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Abstract

The distribution systems are increasingly challenged by the continued prevalence of dis-
tributed energy resources (DERs), signaling the need for new computational tools to system-
ize their involvement, coordinate their operation with existing control devices, and mitigate
undesired actuation of expensive equipment. Co-optimized operation of the various control
devices becomes possible with the advancement in the power system optimization algorithms
and the increased deployment of advanced metering infrastructure, offering system aware-
ness and two-way communication. The steady-state alternating-current optimal power flow
(ACOPF) problem, being the most descriptive form of OPF, lies at the root of power sys-
tem optimization, aiming to minimize an operating point subject to the system’s physical
and security constraints. The last fifteen years have witnessed some seminal convexifica-
tions of the ACOPF problem, offering more computational tractability when compared to
the original non-convex ACOPF model and a more accurate representation of the physical
model when compared to the linear OPF models. The existing literature has addressed a
breadth of obstacles with particular relevance to the voltage/voltage ampere reactive power
flow continuous and discrete models.

This research aims to build comprehensive computational methodologies that promote the
accuracy of the convex distribution ACOPF (D-ACOPF) problem. Specifically, we propose
to mitigate the trade-off between model precision and computational efficiency by encoding
the precise mathematical models of the physical system and control devices, taking into

account their limits and maintaining moderate actuation.



The first chapter serves as an introduction to the volt var control, the main compo-
nents used in current distribution systems as well as the emergent challenges that face the
conventional volt var control. The second chapter surveys and reviews the literature on
the various modeling aspects of the model-based volt/var optimization (VVO). It begins by
identifying the essential components of the optimization problem, namely, the objectives and
constraints, and then compares and contrasts the current state-of-the-art while highlighting
the need for new methodologies to overcome the modeling and computational bottlenecks to
the existing volt/var scheduling problem.

The third chapter of this dissertation models a general off-line VVO problem for balanced
distribution systems, relying on predicted load and generation profiles. We extend our re-
search in the fourth chapter to consider the unbalances in the distribution system, which is
of practical concern to the validity of the VVO dispatch. A methodology based on the gener-
alized Benders decomposition (GBD) is proposed to incorporate the discrete devices into the
D-ACOPEF. Relying on predicted load and generation profiles, we explore the possibility of
preventing excessive mechanical adjustments of tap changers to reduce higher maintenance
costs.

It is a fact that only exact relaxations to the convex D-ACOPF problem are deemed
feasible to the original non-convex problem. The exactitude of the solution is of paramount
importance because it not only reflects the minimum operational objective that can be
translated into financial savings, but provides the most realistic dispatch of control vari-
ables. Hence, inexact solutions are deemed less realistic. Although inevitably compromising
the exactness, internalizing the distribution system’s fundamental components into the D-
ACOPF problem is of the essence for the solution quality and control dispatch viability.
In the third part of this research, we propose to incorporate two improperly-constrained
applications and a special objective function that initially render the problem inexact. Our

contribution is to circumvent this conundrum and retrieve the exactness (AC feasibility) by

x1



utilizing the concept of convex iteration, in which the relaxation is strengthened iteratively.
The simulations on various distribution feeders and comparative case studies with the liter-
ature evince the success of the proposed method for recovering exact solutions. Moreover,
comparisons with existing methods demonstrate the global optimality of the solution with
lower penalty weights.

The dissertation has resulted in two published conference papers, and two journal papers

(one accepted and one under revision).

xii



Chapter 1: Introduction

1.1 Background

The distribution systems are the downstream part of the electric grid operating at medium
and low voltage levels. Consumers connected to the distribution systems comprise residential
houses (operating at 120 V or 240 V) and commercial buildings (operating at 480 V or 690
V) [1]. The majority of distribution systems in the US have a radial structure, where a
single source (substation) feeds the rest of the feeder. The radiality causes power quality
issues due to the energy wasted along the lines in the form of heat, which is neither used by
consumers nor reflected on the utility revenue. In response, volt/volt-ampere control (VVC)
devices dispersed along the feeder come into play to increase the efficiency of the system.
VVC refers to the process of managing the distribution system’s control assets with voltage
regulation and reactive power (supply and absorption) abilities to improve the power quality
while maintaining voltage levels within the required limits specified by ANSI standard C84.1.
The controllable devices are owned by the utility and mainly comprise on-load tap changers

(OLTC), step-voltage regulators (VSRs), and switched capacitor banks (CBs).

1.1.1 On-load Tap Changers

The distinctive feature of changing voltages in alternating current (AC) circuits using
transformers is exploited to follow the load changes. An OLTC is a transformer with the
ability to step up or step down the output (secondary-side) voltage. There are commonly

33 levels (including the neutral position) that tap positions of OLTCs can take. Further,



OLTCs can be installed as one three-phase unit or as multiple units. However, OLTCs

typically operate on a three-phase basis, where phase taps switch uniformly.

1.1.2  Step-Voltage Regulators

In principle, SVRs have the same functionality as OLTCs. Physically, SVRs are single-
winded transformers (autotransformers). In this research, we use the terms VRs and SVRs
interchangably. SVRs are more flexible than OLTC since they can be located either at the
substation or along the feeder, thus enabling the regulation of voltages at remote buses. Also,
SVRs have the flexibility to be installed at individual phases and can operate nonuniformly.

SVRs can be of type-A or type-B, depending on where the series impedance is located.

In this section, we derive the equation for Type-A and B connections for the single-phase

SVR.
| N
2 IL IL T +
L —
p2 +
I
Is -
— T IS VL
N1 VL +
VS Ey \l/Il VS
Figure 1.1: Single-phase type-A SVR.
1.1.2.1  Type-A

Fig. 1.1 shows the single-phase connection for type-A SVRs on the raise position (higher
voltage is desired at the secondary side), where the primary bus is directly connected to the

shunt winding.



For the ratio r, the voltage on both sides are derived as follows:

B E
fﬁ:ﬁ (1.1)
Vs = By (1.2)
Vi =By + By (1.3)
V= (14 22y (1.4)

Ny

Similarly, the currents into and out of the SVR are affected by the turns ratios.

2N\, = Ny (1.5)
Is=1+1, (1.6)
I =1 (1.7)
-ﬁh:%1+%?b:rh (1.8)

When a lower voltage is desired at the secondary side, the effective ratio becomes:

1.1.2.2 Type B

Fig. 1.2 shows the single-phase connection for type-B SVRs on the raise position (higher
voltage is desired at the secondary side), where the secondary bus is directly connected to
the shunt winding.

The voltage on both sides are derived as follows:



+
¥ REN - Is|
Is ®
= E2
_ L
—> I
+ N, + VS + g
Vs g, <1n Vi VL

Figure 1.2: Single-phase type-B SVR.

E, B,
N, N,
Vs = By — Ey
Vi = E

N.
S Vs=(1- ) B =rVg

1

Similarly, the currents into and out of the SVR are affected by the turns ratios.

Nily = NIy

(1.9)

(1.10)
(1.11)

(1.12)

(1.13)
(1.14)
(1.15)

(1.16)
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Figure 1.3: Local control of volt/var devices.

1.1.2.8  Capacitor Banks

CBs provide reactive power support to reduce or nullify the effect of large inductive loads
and inductances on the system voltages, thereby yielding lower losses. CBs can be equipped
with a switching functionality, which turns the unit on only when the voltage falls below a
predetermined threshold. However, CB units installed at each phase can only be switched

(either on or off) as a group.

1.2 Some Emerging Challenges in VVC

The following subsections briefly describe the issues associated with the management of

current and future distribution systems, which serve as the main motivations for this work.

1.2.1 Incompetency of Local VVC Methods

Traditionally, the VVC devices operate in standalone mode. That is, the mechanical
settings are automated to act to local measurements of voltage/current. Fig. 1.3 illustrates
the measurement and action mechanism. For voltage regulators, as an example, demand
current (or power flow) measurements at nearby the device are used to determine whether
they should step up or down the voltage. A predetermined logical rule triggers the action.
Hence, the VRs step up when the current flows increase (load increases) to reduce voltage
drop and vice versa. While the local-feedback control can maintain voltages within acceptable

limits, it could be only optimal to the vicinity of the control device, providing a lower



efficiency on the broad scale. Besides the lack of coordination among the devices, locally-
triggered actions do not take actions of other local controls into account, and so devices may
counteract one another.

1.2.2  Increased Integration of Distributed Energy Resources (DERs)

1 T T

g\i Clear-day PV
5 [ Cloudy-day PV | |
2
)
g L J
3
[e) - 4
3 0.5
o
@
N N h
©
E | 4
<]
P4

0 1 1 1 1 1

00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

Time (hour)

Figure 1.4: Examples of clear-day and cloudy-day solar profiles recorded on May 15, 2013
and August 15, 2013 at USF.

The distribution system continues to undergo a proliferation of distributed energy re-
sources (DERs), especially those powered by solar photovoltaic panels (PVs) and wind tur-
bines, a.k.a distributed generators (DGs). Because of the decline of PV prices and the Solar
Investment Tax Credit (ITC), the annual PV installations have been experiencing an average
growth rate of 50% from 2010 to 2018, and expected to follow the same trend [2]. The local
supply of renewables plays a crucial role in reducing the net demand seen by the utility,
and so the overall diurnal energy demand is reduced. In turn, the reduction in the demand
current flowing through the transmission cables contributes to the reduction of line losses.
However, the increased adoption of these renewables poses a few operational challenges. The
fact that distribution systems are characterized with high R/X ratios increases the suscepti-
bility of nodal voltages to real-power injections. Also, ramping and fluctuating voltage issues

have mainly been attributable to the immoderate and intermittent renewable power levels.



Fig. 1.4 shows normalized profiles depicting the variability of solar energy during clear and
cloudy weather conditions.

With the local control mechanisms of the VVC device, the high penetrations of DGs could
lead to increased mechanical adjustments, which is adversely impactful on the maintenance

costs and the lifespan of these devices.

1.3 Centralized Volt/Var Optimization (VVO)

\
2
““‘s‘“‘ ’7"0"'0"
NSt

PV Plant

Distribution System Operator (DSO)

Figure 1.5: Visual interpretation of VVC control by DSO.

Intuitively, the aforementioned issues concerning the local control of VVC devices and the
high penetration of DGs can be circumvented by collectively optimizing the control setting
of all devices based on the topological and load/supply information, which is referred to as
centralized volt /var optimization. According to [1], [3], [4], there are two types of centralized
VVO: i) rule-based VVO and ii) model-based VVO. The first one relies on predetermined
logical rules, which is similar to the standalone (local) operation, except that communication
is utilized, and the automation is determined by the DSO. This type, however, provides sub-

optimal solutions [4]. The second type is based on the optimal settings generated by optimal



power flow engines, utilizing the computational capabilities of optimization solvers. For
both types, communication facilities are essential for acquiring the system’s information and
sending command signals. Due to the advances of optimization solvers, the model-based
type provides optimal solutions to the VVO. The advantage of the model-based approach
over the rule-based approach has also been demonstrated in [5]. The simulation results have
shown that the model-based can accommodate larger penetrations of solar energy.

The deployment of smart advanced metering infrastructure (AMI) is envisioned to im-
prove how utilities cope with the ever-changing patterns in the net demand. In 2017, the
installations of advanced metering infrastructure (AMI), also known as smart meters, rose
to 78 million, 88% of which were for residential consumers [6]. AMI provides full monitoring
of hourly and near-real-time (averaged 5 and 15 minutes) electricity usage. Also, AMI has
built-in two-way communication channels, which enable controllable assets and prosumers
(consumers with demand response or DGs) to receive dispatch signals, i.e. ON/OFF status
or amount of power supply/absorption [7]. Fig. 1.5 depicts how the DSO receives informa-
tion on energy usage and sends direct command signals to VVC devices.

To this end, the distribution system operators (DSOs) utilized this technology to manage
dispatchable devices and DGs’ inverters jointly. This operation is referred to as centralized
volt /var optimization (VVO). The centralized VVO is based on the solution of an AC optimal
power flow (ACOPF) model of the system where controllable devices’ settings are among the

decision variables to achieve circuit-wide objectives while abiding by ANSI voltage limits.

1.4 Preliminaries to Convex and Integer Programming

This section serves as a prelude to the mathematical concepts of convexr and integer
programming. For a broader coverage, the reader is referred to the textbooks [8] and [9],

from which the following summary is extracted.
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Figure 1.6: A conceptualization of a convex function.

1.4.1 Convex programming

Before we delve into the classes of convex problems, we begin by defining the basic
concept of convexity. Assume a point z* existing in a set X, and a function f(z) over
the same set. It is said that z* is the global minimum of the function f(z*) if and only
if f(z*) < f(z) for all z € X. That said, a local minimum exists when there is € > 0
such that ||z — 2*||< e. Functions can generally have multiple local and global minima,
but minima of a convex function yield the same value, which is the global minimum. In
optimization, this characteristic lends a computational advantage of the convex problems, as
developed algorithms can solve a problem to the global minimum much faster than that of
non-convex problems (speed is dependent on the problem size, i.e. number of variables and
constraints). A conver function is conver when any point on a straight line of its domain,
say (x1, f(x1)) and (za, f(z2)), is greater than or equal to the function value. For first-order

convex functions, (1.17) should be met.

flazy + (1 = a)zg) > af(z1) + (1 — ) f(x2)
(1.17)

0<a<l1



Among the convex classes, the linear programming is deemed the simplest, and solved
with simplex algorithm. In what follows we present the summarize the forms of the other
two classes of conver programming (cone programming), which will mostly be used in our

modeling.

1.4.1.1 Second Order Conic Programming (SOCP)

It refers to a class of problems that involve a second-order conic constraint of the form:

|Az +b||< "z + d (1.18)

The constraint satisfies the convexity check in (1.17). Therefore, the standard form of

this class of optimization is

minimize  f(z)
. (1.19)
subject to ||Az + b||< Tz +d

1.4.1.2  Semidefinite Programming (SDP)

Positive semidefiniteness (PSD) of a n x n matrix, say X, has the following equivalent

properties:
e af’Xa>0 VaeCn
o All eigenvalues of X are non-negative.

e All principal minors (the determinants of all submatrices of X whose diagonal elements

are of the full matrix diagonal X) are non-negative.

10



(a) convex set (b) non-convex set

Figure 1.7: Graphical interpretations of convex and non-convex sets.

The standard form of an SDP problem is expresses as follows:

minimize C o X

* (1.20)
subject to A e X <b, X =0

where > denotes that X is psd matrix.

1.4.2 Mixed-integer programming (MIP)

Mixed-integer programming refers to a class of of optimization problems that have a
combination of continuous and discrete variables. The discrete variables are used to replicate
the necessary condition of constraint. For example, the tap positions of SVRs are of discrete
nature, and so the model should be designed such that one tap position is switched at a
time (rest of discrete values are zero). Another example is the on/off status of a capacitor,
where the discrete variable represents its commitment to operate. In this report, we use the

discrete variables in combination with the convex continuous variables.

