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Abstract

In the last years, modern action recognition frameworks with deep architectures have

achieved impressive results on the large-scale activity datasets. All state-of-the-art models share

one common attribute: two-stream architectures. One deep model takes RGB frames, while the

other model is fed with pre-computed optical flow vectors. The outputs of both models are

combined to be used as a final probability distribution for the action classes. When comparing the

results of individual models with the fused model, it is common to see that that latter method is

more superior. Researchers explain that phenomena with the fact that optical flow vectors serve

as the low-level motion features.

With idea of representing motion features in a more explainable way, we develop a motion

prediction framework that extracts high-level motion features from videos represented as the

binary motion codes. We derive the motion codes from the motion taxonomy, a hierarchical structure

that defines salient motion attributes. We also integrate the extracted motion features into the

state-of-the-art action recognition model and achieve improved performance over the baseline

model.

In addition to the motion representation, we develop a framework based on the cross-

modal embedding concepts to learn an action recognition model that does not encode its labels

with one-hot vectors. More specifically, we represent the narrated annotation words via embedded

word vectors and learn to embed visual and text data into shared vector space. The resulting

model eliminates the shortcomings of one-hot vectors and achieves performance competitive with

conventional baselines on the coarse-grained action classification task.

vi



Chapter 1: Introduction and Background

1.1 Overview

Roboticists for years have aimed for developing robots or intelligent agents for activities of

daily living. One aspect of this field is the development of good motion representation that the

robot could understand to detect and replicate human activities. Typically, humans use words to

refer to their actions (e.g., take, cut, chop, mix, wipe). The well-known word embedding models,

such as Word2Vec [1] and GloVe [2], can embed those words into continuous vectors that the

machine can understand. However, single words are semantically and mechanically ambiguous.

For instance, the word “open” most likely refers to the action of opening the door. On the other

hand, it may also refer to the action of opening a heat, a tap, a bag, and many other actions that have

different motions. In addition to that, the word “open” belongs to multiple parts of speech, which

means it may refer to the state of the object rather than action. Such kind of semantic ambiguity

of words can be eliminated with word representations that depend on the sentence context [3],

but it does not eliminate the mechanical ambiguity of words. One way of solving this problem

is adding a separate modality that would represent the motions from mechanical perspective.

The combination of such a motion representation and semantic labels could potentially produce

fine-grained action representation. The semantic labels would answer the question of what action

is shown in the video, while motion representation would answer the question of how that action

is executed.
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Nonetheless, defining motion representation is a non-trivial task. It may involve many

variables, such as the interaction between the objects, the motion trajectories, the directions and

magnitudes of applied forces to name a few [4, 5]. It is crucial to identify distinguishable motion

attributes, as well as to structurally define them. It is also important to consider the context. For

instance, the motions in the sports events and the motions in the common daily activities will

have non-relevant attributes. Despite the mentioned difficulties, well-defined motion attributes

can provide us with well-defined attribute space that can be used in other tasks, such as visual

recognition [6, 7, 8, 9, 10]. Another benefit of such representation is the ability to teach the robot

to execute the given actions. For instance, the action cut the onion can be done in multiple ways.

Hence, the robot does not know how exactly to cut it. It may cut it once into a half, or it may cut it

in small pieces. However, with an accurate knowledge about how to execute this task, along with

the state recognition algorithms, the robot will be able to precisely replicate this action.

A well-defined motion representation can be also applied in building a knowledge rep-

resentation [11], such as functional object-oriented network (FOON) [12, 13]. FOON is a knowledge

representation that is built from observing human-object manipulations. It can be utilized in

representing object-motion affordance [14, 15, 16], understanding long activities from videos [17],

and knowledge retrieval for the robot. The structure of FOON can be illustrated as the network

of functional units, each of which represents one atomic action. The atomic action consists from

input objects and their states, the manipulation node, and the output objects and their states. The

manipulation nodes are represented as verbs. After retrieving a functional unit, the robot knows

its input objects and their states, and similarly for the output objects. However, it may not know

how to get from the input to the output by purely relying on the semantic representation for the

manipulation. Therefore, a mechanically informative motion representation can highly benefit a

knowledge representation structure like FOON.
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Another area that depends on motion representation is action recognition from demonstra-

tion videos. Nowadays, the state-of-the-art action recognition methods employ the pre-computed

optical flow vectors from the video frames [18, 19, 20, 21, 22, 23, 24]. These vectors represent the

motion of the individual pixels. Hence, the researchers use them to compute the motion features

in the videos. However, optical flow frames are very high-dimensional and low-level features. It

is hard to explain how exactly the deep models leverage them during the learning process. On

the other side, if the model has a prior knowledge about low-dimensional and high-level motion

features, it would require much less effort to recognize certain actions.

In addition to motion representation, modern action recognition frameworks have certain

limitations associated with their semantic labels. The conventional method for supervised action

recognition training is to label the input videos with action labels (e.g., nouns and verbs) that are

represented as one-hot encoded vectors. A one-hot vector is an N-dimensional vector, where N is

equal to the number of classes in the dataset. Its # � 1 dimensions are labeled with 0 and a single

dimension is labeled as 1, whose index represents the class label. Such kind of label encoding

demonstrated decent results in multi-class classification tasks and it is a relatively simple encoding

strategy. However, this method has 2 major drawbacks. First of all, one-hot encoding suffers

from high-cardinality datasets (i.e., datasets with too many classes) as the vector dimensionality

increases linearly. This in turn results in grouping the semantic labels into coarse-grained classes.

Second, the classes have no information about other classes. They do not now how similar or

how different they are from other classes. If we use conventional distance or similarity metrics

(e.g., Euclidean distance and cosine similarity), we will get identical values for each pair of unique

categories.
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1.2 Contributions and Outline

Considering the high demand for a well-defined motion representation, we developed a

low-dimensional motion embedding for motions in cooking scenarios based on the motion taxon-

omy [25, 26] and train a deep model that predicts the motion features established by the taxonomy

from demonstration videos. We later integrate the aforementioned motion feature extractor into

the state-of-the-art action recognition model and show that this combination outperforms the

baseline accuracy. We also introduce an action recognition framework that learns to embed the

visual features and narrated text into a shared embedding space, eliminating the necessity to use

one-hot vectors.

In Chapter 2, we introduce the motion taxonomy and how we use it to embed the motions

into motion codes, a low-dimensional vector that represents the motions in the human-readable

way. We describe the architecture and the learning process of the multiple iterations of the motion

prediction model. Finally, we incorporate our motion prediction model into state-of-the-art action

recognition model and compare their performances.

In Chapter 3, we introduce our framework for learning action recognition model via cross-

modal embedding techniques. The model represents the labels via word-level embeddings and

eliminates the shortcomings of the one-hot vector encoding. We compare our model to the tradi-

tional state-of-the-art action recognition models and provide some discussion on benefits of this

strategy.
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1.3 Prior Work

1.3.1 Embedding in Deep Learning

The application of embedding concepts became quite popular in recent years. One of the

most common issues in machine learning is figuring out how to properly wrangle large amounts

of unstructured data when creating models. Embedding data into a lower dimensional space

seems to aid greatly in alleviating this issue. Embedding can be described as the translation of

high dimensional data into a lower dimensional form. Some, but not all applications of embed-

ding include natural language processing, image and video captioning, recommendation system

building, semantic search, and social network analysis.

In this section, we will describe the prior work that uses the embedding concepts for the

natural language processing, image classification, and multi-modal information retrieval tasks.

1.3.1.1 Word-Level Embedding

Natural language processing was among the first areas of machine learning that started

utilizing the embedding concepts. The well-known word-level embedding models, Word2Vec [1]

and GloVe [2], became fundamental pieces of many modern deep learning frameworks, not only

for the Language Models.

Word2Vec model has 2 different approaches. The first one is called the Continuous Bag

of Words (CBoW) [27]. The model takes a sentence, removes the word in the middle, and uses a

neural network to predict the missing word. The second approach, namely skip-gram [1], works

in the opposite direction. We word is fed to the neural network to predict the # words around it.

