennas and 

Propagation, http://doi.org/10.1109/TAP.2013.2273254 vol. 61, no. 10, pp. 5287-5290, 

2013. 

[65] A. Dey, R. Guldiken, and G. Mumcu, "Microfluidically Reconfigured Wideband 

Frequency-Tunable Liquid-Metal Monopole Antenna," IEEE Transactions on Antennas 

and Propagation, vol. 64, no. 6, pp. 2572-2576, Jun 2016, doi: 

10.1109/Tap.2016.2551358. 

[66] A. P. Saghati, J. S. Batra, J. Kameoka, and K. Entesari, "Miniature and Reconfigurable 

CPW Folded Slot Antennas Employing Liquid-Metal Capacitive Loading," IEEE 

Transactions on Antennas and Propagation, vol. 63, no. 9, pp. 3798-3807, Sep 2015, doi: 

10.1109/Tap.2015.2447002. 

[67] A. M. Morishita, C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma, "A Liquid-Metal 

Monopole Array With Tunable Frequency, Gain, and Beam Steering," IEEE Antennas and 

Wireless Propagation Letters, http://doi.org/10.1109/LAWP.2013.2286544 vol. 12, pp. 

1388-1391, 2013. 

[68]  C. K. Y. Kitamura, A. M. Morishita, T. F. Chun, W. G. Tonaki, A. T. Ohta, and W. A. 

Shiroma, "A liquid-metal reconfigurable Yagi-Uda monopole array," in Proc. IEEE MTT-

S Int. Microwave Symp. Digest (IMS), 2013/june, pp. 1-3.  

http://doi.org/10.1109/TMTT.2014.2354134
http://doi.org/10.1109/TED.2010.2048239
http://doi.org/10.1109/TMTT.2009.2025422
http://doi.org/10.1109/LED.2016.2565559
http://doi.org/10.1109/TMTT.2015.2435704
http://doi.org/10.1109/TAP.2013.2273254
http://doi.org/10.1109/LAWP.2013.2286544


99 

 

[69] A. A. Gheethan, M. C. Jo, R. Guldiken, and G. Mumcu, "Microfluidic Based Ka-Band 

Beam-Scanning Focal Plane Array," IEEE Antennas and Wireless Propagation Letters, 

http://doi.org/10.1109/LAWP.2013.2294153 vol. 12, pp. 1638-1641, 2013. 

[70] M. Li and N. Behdad, "Fluidically Tunable Frequency Selective/Phase Shifting Surfaces 

for High-Power Microwave Applications," IEEE Transactions on Antennas and 

Propagation, http://doi.org/10.1109/TAP.2012.2194645 vol. 60, no. 6, pp. 2748-2759, 

2012. 

[71] E. Erdil, K. Topalli, N. S. Esmaeilzad, O. Zorlu, H. Kulah, and O. A. Civi, "Microfluidic 

Reconfigurable Nested Split Ring-Regular Ring Transmitarray Unit Cell," 2014 Xxxith 

URSI General Assembly and Scientific Symposium (URSI GASS), 2014. 

[72] P. Sen and C. J. Kim, "A Liquid-Solid Direct Contact Low-Loss RF Micro Switch," 

Journal of Microelectromechanical Systems, vol. 18, no. 5, pp. 990-997, Oct 2009, doi: 

10.1109/Jmems.2009.2029170. 

[73] G. Mumcu, "Microfluidically reconfigurable antennas," in Electromagnetic Waves, 

Developments in Antenna Analysis and Design: Volume 1: Institution of Engineering and 

Technology, 2018, pp. 203-241. [Online]. Available: https://digital-

library.theiet.org/content/books/10.1049/sbew543f_ch7 

[74] R. C. Gough, A. M. Morishita, J. H. Dang, W. Hu, W. A. Shiroma, and A. T. Ohta, 

"Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications," IEEE Access, 

http://doi.org/10.1109/ACCESS.2014.2350531 vol. 2, pp. 874-882, 2014. 