1.5 Outline of the Dissertation

The dissertation is organized as follows: Chapter 2 introduces the fundamental compo-

nents of the centralized ACOPF-based volt/var optimization. Specifically, it summarizes

11



the most common objective functions, controllable devices and topological considerations
incorporated into the D-ACOPF problem. Moreover, it sheds light on the theoretical gaps
in the current state-of-the-art ACOPF problem, upon which the research is based. Chapter
3 formulates an offline volt/var optimization problem based on mixed-integer second order
programming that coordinates the VVC devices in distribution systems with high solar pen-
etration levels. The problem holistically encompasses the most commonly-used objective
functions and models, and is solved with two timescales. A methodology based on general-
ized Benders decomposition (GBD) is proposed in chapter 4 to co-optimize discrete-based
SVRs with photovoltaics into the semidefinite programming branch flow model (SDP BFM).
Acceleration techniques are proposed to enable a multi-time operation and reduce unneces-
sary mechanical actuation. Further, comparison with available MISDP solvers substantiate
the merits of the GBD-based method. Chapter 5 designs a comprehensive distribution power
network comprised of the practical connections of loads, distributed energy resources and
SVRs. The models are integrated into the SDP BFM with necessary relaxations. Conse-
quently, the overall problem with the objective of minimizing voltage deviations from nominal
values loses its AC feasibility due to the introduced models and the strict non-monotonicity
of the objective function. A framework based on the convex iteration is proposed to recover

AC feasibility, providing a solution to otherwise a complex non-convex problem.

12



Chapter 2: Literature Review, Research Gaps and Challenges
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Figure 2.1: Essential Objectives and constraints of the volt/var optimization.

2.1 Overview

Given that the model-based VVO depends on the optimal power flow of the distribution
networks, the following overviews the main objectives and constraints typically used to model

the OPF. Fig. 2.1 depicts the VVO components.
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2.1.1 Objectives

The objectives include, but are not limited to, the following:

2.1.1.1 Loss Reduction (LR)

About 6% of the electricity produced is lost in transmission and distribution systems.
Because distribution feeders operate at lower voltage levels (tens of kV) and have high
resistive lines, the majority of losses are consumed by their lines [10]. Since the power losses
are inversely proportional to voltage levels, the VVC devices have the capacity to reduce the

line losses by increasing the nodal voltages.

2.1.1.2  Conservation of Voltage Reduction (CVR)

The CVR originates from the fact that voltage-dependent loads, i.e. constant-impedance
loads (CILs) and constant-current loads (CCL), consume more energy when the voltage is
above nominal, increasing annual energy costs. CILs are proportional to the voltage and the
voltage squared, respectively. Therefore, CVR practices aim at reducing voltage magnitudes
to the lower half of the ANSI limit (from 0.95 to 1 p.u.), particularly at buses to which voltage-
dependent loads are connected. On the other hand, constant power loads (CPLs) are not
affected by the increase/decrease of voltage. Switching Reduction (SR) The life expectancy
and maintenance costs of utility-owned voltage regulation equipment is dependent on the
number of operations. Therefore, reducing mechanical switching is of economic importance.
This can be achieved via i) scheduling the operations on an hourly basis and ii) reducing the

intra-day adjustments as an operational objective.
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2.1.1.3 Voltage Flattening (VF)

The DSO may wish to keep the nodal voltages around the nominal value so as to mitigate
the voltage fluctuations caused by the DER’s intermittent supply. Increasing the voltage from
the lower half of the allowable limit comes in the interest of preventing excessive voltage drop

at the point of interconnection, which may be further away from the regulated bus.

2.1.1.4 Economic Dispatch (ED)

This comes in the interest of financially incentivizing private owners to engage in regu-
lating the voltage and reducing system losses. This is achieved by minimizing the day-ahead
energy from the substation and DERs. The substation energy is minimized with respect
to the locational marginal pricing at the substation, while energy from DERs is minimized
based on fixed prices determined by long-term power purchase agreements (PPA) with the

utility.

2.1.1.5 Other Objectives (O)

Different strategies can also be considered and formulated as objective functions. For
example, utilizing the demand response models, adjusted directly by the DSO or load ag-
gregators through contracts or incentivized through consumption prices, one can achieve
peak shaving or valley filling of the daily load profile. Another example is to maximize the

capacity hosting of distributed generators.

2.1.2 Constraints

The constraints comprise the modeling of the electrical concept of power flows along the
topological graph representing the transmission lines and node connections. It also includes

the modeling of flexibilities (voltage adjustment and power injection/absorption) of volt/var
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Table 2.1: Objectives, VVC devices and DERs in the relevant literature

Ref. Objective Phase Controllable Assets
LR CVR SR VF ED O VVC DER
[11] v S OLTC,VR PV
[12] v v v M OLTC,VR,CB
[13] v v M OLTC,VR,CB PV
[14] v v M OLTC,VR,SVC PV
[15] v v S OLTC,VR,CB DG
[16] v v S OLTC,VR,CB DG
[17] v S OLTC,VR,CB PV.,DS
[18]* v M OLTC,VR,CB PV
[19] v v M OLTC,VR,CB PV
[20] v v M VR
[21] v M VR DG
[22] v M VR DG
[23] v M VR DG

1 The objective is to maximize the hosting capacity of DGs

devices and DERs, whose main components are summarized in Fig. 2.1. In this report, we
focus on a combination of these devices.

Table 5.3 compares the objectives used by the literature along with the considerations of
system connection (S for single-phase and M for multi-phase) and controllable assets. Take
note that we only focused on references where at least a single VVC device is modeled. DG

is used when DER type is not specified.

2.2 Current State-of-the-art OPF Models and Challenges

The VVO constraints should be explicitly modeled with a high degree of accuracy in

order for the dispatch solutions to be viable for the physical system. There are some tech-
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nical challenges facing the VVO as an OPF-based problem, revolving around the solution

optimality, computational efficiency, and scalability.

2.2.1 The Distribution System OPF Models

The fact that OPF model is nonconvexr and NP-hard, which is short for non-deterministic
polynomial-time hardness, by structure is the main obstacle of the VVO. This comes as a
consequence of multiple nonlinearities in the constraints, i.e. quadratic power and voltage-
current multiplication. References [12]- [14] explore to solve the problem in its original form
with local nonlinear programming (NLP) algorithms. Besides being a hard-to-tackle task,
reaching a global optimum is not guaranteed theoretically with nonconvex problems.

Towards this end, the literature has endeavored various models that approximate the
complicating variables. The following two assumptions have been abused by [18], [19], [24]
and [25] to solve the multiphase distribution systems using linear programming (LP). This
is merely achieved by 1) removing or approximating the quadratic loss terms, and 2) ig-
noring the mutual impedances to remove the phase dependency which is another source of
nonconvexity. While the resultant models are computationally-friendly, compromising some
of the main components making up the D-ACOPF, such as line losses, may compromise the
practicality of the dispatch solutions.

Another approach that has been widely used by the literature is to assume a per-phase
representation of the system. To our knowledge, the convex relaxation was first introduced
to the raidal power feeders in [26], where the nonlinear equality constraint is relaxed as a
second-order conic program (SOCP). The SOC relaxation has also been captured by [27]
for the radial branch flow model (BFM), first proposed by [28] as an NLP-based problem.
In [29], the conditions under which the SOCP-based BFM relaxation is tight are identified.
The tight relaxation guarantees a global optimum. The SOCP-based BFM has been proven

to be applicable for balanced and single-phase feeders as applied in [15]- [17].
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The fact that LV feeders are commonly composed of inherently-unbalanced loads and
untransposed lines is yet of major significance and substantive to the mathematical replica-
tion to provide useful insights into the VVO dispatch. The multi-phase D-ACOPF has been
first convexified by (a) [30] (extended from the SDP-based single-phase D-ACOPF [31]) and
subsequently by (b) [24] (extended from the SOCP-based single-phase D-ACOPF [27]) via
the rank relaxation of a semidefinite program (SDP). In [32], it has been demonstrated that
the rank relaxation in [30] does not always yield tight solutions, and rank-one recovery is
proposed via convex iteration and chordal conversion algorithm where rectangular variables
are used. Recently, reference [22] has also proposed to replace the large PSD matrix in [30]
with chordal relaxation, thereby improving the solution quality and the computational per-
formance. In contrast, the SDP-based D-ACOPF in [24], referred to as SDP-based BFM,
consists of complez-valued matrix variables and a |6 x 6| per-branch positive semidefinite
(PSD) matrix. It has been shown to yield tight solutions for most IEEE feeders with superior
computational tractability.

The linear approximation is the least descriptive model. On the other hand, The SDP
and SOCP convex relaxations generally enlarge the feasible set, promising a global optimality
only when the relaxation is exact, and providing lower bounds to the original nonconvex
problem when the relaxation is not exact. Therefore, the following inclusions of the feasible
region, F', are valid:

Fxip € Fspp € Fsocp € Frp

2.2.2  Discrete-based Model Integration into VVO

It is recognized that mixed integer programming (MIP) is essential for encoding the
physical realization of discrete-based devices such as VRs, yet cumbersome to incorporate
into the some of the OPF models causing an additional computational burden. For NLP-

based VVO, [12] proposes to relax the integer variables with a rounding scheme to speed
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Figure 2.2: Centralized VVO implementations and VR considerations in the literature.
None of the SDP-based papers consider multi horizons.

up the computation. In [14], a two-stage problem is proposed in which binary variables
are relaxed for the multi-time operation, and re-considered for the single-horizon operation.
Recently, reference [13] solves the MINLP-based problem via the application of predictor-
corrector primal-dual interior point method (PCPDIPM). Integrating the discrete variables
is not an issue with LP-based VVO, as indicated by [18]- [19].

Because of the advent in standardized MISOCP algorithms, i.e. branch-and-bound
(B&B), the literature [15])- [17] has prevalently accounted for various discrete-based devices
into the SOCP-based VVO, as mentioned in Table 5.3. Incorporating the discrete variables
into the SDP-based VVO models is a challenging task due to the immaturity of current
solvers. As a result, the assumption that VRs possess highly-granular tap ratios is abused
by [20]- [23] in order to replace the discrete positions with continuous ones. This is realized
in [20] merely by confining the diagonal of the secondary-side voltage within the tap ratio
range. However, the arbitrariness of secondary-side phase angles, that stems from this re-
laxation may cause solutions to deflect from rank-one. The proposed solution to tighten the

relaxation involves the placement of a tunable resistance between the primary and secondary
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sides of the VR. However, it is reported that solution quality depends on carefully tuning
the resistance value, which is case-specific. In [21], McCormick envelopes are employed to
linearize the ratio-voltage relationship, while tap ratios with an SDP constraint. This relax-
ation is possible with a predetermined phase-angle differences between each pair of phases.
Unfortunately, the relaxation is not tight for all case studies, and therefore requires power
flow methods, such as the Z-bus method, to retrieve feasible voltages.

References [22] and [23] investigated both continuous and discrete tap models. The tap
positions over the multiphase lines are assumed to operate uniformly. For the discrete tap
model, a total of 8 taps are assumed for each three-phase VR. Past research [14] has found
that uniform phase tap operation leads to more losses compared to the nonuniform operation.

Fig. 2.2 provides the categorization of the reference papers.

2.2.3  The Multi-Time Co-optimization

The multi-time is usually a requirement to minimize the operational cost over look-ahead
forecasts of load and supply. Although the primary power flow constraints are independent
of time, decoupling the problem by time horizons is not readily achievable for the switch-
ing reduction objective and energy constraints of the distributed storage. Decoupling the
switching reduction objective is possible by using the optimal solution of previous horizons,
as in [15], but it yields sub-optimal solutions. This interdependence among time intervals
poses a computational challenge due to the limit of the number of variables in a single
problem.

The fact that multi-time optimization problem relies on the predicted data of load and

generation may create two challenges.

e Contrary to the load prediction models, the generation prediction models may be

associated with higher error margins.
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e The control devices have different response capabilities. The discrete-based models
that entail larger mechanical actions are generally slower than the power-electronic

inverters.

In this research, we explore the multi-time scheduling problem from the computational
perspective. In order to obtain the advantage of the multi-time operation global optimality
and, at the same time, avoid the computational burden of incorporating stochastic variations,
we assume that the generation predication models have as high an accuracy as the load
predication models. Also, we solve the multi-time scheduling problem with a larger timescale
to ensure that all control devices’ actions can coincide. By committing the dispatch of the
slow devices, another problem can be performed over a smaller timescale with the reactive
power of the inverters as the only control variables. The latter is not included in this research
as it is generally less challenging.

In the third chapter, we perform the VVO problem for balanced systems for the next
day on 15-minute and hourly basis. For unbalanced systems, we perform the problem for
the next day on hourly-basis. Fig. 2.2 indicates that the literature adopting the SDP-based

VVO has not considered the multi-time operation.

2.2.4 Incorporation of Broader Applications into the D-ACOPF

Internalizing the distribution system’s fundamental components into the D-ACOPF prob-
lem is of the essence for the solution quality and control dispatch viability. Our initial work
and the majority of the literature are based on the assumption that all loads, DERs and
SVRs are wye-connected. Moreover, the current convex Multi-phase D-ACOPF cannot solve
for voltage-related objective functions

In this this research, we develop a problem to minimize the voltage deviations from de-
sired thresholds subject to the physical constraints of a comprehensive distribution ACOPF

model. We elevate the model to encompass all connections of loads, distributed energy re-
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sources (DERs), and step-voltage regulators (SVRs). We capitalize on extending the branch
flow model (EBFM) with non-convex primary-to-secondary voltage constraint, and rank-
one constraints belonging to the power flow and delta-connected net injections. Relaxing
the constraints renders a semidefinite programming (SDP), whose AC feasibility depends
on the solution exactness (proximity of all positive semidefinite (PSD) matrices to being
rank 1). For the underlying model, three sources of inexactness (higher rank) are iden-
tified: (i) the voltage-related objective function, (ii) the delta-connected load and DER
constraints, and (iii) the relaxed constraints for voltage regulators (SVRs) with continuous
and non-uniformly-operated tap positions. We propose to ultimately circumvent this rank
conundrum via the application of convex iteration, whereby the inexact solution initializes
a sequence of rank-constrained problems. The correlation among the previous components
allows the convergence to coincide. The merits of the proposed problem are evinced by case

studies on IEEE distribution feeders with retrieved rank-1.
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Chapter 3: VVO for Balanced Distribution Systems

3.1 Introduction

In this chapter, we conduct a multi-objective multi-time VVO on distribution systems
with the assumption that loads and line impedances are balanced . In which case, the per-
phase representation is valid since VVO dispatch is unified among phases. This assumption
significantly reduces the problem size, and hence increases the efficiency of the problem.
Moreover, it enables us to make use of the SOCP-based BFM to represent the D-ACOPF
problem.

The formulated VVO aims at the following:

1. Formulating a comprehensive objective function that comprises LR, CVR, SR, and

VL.

2. Leveraging the standardized MISOCP solvers to model and optimally set discrete de-

vices, namely VRs and CBs in the presence of high PV penetration.

3. Exploring the coordination between off-unity PV and discrete devices towards attaining

the operational objectives with lower switching counts of VRs and CBs.

IThis chapter was published in North American Power Symposium [33], 2018. Permission is included in
Appendix A.
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3.2 Problem Formulation
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Figure 3.1: One-line diagram of a balanced radial distribution feeder and system variables.

3.2.1 Branch Flow Model Based on Second-order Conic Programming

3.2.1.1 Notation

Consider a radial distribution system, where each bus has a distinct parent, represented
by the graph G(B, L), where B and £ denote the sets of buses and line segments. Generally,
buses are indexed by i € B, thus B = {i : ¢ = 0,1,2,...,n}, whereas lines are indexed by
(i,7) € L. Another set is used, Bt = B — {0}, to denote descent buses from the substation

whose voltage magnitude is fixed, Vi) = Viom.