The model uses the output of a single layer as the input to # classifiers that predict each word. All

words are represented as one-hot vectors. The idea of both methods is to learn a continuous and
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low-dimensional representation for words that were learned based on different contexts, where

they were used. The final representation is the output of the penultimate layer of the neural

network.

Unlike Word2Vec, GloVe, or Global Vectors for Word Representation [2], consider the global

statistics within the entire text corpus in addition to the local statistics of the word neighborhoods.

In order to do that, they build the co-occurrence matrix, where each entry represents the number

of times the word at column 9 occurs right next to the word at row 8. They use this statistics to

put additional constraints in the loss function when learning word-level embeddings. Specifically,

they encourage the model to learn word embeddings, such that the dot product of any two words

is proportional to their co-occurrence value.

One of the newest methods for word embedding was introduced in [28] where the model

encodes the words on a character-based level. The authors represent each character as a 24-

dimensional vector and a single word is represented as a matrix. This matrix is passed through 2

fully connected layers and returned as a word-level embedding, which is ready to be consumed

by text encoding recurrent neural networks, such Long Short Term Memory (LSTM) [29] or Gated

Recurrent Units (GRU) [30]. This kind of word-level embedding does not require extra space for

thousands of word vectors as it depends on the number of letters in the alphabet and the size of

fully connected layers.

Another word embedding model, Embeddings from Language Models (ELMo) [3], feeds

Word2Vec representations for each word in the sentence to a bi-directional LSTM that adjusts

the Word2Vec representation to the local context within the given sentence. This is one example

of using the words embedded via Word2Vec in another framework. Similarly, the current state-

of-the-art language models, such as transformers [31] and Bidirectional Encoder Representations

from Transformers (BERT) [32], also use the Word2Vec embeddings as the inputs to their models.
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1.3.1.2 Attribute-Based Embedding

Another application of embedding can be found in some image classification frameworks.

For instance, in [6, 7], Akata et al. introduced an attribute-based label embedding to categorize

images with the classes that share common features (e.g., animal classes). They annotated images

with binary codes that represent the existence or absence of the corresponding attributes in the

image. The final continuous embedding for each class is computed by averaging the binary vectors

in each class. The learning algorithm then uses the new representation for labels and maps the

image features to the same vector space. It learns the image encoding function that will minimize

the distance between the image vector and the correct label embedding.

Their work mostly followed the idea of using common attributes for different classes,

which was previously introduced by Lampert et al. [8, 9]. They call their framework Direct Attribute

Prediction (DAP), which feeds the input image to the binary classifiers for each attribute to identify

the probability of existence of each attribute. They further use these attribute probabilities to find

the class with the highest probability.

1.3.1.3 Cross-Modal Embedding

Cross-modal embedding is a technique mostly applied in information retrieval frameworks,

where the query and the retrieved data have different modalities. A common example is retrieving

text data from visual data and vice versa [33, 34]. Many deep learning frameworks use this

technique for other methods besides cross-modal information retrieval. For instance, Wehrmann

et al. [28] and Laina et al. [35] use cross-modal embedding to caption images. Similarly, [36, 37, 38]

incorporate this method for video captioning and video action retrieval. Our work in Chapter 3

was mostly inspired by the framework from [36]. Wray et al. use cross-modal embedding for the
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fine-grained action retrieval via aligning visual data to each Part of Speech separately, which is

quite similar to the action recognition models.

All mentioned frameworks embed the visual data and semantic data into a shared embed-

ding space. They mostly use pairwise ranking loss function to align the matching video-text pairs,

while pushing away irrelevant pairs further. The pairwise ranking loss, also known as triplet loss,

takes one vector from one modality and two vectors from other modality. One of these 2 vectors

must be positive and other must be negative match to the former vector. It computes the similarity

scores or distances between the single vector and other 2 vectors. The goal is to make the similarity

score between the positive pair higher than the negative pair, and vice versa if using distance

between vectors instead.

1.3.2 Action Recognition

The success of convolutional neural networks in image classification by training on large-

scale ImageNet dataset [39, 40] let the researchers extend the image classification models to play a

fundamental role in video action recognition domain. Currently, there are numerous deep learning

models designed for the purpose of action recognition that use convolutional and recurrent neural

networks [41, 18, 23, 19, 42, 21, 43, 20, 44, 22, 24, 45]. These methods achieved state-of-the-art

results on well-known datasets, such as UCF101 [46], HMDB51 [47], and EPIC Kitchens [48].

The work by [41] first came up with idea to use ConvNets for video classification. They

studied different ways of combining the spatial information from video frames, introducing early

fusion, late fusion, and slow fusion strategies. The early fusion strategy extends the first con-

volutional layers by adding a temporal dimension. This method allows to calculate the motion

features immediately using the pixel-level information. The late fusion takes the first and the last

frame of a short clip and averages the outputs of their final layers. This is somewhat similar to
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what the modern two-stream architectures do to combine the outputs of two modalities. The slow

fusion method uses multiple parallel convolutional layers with early fusion, which are gradually

combined in the higher layers via late fusion.

After their work, [18, 19, 20, 21] used a two-stream approach, where two separate ConvNets

are trained on two input modalities, namely an RGB frame and stacked optical flow vectors. In

all cases, the outputs of two models were late fused, with exception of the model from [20] that

fused the modalities at the early convolutional layers, since the authors believed that the feature

maps of both modalities must be combined at the early stage to associate separate spatial regions.

After the publication of [18], it became clear that optical flow features are quite beneficial for the

action recognition since they represent the motion in the video. Nowadays, it is rare to see action

recognition frameworks that do not utilize optical flow frames at all. The later works, such as [19],

use the idea of feeding a single RGB frame to one model to get spatial information about objects

and the stacked flow frames to the other model that calculates the motion features. However,

[19] uses much deeper CNN models, such as Inception [49] and VGGNet [50], and pre-train the

model with ImageNet, which let them achieve performance comparable with the accuracy of

image classification. A year later, [21] introduced Temporal Segment Networks (TSN). The model

segments the input video into # segments and randomly samples one RGB frame from each

segment. As previously, they stack the optical flow frames, but now they do this for each segment

as well. At the end, they combine the results by averaging, since this method produces the better

results than max pooling and weighted averaging. The authors also use two new modalities,

namely the difference between RGB frames and warped optical flow frames. They compute the

latter modality by estimating the homography matrix to compensate the camera motion.

One shortcoming of the aforementioned methods is that they do not properly leverage

temporal information of the videos from RGB frames and mostly delegate this task to optical
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flow frames. This issue also limits their capability to classify longer demonstrations of action;

only the TSN model, proposed in [21], was able to handle that via a sparse temporal sampling

method. Another solution to this problem was to use recurrent neural networks to preserve

temporal ordering of the frames, which was done in [42, 22, 44] with LSTM and bidirectional

LSTM layers. An alternative solution was presented in [43], where authors summarized the entire

video sequences into a singe image and used conventional image classification models.

1.3.2.1 Inflated 3D ConvNets

Other methods of video action recognition are based on the idea of adding a temporal

dimension to the ConvNets. The first successful implementation of this method was done in [23],

where they show that 3D convolutional layers are more suitable for preserving temporal informa-

tion. The later work in [24] introduces two-stream inflated 3D ConvNets (I3D) that demonstrates

significant improvements in action recognition in UCF101 and HMDB datasets. The main con-

tribution of this work was the idea of inflating 2D image classification networks with temporal

dimension and pre-training it on a new large-scale Kinetics dataset, which contains 400 activity

categories with over 400 videos in each category.

Throughout our research, we use the I3D model in our experiments. We use it as the

base model to extract visual features from the videos, as well as the baseline to compare with.