[75] B. J. Lei, A. Zamora, T. F. Chun, A. T. Ohta, and W. A. Shiroma, "A Wideband, Pressure-

Driven, Liquid-Tunable Frequency Selective Surface," IEEE Microwave and Wireless 

Components Letters, http://doi.org/10.1109/LMWC.2011.2162942 vol. 21, no. 9, pp. 465-

467, 2011. 

[76] T. J. Palomo and G. Mumcu, Microfluidically Reconfigurable Frequency-Agile RF Filters 

With Wide Frequency Tuning Range And High Power Handling Capability. [Online]. 

Available: 

http://ezproxy.lib.usf.edu/login?url=http://ezproxy.lib.usf.edu/login?url=http://scholarco

mmons.usf.edu/etd/6124. 

[77] A. Dey and G. Mumcu, "Microfluidically Controlled Metalized Plate Based Frequency 

Reconfigurable Monopole for High Power RF Applications," 2015 IEEE International 

Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting, 

pp. 2299-2300, 2015. 

[78] A. A. Gheethan, A. Dey, and G. Mumcu, "Passive Feed Network Designs for Microfluidic 

Beam-Scanning Focal Plane Arrays and Their Performance Evaluation," IEEE 

Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3452-3464, Aug 2015, doi: 

10.1109/Tap.2015.2436441. 

[79] E. González and G. Mumcu, "Mm-Wave Beam-Steering Focal Plane Arrays with 

Microfluidically Switched Feed Networks," IEEE Transactions on Antennas and 

Propagation, pp. 1-1, 2018, doi: 10.1109/TAP.2018.2874488. 

[80] E. Gonzalez, G. Mumcu, and IEEE, "Mm-Wave 2D Beam-Steering Focal Plane Array with 

Microfluidically Switched Feed Network," in 2017 IEEE International Symposium on 

Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, pp. 907-

908. 

 

http://doi.org/10.1109/LAWP.2013.2294153
http://doi.org/10.1109/TAP.2012.2194645
https://digital-library.theiet.org/content/books/10.1049/sbew543f_ch7
https://digital-library.theiet.org/content/books/10.1049/sbew543f_ch7
http://doi.org/10.1109/ACCESS.2014.2350531
http://doi.org/10.1109/LMWC.2011.2162942
http://ezproxy.lib.usf.edu/login?url=http://ezproxy.lib.usf.edu/login?url=http://scholarcommons.usf.edu/etd/6124
http://ezproxy.lib.usf.edu/login?url=http://ezproxy.lib.usf.edu/login?url=http://scholarcommons.usf.edu/etd/6124


100 

 

[81] C. Koo, B. E. LeBlanc, M. Kelley, H. E. Fitzgerald, G. H. Huff, and A. Han, "Manipulating 

Liquid Metal Droplets in Microfluidic Channels With Minimized Skin Residues Toward 

Tunable RF Applications," Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 

1069-1076, Aug 2015, doi: 10.1109/Jmems.2014.2381555. 

[82] S. Khan, N. Vahabisani, and M. Daneshmand, "A Fully 3-D Printed Waveguide and Its 

Application as Microfluidically Controlled Waveguide Switch," IEEE Transactions on 

Components Packaging and Manufacturing Technology, vol. 7, no. 1, pp. 70-80, Jan 2017, 

doi: 10.1109/Tcpmt.2016.2631545. 

[83] R. Garg, I. Bahl, and M. Bozzi, "Microstrip Lines and Slotlines, Third Edition," Microstrip 

Lines and Slotlines, Third Edition, pp. 1-589, 2013. 

[84] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications (Wiley 

series in microwave and optical engineering). New York ; Chichester England: Wiley, 

2001, pp. xii, 471 pages. 

[85] A. J. King, J. F. Patrick, N. R. Sottos, S. R. White, G. H. Huff, and J. T. Bernhard, 

"Microfluidically Switched Frequency-Reconfigurable Slot Antennas," Ieee Antennas and 

Wireless Propagation Letters, vol. 12, pp. 828-831, 2013, doi: 

10.1109/Lawp.2013.2270940. 