3.2.1.2 Ohm’s Law

The voltage drop on (i, ) is
Vi=Vi—zilij  V(i,j) €L (3.1)

where V;, V; I;, and z;; = r;; + jz;; € C are either complez-valued or phasors (phase and
angle). Since voltage magnitudes are more indicatory of the system’s security. The equation
in (3.1) can be re-written to consist of real-valued variables. Note that this is a practical
assumption given that angle instability is rare in distribution systems [34]. Thence, the angle

is removed by multiplying both sides by their conjugates, and substituting the variables with
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= ViV, vy = V3V, b = 11 and Sy = VI

1jtig
v; =V — 221*]81] + |Zij|2€ij V(l,]) eL (32)

3.2.1.83 Power Balance

For each i — j — k, to interpret the power balance at j, (3.1) is multiplied by I}

Vil = Vil — 2L (3.3)

Vi( Y L+ =Sy -zl V(g €L (3.4)

(4.k)eL

where I; is the net current at bus j. The net load power at bus j is s;, and thus the power

balance becomes

> Sptsi=Sy—zly  V(i,j) €L (3.5)

(j,k)eL
3.2.1.4 Power, Current and Voltage Constraint

To set the relationship among the surrogate variables, the power equation is constrained

as
Civi = |87 V(i,j) €L (3.6)

3.2.1.5 Convezxification

The constraint in (3.6) is nonconvex due to the multiplication of variables and squared
apparent power. However, it can be relaxed into a second-order conic program, as first pro-

posed by [27]. The relaxation is achieved by transforming (3.6) into an inequality constraint
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as in (3.7)

gijvi Z |Sij|2 \V/(Z,j) & E (37)

which can be translated into a linear inequality constraint as follows

v > 1S35)? (3.8)
ﬁ?j — E?j + v — v7 + 4lv; > 4157 (3.9)
(i +:)* = (L5 — v:)* > (2Re(Sy))” + (2Im(S;;))° (3.10)
2Re(S;5)
l +vi > |[21m(S,;) (3.11)
lij —v;

In [29], [35], sufficient conditions under which the SOC constraint is guaranteed to be

exact are provided, and summarized as follows:
1. the objective function is strictly increasing in active power injection.

2. the upper bounds on voltage magnitudes are not binding.

3.2.2 Discrete-based Device Models
3.2.2.1 Voltage Regulator Model

A fictitious node, ¢/, is assumed at the transformer primary to describe the power flow
into the branch (i,7), and set relations among variables. Here, an ideal VR is assumed
(the leakage impedance is negligible), and the primary is connected to substation bus 0.
Subsequently, a virtual bus is introduced to the system, 0’ € B, to represent the secondary

side. Fig. 3.1 shows a per-phase VR installed on (0,1). The tap ratios ry are modeled
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as decision variables so as to adjust the secondary-side and descent voltage levels. Let K
be the number of positions the tap can take, i.e. typically £16 and a neutral position,
K ={klk=0,1,2,...,32}. Then, the per-phase discrete adjustment process is reflected by

the following

K
Ty =
k=

K
(Tmin + A X K)ug g, Zui’»k =1 (3.12)
0 k=0

Ari’ = (Tmax - ’rmin)/|K| (313)

where 7, and rp.c are the minimum and maximum turns ratios, and Ary is the ratio
change per tap. To enforce the ratio selection, a binary variable, u; j, is multiplied by each
ratio, and the sum to 1 results in a single ratio. The formulation in (4.8) requires 3| K| of
binary variables for each VR. The secondary-side voltage is then expressed in terms of the

variable tap ratio as follows.
Vit = T'y1U; (314>

Note that (3.14) is only linear if the primary-side voltage is known, as in our case. If not,

further linearization are required [15]- [18], [36].

3.2.2.2  Capacitor Bank Model

A set of switchable capacitors can be installed at the jth node, where each capacitor is
switched on to increase the voltage at the node of installation and adjacent nodes. Assuming
a CB is connected to bus n € B, C BT, an integer variable, ¢,, is defined to enforce the

switching operation.

Re(s;) =0 (3.15)
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where Im(s¢) is the CB’ variable included in (1b), and Q. and N, are the rating and number

of the total SCB units; respectively.

3.2.3 Continuous-based PV Inverter Model

In order to represent the operating points shown in Fig. 3.2, the reactive-power constraint

is expressed as

A
g
Amax
g
Qmin -
-~
_ ~
_ -~
PF limit
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“Trnin IR
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\4

Figure 3.2: Operating region of a variable power-factor photovoltaic inverter.

[Tm(s9)|< 1/ (s29%)? — (Re(s8))? (3.16)

Overcapacity of the inverter and thus reactive power generation/absorption during peak
PV generation are ensured if the nameplate MVA, namely s™**, is larger than peak PV

n

active power.
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3.2.4 VVO Problem
3.2.4.1 CVR and VF Limits

The purpose of conservation voltage reduction (CVR) and voltage flattening (VF) was
introduced in the previous chapter. CVR (VF) aim at regulating the nodal voltages at the
lower half of ANSI limits (around the reference voltage). The constraints in (3.17) are used
to keep the voltage of the ith node between minimum and maximum thresholds.

y; > 0, Yi = U — (Vthr )% Yi = —v; + (Vthr ) (3.17)

¢ min - i max

Tighter threshold, i.e. Vi = 1, can be assigned for nodes at which voltage-dependent
loads are installed, i € B, C B", and y; is minimized with large cost coefficients to create
a trade-off with the loss-minimization objective. Moreover, this objective can be generalized
for all nodes with lower costs and wider limits, say 3%, to flatten the voltage. The desired

lower threshold is —3% so as to avoid excessive voltage drop at the point of interconnection

and maintain the safety of the equipment behind the meter.

3.2.4.2  Querall Problem

T
VVO = min g Ooss g Tijleij + Qovr E 2t
v,0,5,8¢,89,r,u

t (i,§)eL i€ Beyr

+ Qffat E Zti + Olcap E et — o1

i68+—Bcvr ieBCﬂP

+Qyr Z 7o — Te—1a]

(i"eB+

(3.18)

s.t. 0.95% < vy < 1.05> Vie B'

(3.2), (3.5), (3.11), (4.8), (3.14) — (3.17)
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3.3 Numerical Example

The case study highlights the following:

1. the impacts of cloudy day and clear day forecasted with 15 minutes slots (7" = 96) on

the frequency of an VR and CB operations.

2. the effectiveness of the centralized VVO to mitigate the equipment operations and

adhere to the other objectives leveraging of the inverter’s inherent Var capability.

Figure 3.3: Modified IEEE 33-node feeder.
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Figure 3.4: Loading, clear-day PV and cloudy-day PV profiles.

I !
15:00 18:00 21:00

Fig. 3.3 illustrates the IEEE 33-node feeder, which was modified to include a VR, CBs
and voltage-dependent loads. The original peak load is 4.55 MVA with power factor of 0.82.
Loads at each node and line parameters are obtained from [28]. Three resistive loads are
modeled, each with 100 kW, at nodes 11, 23 and 26. The VR is installed on the substation

branch, with a turns ratio varying from 0.95 to 1.05. The tap position is constrained by
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Tmax = 32, which is a typical limit of a practical tap changer’s winding. Also, two CBs, each
with a total of 360 kVAR and three switchable units (N. = 3), are installed at the remote
node 14, and the heavy reactive power loaded bus 29, whose adjacent buses consume 30%
of the load.

Fig. 3.4 shows a typical loading curve depicted by the total active power load. Also,
three 2-MW PV plants are installed at nodes 17, 24 and 32. Each PV inverter has 110%
apparent-power capacity of the peak active power. Fig. 3.4 shows two PV power profiles by
the total MW at 5-minute resolution. The profiles mimic a real solar panel’s data collected

at the University of South Florida on May 15, and August 15 of 2013.

3.3.1 Case Studies

Two timescales are used to solve (3.18): every 15 minutes (7" = 96), and every hour
(T = 24). Multiple scenarios are carried out interchangeably, with more emphasis on the
tap and CB operations. The figures showcasing the tap changes are only limited to the 15-
minute timescale. Equipment-operation penalties are fine-tuned starting with small values
to achieve the best coordination with PV VARs [11]. For simplicity, loss reduction and CVR

objectives are set with unity penalties, while flatness is found to take effect with 0.3.

Table 3.1: Objectives and cost coefficients

Objective Symbol Range Cost ($)
Loss Reduction (LR) Aloss - 1
Conservation of Voltage Reduction (CVR) Qevr 0.97-1.00 pu 1
Voltage Flattening (VF) Oflat 0.97-1.03 pu 0.3
Switching Olyr 0-32 taps 3
Reduction (SR) Olap 0-3 units each 0.1
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3.3.1.1 Case I: VVO without SR Objective and PV Vars

At unity power factor of the PV inverters, the three scenarios are compared in terms of
equipment operations. Since the inverter’s VAR is absent for this case, the tap-cap costs in
the VVO are zeroed out (ay; = acap = 0) so as to let the VR and CBs satisfy the operation
constraints.

At no PV, the tap actions are moderate and following the load, while CBs kept supplying
full VARs. However, during both clear-day and cloudy-day PV penetrations, the VR and
CB actions dramatically increased in frequency to cope with the dynamic net load for the
15-minute timescale. PV power at a cloudy-day in particular results in significant increase

of switching actions, and is consequently deemed the worst-case scenario.
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(b)
Figure 3.5: 15-minute scheduling: (a) Tap positions. (b) Number of switched CBs.
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Table 3.2: Operation counts at unity PF of PVs for case I

Equipment No PV Clear-day PV  Cloud-day PV

15-minute Timescale

VR 16 36 43
CB1 - 3 11
CB2 - 5 8

Hourly Timescale

VR 9 14 14
CB1 - 4 5
CB2 - 3 2

3.3.1.2 Case II: VVO without CVR and VF Objectives

Keeping SR zeroed out, the scenario with cloudy-day and unity-PF PVs is solved with
and without costs that penalize CVR and VF (aey: = agay = 0) objectives to highlight the
significance of these objectives and explore the capability of traditional equipment to abide
by their voltage thresholds. The main feeder is selected to examine voltage profiles, which
has the VR, a resistive load at node 11, switched CBs at node 14, and a PV at node 17. Fig.
3.6a shows that without the penalties, the LR objective operates taps and CB units mostly
at their maximum bound, thus increasing voltage variations at the downstream nodes and
violating CVR. The taps and CB1 are suddenly reduced when the voltage at node 17 tends
to exceed 1.05 pu. This is because minimum losses are obtained with maximum allowed
voltages. On the other hand, with the penalties, Fig. 3.6b shows that voltages are regulated
closely within the desired limits specified in Table 3.1, and with tap-cap actions shown in
Table 3.2. During evening hours 16:00-21:00, the flatness penalty, agag, takes less effect on
the VR secondary voltage as more taps are switched to counteract the heavy loading. It can
be concluded that traditional equipment can effectively regulate voltages within the specified

thresholds. This however comes at the cost of increased equipment operations.
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Figure 3.6: 15-minute scheduling: Main feeder voltages (a) without and (b) with CVR and
flat-profile penalties.

3.3.1.3 Case III: VVO with Comprehensive Objectives

With off-unity power factor PV inverters, the possibility of coordination between tradi-
tional equipment and inverters towards reducing tap-cap operations and improving voltage
profiles is explored utilizing the multi-objective function in (3.18) and considering all costs
in Table 3.1.

Being the worst-case scenario in terms of equipment operation and voltage variation, the
VVO is solved for the cloudy-day PV. The results in Fig. 3.7-3.8 focuses on the period when

PV power is most variable.

Table 3.3: Cloudy-day operations at off-unity PF of PVs for case III

Equipment With PV VARs With PV VARs & switching penalties

15-minute Timescale

VR 47 20

CB1 12 -

CB2 - ,
Hourly Timescale

VR 16 6

CB1 2 -

CB2 - -
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Figure 3.7: 15-minute scheduling: (a) Tap positions. (b) Number of switched CBs.

Fig. 3.7-3.8 shows that when the VVO is solved without the switching penalties, the
inverters are not urged to generate/absorb enough VARs so as to reduce the tap-cap ac-
tions, since voltages are within the limits as in Fig. 3.8a. As a result, the switching not
only maintains a similar behavior, but also increased for the VR and CB1 as in Table 3.3.
Exceptionally, CB2 remains unswitched without the switching penalty. In contrast, with the
switching penalties in Table 3.1, the PV VARs coordinates well with the VR taps, while keep-
ing CB1 unswitched as in the baseline case. The coordination can be observed at instances
when PV VARs approach zero, VR taps switch with smaller steps than those simulated

without switching penalties and/or VARs.. Also, the reactive/capacitive PV VARs boost
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Figure 3.8: 15-minute scheduling: (a) VAR-compensated main feeder voltages without
switching penalties, and (b) with switching penalties. (¢) VARs from each inverter with
and without switching penalties.

to counteract the peaks and valleys of PV active power. The resulting voltage profiles are
further improved as in Fig. 3.8b. Table 3.3 lists the switching counts for each device.
3.3.2 Performance of the MISOCP VVO

3.3.2.1 Computation

The optimization problem is implemented CVX [37,38] solved by GUROBI optimizer [39].
The number of variables and solve times for each timescale are given in Table 3.4. The solve
times are retrieved from the fifth time argument reported by CVX, which can be obtained

by enforcing cvx_tic and cvx_toc. Due to the high computational burden imposed by
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Table 3.4: Computational performance

Timescale Number of Variables Solve Time (s)

15-minute 46728 -
Hourly 11682 A47.75

the number of discrete variables (binary and integer), we conclude that the hourly timescale

is more amenable to be used for day-ahead volt var scheduling.

3.3.2.2 SOCP Ezxactness

The implementability of the presented centralized VVO is verified via examining the
exactness of the SOCP relaxation. The SOCP relaxation is said to be exact if the solution
admits the power flow characteristics. That is, the SOC inequality constraint of the squared
current in (3.7) satisfies a sufficiently small error. Therefore, the exactness for the solution
of all currents and over all time horizons is examined by computing the error in (3.19). The

results are shown in Fig. 3.9.

Exactness = Z Z Wy — (Ptz” + Qiij)/vt,ﬂ (3.19)
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Figure 3.9: Exactness of the centralized VVO solution for the 15-minute scheduling.
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Since the overall errors are in the vicinity of 1 x 1077, the solution is exact and the pre-
sented VVO is implementable. The maximum error for the 15-minute and hourly timescales

are 1 x 1077 and 8 x 1078, respectively.

3.83.2.3  Comments on the Integration of More DERs

In this chapter, we only focused on the co-optimization of discrete-based devices, i.e.
SVRs and CBs, with PVs. The PV is assumed to have known real power supply (solar
power), where curtailment is not accessible to the DSO. Further, there exists more continuous
models such as energy storage units, whose DC/AC inverters can also produce and absorb
reactive powers.

Increasing the pentration level to higher percentages and incorporating more models
into the single-phase BFM may weaken the SOCP relaxation, thereby producing infeasible
solutions to the ACOPF problem. Such inexactness can be caused by the excess of the
power dispatch which may cause the binding the voltage to the upper allowable limit as
demonstrated in [29], [35]. The existing literature presented some techniques to strengthen
the SOCP relaxation of the single-phase BFM in particular [34,40], and the SDP relaxation
of the multi-phase BFM [32]. The latter can be used by retrieving the SDP relaxation of the

single-phase BFM.