We decided to use this model since it achieves the current state-of-the-art results on the EPIC

Kitchens [48] dataset that we use in our experiments. Nonetheless, we applied some limitations to

this model to make the training process faster and to allow our model use larger batches. Specif-

ically, instead of the recommended 64 frames, we only sample 12 frames per video. Otherwise,

the model would need much more computational power. For instance, the authors of [24] use 64

Nvidia Tesla K40 GPUs to train this model with larger batches.
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Figure 1.1: Distribution of verb classes in EPIC Kitchens dataset. The number of videos are shown
in logarithmic scale.

1.3.3 EPIC Kitchens Dataset

EPIC Kitchens [48] is a large-scale egocentric dataset of cooking videos. It has 28K action

segments from 32 different participants. All videos were shot at 60 frames per second and one

segment on average is 4 seconds long. The dataset also includes optical flow frames with 30 frames

per second that were extracted with TV-L1 algorithm [51]. We use this dataset throughout our

experiments. Each video segment in the dataset was annotated with open narrated sentences, as

well as with separate nouns and verbs. The verbs were grouped into 125 classes, while nouns

were grouped into 331 classes. Authors also provide the bounding boxes for the objects for object

detection and recognition tasks. In our research, we are mostly interested in the verb recognition

sub-field of action recognition. Figure 1.1 shows the distribution of verb classes in the dataset in

logarithmic scale. We can see that the classes are quite unbalanced, with only six classes that have

at least 1,000 videos, namely take, put, open, close, wash, and cut. Moreover, these classes compose

more than 70% of the entire dataset. Out of all 125 verb classes, only 26 of them have at least 100

videos.
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Chapter 2: Motion Embedding with Motion Taxonomy

In this chapter, we introduce the motion taxonomy and its application in motion embedding.

First, we define the motion taxonomy and the rationale behind its development. Then, we describe

our methods for using the taxonomy to obtain low-dimensional motion representations and learn-

ing a deep model for predicting motions from the demonstration videos. Lastly, we introduce our

action recognition framework that incorporates the extracted motion features in the learning and

prediction process.

2.1 Motion Taxonomy

Most of the current action recognition datasets contain videos that were annotated with

narrated sentences. The sentences are parsed into parts of speech, such as verbs and nouns,

which are later grouped into classes. Some datasets also include the bounding boxes for object

detection frameworks. These sentences in general provide sufficient semantic representations for

the actions in the videos, especially if the videos demonstrate activities for specific domains, such

as cooking. Nonetheless, it can be difficult to precisely visualize the actions by only looking at

these annotations. This is because actions can be ambiguous from mechanical perspective and

semantically identical actions can be executed differently. For instance, one person could flip an

omelette using a spatula, while other person could do it by tossing the pan. The mechanical aspects

of the actions depend on the motions that the actor executes. In order to achieve good motion

representation, we developed a motion taxonomy [25, 26].
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Motion taxonomy is a hierarchical tree-like structure that defines the motion components.

The components include interaction type between the actor and the object, their individual tra-

jectories, how many hands are involved in manipulation, and whether the actor uses any tool for

manipulation (e.g., knife, spatula, etc.). The components can be correlated by some degree, but for

the following experiments, we assume they are all independent from each other.

By following the branches with certain decisions and concatenating the outcomes from

each tree, we derive a low-dimensional binary vector that represents the given motion. We refer

to such representation as the motion code and to its derivation process as the motion embedding. The

motion code encapsulates the most vivid features of one atomic action between the active and

passive objects. Thus, the motion code eliminates the mechanical ambiguity of the given actions.

Figure 2.1 demonstrates the original version of the taxonomy.

2.1.1 Describing the Interaction Type

At the highest level, the manipulations can be classified as contact and non-contact. The

most obvious example of a non-contact interaction is pouring. There is no direct contact between

the receiving container and the source container. In this scenario, one could argue that there is a

direct contact between the hand and the source container, but our framework considers the union

of these two objects as a single active object in this action. However, this assumption can be false

in the atomic action that follows the pouring. For instance, after pouring an oil, the next action

could be placing the oil back to its original location. In this action, the hand is the active object,

while the oil becomes the passive object. When deriving the motion codes from the taxonomy, it

is important to first identify the active and passive objects before proceeding further.

The contact motions can be further branched into engagement type and contact duration. The

contact is considered continuous if the active and passive objects are in contact with each other
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Figure 2.1: The original motion taxonomy. We derive the motion code by concatenating the outputs
of each tree.
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for most of action duration and if their contact remains persistent throughout that duration. For

instance, cutting a potato should be considered as discontinuous if the actor interrupts the contact

between the knife and potato each time when he raises the knife. On the other side, if the actor

performs the same action without interrupting the contact, it can be considered as continuous.

The given example also demonstrates that motion taxonomy can distinguish the differences in

performing the same action in multiple ways.

The contact can be also rigid or soft. The rigid contact does not affect the structure of any

object and the only variable component of such interaction is whether the passive object changes its

location as the result of interaction. A general example of such interaction is picking and placing

the object. The soft contact occurs either when there is admittance between two objects (e.g., dip

a meat into sauce) or when one object changes its shapes (i.e., deform). When deforming, either

active object or passive object changes its shape temporarily or permanently. The actions that

involve cutting, mixing, squeezing, and other motions that change the shape of the objects are

considered soft.

2.1.2 Describing the Motion Trajectory

We define the trajectory based on 3 components, namely recurrence, prismatic motion, and

revolute motion. During the motion embedding of an action, we identify all 3 components for both

the active and the passive objects.

For the prismatic (or translational) trajectory, we need to identify whether there is any

translational motion and how many degrees of freedom (DOF) it has. Prismatic motion can have

1 DOF (along a single axis), 2 DOF (along a 2D plane), and 3 DOF (confined to the entire space).

Since we are dealing with ego-centric videos, we do not define the axes and the coordinate system.

For instance, we consider the prismatic motion to have 1 DOF if its trajectory would draw a straight
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line, even though the same video may have another atomic action that was labeled as prismatic

with 1 DOF, but the planes of their trajectories are not parallel to each other. However, in the

well-defined environment with a coordinate system and visual data from different angles would

make it possible to define the trajectories with respect to the world axes.

The revolute (or rotational) motions also can have up to 3 DOF. However, in the kitchen

scenario, the most frequent occurrence of the revolute motion will have one degree of freedom. A

typical example is opening or closing the door. The door has a single rotational axis and opening

or closing it makes the door to rotate around that axis. Another examples are flipping and pouring.

The prismatic and revolute motions are not mutually exclusive. More than that, in most

cases of revolute motions, there will also be a prismatic motion. It is a non-trivial and non-natural

task for a human to perform actions without any prismatic motion. For instance, during pouring,

it is common to raise the hand along with rotating the wrist. The rotational motions with no

translation can be achieved when the object is fixed and its motions are constrained to rotate along

the axis (e.g., opening the door).

In addition to prismatic and revolute motions, the action can incorporate a recursion. It is

quite common to see recurrence in the motions of activities in daily living actions (e.g., mixing,

screwing, dicing).

2.1.3 Manual Operation and Active Descriptor

The last two motion attributes in the taxonomy are manual operation and active descriptor. The

former identifies whether the action involves one hand or both hands. The operation is considered

to be bi-manual if both hands are executing visually identical tasks. For instance, the most common

case of washing a dish will involve both hands holding the dish and wiping it with a sponge. One
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the other side, if the action is cutting and one hand is gripping the passive object, while the other

hand is cutting it with a knife, these operation will be labeled as uni-manual.

The active descriptor attribute is the most recent addition to the taxonomy. Hence, it was

not demonstrated in Figure 2.1. We use it to identify whether the actor is using any kind of tool

or utensil in order to execute the action. The tools include a utensil when mixing or flipping, a

sponge or towel when washing, a bottle or container when pouring, a knife when cutting, etc.

2.1.4 Taxonomy Revision

During our revision, we identified on flaw in interaction type tree of the taxonomy from

Figure 2.1. The structural outcome of the objects does not necessarily represent the motion. Change

of the objects’ shapes or locations is more relevant to the state recognition and transition domain.