[86] W. H. Tu and K. Chang, "Microstrip elliptic-function low-pass filters using distributed 

elements or slotted ground structure," IEEE Transactions on Microwave Theory and 

Techniques, vol. 54, no. 10, pp. 3786-3792, Oct 2006, doi: 10.1109/Tmtt.2006.882896. 

[87] E. Gonzalez and G. Mumcu, "Low-Loss Wideband Feed Networks for High Gain 

Microfluidic Beam-Scanning Focal Plane Arrays," 2016 IEEE Antennas and Propagation 

Society International Symposium, pp. 645-646, 2016. 

[88] C. A. Balanis, Antenna theory analysis and design, 3rd ed. Hoboken, N.J.: Wiley-

Interscience,, 2005, pp. 1 online resource (xvii, 1117 p.). [Online]. Available: 

http://usf.eblib.com/patron/FullRecord.aspx?p=699934. 

[89]  G. D. Massa, S. Costanzo, A. Borgia, F. Venneri, and I. Venneri, "Innovative dielectric 

materials at millimeter-frequencies," in 2010 Conference Proceedings ICECom, 20th 

International Conference on Applied Electromagnetics and Communications, Sept 2010, 

pp. 1-4.  

[90] P. Y. Cresson et al., "1 to 220 GHz Complex Permittivity Behavior of Flexible 

Polydimethylsiloxane Substrate," IEEE Microwave and Wireless Components Letters, 

http://doi.org/10.1109/LMWC.2013.2295230 vol. 24, no. 4, pp. 278-280, 2014. 

[91] Qorvo. "TGS4302 (27 - 46 GHz Ka Band High Power SPDT Switch)." Qorvo Inc. 

http://www.qorvo.com/products/p/TGS4302 (accessed. 

[92] Texas Instruments. "LDC1614."  

http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=ldc1614&fileTy

pe=pdf (accessed 2016). 

[93] E. González and G. Mumcu, "Integrated Actuation of Microfluidically Reconfigurable 

mm-Wave SPST Switches," IEEE Microwave and Wireless Components Letters, vol. 29, 

no. 8, pp. 541-544, 2019, doi: 10.1109/LMWC.2019.2925889. 

[94]  E. González and G. Mumcu, "Microfluidic Switches with Integrated Actuation for Mm-

Wave Beam-Steering Arrays," in 2019 IEEE International Symposium on Antennas and 

Propagation and USNC-URSI Radio Science Meeting, 7-12 July 2019 2019, pp. 1871-

1872, doi: 10.1109/APUSNCURSINRSM.2019.8889274.  

http://usf.eblib.com/patron/FullRecord.aspx?p=699934
http://doi.org/10.1109/LMWC.2013.2295230
http://www.qorvo.com/products/p/TGS4302
http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=ldc1614&fileType=pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=ldc1614&fileType=pdf


101 

 

[95] M. R. Moorefield, R. C. Gough, A. T. Ohta, and W. A. Shiroma, "An Electrically Actuated 

DC-to-11-GHz Liquid-Metal Switch," IEEE Access, vol. 6, pp. 1261-1266, 2018, doi: 

10.1109/ACCESS.2017.2778184. 

[96] Y. Shim, Z. Wu, and M. Rais-Zadeh, "A High-Performance Continuously Tunable MEMS 

Bandpass Filter at 1 GHz," IEEE Transactions on Microwave Theory and Techniques, vol. 

60, no. 8, pp. 2439-2447, 2012, doi: 10.1109/TMTT.2012.2198228. 

[97] B. Min and G. M. Rebeiz, "Ka-Band Low-Loss and High-Isolation Switch Design in 0.13-

μmCMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 6, pp. 

1364-1371, 2008, doi: 10.1109/TMTT.2008.921749. 

[98] M. Wang, Y. Shim, and M. Rais-Zadeh, "A Low-Loss Directly Heated Two-Port RF Phase 

Change Switch," IEEE Electron Device Letters, vol. 35, no. 4, pp. 491-493, 2014, doi: 

10.1109/LED.2014.2303972. 