3.4 Conclusion

This chapter formulates a centralized VVO that aims at reducing equipment operations
and keeping overall voltage profiles within the satisfactory limit at high penetration of PV.
CVR practices are also taken into account. Case studies of three scenarios were conducted
to demonstrate the effectiveness of the VVO. At unity power factor of the PV inverters ,
the results have shown that the traditional equipment approximately fulfilled the specified

limits for voltage. This was at the expense of increased and repetitive operations of VR
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taps and CBs. By minimizing the switching cost of VR taps and switched CBs, off-unity
inverters operate as the fundamental voltage regulators mainly via boosting reactive-power
supply /absorption throughout the variable PV penetration. Therefore, coordination between
the traditional equipment and PV inverters can effectively reduce equipment operations,

make optimal utilization of PV powers, and flatten voltage profiles even at mid-way nodes.
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Chapter 4: VVO for Unbalanced Distribution Systems

4.1 Introduction

In this chapter, we extend the VVO problem to consider the distribution system’s unbal-
ances'. An offline volt/var framework is proposed that optimally coordinates the day-ahead
scheduling of voltage regulators with off-unity inverters of photovoltaics (PVs) subject to
physical and security constraints of unbalanced distribution systems. Similar to [11], the
proposed problem makes use of predicted load and generation profiles to return a globally
optimal operating point for the next day with minimized voltage regulator actions (VRAs).
The operational objectives comprise minimizing the energy import from the substation (max-
imize solar utility), the line losses, and the inter-temporal actions of voltage regulators (VRs)
to reduce their maintenance costs and better coordinate with the PV Var compensation. To
account for the multi-phase and unbalanced nature of distribution systems, we build upon
the rank-relaxed semidefinite programming branch flow model (SDP BFM), whose tight so-
lutions ensure global optimality. Also, exact discrete-based VRs exhibiting the mechanical
adjustments of tap positions are used. The resultant day-ahead volt/var optimization (VVO)
is a mixed-integer semidefinite program (MISDP).

From the existing methods presented by the relevant literature and summarized in Chap-

ter 2, we observe the following limitations:

IThis chapter was accepted for publication in IEEE Transactions on Sustainable Energy [41], 2020.
Permission is included in Appendix B.
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e The detailed model of discrete-based VRs with nonuniform dispatch of phase taps has

not been incorporated into convexr multi-phase OPF models.

e The capability of current MISDP solvers is limited to smaller instances of binary vari-
ables. Besides, solving the multi-time problem may not be possible. The two aspects

are shown in the section of computational performance.

e The multi-time consideration to minimize the VR’s cycling over predicted load and

supply has not been explored using conver multi-phase OPF models.
What follows are the challenges identified to address the limitations using SDP-based
BFM [24]:

e The presence of trilinear terms emanating from ratio-voltage relationship.

e The difficulty of incorporating binary variables into the SDP-based problems due to

the immaturity of current MISDP solvers.

e The difficulty to account for the multi-time operation in a single closed-form problem

since it increases the cardinality.

4.2 Contributions

Motivated by the former limitations, this paper proposes a customized GBD-based al-
gorithm that provides a global optimal multi-time scheduling of VRs and PVs over an
hourly horizon window, accurately internalizes the discrete nature of three-phase VR model
with independently-controlled tap positions (33 tap ratio per phase), and reduces the inter-
temporal VRAs, which can ultimately be achieved via re-adjustments of continuous PV Var

compensation throughout the scheduling horizon.

1. A multi-time co-optimization of VRs and PVs is formulated which integrates detailed

discrete tap positions into the state-of-the-art SDP-BFM model to minimize VRAs.
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Figure 4.1: (a) Original distribution line. (b) Matrix-based representation with angle

relaxation.

The binary expansion technique, presented in [36] for single-phase tap changers, is
extended to the multiphase BFM. To the best of our knowledge, accounting for the
multi-time coordinated operation with VRA reduction on the SDP-based multiphase

D-ACOPF have not been accomplished by the literature.

. An efficient solving algorithm based on GBD is designed. The subproblem (SP) is
decoupled by the prediction horizons and computed sequentially, and the multi-cut
master problem (MP) solves the tap ratio variables and inter-temporal VRA objective.
The problem separation not only provides an alternative to integrate the binary vari-
ables, but also sidesteps the non-convexities and the rank conundrum originating from

the VR incorporation.

. Enhancement of GBD convergence is designed for the specific structure of the problem.
The convergence is improved by adding constraints to the master problem that bind

the tap ratios by the voltage limits.
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4.3 Problem Formulation

In this section, we review the multiphase BFM, introduce the VR and PV models, and
set the objectives for the proposed multi-time scheduling problem. For brevity, the time

index, ¢, is removed from modeling subsections.

4.3.1 Branch Flow Model Based on Semidefinite Programming

Consider a radial distribution system (each bus has a distinct parent) represented by the
graph G(B, £). The root bus, whose voltage is set to Vjom, is denoted as 0, thus Bt = B—{0}.

In what follows, we use the Ohm’s law to derive the matrix-based SDP BFM constraints [24].

4.8.1.1 Ohm’s Law

The voltage drop on (i, ) is
Vi =Vi — 21 (4.1)

where V;, V;, and I;; € C!%l while 2;; € CI®/*I%i|. When both sides are multiplied by their
Hermitian transposes, and v; = V;VH, v; = V]V]H, Sij = V[H and ¢; = I;:I1 are defined,

1jtijg

(5.1) can be re-expressed as

i =i — (Sijzh + 2i555) + zilijzh, V(i) € L. (4.2)

v ] z]?

In this form, actual phase angles are implicit in the nondiagonal complex entries of the
surrogate variables, whereas diagonal entries represent the squared voltage magnitudes (real

values).
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4.8.1.2  Power Balance

For each i — j — k, to interpret the power balance at j, (5.1) is multiplied by Iilj-:

V]]llj{ = Vilg — Zz’jfijlg’ (4.3)
Vi S0 I 1) = 5 — 20, (4-4)
(L

where [; is the net current at bus j. The net load power at bus j is s; € C!®l, and thus the

power balance is expressed as the diagonal of (4.4):

> diag(Sjr) + s; = diag(Sy; — 256s;),  V(i,j) € L. (4.5)
(4,k)eL

4.8.1.3 PSD and Rank-1 Matriz

The following positive and rank-1 2|®|x2|®| matrix, written in a 2 x 2 block, are essential

for the power flow constraint (v; ® £;; = S;; © SH

ij» Where © is an element-wise multiplication

operator).

V; Sij

Fy = =0 VY (i,j)eL (4.6)
SH

rank(Fj;) =1V (i,§) € £ (4.7)

where = enforces the positive semidefiniteness (all matrix eigenvalues are nonnegative).

4.3.1.4  Convezification

The rank-1 constraint (4.7) is removed from the set of constraints to arrive at a convex

problem. The solution of each Fj; should however promise a close proximity to rankl, for
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Figure 4.2: (a) Three-phase VR. (b) Simplified representation of the VR line in SDP-based
BFM.

which an exactness check will be conducted on the results in the section of computational

performance.

4.3.2 Three-phase Voltage Regulator Model

A three-phase VR consists of three single-phase autotransformers, each equipped with
an independent tap changer to regulate the system unbalances. In this chapter, we consider
a wye-connected type-A VR, in which the primary-side bus ¢ is connected to the shunt
directly. A virtual bus is introduced to the system, i’ € B®, to represent the secondary side,
which is connected to the series impedance via taps. Fig. 5.2 shows the connection of the
three-phase VR. The tap ratios ry € RI%l are modeled as decision variables so as to adjust
the secondary-side and descent voltage levels. For simplicity and given that the VR series

impedance is too small [42], an ideal VR is assumed and the series impedance is neglected.
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4.3.2.1 Per-phase VR Model

Let || be the number of positions the tap can take, i.e. typically 16 and a neutral
position, K = {k|k = 0,1,2,...,32}. Then, the per-phase discrete adjustment process is

reflected by the following:

Ve = VeVl e B° (4.8a)
K
rh =) (MU AT x kg, Vi eB (4.8b)
k=0
K
dufy=1 Vep (4.8¢)
k=0

where A" = (r™max — pmin) /|KC| To enforce the ratio selection, a vector of 33 binary variables,
u;r, is multiplied by all possible each ratio, and the sum to 1 results in a single ratio. The
formulation in (4.8) requires 99 of binary variables for each three-phase VR [43]. For fewer
variables, the binary expansion technique [36] is adopted, and (4.8b)-(4.8¢c) is reformulated

as:

£
rg =t ATy 20, Vil e BY (4.9)

i =
e=0

where £ = {ele = 0,1,...,5}. In this form, only |£|= 6 binary variables are needed to

construct 33 possible tap ratios, and a total of 18 binary variables for each three-phase VR.

4.3.2.2  Secondary-Side Voltage Constraint in the BFM Problem

To integrate the tap ratio model into the SDP BFM, the secondary-side voltage constraint

(4.8a) is transformed into:

Uy = (””1"7’;) O, =Ty O vViep (4'10)
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It is easily observed that the newly-defined ratio variable, 7y € R is a symmetric

matrix with each of the diagonal elements as the square of (4.9), and mutual elements as the
products of composite tap ratios, e.g. 74 = r¢r%. In addition to (4.9), we define 5?76 = uf ¢

i’ el

to linearize each of the diagonal elements using the big-M method as follows

Vo € ®,i' € B :
E
0= (M x ) + AT 2% (4.11a)
e=0
0<El, < (L—uf )M (4.11b)
0<&, <ul M (4.11c)

M can be replaced with r™** to avoid ill-conditioning. The nondiagonal elements can be
treated similarly, each with two sets of binary variables, but are simplified with tap ratio

products leveraging the problem decomposition as clarified in the following sections.

Remark 1 For exposition, the uniform tap operation can be resembled by reformulating
(4.10) to have a single tap ratio represented by one set of binary variables.

The separation of the two circuits is disambiguated by conserving power flows through bus

i

4.3.3 Three-phase PV Inverter with Variable Power Factor

Off-unity PV inverters can be governed to supply or absorb reactive power. Fundamen-
tally, power-electronic inverters can function with a variable power factor (PF) which has
a continuous reactive power capability during on- and off-peak (STATCOM mode) periods.
It is assumed that the DSO has a direct dispatch control over PVs. For a PV at ¢ € B8,
the operating region based on solar power and bounded by the inverter’s capacity is shown

in Fig. 4.3. This is translated into the following set of an SDP constraint and inequality
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constraints:

G; =0 Vo e &1 € B

0< Re(sf’d’) < pler Vo € ®,i € B

(4.12a)

(4.12D)

where (©) denotes the conjugate. Note that an oversized inverter is assumed, thereby ensuring

Var injection/absorption during peak solar generation.

Remark 2 The inverter’s capacity limit constraint in (4.12a) is in Schur complement form

[9], which is a generalization of the SOCP constraint, (s™)2 > 5?2,

2

Considering the PV model in (4.12) and the constant-power demand s9, the net load at

bus 7 € B8 then becomes

si:s?—si.

(4.13)
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Figure 4.4: GBD structure with temporally-decomposed subproblems

4.3.4 The Multi-time Scheduling Problem

The problem is formulated with two sets of variables defined as follows:

X = {.TJ|SU = Uaga Sa Sg}a Y= {y|y = T,f,ﬁ,u}

4.8.4.1 Objectives

4.3.4.1.1 Substation Energy and Loss Reduction

Minimizing the energy purchase from the substation comes in the interest of reducing
energy consumption and prioritizing the solar utility (minimizing curtailment). Reducing the

real line losses incites control variables (tap positions and PV Var) to increase the voltage.

fox) = cp | Tr(Re (Sore) + > Tr(Re (2i6i74)) (4.14)
(j,k)eL
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4.3.4.1.2 VRA Reduction

The change among intra-day ratio variables is minimized without imposing an initial

state, so as to reduce the VR’s mechanical switching, and thus maintenance costs.

=D > calh -5 (4.15)

i'eBT ped

4.8.4.2  Overall Multi-Time Scheduling Problem

VVO := min ift(x) + i fi(y) (4.16a)
Y t=1 t>1

s. t. = VaomVie (4.16b)

V2 < diag(vi,) <V Vi€ BT (4.16¢)

(4.2), (5.3), (4.6), (4.9)-(4.13), ze X, ye) (4.16d)

The ratio-voltage multiplication in (4.10) renders (4.16) nonconvex. In the next section,
this nonconvexity is overcome by applying the GBD, which solves variables of X and Y in

separate problems.

4.4 Generalized Benders Decomposition

In this section, we apply the GBD [44], which was extended from [45], to decouple
and solve the problem iteratively, thereby avoiding the aforementioned nonlinearity, and
providing an effective approach to solve the MISDP problem. In each iteration, the solution
to the master problem over ) is passed to the subproblems. In turn, the subproblems will be

solved over X and optimality cuts will be created for the master problem. Conventionally,
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if the master renders one subproblem infeasible, the subproblem will be reformulated and a

feasibility cut will be created.

Remark 3 Because of the wide range of tap ratios that VRs can take, the MP could pass a
tap ratio to a single SP that results in the secondary-side voltage exceeding the upper bound
or falling below the lower one, thus making the respective SP infeasible. In which case, a
feasibility-check problem (FCP) should be formulated to create a feasibility cut whenever a
single-time SP is infeasible, and ensure the MP avoids this particular combination of ratios.
This prolongs the convergence, as the FCP 1is computed each time the MP oversteps or
understeps a tap position at a certain phase and a certain time. Motivated by the work
in [46], additional constraints are enforced on the tap ratios to respect the secondary-side

voltage limits relying on primary-side voltage parameters acquired from cumulated iterations.

4.4.1 Subproblem (SP)

The SP corresponding to the SDP-based BFM in the x-space only can succinctly be

written as following.