In addition to that, the object state can be changed even if there is no direct contact between active

and passive objects. For example, after pouring, the state of both objects are changed. Therefore,

we decided to exclude these attributes from the interaction type tree. We still keep them in the

taxonomy as a separate tree. However, we rarely use it in our experiments. The last modification

was elimination of the bit that represents the number of hands involved. This attribute was not

consistent for many actions, since the second hand could appear in the scene, but is not actually

involved in the action. This inconsistency could bring confusion during the annotation, as well

as during the motion prediction from the videos. Figure 2.2 shows the current version of the

taxonomy.

2.1.5 Data Annotation

We annotated EPIC Kitchens dataset [48] with the motion codes by watching the videos

and following the taxonomy. Throughout our research, we had 3 annotation stages. At the
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Table 2.1: Dataset after the initial annotation. One verb class has exactly one motion code.

Verb Motion code Description

Take 10011-010-0 Rigid, mobile, and continuous contact; only prismatic trajectory; small
passive object.

Put 10011-010-0 Rigid, mobile, and continuous contact; only prismatic trajectory; small
passive object.

Open 10011-010-1 Rigid, mobile, and continuous contact; only prismatic trajectory; large
passive object.

Close 10011-010-1 Rigid, mobile, and continuous contact; only prismatic trajectory; large
passive object.

Wash 10001-101-0 Rigid, stationary, and continuous contact; recurrent and revolute tra-
jectory; small passive object.

Cut 11110-110-0 Permanently deforming passive object, discontinuous contact; recur-
rent and prismatic trajectory; small passive object.

Mix 10111-111-0 Admittive and continuous contact; recurrent, prismatic, and revolute
trajectories; small passive object.

Pour 00000-001-0 No contact with passive object; revolute trajectory; small passive ob-
ject.

Shake 10011-111-0 Rigid, mobile, and continuous contact; recurrent, prismatic, and rev-
olute trajectories; small passive object.

Squeeze 11101-010-0 Temporarily deforming passive object, continuous contact; prismatic
trajectory; small passive object.

first stage, namely initial annotation, we used the original taxonomy. After that, we applied the

revisions mentioned in Section 2.1.4 and moved to the second stage of annotation, namely second

annotation. Finally, we developed a method for annotating the videos automatically, namely

automatic annotation. We will discuss the last stage separately in Section 2.4.

During the initial annotation, we wanted to evaluate the robustness of the defined attributes

in the taxonomy. It is important to note that we used the initial version of the taxonomy during

this annotation. At that point of time, we did not consider the trajectory of the passive object.

This is also the reason why the original taxonomy has the mobile and stationary attributes in its

interaction type tree. We selected 10 classes in the EPIC Kitchens dataset. From each class, we

selected 100 videos that have visually identical motions (i.e., have the same motion codes). During

this annotation, we already eliminated the bit that represented number of hands. However, we
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Figure 2.3: Number of unique motion codes per verb class after the second annotation.

also temporarily added a new bit that represents the size of the passive object. We did it because

40% of videos would have had identical motion codes otherwise (i.e., take, put, open, close). Another

modification, or rather a simplification, was reducing the prismatic and revolute trajectory bits to

a single bit, which represents whether there is any motion in these trajectories or not. Table 2.1

shows the verb classes and their motion codes.

During the second annotation, we randomly selected at most 500 videos from each class.

We used the revised version of taxonomy from Figure 2.2. The resulting dataset has 4,488 videos

annotated with motion codes. Figure 2.4 shows the distribution of the videos in the dataset with

respect to the verb classes they belong to. Figure 2.3 shows how many unique motions we observed

in each verb class. We can see that some classes have more than 50 different motion codes (dry and

remove), while 13 classes have at least 20 different motion codes. We should also mention a single

modification that we applied during this annotation. Since we are dealing with ego-centric videos,

it is almost impossible to precisely identify whether the prismatic motion has 2 or 3 DOF, as well
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Figure 2.4: Number of videos per verb class after the second annotation.

as to identify whether rotational motion has 2 or 3 DOF. Therefore, we simplified the trajectory

definitions for prismatic and revolute motions to have 0, 1, or many DOF.

2.2 Motion Prediction

After annotating videos with the motion codes, we started the development of the motion

code estimation model. As we mentioned in Section 1.3.2.1, we use the Inflated 3D ConvNets [24]

model to extract visual features from the videos. Since the motion codes are represented as binary

vectors, one could suggest to use separate binary classifiers for each bit. However, this approach

would not fit for the motion code prediction, since some bits depend from each other. For instance,

the three bits of interaction type attribute depend from each other starting right at the first bit. If it is

zero, the remaining bits must be also zero. Therefore, we developed other more suitable methods

that we describe in the following subsections.
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2.2.1 Learning with a Tree-Like Structure

The motion taxonomy has a tree-like structure. Hence, it would make sense to use this

structure in the learning algorithm. In addition to that, at that time, we used the taxonomy from

Figure 2.1, which has a relatively deep tree for the interaction type. Figure 2.5 illustrates the structure

of the model that we developed. We use I3D to extract visual features E1 and use these features do

decide whether there is a contact or not. We do that by feeding features E1 to a single layer binary

classifier. We further feed the same features E1 to other fully connected layers that are responsible

for different tasks. For instance, E20 learns features that can represent the contact duration and

we feed them to another binary classifier that identifies whether the contact is continuous or not.

Similarly, E21 learns the features to represent the interaction type and these features are used to

identify whether the interaction is soft or not (i.e., rigid). As with features E1, the output of E21

is further fed to 2 neural networks that predict the interaction type attributes, namely E30 that

predicts whether the interaction is mobile or not (i.e., stationary) in case of rigid contact, and E31

that predicts whether the contact is deforming or not (i.e., admittive) in case of soft contact. The

last interaction attribute is the outcome of the deforming contact. Since these outcomes occur

during the deforming contact, the output of E31 is used to calculate the features for the outcome

classification. From Figure 2.5 we can also see that there is no branch to identify whether an active

or passive objects were deformed during the deforming contact. We did not include this branch

in order to reduce the complexity and confusion as there are many cases when both active and

passive objects are deformed (e.g., squeezing a sponge).

We can see that this model preserves the tree-like structure of the motion taxonomy. The

model encourages the feature vector E1 to properly represent all interaction features in the video

because all lower-level interaction attributes depend on it. Similarly, the layer E21 must learn a
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Figure 2.5: Decision tree-like model structure for interaction prediction. The model follows the
structure of the original taxonomy from Figure 2.1.

representation that can be sufficient for all interaction type attributes in addition to identifying

whether the contact is soft or rigid.

Since we want to classify each attribute, all loss functions are categorical cross-entropy

functions. Even though we need to classify each attribute, some branches must be ignored for

particular videos because the video does not demonstrate these attributes. For instance, if the

interaction is non-contact, then the model should not adjust the layers after E1, except the contact

classifier. Similarly, if the contact is rigid, the layers below E30 are not modified. To achieve this

behavior, we multiply the loss values by a mask, where the entry is zero if the corresponding

attribute is not in the video.
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For the remaining bits, we use binary classifiers that also obtain the latent visual features

from the deep 3D CNN. This results in 5 separate models for RGB frames and 5 models for flow

frames. We consider recurrence, prismatic trajectory, revolute trajectory, and passive object size

bits as independent from each other and from the interaction type. As the interaction type model,

they train with categorical cross-entropy loss function.

The model was trained with the dataset from the initial annotation. We split the dataset

to train and validation sets via 80/20 split. The model was trained for 100 epochs with Adam

optimizer and initial learning rate of 10�4 that was reduced to 10�5 after 60 epochs.