[99] J.-S. Hong and Wiley InterScience (Online service), Microstrip filters for RF/microwave 

applications, 2nd ed. Hoboken, N.J.: Wiley,, 2011, pp. 1 online resource (xvi, 635 p.). 

[Online]. Available: http://onlinelibrary.wiley.com/book/10.1002/9780470937297. 

[100] M. Sanchez-Renedo, R. Gomez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, "Tunable 

combline filter with continuous control of center frequency and bandwidth," IEEE 

Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 191-199, 2005, doi: 

10.1109/TMTT.2004.839309. 

[101] T. Cheng and K. Tam, "A Wideband Bandpass Filter With Reconfigurable Bandwidth 

Based on Cross-Shaped Resonator," IEEE Microwave and Wireless Components Letters, 

vol. 27, no. 10, pp. 909-911, 2017, doi: 10.1109/LMWC.2017.2746679. 

[102] P. Jae-Hyoung, L. Sanghyo, K. Jung-Mu, K. Hong-Teuk, K. Youngwoo, and K. Yong-

Kweon, "Reconfigurable millimeter-wave filters using CPW-based periodic structures 

with novel multiple-contact MEMS switches," Journal of Microelectromechanical 

Systems, vol. 14, no. 3, pp. 456-463, 2005, doi: 10.1109/JMEMS.2005.844849. 

[103] D. Yingjie, P. Gardner, P. S. Hall, H. Ghafouri-Shiraz, and Z. Jiafeng, "Multiple-coupled 

microstrip hairpin-resonator filter," IEEE Microwave and Wireless Components Letters, 

vol. 13, no. 12, pp. 532-534, 2003, doi: 10.1109/LMWC.2003.819377. 

[104] T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hübner, "The effect of soft bake 

temperature on the polymerization of SU-8 photoresist," Journal of Micromechanics and 

Microengineering, vol. 16, no. 9, pp. 1819-1824, 2006/07/28 2006, doi: 10.1088/0960-

1317/16/9/009. 

[105] M. Gaudet and S. Arscott, "A user-friendly guide to the optimum ultraviolet 

photolithographic exposure and greyscale dose of SU-8 photoresist on common MEMS, 

microsystems, and microelectronics coatings and materials," Analytical Methods, 

10.1039/C7AY00564D vol. 9, no. 17, pp. 2495-2504, 2017, doi: 10.1039/C7AY00564D. 

[106] Y. K. H. Cho, Hyun Doo; Park, Dong Kyu; Vijaya Sunkara, "Method for bonding 

substrates ",  Patent Appl. KR20120053029A·2012-05-18, 2012.  

[107] M. Bahrami, M. M. Yovanovich, and J. R. Culham, "Pressure Drop of Fully-Developed, 

Laminar Flow in Microchannels of Arbitrary Cross-Section," Journal of Fluids 

Engineering, vol. 128, no. 5, pp. 1036-1044, 2006, doi: 10.1115/1.2234786. 

[108] C. Schuster et al., "Performance Analysis of Reconfigurable Bandpass Filters With 

Continuously Tunable Center Frequency and Bandwidth," IEEE Transactions on 

Microwave Theory and Techniques, vol. 65, no. 11, pp. 4572-4583, 2017, doi: 

10.1109/TMTT.2017.2742479. 

http://onlinelibrary.wiley.com/book/10.1002/9780470937297


102 

 

[109]  B. Rohrdantz, V. Schmidt, and A. F. Jacob, "Microstrip ring resonator based frequency 

reconfigurable band-pass filters at K-band," in 2014 20th International Conference on 

Microwaves, Radar and Wireless Communications (MIKON), 16-18 June 2014 2014, pp. 

1-4, doi: 10.1109/MIKON.2014.6899907.  

[110] A. Abbaspour-Tamijani, L. Dussopt, and G. M. Rebeiz, "Miniature and tunable filters 

using MEMS capacitors," IEEE Transactions on Microwave Theory and Techniques, vol. 