SP :=min f'(z) (4.17a)
s. . v, =7, Oul (4.17b)
(4.2), (5.3), (4.6), (4.12), (4.13), (4.16b), (4.16¢), z € X (4.17¢)

where superscript (*) distinguishes quantities obtained from the MP, and n denotes the
iteration. The solutions to the SPs provide optimal Lagrangian multipliers A € RI®«I*I7|

associated with the real diagonal of the secondary-side voltage.
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Note for each VR, based on (11), there are 9 equality constraints. To streamline the cut-
creating process, only three constraints related to the diagonal components are considered:

AT AN vf)fn - dual variable A7, (4.18)

7,

The tap ratios in (4.9) are then utilized to realize the nondiagonal elements, and thereby the
matrix 7;, to preserve voltage phase angles.
The upper bound of the original problem in (4.16) is composed of the aggregated solutions

to the SPs and the fixed objective pertaining to the switching reduction.
T T
O = D F'(x) + ) Fy") (4.19)
t=1 t>1

4.4.2  Feasibility-Check Problem (FCP)

The FCP is formed by re-formulating the original problem such that a feasible solution
is guaranteed for any given tap ratio. The objective function is to minimize the diagonal

of the nonnegative auxiliary variable relaxing the ratio-voltage equality constraint, f;(w) =

diag(wy).
FCP := min f'(w) (4.20a)
s.t.ovp, = f;‘,nt O vy +wy (4.20b)
Wl = 0 (4.20¢)
(4.2), (5.3), (4.6), (4.12), (4.13), (4.16b), (4.16¢), z € X (4.20d)

The dual variables, u € RI®#*I71 associated with the diagonal of the constraint (4.20b) are

used to generate the feasibility cut.
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Algorithm GBD for Multi-time Scheduling

Step 1 — set n =1 and 6} = —oo, and pick any y; € Y
Step 2
for t = 1:T do
solve SP
if solution is feasible then
update 07 and A}, and set f*(w) = pp =0
else
solve FCP
update pf, and set f*(x) = A} =0
end if
end for
Step 3 — check convergence:
if |07, — 0r|< € then
break
disclose optimal results
else
continue
end if
Step 4 — increase n by 1
— solve MP, and update 6} and y;'
— return to Step 2 =0

4.4.3 Master Problem (MP)

With solutions to (4.17) and (4.20), the MP is formulated in y-space with constraints on

the VRs.
MP := mln Znt + th (4.21a)
t>1
st > N+ Y S G )
'eBT ped

N=1,2...,n—1, t=1,2,...,|T| (4.21b)

N N n N *N

03 )+ X s - )

i'eBt ¢

N=1,2...,n—1, t=1,2,...,|T| (4.21¢)
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max(vi)Y < V' t=1,2,...,|T] (4.21d)
min(v{y)is, >V t=1,2,...,[T] (4.21e)

(4.9), (4.11), yed (4.21f)

Constraints (4.21b)-(4.21c) are respectively the optimality and feasibility cuts. The multi-cut
GBD yields the same result as the uni-cut GBD (a single cut over the entire time horizon),

but with faster convergence [47]. vff € RV in (4.21d)-(4.21e) denotes a vector of primary-

pp,xL pp 1
(O A O

side voltage quantities obtained from accumulated iterations, | ]T, where
max/min yields one quantity. Though not strictly removing infeasible tap selection, these
two constraints reduce the search space and substantially improve the convergence process,
and so removing them returns the classic GBD problem. The optimal solution to (4.21), 6},

is the lower bound of the original problem.

4.5 Numerical Case Studies

In this section, the efficacy of the proposed scheduling problem is evaluated using multiple
case studies on the radial structures of modified 37-bus and 123-bus feeders. The hourly
normalized profiles shown in Fig. 4.5 are uniformly applied to real and reactive power
demand and PV real power. Per-phase VRs are assumed to operate with 33 levels and a
turns ratio varying from 0.9 to 1.1. The primary cost is assumed to be (cp = 100$/MWh).
Due to the uncertainty of the VR’s life expectancy [48], their tap adjustment cost, ¢, is
unified for all VRs and varied to yield a targeted adjustment reduction, i.e. close to 50%
reduction. Peak PV real power will capacitate oversized inverters to generate/absorb 46%

of [s™**| as a reactive power.

54



—@— pemand —¥— Solar

Normalized Profiles (%)

2 4 6 8 10 12 14 16 18 20 22 24
Time Horizon (h)

Figure 4.5: Hourly demand and solar profiles.

O Loaded Bus

O Loaded Bus with PV

Figure 4.6: Modified IEEE 37-bus feeder.

4.5.1 Modified 37-bus Feeder

Fig. 4.6 depicts the modified IEEE 37-bus feeder with peak demand 2.7348 MVA and 0.9
PF. All lines are three-phase configured. Two VRs are placed as in Fig. 4.6 to compensate
for voltages at remote buses. Nine three-phase PV are considered. Each PV inverter has a

capacity of 250 kVA, and their combined penetration is 74% of the MW load.

4.5.1.1 Case I: Considering Primary Objective

The algorithm is computed with different scenarios to show the capability of VRs and
PVs to attain minimum substation intake and line losses, and demonstrate the need for an
extended objective. The switching penalty is set to zero (¢, = 0). From Fig. 4.7a-6.3c and
Table 5.3, it can be seen that the baseline case with no PVs has the highest energy import

and losses, but least tap switching. When unity-PF PVs are added, the VRs together with
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Table 4.1: Results for case I

g . Sub. Loss Average VRA

cenario (MWh) (MWh)  Volt. (pu) Count
Baseline 49.8493 1.1982 1.0220 20
Unity-PF PVs 35.3499 0.9051 1.0246 60
0.9-PF PVs 35.1483 0.6929 1.0253 58

PV generation contribute to 29.1% and 24.5% of substation energy and loss reductions, albeit
at the expense of excessive VRAs. PVs with off-unity PF, though contribute to a larger loss
reduction during off-peak hours, do not seem to coordinate well with VRs or reduce the tap
switching despite their reactive power capability. This signifies extending the objective to
limit the VRAs.

The temporal variations of the average and range of the three-phase voltages are shown
in Fig. 4.8a. Also, voltage magnitudes at phase C, whose MVA load accounts for 44.35%
of the total load, are plotted in Fig. 4.8b-4.8c. It is noted that while voltages are regulated

within the +5% limit, the VRs tap high increasing the secondary-side voltage near the upper

bound.
Table 4.2: Results for case 11
VRA Cost Sub. Loss Average VRA
Cor (MWh) (MWh) Volt. (pu) Count Reduction
60 35.1518 0.7073 1.0254 37 36.2%
70 35.1521 0.7077 1.0247 34 41.4%
80 and 90 35.1513 0.7068 1.0238 30 48.3%

4.5.1.2  Case II: Considering Extended Objective

In light of the results in Case I, we solve the scheduling problem with the extended

objective to explore the possibility of urging PVs to collectively produce/absorb enough
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Figure 4.7: Case I: The tap ratio dispatch curves of (a) VR1 and (b) VR2 show that major
VR switching occur during peak hours of PV generation. (c¢) Profiles of substation MW
import /export, and line losses. 0.9-PF PVs further reduce the losses during off-peak hours.

reactive power so as to reduce VR mechanical switching. Table 4.2 lists the results with three
incremental switching costs, all of which are less than the primary objective cost (¢yr < Cpri)-
With ¢,, = 90, Fig. 4.9a-4.9b shows that VR1 spares 62.5% and VR2 spares 38.24% of their
actions, bringing the total VRAs down to 30. In addition to the longevity advantage, the
percentage VRA reduction is proportional to the maintenance interval schedules [11], [49].
Being close to the VRs, the dispatch curves of PV6 and PV24 are also plotted in Fig.
4.9¢-4.9d. It is evident that major alterations of reactive power dispatch occur at times when
a steep tap action is spared. Also, VR taps are kept at lower positions during peak-loading
hours with almost insignificant PV reactive power changes. In general, the VRA penalization
heightened the PV reactive energy absorption by 105% compared to the unpenalized case,

whereas the total reactive energy supply only decreased by 18.3%.
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Figure 4.8: Case [: (a) Maximum, minimum and average voltage variations throughout the
day. Nodal voltage variations of phase C (highest-loaded phase) voltages (b) without and
(c) with PVs.

4.5.1.8 Case III: Comparison with Uniform Tap Operation

The results of nonuniform tap dispatch presented in Cases I and II are compared with the
uniform tap operation, where phase tap positions of each VR switch uniformly. For this, the
tap ratio is re-formulated to have one set of binary variables. Without the VRA penalization,
the VRs with 0.9-PF PVs are scheduled with 54 VRAs in total, only 6% lower than the results
in Case I. Enforcing the penalization with ¢, = 90 reduces VRAs to 51, which is 70% more
than the results in Case II. This shows that the nonuniform ratio modeling is more economic
and amenable to the VRA reduction, even with lower values of ¢, as demonstrated in Case

IT.
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Figure 4.9: Case II: With ¢,, = 90, the tap ratio dispatch curves of (a) VR1 and (b) VR2
evidently decreased by 48.3%, and dispatch curves of (¢) PV6 and (d) PV24 are
repositioned to absorb reactive powers during excessive PV generation.

Table 4.3: Results for case 111

VRA Cost Sub. Loss Average VRA
Cor (MWh) (MWh) Volt. (pu) Count

0 35.1499 0.6943 1.0238 54

90 35.15 0.6945 1.0236 51

4.5.2 Modified 123-bus Feeder

The proposed algorithm is also solved for the IEEE 123-bus feeder, which has multiple
line configurations and a peak demand of 3.9833 MVA and 0.88 PF. The modified system
shown in Fig. 4.10 involves five VRs and three PV plants. We introduce VR5 to test the
scalability to a higher number of VRs, and to regulate voltages of its downstream lateral.

VR2 and VR3 are installed on single- and two-phase lines, respectively. The capacitor banks
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Figure 4.10: Modified IEEE 123-bus feeder.
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Figure 4.11: 123-bus feeder maximum, minimum and average voltage levels of the baseline
case and the 0.9-PF PV case with the penalized VRA.

are assumed inactive. The capacity of each PV plant is 1.1 MVA, and their total penetration
compounds to 86% of the MW load.

Table 4.4 lists the results with and without 0.9-PF PVs along with the penalized-
adjustment case. For this feeder, the baseline has the highest number of tap switching
in which all VRs are engaged in the regulation. With PVs and unpenalized switching, the
total VR adjustments reduced by 24.7%. The tap ratios of VR1 remained unaltered at 1.05.
VR4 and VR5 constitute 70.3% of the total adjustments since the MVA loads, downstream
their secondary sides, are 63% of the system’s total load in addition to all PVs. When a
VRA cost of 60 was invoked, VR2 and VR3 did not switch. Moreover, the total adjustments

of VR4 and VR5 reduced by 64.7% from the baseline (53.12% from the unpenalized VRA
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Table 4.4: Results for modified 123-bus feeder

Sub. Loss Average VRA

Scenario (MWh) (MWh) Volt. (pu) ¢, Count Reduction
Baseline 71.4343 2.3637 1.0299 0 85 -
0.9-PF 49.6419 1.2954 1.0399 0 64 24.7%
PVs 49.6419 1.2954 1.0392 60 30 64.7%

Table 4.5: Number of variables

Modified 37-bus Feeder Modified 123-bus Feeder
SPs MP SPs MP
25320 4824 45840 12450

case), and without inciting added energy import or losses. The temporal voltage variations
(average and range) for the baseline and penalized switching cases are plotted in Fig. 4.11.

The VRAs of a single VR depend on the system topology, VR location, and the net
demand change downstream from the VR. These factors not only differ from one feeder to
another, but also from one VR to another [5]. From the previous case studies, we can deduce
that larger values of ¢, are required for the 37-bus feeder, where VRs are not cascaded, to
spare 50% of VRAs. For the 123-bus feeder, where VR2-5 are cascaded by VR1, a smaller

unified value of ¢,, is sufficient to obtain a considerable VRA reduction.
4.5.3 Performance of the GBD-based Multi-time Scheduling

4.5.3.1 Computation

The problems are implemented in MATLAB 2016b with CVX [37,38], where the SDP-
based SPs are solved by Mosek solver [50], and the MILP-based MP is solved by Gurobi
solver [39]. All simulations are performed on a laptop with Intel Core i7 at 2.7 GHz, 16 GB

memory, and MAC OS 10.14. Table 4.5 lists the size of each problem for both feeders.
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Figure 4.12: GBD convergence of (a) the 37-bus feeder case with ¢, = 90, and (b) the
123-bus feeder case with ¢,, = 60.

Table 4.6 lists the average number of iterations, the average convergence values, and
solving time costs averaged over all cases on each feeder for both single- and multi-time hori-
zon scheduling. The tolerance, ¢, is chosen to be le—3. However, the problems converged to
even lower error values shown in column 3. Though solved sequentially, parallel optimization

computing of SPs is also possible [51].

4.5.3.2 SDP Ezactness

For the rank-relaxed SDP problem, the exactness is customarily checked upon solving
the problem by computing the eigenvalue ratio of each PSD matrix. If the ratio is small, it
indicates that the PSD matrix has one dominant eigenvalue, which suffices to conclude that
the solution is exact. The ratio is computed as in (4.22), where |eig;|> |eig,|, for all PSD
matrices over the time horizon. The last column of Table 4.6 lists the ratio averaged over

all cases.

Ratios = Z Z |leig, /eig; | (4.22)

teT eigEFitj

The small ratio indicates that the relaxation is tight. Hence, the recovered optimal solutions

are deemed AC feasible.
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Table 4.6: Performance of the GBD

Average Ave. Conv. Ave. Time

Scheduli . i
cheduing Iterations |0, — O (s) Ave. Ratio

Modified IEEE 37-bus Feeder

Single-time 4.95 6.91e-09 4.46 6.28e-09

Multi-time 9 1.04e-07 187.78 6.87e-09
Modified IEEE 123-bus Feeder

Single-time 10.27 6.24e-09 10.41 7.48e-08

Multi-time 10 2.59e-08 266.54 1.45e-07
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Figure 4.13: Comparing the solve time and objective values of Yalmip-BNB and GBD
method solutions for the modified 37-bus feeder. Evidently, the proposed problem
outperforms that of the Yalmip-BNB.

4.5.3.8  Comparison with Branch-and-Bound Method

To compare the proposed method with available solvers such as branch-and-bound method,
we use Yalmip’s built-in BNB solver [52] along with Mosek to solve the MISDP problem.
First, the element-wise nonlinear constraints in (4.10) are linearized using additional sets of
big-M inequality constraints in the flavor of (4.11). We attempt to solve the problem for a
single-time dispatch, and a multi-time dispatch with reduced VRAs on the modified 37-bus
feeder. For the nonuniform tap control, where three sets of binary variables are required,

the problem did not converge for both time operations.
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On the other hand, using the uniform tap control with one set of binary variables, the
problem converges only for the single-time operation as in [22,23] with average solve time of
33.85 s. The solve times and objective values are compared with the proposed GBD method
in Fig. 4.13. It should be noted that the convergence is sensitive to the choice of big-M
values. Randomly large or small values could also cause the problem to be non-convergent.
In our experiments, we found that setting M = 1000 provides the fastest convergence.
For the smallest consideration of multi-time operation (two time steps), the Yalmip-BNB
problem is incapable of convergence even with maximizing BNB iterations to 50000. This
also corroborates the capability of the proposed method to solve for multi-time operation

with nonuniformly-operated taps.

4.6 Conclusion

This paper proposes a multi-time scheduling framework based on the SDP-based branch
flow model to optimally dispatch discrete-based voltage regulators with nonuniform phase
operation and off-unity inverters of photovoltaics, while considering the VRA costs. We
circumvent the numerical complexities intrinsic to the MISDP problem and the nonlinear
voltage-ratio relationship by the application of GBD with decoupled subproblems and a
multi-cut master problem. We also propound additional constraints to accelerate the GBD
convergence by narrowing the tap ratios with respect to secondary-side voltage limits. The
case studies on the modified IEEE 37-bus and 123-bus test feeders evince the effectiveness

of the proposed algorithm with a coordinated operation of VRs and PVs.
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Chapter 5: Comprehensive and Exact D-ACOPF Model

5.1 Introduction

The distribution systems are increasingly challenged by the continuing emergence of
distributed energy resources (DERs), signaling the need for optimized computational tools
to systemize their involvement and coordinate their operation with existing control devices.

The alternating-current optimal power flow (ACOPF) problem lies at the root of power
system optimization. It aims to minimize operating costs subject to system’s physical and
security constraints. Unfortunately, its non-convexity makes it difficult to solve. To break
away from unrealistic dispatch solutions produced by the OPF problem [53], recent research
has focused on convex relaxations. The breakthrough occurred when Jabr [26] and later Bai
et al. [54] led the first convex relaxations of the ACOPF, respectively using second-order
conic programming (SOCP) and semidefinite programming (SDP). This paved the way for
assessing the optimality [31], exploiting sparsity [55-57] or cutting planes [58] to enhance
the computational performance, and developing other relaxations such as SOCP BFM [27],
moment relaxation [59], QC relaxation [60], and new SDP relaxation (nSDR) [61]. The
previous models have exclusively targeted single-phase (radial and meshed) systems.