2.2.2 Learning to Classify Motion Components

The model with a tree-like structure perfectly aligns with the hierarchical nature of the

taxonomy. However, that model has three drawbacks. First is its computational complexity. The

model learns multiple representations for each attribute and it derives them from the higher-level

attribute representations vial fully connected layers. In addition to that, it requires separate deep

3D CNN models for each tree. In total, this framework employs 10 separate deep models, 5 for

RGB frames and 5 for optical flow frames. Second, we also want the model to learn a continuous

embedding that we can later use as a high-dimensional motion embedding. Finally, the revised

version of the motion taxonomy from Figure 2.2 has more shallow trees than the original and the

tree-like model structure will not necessarily benefit the performance.

We designed a new learning method after considering the mentioned drawbacks. This

time, there is only one I3D model per modality that extracts a high-dimensional visual feature

vector. We further use the same visual features to classify each independent motion component.

As we mentioned in Section 2.1, we assume that all trees in the taxonomy are independent from

each other. There can be small correlations between each tree, but we consider them to be weak
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enough to define them independently from each other. Additionally, we consider the subtrees

of the trajectory type to be independent as well, since any combination of prismatic and revolute

trajectories is possible, while recurrence has only one special scenario when it cannot be 1 (i.e.,

when there is no motion at all).

By looking at the taxonomy in Figure 2.2, we can identify the following independent motion

components: the interaction type, trajectory recurrence, prismatic trajectory, revolute trajectory,

and the active descriptor. We do not consider the structural outcome for motion prediction since

it is not within the scope of the motion prediction. The interaction type has 5 possible outcomes,

which means the model must classify with one of five classes. Similarly, the recurrence and active

descriptor have 2 classes each. The prismatic and revolute trajectories have 3 classes each (i.e., 0, 1,

and many DOF).

For this model, we used the dataset from the second annotation. We annotated 4,488 videos

with the motion codes, which is not sufficient to train a model that classifies all mentioned compo-

nents. Therefore, we had to further simplify the format of the motion codes for this dataset. More

specifically, as with the original taxonomy, we only consider the trajectory of the active object, while

the trajectory of the passive object was reduced to a single bit. That single bit represents whether

25



the passive object is moving with respect to the active object or not. We reduced the trajectory by

directly comparing the full-fledged passive object trajectory to the active object trajectory. If the

trajectory bits are identical, we assume that the passive object is static with respect to the active

object. Otherwise, the passive object has a relative motion. We understand that such a method will

produce some noise to our annotations since there can be cases when the passive and active objects

have an identical number of DOF for translational and rotational motions, but their directions or

coordinate systems are different. The last modification was the removal of the active descriptor

because it was less significant for the motion representation in comparison with the remaining

components. As a result, we have 5 components: interaction type (5 categories), recursive motion

(2 categories), prismatic trajectory (3 categories), revolute trajectory (3 categories), and the passive

motion (2 bits). In total, there are 180 possible combinations for this motion code format.

After applying the mentioned adjustments, we balanced the dataset. We removed the

videos that have motion codes with less than 20 samples in the dataset. We also removed the

videos that belong to the verb class with less than 20 samples in the dataset. The latter filtering

was applied because we wanted to integrate the motion prediction model to the action recognition

model. We split the resulting 3,528 videos into a training set with 2,742 videos and a validation set

with 786 videos.

The model can be defined as follows. We feed the video G 2 X to the deep network

 : X ! ⌦. We use the resulting feature vector (G) as the input to 5 classifiers to predict the

motion components and concatenate them into the output motion code. The loss function is the

linear combination of all categorical cross-entropy loss functions:

L =
5’
8=1

⌫8L8 (2.1)
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To potentially improve motion code prediction, we also tried to incorporate knowledge of

the objects in action into the training process. Formally, we modified the model described above

by encoding the semantic features of the objects I 2 Z with embedding function ) : Z !  

and combining it with the visual features. For our experiments, we concatenate these two feature

vectors. We use a Word2Vec model pre-trained on Google News [1] (containing over 3 million

words) to encode these semantic features about objects seen in each video. A model of this kind

could be used for queries, where we can determine what kind of motion with a given object can

be executed to replicate a certain activity.

The entire model was trained for 50 epochs with Adam optimizer and the learning rate set

to 0.0003 that decreases by 40% every 5 epochs. For the first 3 epochs, the convolutional layers of

the base model were frozen to allow the top layers to fine-tune for a better initialization. The input

video frames are sampled to 6 frames per second to increase the training and inference speed. We

use both RGB and optical flow frames. In our experiments, all ⌫ coefficients are set to 1. During

training, we add the !2 norm of the network parameters multiplied by a weight decay factor to the

loss function for !2 regularization [52]. The model was implemented with the TensorFlow library

[53]. The overall architecture is illustrated as Figure 2.6.

2.3 Action Recognition with Motion Features

Motion prediction model provides us with the motion features from the videos. Currently,

optical flow estimation is considered to be the primary motion feature extraction method. The

work from [22] emphasizes the importance of accurate optical flow computation for the action

recognition models. The results of all state-of-the-art action recognition models support that

observation. It is common to see the frameworks that learn two separate models for RGB frames

and optical flow frames. Since the task is a multi-class classification, the final layers of both models
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Figure 2.7: The structure of our verb classification framework with motion code predictor. Verb
classifier and motion predictor may or may not use the object semantic data.

are N-dimensional vectors, where N is equal to the number of classes in the dataset. Both vectors

are averaged to obtain the output of the fused two-stream network, which is further converted into

a probability distribution for the classes via the softmax function. In all cases, the accuracy of the

fused model is higher than the accuracy of the individual modality models. With that in mind, we

wanted to discover how the motion features from our motion prediction model would affect the

performance of the action recognition model.

2.3.1 Methodology

Our proposed model can be described as follows. Let G8 2 X be the 8
C⌘ video in the set of

videos and H8 2 Y be the corresponding verb class label of that video. Conventional classification

models first extract the visual features from the video into a latent space as+ : X ! ⌦. Our method

augments that model with a motion code embedding model from Section 2.2.2. We concatenate

all probability distributions for motion components into a single motion embedding vector. For

simplicity, we refer to the entire motion code embedding model as " : X ! ⇤. After we get +(G)
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and "(G), we concatenate them and feed the resulting vector to a multi-layer perceptron with 2

fully connected layers. The output vector +̂(+ ,") is the new verb class probability distribution.

Just like with motion prediction model, we were interested to see how the information

about the ground truth nouns would affect the performance. As previously, we use the nouns for

each video and embed them via Word2Vec pre-trained on Google News [1]. We integrate the nouns

into our model in multiple ways. First, we use it in the verb classification model by concatenating

it to the output probability distribution and feeding the resulting vector to a fully connected layer

that acts as a new probability distribution. We denote this model as +(G , I) Then, we integrate the

nouns into motion prediction model by concatenating them to the penultimate layer that is shared

by all motion component classifiers. As with verb classifier, we feed the resulting vector to a new

fully connected layer, whose output will be fed to the motion component classifiers. We denote this

model as "(G , I). We compare different variations of the verb classification model (e.g., with and

without predicted motions or nouns) in Section 2.5. Figure 2.7 illustrates the framework structure.

Each verb classification and model prediction model was trained separately for 50 epochs

with Adam optimizer and the learning rate set to 0.0003 that decreases by 40% every 5 epochs. For

the first 3 epochs, the convolutional layers of the base model were frozen to allow the top layers

to fine-tune for a better initialization. The input video frames are sampled to 6 frames per second

to increase the training and inference speed. We use both RGB and optical flow frames. During

training, we add the !2 norm of the network parameters multiplied by a weight decay factor to

the loss function for !2 regularization [52]. The models were implemented with the TensorFlow

library [53]. The model +̂ was trained for 200 epochs with Adam optimizer and the learning rate

of 0.0005. We used the same dataset as in the motion prediction model from Section 2.2.2, with

2,742 training videos and 786 validation videos. The dataset has 33 verb classes. Each class has at

29



least 20 videos in this dataset. For the testing, we sampled 1,517 videos that belong to the 33 verb

classes in the training and validation sets.