51, no. 7, pp. 1878-1885, 2003, doi: 10.1109/TMTT.2003.814317. 

[111] Z. Yang, D. Psychogiou, and D. Peroulis, "Design and Optimization of Tunable Silicon-

Integrated Evanescent-Mode Bandpass Filters," IEEE Transactions on Microwave Theory 

and Techniques, vol. 66, no. 4, pp. 1790-1803, 2018, doi: 10.1109/TMTT.2018.2799575. 

[112] P. Adhikari, W. Yang, and D. Peroulis, "A 20–26.5-GHz PCB Bandpass Filter Tuned With 

Contactless Tuners," IEEE Microwave and Wireless Components Letters, vol. 29, no. 8, 

pp. 513-515, 2019, doi: 10.1109/LMWC.2019.2922496. 

[113]  K. Choi, S. Courreges, Z. Zhao, J. Papapolymerou, and A. Hunt, "X-band and Ka-band 

tunable devices using low-loss BST ferroelectric capacitors," in 2009 18th IEEE 

International Symposium on the Applications of Ferroelectrics, 23-27 Aug. 2009 2009, pp. 

1-6, doi: 10.1109/ISAF.2009.5307566.  

[114] A. P. Saghati, J. S. Batra, J. Kameoka, and K. Entesari, "A Miniaturized Microfluidically 

Reconfigurable Coplanar Waveguide Bandpass Filter With Maximum Power Handling of 

10 Watts," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 8, pp. 

2515-2525, 2015, doi: 10.1109/TMTT.2015.2446477. 

 

 

  



103 

 

 

 

 

 

 

Appendix A: Microfluidically Switched Microstrip Line Circuit Model Optimization 

 

To validate the accuracy of the circuit model representation of the microfluidically 

switched microstrip line from Chapter 3, the following analysis is carried out to: (i) choose the 

adequate parameters that are to be optimized, and (ii) determine the circuit model topology to be 

used. Specifically, for creating an accurate model for the ON-state of the switch, eight different 

optimization cases are considered and compared to the simulated EM response of the switch 

geometry. These cases are variations of the circuit model shown in Figure A.1 and summarized in 

Table A.1. Initially before starting the optimization, the parameters 𝐶𝑔 and 𝐶𝑑 are calculated from 

 
Figure A.1. General equivalent circuit model used for the optimization evaluation.  
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Table A.1. Optimization cases utilized for validation of circuit model accuracy. 

Optimization 

Case 

Isolation 

Circuit 

Connected 

Short Length 

Transmission 

Lines at 

Input/Output 

Parameters to be Optimized 

                 

A No Yes ✓ ✓ ✓ N/A N/A  

B No Yes ✓ ✓ ✓ N/A N/A ✓ 

C Yes No ✓ ✓ ✓ ✓ ✓ N/A 

D No No ✓ ✓ ✓ N/A N/A N/A 

E Yes Yes ✓ ✓ ✓    

F Yes Yes ✓ ✓ ✓   ✓ 

G Yes Yes ✓ ✓ ✓ ✓ ✓  

H Yes Yes ✓ ✓ ✓ ✓ ✓ ✓ 

 

the open circuit condition of the switch (i.e. when there is no overlap between the SMP and the 

microstrip traces). These parameters represent the circuit in its OFF-state, and act as a 

representation of the switch isolation (referred to as Isolation Circuit in this Appendix). For the 

ON-state of the switch, the initial values for the parameters 𝐶𝑠 and 𝐿𝑠 are calculated from the short 

microstrip line equivalent circuit from [86], and 𝐶𝐶  is calculated from the equivalent parallel plate 

capacitance developed between the SMP and microstrip line overlaps (as explained in Chapter 3). 