The multi-phase consideration in distribution ACOPF (D-ACOPF) is of practical impor-
tance for unbalanced distribution systems. Dall’Anese et al. [30] were the first to develop a
multi-phase SDP D-ACOPF. Another seminal, and more stable, SDP model was proposed
by Gan and Low [24] based on the BFM. Over time, a plethora of applications has been

layered on top of these convex models. Some of these applications are bound to affect the

65



exactness of the relaxation. Generally, the rank-relaxed SDP problem is said to be exact,
and thus AC-feasible, if the rank-1 condition is fulfilled. Fig. 5.1 virtually illustrates the
difference between an exact and inexact solution. The exactness is customarily assessed
upon obtaining the solution using the eigenvalue-ratio metric, where smaller ratios indicate
the solution’s proximity to a rank-1 PSD matrix. In what follows, we cast light on some

applications in the literature that are known to trigger inexactness.

5.1.1 Applications with Relevance to Distribution Systems
5.1.1.1 Application I: Voltage Positioning Objective

The inexactness of D-ACOPF convex relaxations has been attributable to the choice of
objective functions. The SOCP BFM is provably exact for radial graphs if the objective
function is convex and strictly increasing in active power injection among other variable
conditions [27], [29]. References [34, 40, 62] attempted to optimize the voltage profile as
a secondary objective. To strengthen the relaxation, [34] proposes an approach based on
the difference of convex programming (DCP), where the linear approximation of a concave
inequality constraint is tightened sequentially. In [40], a non-iterative approach is explored to
strengthen the relaxation using multiple SDP and linear equality constraints. Most recently,
[62] employs an inner approximation while iteratively recovering solution feasibility via bound

tightening. The aforesaid techniques have solely focused on single-phase D-ACOPF models.

5.1.1.2 Application II: Step-Voltage Regulators

The SVRs are essentially autotransformers equipped with a tap-changing mechanism
to cope with net load changes. Leveraging the advances in multi-phase SDP D-ACOPF
models [24, 30], system-wide voltage regulation is achieved through optimal SVR setting,

conventionally formulated as trilinear equality constraint. The convex relaxations of the
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Figure 5.1: Conceptual illustration of the convex relaxation (dashed blue) of the
non-convex sets (solid green). f; is the relaxed true minimum and thus feasible to the
non-convex problem, whereas f, is a lower bound and infeasible to the non-convex problem.

trilinear constraint has attracted considerable interest [20-23,63], generally assuming con-
tinuous tap positions to bypass the computational difficulty of solving a mixed-integer SDP
problem. The diagonal of the secondary-side voltage can be implicitly confined within the tap
ratio limit. However, leaving the non-diagonal elements unconstrained triggers inexactness,
for which a non-ideal SVR with tunable resistance is proposed in [20]. References [22, 23]
propound an SDP constraint that outputs a unified tap selection among phases. Most of
the studies focused on the wye-connected SVRs. Recently, references [21,63] developed the
theoretical basis for relaxing delta-connected SVR constraints. The inequality constraints,
proposed by [63], render inexact solutions. In response, reference [21] improved the relax-
ation to some extent by employing McCormick envelopes to relax the trilinearity with explicit
ratio variables. The lower-bound solutions are then used to retrieve feasible voltages using

Z-bus method [64]. In this paper, we compare our method to those proposed by [21-23]

5.1.1.3 Application III: Delta-connected Loads and DERs

Prior studies are limited to wye-connected distribution systems. The notion of extend-
ing the multiphase convex D-ACOPF to account for delta-connected power injections was
first introduced by [65], where an additional PSD constraint describing the power injections

across each pair of phases are enforced into the BFM, referred to as extended BFM (EBFM).
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Unfortunately, the experiments reveal that the relaxation yields inexact solutions with re-
spect to the delta-connected injections, and is therefore replaced by a linear approximation.
Newly-developed techniques have been proposed by [66] to overcome the inexactness. The
first technique relies on post-processing, in which delta-connection currents can be recov-
ered if the line-to-line voltages are of rank-1. The other relaxation is inspired by [67,68],
in which the trace of delta-connection currents is suppressed in the objective function. The
latter produces exact and rank-1 solutions with respect to the delta-connected power PSD
matrices of the BEFM formulation. In this paper, we compare the proposed method with the

penalization technique [66, Algorithm 2].

Table 5.1: Comparison with the literature

Ref System Voltage Delta SVR Exactness
Unbalances  Positioning  Connection Y A A
[34] v v
[40] v
[62] v v v
[20] v v
22, 23] v v v
[21,63] v v v Y
[65] v v
[66] v v v
Proposed v v v v vV v

5.1.2 Contribution

Spurred by the preceding limitations, we propose a convex iterative problem that en-
hances the quality of the D-ACOPF solution while comprehending the voltage-positioning
objective function and constraints, SVRs, and delta-connected injections. On top of rank
relaxations, internal models of SVRs and delta-connected injections include relaxed equality

constraints.
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Figure 5.2: llustration of the wye- and delta-connected DERs and loads.

The strength of our research lies in the capability to retrieve exact and AC-feasible solu-
tions. More specifically, we circumvent the rank conundrum associated with the consideration
of 1) voltage-related objectives, ii) delta-connected loads and DERs, and iii) SVRs that are
capable of a non-uniform tap operation. To the authors’ knowledge, no prior studies have
collectively subsumed the previous components into the SDP D-ACOPF. Table 5.1 compares
the literature in terms of the previous applications. It should be noted that the comparison
is focused on the literature that addresses the AC feasiblity as a concern for the solution
quality. We compare the model with single-phase ACOPF models proposed [34,40,62] since
they are the only known references to attempt to solve the exactness when a voltage-related
objective is considered. Interestingly, the proposed problem has a fast convergence rate
with rank-1 solutions for most connections of IEEE 13, 37, 123 bus feeders, demonstrating
applicability for shorter-timescale applications. Besides, comparative case studies highlight
differences between the proposed model and other methods used by the literature.

The rest of this manuscript is organized as follows. Section II presents the generic power
distribution system model, describes the various connections of SVRs, and formulates the
overall non-convex EBFM. Section III presents various techniques to convexify the EBFM
with an iterative methodology to drive PSD matrices to rank-1. Numerical case studies are

performed in Section IV, and some conclusions are drawn in Section V.
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5.2 Problem Formulation

5.2.1 General Notations

Let R and C respectively denote the sets of real and complex numbers. Calligraphic
letters, e.g. NV, denote sets of indices. We use |-| to denote the absolute value or cardinality
of a set. Also, superscripts (T), (¢), and () denote the transpose, element-wise conjugate,

and conjugate transpose (Hermitian) of matrices and vectors.

5.2.2  Power Distribution System Model

Let N, and £ denote the node and edge sets of a distribution system with a composite of
single, two, and three transmission conductors. For a radially-fed system, each node i € N,
has a distinct ancestor, such that number of ordered pairs, (i,k) € &, is [E|= |[Ny|—1. Let
T = {1,...,t} denote the set of SVRs. We use & C & to distinguish line segments with
SVRs. Additionally, we introduce N; to denote the set of virtual nodes, ¢ € N, incident to
the SVR’s secondary side, where i’ lies between ¢ and k. Thus, the aggregate set of physical

and virtual nodes is

N =N, UN,

For notational simplicity, we assume N and £ have three-phase connection in this section,
while adapting the model to systems with missing phases is discussed later. We define the
phase sets as ® = {a,b,c}, & = {b,c,a}, and ®o = {ab,bc,ca}. The root node, i = 0,
has a fixed three-phase voltage given by V™ = V. [1, e 32m/3 ei2m/ 3}T. For all descendent
nodes, the voltage vector is defined as V; € C®!, where i > 0 € N. Similarly, let I, € CI®l
define the three-phase currents flowing through the series impedance z; € CI®*I®l while
Ij.n € C®21 define those flowing through the delta-connected net injections as depicted in

Fig. 5.2. For ease of exposition, we consider a joint wye- and delta-connected net injection
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‘ . T T
at every i € Ny, respectively defined as s;y = [sly,s0y,siy]| and s; o = [s0%, s, s¢%] .

Each entry of the net-injection vectors is composed of (sig — sid), where g and d denote
the DER and demand complex powers. y; € C/®l defines the shunt admittance connected at
node 7.

In what follows, we formulate a comprehensive multi-phase power system model. We

then lift the system variables to formulate an extended branch flow model.

5.2.2.1 Ohm’s Law

The difference between voltage vectors across the ends of each (i, k) connected through

a series impedance is expressed as:

5.2.2.2  Power Balance Equation

the KCL equation is first written for ith node, where m — ¢ — k:

L= Y Iyp—ILu YieN, (5.2)
(

i,k)eE

I; € C®l is the net injection current. I,,,; and I;; are the currents flowing into and away from
node i, respectively. Multiplying (5.2) by diag(V;!'), and conjugating the resultant renders

the power balance at node 7, which can be written as:

si= Y diag(ViI}) — (diag(VinIpy;) — zmilmil ) Vi € N (5.3)
(i,k)EE
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The net injection current, [;, is also a function of currents flowing from DER-load en-

sembles and shunt elements, which can be expressed as follows:

L =Ly +T LA — Vi Vi € N,

where

Again, multiplying (5.4) by diag(Vi!) and taking conjugate yields

si =s; + diag(‘/;IiIfAF) — diag(V;VHyh) Vi e N,

(5.4)

(5.5)

While the wye-connected net injection is readily formulated in (5.5), the net injections

across the phase pairs are diag(I'V;[ i},IA)'

Table 5.2: SVR ratio matrix and generalized constants

SVR Connection Wye Closed-Delta Open-Delta
ry 0 0 reb 1 — b 0 rgb 1 —reb 0
A, 0 r2 0 0 rbe 1 —pbe 0 1 0
0 rf 1—r 0 rit 0 1—7rd re
0 1 -1 0 1 -1 0
B 0 0o 1 -1 0 1 0
0 -1 0 1 0 -1 1
0 010
C 0 -1 000
0 010
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Figure 5.3: Type-B SVR: (a) wye connection, (b) closed-delta connection, and (c)
open-delta connection.

5.2.2.3 Step-Voltage Regulator (SVR)

A set of autotransformers make up the three-phase SVR, which can be either wye, closed-
delta, or open-delta connected. The latter requires two autotransformers across two pairs of
phases. SVRs are either type-A or type-B, depending on where the series winding is located,
and can typically take 48 or +16 tap positions.

To formulate a universal SVR model that suits all connections, we abuse the following

assumptions:

e Autotransformers have separate tap changing circuits, enabling a non-uniform tap

setting for each phase. Gang-operated SVRs are discussed in [22,23].

e We rely on the generalized constants provided in Table 5.2 [21,63].
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e Only type-B SVRs are assumed for all connections, where the primary-side is connected

via taps to the series winding.

e The series impedance of autotransformers is small compared to that of two-winding

transformers [42]. It is therefore neglected.

e For open-delta connected SVRs, the two autotransformers are installed between phase

ab and cb.

The three connections of SVRs are illustrated in Fig. 5.3. Let r; € R? be the ratio
vector of SVR ¢t € T, whose entries are consistent with the connection type. For example,
r; = [r®, 1,7P]T for open-delta connection. Equation (5.6) sets the SVR’s tap changing

limit.

r<r, <7 WVteT (5.6)

The tap position is retrieved using the following:

1—7’?

Tap? = round ( ) Voed, teT (5.7)

where 7 = (7 —r)/No. of taps.
Let (i, k) € &, hence the voltage at and the current flowing away from ¢/ € N, can be

expressed as follows:

Vi=A,Vy = M (58&)

L= (A Ly, V(,k) €& (5.8b)

Utilizing the generalized constants, B and C, in Table 5.2, the ratio gain, A;, composed as

follows
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From (5.8), we can infer the following power balance relationship:
diag (Vi I}},) = diag (A;'V;ILAy) V(i k) € & (5.10)

5.2.3 Rank-Constrained ACOPF

5.2.3.1 Matriz-based Variables

The previous constraints are reformulated to conform to the rank-constrained EBFM
[24,65], a higher-dimension problem with lower sources of non-convexity. To this end, the

vector variable products are lifted to be matrix variables:

vV, = Vv Ly = L1}, La= fmffA

S = Vil Si = Vil

The real and surrogate variables are interrelated through the following PSD matrices,

defined as X;; and X2

- H
Vil | Vi V. Si
X, = _ (5.11a)
Ly | |1 SH 1
- H
A Vi Vi VvV, S;
X2 = - (5.11b)
Lin| | Lin SE I a
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With the surrogate variables, constraints (5.1), (5.3), (5.5), (5.8a), and (5.10) can subse-

quently be re-written as:

V=V, — ZyIpZE V(i k)e& (5.12a)

si= Y diag(S) — (diag(Smi) — Zmilmi) Vi € N, (5.12b)
(i,k)e&

s; = s; +diag(S;T") — diag(Viyi)) Vi €N, (5.12c)

sin = diag(T'S;)  VieN, (5.12d)

V.=A,V.A, Vi eEN, (5.12€)

diag (Sy,) = diag (A;lsikAi/) V(i k) € & (5.12f)

5.2.3.2  Objective Function

Minimizing the nodal voltage deviations from the desired range is set as an operational
objective of the optimization routine. Let x; € RI®l denote a non-negative vector variable,

defined for every i € A/ and constrained as:

ki > diag(V;) =V~ (5.13a)
k; > V1 —diag(V;) (5.13b)
ki >0 (5.13¢)

where V'~ and V' are pre-defined minimum and maximum squared voltage threshold vectors.

Thus, regulating the voltage is achieved by minimizing fy = >\ D 4co /{f’.
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5.2.3.3 Non-Convex EBFM Problem

PNC .

min ¢ fy

s. t. (5.11),(5.12), (5.13)

V, = ety refH

V <diag(Vy) <V W eN
diag(La) <T  Y(i,k) €€
0<R(sig) <P  VieN

1S (i) |< ER(s1g) VieN
X =0 V(i k) e &
XE-0 VieN

rank(X;;) =1 V(i k) € €

rank(X2) =1 Vie N

(5.14a)

(5.14b)
(5.14c)
(5.14d)
(5.14¢)
(5.14f)
(5.14g)
(5.14h)
(5.14i)
(5.14j)

(5.14k)

(5.14d) constrains the squared voltages. (5.14e) sets an upper bound on the currents through

the delta connection. (5.14f)-(5.14g) are the DER’s active and reactive power constraints,

respectively. The DERs are assumed to be constant power factor (PF), and thus £ =

v/ (1 — PF?)/PF. (5.14j)-(5.14k) are the rank 1 constraints related to the power flow and

the delta-connected net injection.

The non-convexity of Py¢ originates from:

e The trilinear equality constraints in (5.12e)-(5.12f).

e The rank-1 constraints in (5.14j)-(5.14k).

7



5.3 Convex Relaxations and Iteration

In this section, we summarize the convexification techniques to render Pyc a convex
problem that solves to lower-bound solutions. Moreover, we propose the use of convex
iteration to retrieve the exactness of the relaxed model (upper-bound solutions), thereby
enabling the recovery of system original variables.