2.4 Word2Motion Prediction

One obvious flaw of the models and experiments from Section 2.2 and Section 2.3 is the size

of the dataset. The initial and second annotations provide only 1000 and 4,488 videos respectively to

be used in training and validation. We acknowledge that this is not sufficient for the models that

are based on action recognition frameworks. In addition to that, we had to simplify the motion

code format multiple times to be able to achieve acceptable motion prediction performance. The

entire EPIC Kitchens dataset contains about 28K videos, which is six times larger than our dataset

after the second annotation. However, the motion code annotation process is time intensive, so we

had to find a way to annotate the dataset with less human effort.

We have previously mentioned that semantic labels do not provide enough information

from the motion mechanics perspective. However, we wanted to see what if we learn a model

that uses the semantic labels to annotate the videos with the motion codes. We show in Section

2.5 that the integration of nouns into motion prediction model significantly boosts its accuracy.

Therefore, we were interested to test how the full semantic labels (i.e., verbs and nouns) can

be translated to the motion codes. We understand that this method will provide us with noisy

annotations because the semantic labels cannot robustly represent the motions and the motion

prediction model trained on the resulting dataset will learn to predict those noisy motion codes.

However, we wanted to compensate that noise with the scale of the training set. Moreover, the

training of this Word2Motion model does not require too much computational power as the input

size is relatively small. In the future work, we plan to use both videos and semantic labels to train

a model with similar task. Note that this is different from the motion prediction model, since the
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Figure 2.8: The structure of our Word2Motion model. The model takes embedded nouns and
verbs and feeds them to a 2-layer MLP. The final layer output is the predicted motion code.

idea of motion prediction model is to only use the video modality with no other information. We

previously used the knowledge of nouns for the testing purposes only. In the real world scenario,

we assume that visual data is the only information the model will have access to.

2.4.1 Methodology

We implemented the Wrod2Motion model in a relatively trivial way. The future versions

will be more sophisticated. Figure 2.8 shows the model structure. We feed the verbs and nouns

of each video to the model. We use 100-dimensional Word2Vec model pre-trained on Wikipedia

[54, 55, 56] to embed the verbs and nouns separately. The embedded vectors are concatenated into

a single input vector. The model has 2 fully connected layers.

We train the model to embed the inputs to the motion codes in two ways. One way is to

map the inputs to a vector that represents the actual motion code. The loss function is the squared

Euclidean distance between the output vector and the motion code label. We refer to such method

as a bitwise learning. Another way is to use the approach similar to the motion prediction model

from Section 2.2.2. More specifically, use the output of the penultimate layer to classify each motion

component. In this case, the loss is the sum of cross-entropy loss functions for each component.

We refer to this method as a componentwise learning.
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Since we want to use this model to automatically annotate the entire EPIC Kitchens dataset,

we make the model learn to predict the full-fledged version of the motion codes that follow the

format of the taxonomy in Figure 2.2. We use the dataset from the second annotation and split it

into training and validation sets. We train the model for 150 epochs with Adam optimizer and a

constant learning rate of 10�4.

2.5 Results

In this section, we present the results of our models and experiments presented in this

chapter. We will first discuss the performance of Word2Motion model from Section 2.4 since we

have separate results for motion prediction and verb classification before and after the application

of Word2Motion model.

2.5.1 Word2Motion

As we mentioned in Section 2.4.1, we trained the model via bitwise learning and component-

wise learning.

2.5.1.1 Bitwise Learning

Figure 2.9 shows the accuracy trend on the training and validation sets after each epoch.

We also include the accuracy values for the motion code prediction with at most 1, 3, and 5

mispredicted bits. In total, there are 17 bits in the motion code. We can see that exact motion code

prediction does not get higher than 40%. With at most 1 mispredicted bit, the accuracy is almost

60%, while the accuracy with at most 3 and 5 mispredicted bits reaches 80% and 92% respectively.

Figure 2.10 shows the bitwise accuracy on the validation set before and after training. The

values from Figure 2.10a represent what the bitwise accuracy would be if we always select the
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Figure 2.9: The accuracy of the bitwise Word2Motion model. The figure shows the accuracy for the
exact motion code prediction, as well as the accuracy of predicted motion codes with at most 1, 3,
and 5 bits that were wrong.
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Figure 2.10: The bitwise accuracy on the validation set before and after training the model.

same value for each bit which is most often found in the validation set. For instance, Figure 2.10a

shows that in 80% of samples in the validation set, the bit number 5 is either 0 or 1. We can see that

bitwise accuracy increases after training the model with no exceptions. Even the first bit, which in

almost 98% of samples has the same value, improves by less than one percent.

33



Sectionwise val maj

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Interaction

Recursive active

Prismatic active

Revolute act ive

Recursive passive

Prismatic passive

Revolute passive

Hands

Tools

Accuracy
M

ot
io

n 
co

m
po

ne
nt

s

(a) Before training

Sectionwise val acc

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Interaction

Recursive active

Prismatic active

Revolute act ive

Recursive passive

Prismatic passive

Revolute passive

Hands

Tools

Accuracy

M
ot

io
n 

co
m

po
ne

nt
s

(b) After training

Figure 2.11: The componentwise accuracy on the validation set before and after training.

2.5.1.2 Componentwise Learning

The componentwise learning method achieved similar accuracy performance as the bitwise

learning, about 40% on the validation set. There are 9 independent components in the motion

code: interaction, recursive trajectory, prismatic trajectory, revolute trajectory, number of hands,

and whether the actor uses any tool. The trajectory components are separately defined for active

and passive objects. As with bitwise learning, we provide the accuracy before and after training

the model in Figure 2.11. We can see that the accuracy of all motion components imporves after

training. It is also interesting to see that the motion components are quite unbalanced. The

interaction component has 5 possible outcomes, but almost 70% of the videos show rigid and

continuous contact, which is not surprising for the kitchen environment. Moreover, about 60% of

all videos in the EPIC Kitchens dataset belong the classes put, take, open, close, which in most cases

have rigid and continuous contact. We can also see that the most unbalanced components are

recursive trajectories for both active and passive objects. However, these components have only 2

possible outcomes each, and it is quite rare to see recursive motions in the EPIC Kitchens dataset.

Again, the previously mentioned 60% videos do not have any kind of recursion, and the remaining

40% are not necessarily all recursive.
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Figure 2.11b shows that the worst component accuracy is about 74%, which we assume is

acceptable for the further automatic dataset annotation. We believe this value can be improved

with the visual input data on top of the semantic data. Semantic data cannot fully encapsulate the

motion representation, while video and optical flow frames can provide valuable information. In

the future work, we will incorporate visual data into learning algorithm as well.

We use the componentwise learning method for the automatic annotation since this method

does not produce invalid combination of bits (e.g., interaction has 5 valid outcomes, while 3 bits

have 8 combinations). We use the model to annotate all 28K videos in the EPIC Kitchens dataset.

This annotation allowed us to use our frameworks from Sections 2.2.2 and 2.3 with the full-fledged

version of the motion codes. For comparison, the simplified version of the motion codes has only

180 possible outcomes, while the full version can have up to 6.5K valid outcomes.

2.5.2 Motion Prediction

We have two different models for motion prediction, the tree-like model from Section

2.2.1 and the componentwise motion prediction model from Section 2.2.2. The former uses the

dataset after the initial annotation, while the latter uses the datasets after the second and automatic

annotations.

2.5.2.1 Tree-Like Model

We first report the results of the tree-like model. The dataset has 800 training videos with

80 videos per class and 200 validation videos with 20 videos per class. The model uses the motion

codes embedded via the original motion taxonomy from Figure 2.1. The results from Table 2.2

demonstrate the accuracy on the validation set. As we mentioned in Section 2.2.1, the framework

utilizes 5 separate deep models per modality. The models for trajectories and passive object size
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Table 2.2: Motion prediction accuracy on the validation set after the initial annotation. The model
was implemented with a tree-like structure, trained on 800 videos, and evaluated on 200 videos.