Additionally, a short length of transmission line (with length 𝐿 = 𝐿𝑜𝑣) is introduced to model the 

microstrip at the SMP-microstrip line overlap. This transmission line is modeled as a microstrip 

line in a multi-layered substrate through Keysight ADS Line Type Transmission Line component 

model as shown in Figure A.1. After calculating the parameters, the cases shown in Table A.1 are 

optimized and compared to the EM response of the switch. Primarily, the selected cases are 

variations of different parameter selections to be optimized, and the Isolation Circuit is either 

connected of disconnected from the model. The parameters 𝐶𝐶 , 𝐿𝑠 and 𝐶𝑠 are always optimized 

because they are considered to be the main contributors to the ON-state switch behavior. The 

Isolation Circuit and the transmission line are either connected or disconnected and their 
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parameters (𝐶𝑔, 𝐶𝑑 and 𝐿) optimized or left unchanged to evaluate their contribution to the circuit 

model performance. The optimization is performed through the Quasi-Newton algorithm utilizing 

the optimization tools of Keysight ADS, and the optimization goals are to match the S-parameters 

of the circuit model to the EM-simulated model. The variation (Δ%) from initial calculated values 

to optimized values, the residual error of the optimization algorithm, and the corresponding 

behavior to the physical phenomena of the switch operation are considered to choose the adequate 

circuit model. 

The optimized simulated responses of each case and their comparison to EM simulation 

are shown in Figure A.2 and the analysis summary is shown in Table A.2. Clearly, Case B offers 

minimal variations from the starting parameters values (𝐶𝑐, 𝐿𝑠, 𝐶𝑠 and 𝐿) after optimization, and 

the closest match to the EM response of the switch in its ON-state. When compared to C and D, it 

 
 

Figure A.2. Simulated responses of each optimized equivalent circuit model cases and their 

comparison the EM simulation of the microfluidically switched microstrip line of Chapter 3. 
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can be seen that the omission of the short transmission line does not allow for accurate modeling 

of the switch in its ON-state. This verifies that the addition of the short length of transmission line 

and omitting the connection of the Isolation Circuit when the switch is in its ON-state, is the best 

performing model. Additionally from the results shown for Cases C, G and H, it is seen that when 

the Isolation Circuit is connected and 𝐶𝑑 and 𝐶𝑔 are optimized, the algorithm tends to bring down 

𝐶𝑔 and 𝐶𝑑 to values close to zero. Indicating that there is no need for these parameters in the ON-

state equivalent circuit of the switch. Similarly, by comparing cases B and F it is seen that 𝐶𝑠 for 

case F is reduced by 95% and 𝐿 increases by 44%, versus 61% and 38% for Case B. Therefore, 

Case B is chosen as the most accurate circuit model to represent the ON-state of the 

microfluidically switched microstrip line of Chapter 3. For the OFF-state, only the Isolation Circuit 

is used. 
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Table A.2. Summary of the optimization analysis for accurate circuit modeling. 

 

    (fF) 𝚫  
   

(pH) 
𝚫  

   
(fF) 

𝚫  
   

(fF) 
𝚫  

   

(fF) 
𝚫  

  

(mm) 
𝚫  

Residual 

Error 

Initial 

Values 
762.57 - 217.58 - 55.36 - 2.11 - 13.83 - 0.5 - - 

Optimization Cases 

A 906.86 19% 194.43 -11% 37.72 -32% - - - - - - 26.07 

B 790.5 4% 150.38 -31% 21.32 -61% - - - - 0.69 38% 13.07 

C 1032.57 35% 216.12 -1% 49.38 -11% 0.1 -95% 0.691 -95% - - 196.43 

D 1033.16 35% 216.11 -1% 50.22 -9% - - - - - - 196.07 

E 896.9 18% 193.94 -11% 21.61 -61% - - - - - - 28.42 

F 780 2% 135.42 -38% 2.5 -95% 2.11 - 13.83 - 0.721 44% 12.2 

G 891.86 17% 198.21 -9% 37.28 -33% 0.1 -95% 0.377 -97% 0.5 0% 32.72 

H 780 2% 150.63 -31% 21.18 -62% 0.1 -95% 0.1 -99% 0.691 38% 12.79 
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