5.3.1 Convex Relaxations

5.3.1.1 Relaxing Rank-1 Constraints

The non-convex rank-1 constraints of the PSD matrices, (5.14j)-(5.14k), are dropped
from the problem. The relaxation of the power-flow PSD matrix (5.14j) has been practiced
for many applications, and the solutions hold exact for most IEEE feeders [24]. On the
other hand, the relaxation of the power-injection PSD matrix (5.14k) is reported to result

in inexact solutions [65].

5.3.1.2 Relaxing SVR Voltage Constraint

By defining the following new variables:

Vz’ - B\/Z'/BT7 VZ - BVZ'/CT, VZ == CVZ'/BT (515&)

V, = diag(rt)vidiag(rt) + diag(rt)vi + Vidiag(rt) (5.15b)
the primary-side voltage constraint in (5.12e) can then be expanded as follows:
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It is evident from (5.15b) that V; is a function of a trilinear term (first term) and bilinear
terms (second and third), whereas V; is linear in both Vi and V;. Therefore, we relax the

diagonal and non-diagonal elements of (5.15b).

5.3.1.2.1 Digonal Elements

given that the tap ratios are confined within the inequality constraint in (5.6), the re-

laxation of the diagonal elements of (5.15b) is obtained by the set of constraints in (5.17):

diag(V;) > r’diag(V;) + rdiag(V;) + rdiag(V;) (5.17a)

diag(V;) < 7diag(V,) + rdiag(V;) + rdiag(V;) (5.17b)

~ ~

Note that diag(V;) = diag(V;) because they are transpose of each other. Also, for

wye-connected SVRs, only the first term to the RHS of (5.17) is non-zero.

5.3.1.2.2 Non-diagonal Elements

We make use of two facts to relax the non-diagonal elements:

e It is known that angle differences among any pair of phases, (¢, ¢’) do not radically de-
viate from their nominal in multi-phase radial distribution feeders [57, Assumption 3],

such that the following inequality holds for any 6 > 0:

90° <120° — 0 < 6° — 7 < 120°+ 0 < 180° Vo € &, ¢ € ¢’

e Coupled with the fact that constraining elements with a pair combination of (a,b),

(b, c), and (c, a) is sufficient given the Hermitian symmetry of a 3 x 3 PSD matrix [57,
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Proof], the non-diagonal real and imaginary elements of (5.15b) are relaxed as

Vo e d, ¢ € d:

RVI) < 2ROVEY) + rR(VEY) + rR(VE?) (5.184)
R(VEY) = PR(VI) + FR(VY) + FR(VI?Y) (5.18)
(V) = P2 S(VE) + rS(VE) + 1S(VEY) (5.18¢)
(V) < PI(VE) 4 7S (V) +73(VEY) (5.18d)

Remark 4 the variable V; is Hermitian, but not rank-1. For the previous SVR wvoltage
model, only V; and V; should be rank-1.

Remark 5 The tap ratios are implicitly formed by the inequality constraints. Hence, re-
trieving the optimal tap ratios is possible upon solving the problem by treating (5.15b) as a

quadratic equation with unknown ry.

A rank-1 secondary-side voltage PSD matrix entails that its recovered voltage vector, Vy,
is a result of some A;V;. At this stage, enforcing the previous set of inequality constraints

further widens the relaxation.

5.83.1.3 Relaxing SVR Power Constraint

Th constraint in (5.12f) is relaxed as (5.19) based on observation of ratio matrix for wye
and delta SVR connections. The diagonal power elements through wye-connected SVRs
are equivalent due the diagonal ratio matrix. For delta-connected SVRs, the constraint is

relaxed based on the conservation of power.

Wye-connected SVRs: diag(Syx) = diag(S:x) (5.19a)

Delta-connected SVRs: Tr(Sik) = Tr(Six) (5.19b)
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For wye-connected SVRs, diag(S;) = diag(S;x) is satisfied. For open-delta connected
SVRs:

S &St
diag(Sii) = | S% F (1St + n°S) (5.20)

Se 4 ° St

where n? is a small number, (n? = rf’ —1). As per the conservation of power, the trace of the
power flowing into the primary side equals that flowing away from the secondary side. If we
enforce the trace as in (5.19b), the mutual elements cancel out each other and the resultant

is:

Tr(Syr) = S& + S 4 S (5.21)

Similar conclusions can be drawn for the closed-delta connected SVRs.

5.3.1.4 Owerall Relaxed Problem

The convexified version of (5.14) is written as:

Pig: min c¢f,
s. t. (5.11), (5.12a)-(5.12d), (5.13), (5.14¢)-(5.14g), (5.15a) (5.22)

(5.16), (5.17), (5.18), (5.19)

The problem in (5.22) provides a lower bound to the original problem, (5.14), because of

the introduced relaxations compounded with the voltage-related objective function.
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5.3.2 Retrieving Exactness via Convex Iteration

The convex iteration is generally understood to refer to convex problems whose rank
relaxation is strengthened iteratively [69]. The technique has shown potential, in the power
system area, for the economic dispatch problem in the distribution [32] and transmission [57]
systems. The former considers the case where DER offer prices differ per phase, which inflicts

higher-rank solutions.

5.3.2.1 Convex Iteration Application

We can succinctly refer to all N x N PSD matrices in (5.22) as X, where N = 2|®|.
By arranging the eigenvalues, A\(X*) € RY, in a descending order, the rank-1 condition is

attained if the trace of each X is equal to its first eigenvalue:
N
Tr(X) = A =Tr(X) = ) A, =0 (5.23)
n=1
(5.23) establishes that eigenvalues of n > 1 are zeros. This can alternatively be expressed as
N
D> A =Tr(XW) =0 (5.24)

n=2

where W is a PSD matrix, referred to as the direction matrix, which corresponds to the
zero eigenvalues with a trace equal to N. It is originally an optimal solution to an SDP
problem with known X* [69]. For computational efficiency, a closed-form solution to W can
be computed upon solving (5.22) and utilizing the singular value decomposition ( svd in

Matlab) of X* as

X* = UAU" (5.25)

W =U(;,2: N)U(:;,2: N)* (5.26)
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The direction matrix is therefore exploited to re-formulate (5.22) as (5.27) with linear reg-
ularization terms Tr(X'W*) appended to the objective function and updated iteratively to
drive X to rank-1. The problem (5.22) can serve as an initialization. Fig. 5.4 shows the

iteration process. The convergence of the problem has been proven by [69].

5.3.2.2 Qwerall Iterative Problem

Pug: min c¢of, + ¢ Z Tr(Xix W)
(i,k)e€

+ ¢ Tr(XS W)
ZE;A (5.27)

s. t. (5.11), (5.12a)-(5.12d), (5.13), (5.14¢)-(5.14g), (5.15a)

(5.16), (5.17), (5.18), (5.19)

5.4 Numerical Experiments

The convex iteration problem is implemented in CVX [37,38], and solved by Mosek [50].
Simulations are performed on a laptop with Intel Core i7 2.7 GHz processor, 16 GB RAM,
and MAC OS 10.14.

We conduct multiple case studies on IEEE 13-bus, 37-bus and 123-bus feeders to demon-

strate:

e the effectiveness of the proposed method in driving inexact solutions to AC feasible

and exact ones.
e the importance of internalizing the physical connection of loads, DERs and SVRs.

e the advantage of the proposed method over those proposed by the literature.
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The 13-bus and 123-bus feeders have a composite of wye- and delta-connected loads, while
the 37-bus feeder loads are all delta-connected. The distributed loads are halved and lumped
to adjacent buses. Capacitors and transformers are modeled, and switches are replaced by
short lines. The voltages are confined as per ANSI +5% limits, i.e. V = 1.05% and V = 0.952.
The turns ratio limits are 7 = 1.05 and r = 0.95.

Fig. 5.5 depicts the radial feeder typologies with detailed delta-connected bus and SVR
line locations (plotted in Matlab using digraph ). DERs are on node 5, 8, 13, and 14 of the
13-bus feeder, node 6, 10, 20, 23, 30, and 36 of the 37-bus feeder, and node 37, 53, 55, 63,
72, 110,and 113 for the 123-bus feeder. For the 13-bus and 123-bus feeders, we set DERs to
share a 20% penetration of the total feeder real power consumption. For the 37-bus feeder,

total penetration of 60% is assumed.
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Figure 5.5: Locations of delta-connected buses and SVR lines in the (a) 13-bus, (b) 37-bus,
and (c) 123-bus feeders.

5.4.1 Performance of the Convex Iteration Problem

We examine problem performance with the voltage positioning objective function con-
sidering different possible connections of loads, DERs and SVRs. The desired thresholds are
set 3% from the nominal value, thus V* = 1.03% and V~ = 0.972. Y, A, and O denote wye,
closed-delta, and open delta SVR connections. For the 123-bus feeder, we assume mixed
connections of the four SVRs, denoted as M, with SVR#1 (line 2-3) as closed-delta, SVR#2
and SVR#3 (lines 13-14 and 29-30) as wye, and SVR#4 (line 76-77) as open-delta.

Table 5.3 and 5.4 summarize the results. On each table, Fdr and Con. refer to the feeder,
i.e. 13 bus, and connection of loads, respectively. In Table 5.3, columns 4 and 5 list the
lower-bound objective values obtained at the first iteration, i.e. Prg, and those obtained at
the convergence of the convex iteration.

The exactness of the solution is evaluated by computing the ratio of the second largest

eigenvalue to the largest eigenvalue for each PSD matrix. In Table 5.3, Column 6 and 7
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compute the eigenvalue ratios for X;; averaged over all edges at the first and last iterations.
Similarly, columns 8 and 9 compute the eigenvalue ratios for X; averaged over all delta-
connected nodes, at the first and last iterations. The small ratios at the convergence affirm
the proposed method’s success to drive the relaxed problem towards AC feasibility (single
dominant eigenvalue). The deterioration of the trace regularization terms after each iteration
is shown for two cases in Fig. 5.6.

In Table 5.4, v measures the percentage of the maximum voltage deviation from the

nominal value and computed as:
v =100 x mixm‘ﬁ —1] (5.28)

We also assess the impact of network and SVR connections on the aggregate DER powers
and the retrieved tap positions. The results in Table 5.4 show discrepancies among the op-
timal dispatch, thereby confirming the significance of accounting for the actual connections.

The problem converges after two iterations, except for the 123-bus with open-delta SVRs.
The star symbol of the 123-bus feeder with open-delta SVRs and mixed wye-delta loads is the
only case in which higher coefficients of the regularization terms are required for convergence.
For this case, ¢; and ¢y are respectively set as 10 and 5.

On average, the solve times of a single iteration are 0.9, 1.2 and 1.8 seconds for the

13-bus, 37-bus and 123-bus feeders.

5.4.2 Impact of DER Penetration on Convergence

In this section, we inspect the impact of DER penetration on the convergence. Since
most of the connections converge within two iterations, we aim more attention at those
with slower convergence. Specifically, we solve the 123-bus feeder with Y-A net loads and

open-delta SVRs with increment penetration.
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Table 5.3: Objective values, solution exactness, and problem performance

Obj. Values A2/ M A5 /AE
Fd . It
rCon. SVR p " Py Py Pus P Py
Y 21136 23111 0.109 9e-13 - - 2
Y A 21062 23101 0.127 212 - _ )
Z A 21117 23480 0.124 le-12 - - 2
ot Y  1.9201 22864 0.109 2-12 0374 le-11 2
Y-A A 19201 22929 0.125 2-12 0.370 9e-12 2
A 1.9201 22963 0.119 2e-12 0375 4e-12 2
Y  6.8318 7.1925 0.087 2e-12 - - )
Y A 68268 728 0103 3e12 - - 2
E A 6.8308 7.1567 0.100 3e-12 - - 2
5 Y 68182 6.9902 0.075 2e-11 0241 Te-11 2
A A 68158 6.9756 0.099 Te-10 0.246 2e-10 2
A 6.8197  6.9718 0.082 1le-10 0.243 5e-10 2
Y 15.9268 16.5212 0.112 3e-12 - _ 2
Y A 159196 16.5160 0.150 6e-9 . - 2
. A 16.0268 17.6572 0.141 7e-9 - - 3
B M 159208 16.5244 0.131 le-10 - i 2
& Y 15.9246 16.5345 0.105 2e-11 0259 3e-11 2
A A 159177 16.5297 0.142 T7e9 027 1.8e-8 2
A 15.9298 18.6393 0.127 2e-9 0274 le-7 4
M 159190 16.5217 0.133 2e-12 0.271 3e-12 2
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Table 5.4: Maximum voltage deviation, optimal DER dispatch, and optimal tap positions

v DER Power SVR Taps
Y 21 63543 307.75 -5 -6 -8
. Y A 2.1 63543 307.75 -4 -3 -5
B N 24 63543 307.75 -6 - -7
i Y 2 693.20 335.73 -8 -3 -7
Y-A A 22 57941 280.62 -5 -3 )
AN 2.2 63543 307.75 -6 - -7
Y 0.5 1107.7 532.48 -6 -5 -8
. Y A 0.6 1080.1 494.59 -5 -4 -5
B AN 0.6 1192.2 577.42 -6 - -6
o Y 0.5 1214.2 581.26 -8 -4 -5
A A 0.5 1233.8 571.58 -4 -4 -4
A 0.5 13105 607.84 -5 - -5
81,12 -5, 03
Y 1.5 642.15 220.27 0801 =31, 0t 04
_51 12 9l 3
A 1.5 631.29 235.21 OE; ’04 2104 30’40
Y 61,12 5108
AN 1.9 465.33 0.0016 03 114 - _1’4
_517 12 _31’ 03
é M 1.5 62532 215.09 03,04 21 0
oS Y 81,12 5403
- 1.5 611.61 177.59 037’04 41,04 0t
_51 12 - _31 03
A 1.5 609.68 191.73 3 4 1 4 )
02,0 3,0 0
Y-A _ _61 02 _51 03
A* 1.6 473.97 4184 03-14 - 14
-5t 12 -3, 08
M 1.5 631.52 229.88 03 ’04 21 0
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Figure 5.6: The decay of the regularization term(s) computed after each iteration for the
123-bus feeder with open-delta SVRs and (a) wye-connected net loads, or (b) mixed
wye-delta connected loads. The D-ACOPF solution approaches exactness as » (XW)
term(s) diminishes. Evidently, rank-1 solutions are retrieved upon convergence.

Fig. 5.7b, 5.7d, 5.7f, and 5.7h shows that the convergence rate decreases as the penetra-
tion level increases. In the 60% penetration level case, convergence is attained with unity
coefficients, ¢; = co = 1. Observing the voltage profile in Fig. 5.7a, 5.7c, 5.7e, and 5.7g, this
may imply that the proposed problem may work better on distribution systems with high
DER penetration and controllable assets that can effectively position the voltage within the

desired limits.