Model RGB Flow

Interaction bits 61.85 68.04
Motion recurrence bit 83.50 87.11
Prismatic trajectory bit 83.50 83.50
Revolute trajectory bit 85.05 81.44
Passive object size bit 86.30 84.71

Entire code (direct prediction) 38.14 45.87
Entire code (nearest neighbor) 60.82 61.85

are all binary classifiers since we simplified the prismatic and revolute trajectories to be either 0

DOF or any number of DOF. Hence, the learning to classify these attributes should not be too

difficult.

In the dataset, 60% of samples were labeled as not recurrent, making the improvement after

learning to be 23.5% (60% vs. 83.5%). Similarly with the revolute trajectory, which was labeled to

be 0 in 60% of the dataset as well. It also gained over 20% improvement in comparison with always

predicting the most likely outcome. On the other side, the prismatic trajectory and size bits did not

improve that significantly. Exactly 80% of the videos were labeled to have prismatic motion and

the same amount was labeled to have relatively large passive objects, which makes the accuracy

boost less than 5%.

The interaction is the most interesting part of this model. We can see from Table 2.2 that

the interaction learning algorithm achieves decent performance, given such a small dataset size.

Exactly 50% of the videos in the dataset were labeled as rigid, mobile, and continuous contact.

However, 12% and 18% boost for RGB and optical flow frames respectively demonstrates that the

model learns to distinguish the interaction attributes. We can also see that the optical flow frames

provide significantly higher accuracy. This phenomenon will appear in the subsequent results as

well.
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The last two rows of Table 2.2 show the accuracy of predicting the entire motion code by

concatenating the outputs of all 5 models. We show the results of predicting the motion codes

directly from the outputs, as well as finding the motion code observed in the dataset with the

smallest Euclidean distance to the output. The dataset has 8 unique motion codes for 10 verb

classes because the classes open and close, as well as put and take, have identical motion codes. We

can see that nearest neighbor method has acceptable performance of 60% accuracy. Nonetheless,

in the real world scenario, we will not be able to rely on this method as there can be too many

motion codes to compare with. In addition, by assuming that the video will have a motion code

from the training set, we will put a limitation to the motion prediction model. We could use this

method if we had a large-scale dataset with all possible motions, which is not the case for the

EPIC Kitchens dataset. Meanwhile, direct prediction method shows significantly worse results

than the nearest neighbor method. However, in comparison with the nearest neighbor method

with 8 possible outcomes, the direct prediction has 11 possible outcomes for the interaction type,

and 24 possible outcomes for the remaining 4 bits, which makes in total 176 possible outcomes.

Therefore, we cannot say that 38% accuracy for the RGB frames and 46% accuracy for the optical

flow frames is an absolutely poor performance. In fact, the results of the model in the following

subsection will not be much different, even though the model had almost 4 times more data

after second annotation. However, we should keep in mind that the second annotation also contains

much more unique motions. The direct motion code prediction results also show that optical flow

frames perform better than RGB frames. This observation demonstrates the impact of interaction

prediction to the entire motion code prediction, which is not surprising given that it has almost as

many combinations as the remaining attributes all together.
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2.5.2.2 Motion Component Classification

The motion prediction via motion component classification model was initially trained and

evaluated on the second annotation dataset with 2,742 training and 786 validation videos. The model

predicts the motion codes embedded via the latest version of the motion taxonomy from Figure

2.2. The first version of this model predicts 5 motion components that are similar to the previous

tree-like model with one exception. Instead of the size of the passive object, it predicts whether the

passive object is in motion with respect to the active object. In addition to that, the prismatic and

revolute trajectories have three options (0, 1, and many DOF) instead of two. As the interaction

tree became more shallow in the new taxonomy, the number of possible outcomes was reduced

from 11 to 5.

As we mentioned in Section 2.2.2, we also use the knowledge of the objects in action

represented as 300-dimensional Word2Vec vectors. However, it is unlikely to have the ground

truth nouns available in the real scenario. Therefore, we decided to add some noise to the nouns in

order to imitate the scenario when the nouns are provided via an object recognition model. More

specifically, we randomly select 20% of videos whose ground truth nouns were replaced by any

other noun in the dataset.

Table 2.3 shows the performance of the models. We show the results for the entire motion

code prediction, as well as the accuracy of predicting each component separately. In addition to

that, we provide the accuracy of the motion code prediction with a tolerance for one wrong bit.

We do that by computing the difference between the predicted motion code and the label and

computing the magnitude of the resulting vector. If the magnitude is not greater than 1 (i.e., at

most one bit is wrong), we consider it as accurate.

We can see from Table 2.3 that motion prediction via component classification has similar

results as the previous tree-like framework. However, this framework requires only one deep CNN
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Table 2.3: Motion prediction accuracy on the validation set after the second annotation. The model
was implemented with motion component classification.

Models RGB Flow Fused

Baseline

Entire code 35.1 35.2 38.9
Entire code with 1 bit off 67.3 64.5 70.9

Interaction bits 85.8 84.7 87.0
Recurrence bit 90.7 91.0 92.5
Prismatic trajectory bits 70.6 72.8 73.2
Revolute trajectory bits 74.4 76.2 78.5
Passive motion bit 68.6 64.8 71.9

Nouns

Entire code 45.3 46.1 48.0
Entire code with 1 bit off 73.2 72.1 75.3

Interaction bits 86.4 86.4 87.9
Recurrence bit 90.6 91.2 92.1
Prismatic trajectory bits 76.0 74.4 74.9
Revolute trajectory bits 80.5 78.6 81.3
Passive motion bit 76.0 78.9 79.9

Nouns (20% noise)

Entire code 40.8 39.9 43.1
Entire code with 1 bit off 70.7 68.8 72.1

Interaction bits 86.5 85.9 88.0
Recurrence bit 90.7 91.5 92.5
Prismatic trajectory bits 74.2 71.8 73.5
Revolute trajectory bits 76.3 76.6 78.4
Passive motion bit 72.4 72.6 73.9

per input modality instead of 5. Table also shows that interaction prediction is much better than in

Table 2.2, which is most likely because the component now has twice less possible outcomes. On

the opposite, one additional outcome for prismatic and revolute trajectories resulted in about 10%

accuracy decline. Interestingly, the hardest component to estimate is the passive object’s motion

bit. This is quite surprising due to the fact that it has only 2 outcomes. Nonetheless, the model

actually learns how to predict this component as it has relatively uniform distribution in the dataset
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(54% 1s and 46% 0s). The table also shows that the late-fusion of the outputs from RGB and optical

flow models consistently improves the performance.

Probably the most interesting observation from Table 2.3 would be the impact of the nouns

on the accuracy. We can see that ground truth nouns provide about 10% boost over the baseline

model for all modalities, which is quite a significant jump. If we look at the breakdown of individual

components, noun vectors mostly benefit the prediction of passive object motion with respect to

the active object. We observed that majority of videos that were assigned incorrect motion codes

by the baseline model but were then given correct codes from the noun model had only 1 bit that

was wrong, which was the passive object motion bit. For instance, the baseline model classified

a video as passive object motion being present with respect to the manipulator, while the ground

truth is the opposite. Interestingly, 80% of these videos showed an action where person either

picks up and places an object or opens and closes it (e.g. door, microwave, fridge). The passive

object motion bit for pick-and-place actions were corrected from 1 to 0, while in open and close

actions, the bit was set from 0 to 1. In almost all cases when a person picks or places an object, the

object is moving with the same trajectory as the hand, making the passive object stationary with

respect to the hand. On the other side, when person opens or closes a door, the door always moves

strictly around its axis, making it to have only a revolute motion with 1 DOF. Such kind of a motion

trajectory is rarely performed by a human. These examples show that the model leverages the

information about the objects and can make assumptions based on that knowledge. Even while

adding 20% noise to the input noun vectors, the overall accuracy of motion code prediction lies

right in the middle between the baseline model and the model with 100% correct noun vectors.