5.4.3 Comparison with SVR Models in the Literature

We compare the proposed SVR model and those in [22,23] and [21] in terms of objective
values and exactness (average eigenvalue ratios). Given that these references are limited
to wye-connected networks, delta-connected net loads are not considered. Further, we also
compute Pyp using the following objective function adopted by the literature, which is also
used for local power markets [70-72]. In which case, the SVR constraints are the only source

of inexactness, and so we choose smaller coefficients to penalize the regularization term,

(G 0.001.
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Table 5.5: Comparison with SVR models in the literature for the 13-bus feeder

fS fv
Method  SVR 0 "\ Obj. /M
Y 0.7016  Te-12 2.3111  9e-13
Proposed A  0.7012 7e-12 2.3101  2e-12
A 0.7015  1e-10 2.3480 le-12
SDP [22,23] Y  0.7016 4e-10 2.2063 0.0843
McCormick Y 0.7013  4e-11 2.1365 0.0510
Envelopes A 0.7010 0.0014 2.1195 0.0548
[21] A 0.7012 0.0034 2.1107 0.0597

Table 5.6: Comparison with SVR models in the literature for the 37-bus feeder

fs fo

Method SVR s " 00 /0 Obi. Ao/

Y 09911 1e-10  7.1925 2e-11

Proposed A 0.9893  2e-10 7.1286  3e-12

A 09895 Be-ll 71567  3e-12

McCormick Y~ 0.9906 3e-04  6.7421 0.1126

Envelopes A 0.9891 0.0037  6.7409 0.1296

[21] A 09892 0.0171  6.7345 0.1133
fo=R(Tr (S12)) + Y R(s7,) (5.29)

Pped

Contrary to the methods presented in the literature, the solutions in Table 5.5, 5.6,
and 5.7 demonstrate the versatility of the proposed approach to SVR configurations, feeder
scale and choice of the objective function. All the simulations with f; converged after two

iterations.
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Table 5.7: Comparison with SVR models in the literature for the 123-bus feeder

fS fv

Method — SVR . 7y Obj.  Ao/M
Y 07059  3e-10 16.5212  3e-12

Proposed A 0.7058 8e-8 16.5158  7e-9
A 07059 6e-8 17.6572  7e-9

SDP [22,23] Y  0.7060 2 x 1077 16.0169  0.0590
McCormick Y 0.7059 4e x 107* 16.2499 0.0188
Envelopes A 07054 0.0067 16.1386  0.0300
21] A 0.7056  0.0130 16.1212  0.0383

The proposed method is the only one that solves to exact solutions for all SVR connections
using fs. On the other hand, the SDP approach [22,23] failed to solve the 37-bus feeder for
the 60% penetration level, and therefore it is not included in 5.6. Moreover, the McCormick
relaxation method does not yield tight relaxations for most cases. This is consistent with
the findings in [21].

On the other hand, none of the literature methods produced exact solutions for the

voltage-positioning objective function, f,.

5.4.4 Comparison with Delta-Connection Model in the literature

The solutions to the proposed problem with delta-connected injections are compared
with those provided by the non-iterative approach based on variable penalization [66, Al-
gorithm 2]. Given that the variable penalization is only capable of solving delta-connected
injections, the SVRs are removed, and f; is set as the objective function. Hence, ¢; is set
to zero for the proposed problem because the delta-connection PSD matrices are the only

source of inexactness is this case. The following are the objective functions for the proposed
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method (5.30) and the variable penalization approach (5.31):

fon =1fi+a Y Te(XEW)) (5.30)
iEND

foon = 1fs+a Y Te(L;n) (5.31)
ieND

According to [66], the objective values are sensitive to the choice of penalty. We demon-
strate that this is also the case with the convex iteration method. Also, we only show
(A5 /AS) because the exactness of the power-flow PSD matrices are not affected by the
inexactness of the delta-connection power PSD matrices.

The simulations are performed on the 37-bus and 123-bus feeders with different choice of
a. The penetration level is increased to 80% to compensate the absence of SVRs and keep

the voltages within ANSI limits. The 13-bus feeder is omitted because it is not solvable even

with this level of penetration.

Convex Iteration Penalization

(p-u.)
o
2
g

A

jective Value of f
o
©
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[=>]

> 0.9855

Ob

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Penalty

Figure 5.8: Comparison between the convex-iteration method and penalization method
with different penalties for the 37-bus feeder.

Table 5.8 lists the results for the 37-bus feeder. While both methods yield the same
objective values with small penalties, objective values enlarge as we increase the penalty.
Fig. 5.8 shows the effect of increasing penalty weights by 0.01 for each step. It can be

seen that the non-iterative penalization method generate lower objective values for the most
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Table 5.8: Comparison with delta-connection model in the literature for the 37-bus feeder

Proposed Penalization [66]
ObJ . /\2/)\1 Itr ObJ . /\2/)\1

0.01 0.9854 2x1072 2 0.9854 5x 10712
0.1 0986 2x1071% 3 0.9854 3 x 107'2
1 0.9862 4x 10713 3 0.9868 8 x 10713

«

Table 5.9: Comparison with delta-connection model in the literature for the 123-bus feeder

Proposed Penalization [66]
ObJ . /\2/)\1 Itr ObJ . /\2/)\1

0.01 06994 1x107" 2 0.6994 5 x 1072
0.1 0.6994 5x10712 2 0.6994 3 x 107'2
1 0.6994 1x 1071t 2 0.6994 8 x 107!

«

part. In [66], the objective values obtained with lowest penalty weights are declared as global
optimum. Hence, the convex iteration is capable of solving to global optimality.

For the 123-bus in Table 5.9, the objective values are identical for all penalties. Perhaps
the number of delta-connected loads adds to the sensitivity of the penalty to the objective

value since the 37-bus feeder is all delta-connected.

5.5 Recovering Effective Tap Ratios, Voltage and Currents

If exact the problem converged, the rank-1 solution enables recovery of the system

varaibles.
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5.5.1 Effective Tap Ratios

The effective ratios are recovered upon convergence from the diagonal elements of voltage
matrices.

Recovering the ratios of wye-connected SVRs is simple, since the ratio matrix, Ay is
diagonal and variables Vi¢>¢> and Viw are zeros. Hence, only two variables are needed as in
(5.33a). For delta-connected SVRs, all matrix variables are of some values. By observing

(5.17), the following quadratic equation can be derived:
g(rf) = VIl 420200 — 9P =0 (5.32)

In this case, the effective ratios become the roots of (5.32), where a = \~/Z-¢¢, b= 2‘7i¢¢, and
c= —Viw. By invoking the intermediate value theorem, in which the solution should satisfy

€ [r,7] [63], the effective per-phase tap ratio can be recovered as in (5.33b).

V¢¢ V¢¢
Wye SVRs: r = \/V‘M’ \/V¢¢ (5.33a)
Dleta SVRs: rd = W ( Ve 4 \/ Vo9)2 4+ v¢¢v¢¢) (5.33b)

Once the tap ratio vector, r;, the ratio matrix, A; can be constructed.

5.5.2  Voltages and Currents Phasors

The voltages and currents can be retrieved as in [21,24] using the following algorithm.

5.6 Conclusion

In this paper, we augment the convex D-ACOPF to solve applications of particular rele-

vance to the distribution system optimization. Namely, we present an extended model that
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accounts for the various connections of loads, DERs, and SVRs. Moreover, we set the ob-
jective function to minimize extreme voltage deviations. The relaxations of the introduced
constraints inevitably position the solution outside the feasible region of the original non-
convex problem. We then propose an iterative approach based on the convex iteration to
steer the problem towards a physically-meaningful solution, in which variables are recover-
able. The simulations and comparative studies with the existing literature demonstrate the
superiority of the proposed problem with respect to exactness and speed of convergence for

most connections.
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Figure 5.7: Examining the 123-bus feeder with f,, open-delta SVR, and Y-A net loads.
Penetration levels are 0% for (a) and (b), 20% for (c) and (d), 40% for (e) and (f), and
60% for (g) and (h).
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Algorithm Retrieving Vi, Vir, Li, Iy, and I; o

Initialization: Ny =0, Vp = Vet

while Nvisit 7é N do

Find (i, k) € € such that i € Ny and k & N

Compute

if (i,k) € & then

Compute

else

Compute

end if
if £ € N then

Compute

end if

end while

1

Ii -
T T (V)

Si.Vi

Vi =AY,

Ly, = diag(V,C) ' diag(SL,)

Vie= Vi — Ziydiy,

Vie=Vi — Zin1ii;

Iin = diag(ViO) ™ 'sp o
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In this research, the convex distribution alternating-current optimal power flow (D-
ACOPF) problems are augmented to enhance the solution accuracy and mitigate the trade-
off between model precision and computational performance.

The first task is to model a generic D-ACOPF problem based on the mixed-integer second
order conic programming that co-optimizes the operation of volt/var devices for balanced
distribution systems with two scheduling timescales of predicted profiles of generation and
load.

In the second part of this research, we design the co-optimization of step-voltage regu-
lators (SVRs), known to be adaptable to system unbalances, with continuous photovoltaics
(PVs) in multiphase distribution systems. The co-optimization is scheduled for the next
day on an hourly basis, relying on the semidefinite programming multiphase D-ACOPF. A
methodology based on the generalized Benders decomposition is proposed to address the
difficulty of incorporating the discrete nature of SVRs into the rank-relaxed semidefinite
program. Greater emphasis is also placed on solving the large-scale multi-time problem and
alleviating the adverse impact of increased mechanical switching on the SVRs” maintenance
costs and longevity.

In the third part of this research, we improve the convex multiphase D-ACOPF from
the practical perspective. First, additional rank-relaxed SDP constraints, which describe

the power injections between each pair of phases, are included. Second, we account for
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Figure 6.1: Types and structures of penalization methods to recover rank-1 solutions.

all connections of SVRs. Third, we set the objective function to reduce extreme voltage
deviations from desired thresholds. As a result of the previous components, the SDP relax-
ation becomes inexact (infeasible). We propose to bypass the inexactness and retrieve the
AC feasibility by strengthening the rank of positive semidefinite matrices iteratively. The
simulations demonstrate that the efficacy of the convex iteration approach to recover the
exactness. They also show that accounting for the actual connections is vital for a viable

dispatch of SVRs and distributed energy resources.

6.2 Future Work

6.2.1 Investigating the Penalization Methods for D-ACOPF

Chapter 5 thoroughly discusses the convex iteration technique. In light of the extensive
case studies carried out on multiple IEEE feeders with different connection assumptions,
the ability of the convex iteration method to produce global optimal solutions needs to be

investigated. Here are a few remarks:
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Despite the fast convergence rate, the optimal values are sensitive to the choice of

penalties.

Smaller penalties in general produce the lowest objective values, especially when a

single source of inexactness is incorporated. However, the global optimality is unknown.

The solutions of the ACOPF for transmission systems are benchmarked against the
best known objective values provided by local solvers. Reference [73], as an example,
found that approaching the global optimality is highly dependent on the choice of

penalty coefficients.

In [32], the convex iteration is applied on the D-ACOPF for minimizing the total power
dispatch with disparate prices at each phase. The solutions are declared to be all global
optimal. However, the choice of penalty coefficients has not been disclosed for any of
the cases. It should be noted that the convergence of convex iteration method for the

BFM is faster than the D-ACOPF developed in [32].

Recently, reference [74] conducts a thorough empirical analysis to compare all non-
iterative penalization, whose general structure is shown in Fig .6.1, on the transmission-
system SDP and QC relaxations in terms of exactness, optimality and sensitivity to
penalties. A similar study is urged for the SDP D-ACOPF. Some of the penalization

methods presented in [74,75] have not yet been explored on the SDP D-ACOPF.

6.2.2 Incorporating Energy-constrained Assets

The proposed convex-iteration problem in Chapter 5 have shown promising results and

fast convergence for the single-time step operation. We explore to examine the possibility

of extending the timescale to multi-time step operation, in which energy-constrained DERs

can be incorporated. Energy-constrained DERs comprise, but are not limited to, deferrable
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loads and distributed storage, which can only be dispatched based on their energy capability
and constraints. In this section, we assume an hourly timescale for the multi-time scheduling

problem, (H = 24).

6.2.2.1 Deferrable Load (DL)

DLs are a branch of demand response (DR) applications. they are modeled as flexible
loads whose power consumption can be dispatched within a pre-defined range, but must
ultimately meet the energy consumption over the time horizon. There exists a plethora of
models in the literature. We assume that the DSO wields direct control over the loads.
Indirect control is out of the scope of this research.

The most simplistic form of DLs is to assume a continuous load flexibility to avoid the

need for discrete variables. Let i € Ny C N be the bus at which DL is connected:

Vo € d:

Py <R(sty,) <Py i€Ny,heH (6.1a)
Qu<S(sfy,)<Q, i€Ny,heH (6.1Db)
> stan=Fia i€MN (6.1c)
teH

Constraints (6.1a) and (6.1b) model the real and reactive loads at i € Ny as variables
enclosed by flexibility range. Constraint (6.1c) ensures that the diurnal consumption meets

the required energy.

6.2.2.2  Energy Storage (ES)

Similar to the DLs, the time-related state-of-charge governs the ES model. Practically,
the of charging and discharging energy conversion of ES devices are characterized with

some shortage of efficiency. This inefficiency is usually modeled with wither NLP or MILP
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complementary constraint. To maintain the computational advantage of the proposed model,

the DS devices are assumed to be 100% efficient [51].

Vo € O

P <R(sl,,) <P, i€N,heM (6.2a)

Szve steh
=0 ieN,heH (6.2b)

(S(ib,e,h)c Si,e
Eip=Eip1— AWR(s?,,) i€ Ne,h €M (6.2¢)
E<EL,<E ieN,heH (6.2d)
Ei,24 = E@l 1€ ./V;;, h < H (626)

Constraint (6.2a) sets the limit for the charging and discharging power. Constraint (6.2b)
caps the real and reactive power. Constraint (6.2c) models the state of charge (SOC), while
(6.2d) limits the amount of energy charge discharge for each time interval. Constraint (6.2¢)

ensures an adequate SOC at the end of the day.

6.2.2.3 FEzxample

We carry out a numerical test on the 13-bus feeder. Besides the SVR and capacitor banks
modeled as in Chapter 5, we assume two DLs and a single SMWh ES. The DLs are placed
on node 5 and 10, and the ES is also placed on node 10. The load, solar, and DL flexibility
profiles are depicted in Fig. 6.2. The initial ES’ SOC is 80%, whereas E and E are chosen
as 40% and 90% to avoid cycling. The voltage-positioning objective presented in (5.13) is

selected with ¢y = 1. Because the rank is minimized over the day-ahead horizon, ¢; and
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Figure 6.2: Hourly demand and solar profiles.

co are set to 5. We conduct multiple case studies to see the effect of DLs and ESs on the

voltage profile, and the effect of SVR connection on the SOC, taps, and Var dispatch.

6.2.2.3.1 DL and ES Impact on Voltage Profile

From 6.3, we notice that the largest voltage deviation occurs when DLs and ESs are not
considered. On the other hand, the least voltage deviation is achieved by jointly enabling
the loads to defer consumption and ES to use stored solar energy to mitigate the mitigate

the high loading in the evening hours.

6.2.2.3.2 SVR Connection Impact on Optimal Dispatch

We demonstrate the impact of SVR connection on the dispatch of ESs, taps, and PV
Vars.

The ES is delta-connected, and PVs are mixed wye-delta connected. Observing the
temporal dispatch in 6.4, generation and consumption of the ES appears to be less significant
on phase ¢, perhaps due to the large capacitance on phase c¢. Also, PVs do not compensate
any Vars on phase b because it’s the least loaded phase in the 13-feeder. On the other hand,
we observe the obvious change of SOC profile with different SVRs. The change in SOC at

phase a is hardly noticeable.
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Fig. 6.4 serves as an example of the coordinated operation of various controllable devices
within the system. It should be mentioned that there are other control variables that are
not platted, e.g. DLs and ES Vars , but certainly played a role in achieving the voltage

positioning objective.
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