The results of this model for the dataset after the second annotation demonstrate that the it

has decent accuracy for each motion component. However, the fact that the model struggles with

passive object motion prediction tells us that it is not quite clear for the model what it must learn.
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Table 2.4: Motion prediction accuracy on the test set after the automatic annotation. The model was
implemented with motion component classification, trained on 18,326 videos, and evaluated on
5,625 videos.

Motion components RGB Flow Fused

Entire code 46.95 43.66 48.48

Interaction bits 87.96 84.68 86.83
Recursive active bit 88.07 85.53 89.05
Prismatic active bits 88.78 88.75 88.89
Revolute active bits 87.48 87.13 87.70
Recursive passive bit 97.65 97.19 97.58
Prismatic passive bits 67.79 64.94 68.60
Revolute passive bits 75.47 74.54 76.75
Hands bit 84.27 81.46 85.03
Tools bit 86.10 84.68 87.47

As we mentioned in Section 2.2.2, we used not the most optimal method for reducing the trajectory

to a single bit, which is making it 0 if the objects’ trajectory bits are identical and 1 otherwise. The

best way to resolve this problem would be using the complete motion code format. In addition,

the baseline model with no nouns performs poorly. If we wanted to rely purely on the visual data

and predict the full-fledged motion code, we need a larger dataset, which is why we developed

Word2Motion model and annotated the rest of the EPIC Kitchens dataset. After annotation, we

split the dataset into train/validation/test sets using 60/20/20 split strategy. We also make the

verb class distribution to be identical for each set. This is done because we wanted to use the same

dataset and motion prediction model for the verb classification model.

Table 2.4 shows the performance of the motion prediction model on the test set after the

automatic annotation. Unlike the previous model, this model predicts the complete version of the

motion code. Also, this model does not use nouns at all. We can see that the model performs much

better in comparison with the baseline from Table 2.3. This is especially impressive because the

complete version of the motion code has about 6.5K valid outputs, which is significantly higher

than 180 of the previous model. However, we should keep in mind that this model was trained
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Table 2.5: Motion prediction accuracy on the entire dataset after the second annotation. The model
was implemented with motion component classification, trained on 18,326 automatically annotated
videos, and evaluated on 4,488 manually annotated videos.

Motion components RGB Flow Fused

Entire code 21.99 19.47 22.28

Interaction bits 73.51 68.43 71.79
Recursive active bit 86.41 83.85 87.23
Prismatic active bits 69.45 67.94 68.58
Revolute active bits 69.65 67.07 68.85
Recursive passive bit 93.61 93.25 93.81
Prismatic passive bits 55.10 49.75 54.46
Revolute passive bits 62.86 58.07 62.05
Hands bit 76.47 73.64 76.89
Tools bit 83.18 80.57 83.93

with the motion code labels that were estimated with the Word2Motion model. That model was

able to predict each component with at least 74% accuracy, but it was trained on the same dataset

after the second annotation. In other words, in addition to imperfect estimation, the Word2Motion

model estimated the motion codes for the dataset that is almost 10 times larger than its training

set (3K vs. 28K). Therefore, the robustness of the results from Table 2.4 is arguable.

Nonetheless, we can still evaluate the model on the dataset after second annotation. The only

problem is that some of those videos could have been used during the training of the model since

we did not separate them from the entire EPIC Kitchens dataset, while the split process did not

consider whether the video was in second annotation or not. Table 2.5 shows the results of using the

model on the 4,488 videos that were manually annotated. We can see that the entire motion code

prediction is much lower than from the Table 2.4. This demonstrates the impact of the noise in

using the motion code labels estimated by Word2Motion model. Note that we used Word2Motion

to annotate the entire dataset, including overwriting the manually annotated 4,488 videos. Despite

such a low motion code estimation accuracy, the estimation of the individual motion components

is still acceptable. The prismatic trajectory estimation of passive object is the lowest with 55%
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accuracy. It is still better than always picking the value with the highest appearance rate (45%).

These results demonstrate the importance of the robust data annotation. In the future work, we

consider using both semantic and visual data to achieve better motion estimation for annotation.

The results only prove that semantic data is not sufficient to represent motions. Additionally,

we plan to ues more sophisticated word embedding methods. For instance, Embeddings from

Language Models (ELMo) [3] encodes the words based on the sentence they were used in. They

embed each word in the sentence via Word2Vec or GloVe and feed them to the bi-directional LSTM

cells to obtain contextualized representation for each word.

2.5.3 Action Recognition

As with the motion prediction model, we conducted experiments after the second annotation

and after the automatic annotation. For the former dataset, we train all models on 2,742 training

videos, validate on 786 videos, and test on 1,517 videos. The test set was sampled from the

remaining EPIC Kitchens videos that were not annotated with motion codes. For motion prediction

"G and motion prediction using nouns "G ,I we use the models discussed in the previous section.

We refer to the baseline verb classifier as +G and to the baseline that also has direct access to nouns

as +G ,I . We denote the final verb classifier that combines the outputs of the selected verb classifier

(+G or +G ,I) and motion prediction model ("G , "G ,I) as +̂(+ ,"). It is important to note that if

one of two models has direct access to nouns, then the other does not necessarily has the access

to nouns as well. For instance, in the model +̂(+G ,"G ,I), the baseline verb classifier +G does not

have access to nouns. Instead, only motion prediction model "G ,I uses nouns during training and

inference to achieve higher motion prediction performance. Hence, the knowledge of objects does

not directly affect the performance of the entire +̂(+ ,") model, but the application of nouns in

the individual sub-models improves their individual performances.
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Table 2.6: Verb classification accuracy on the validation set after the second annotation. The results
are shown in top-1 accuracy. The models were trained on 2,742 videos and evaluated on 786 videos.

Methods RGB Flow Fused

Baseline, +G 41.60 39.82 45.04
Baseline with nouns, +G ,I 48.22 44.15 49.24

Predicted Motions, +̂(+G ,"G) 41.22 40.46 46.18
Predicted Motions with nouns, +̂(+G ,"G ,I) 43.13 42.11 47.20
Ground Truth Motions*, +̂(+G , "̄G) 53.82 53.69 57.63

(Using true motion code as embedding)

2.5.3.1 Results on Second Annotation Dataset

Table 2.6 shows the top-1 verb classification accuracy results of different models on the

validation set. We use the validation set results to be able to compare all models with +̂(+G , "̄G).

This model combines the baseline verb classifier with the ground truth motion codes. Since, we

did not have a separate test set annotated with motion codes, we used the validation set instead.

We can see that the knowledge of nouns significantly improves the baseline, which is what we

have already observed in the motion prediction model performance from Table 2.3. However, that

performance gain cannot compete with integration of the ground truth motions. We see over 10%

gain of +̂(+G , "̄G) over the baseline, and more than 8% boost over the+G ,I . This observation shows

that knowledge of objects is quite beneficial, but the huge gap between the semantic data and visual

data does not let it go higher. Hence, more visually informative features, such as motion codes,

provides more valuable information. However, we cannot assume that the model will always

have access to ground truth nouns and motion codes. Moreover, we use these two models just to

compare their impacts on verb classification. Therefore, we should also take a look at the models

with the estimated motion codes. We can see that +̂(+G ,"G) has very insignificant improvement

over the baseline. However, the model +̂(+G ,"G ,I) increases the accuracy even higher. We know

that the difference between these two models comes from the application of nouns in the motion
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Table 2.7: Verb classification accuracy on the test set. The results are shown in top-1 accuracy. The
models were trained on 2,742 videos and evaluated on 1,517 test videos. We sampled test videos
from the partition of EPIC Kitchens dataset that was not annotated during the second annotation.

Methods RGB Flow Fused

Baseline, +G 33.36 31.64 36.12

Predicted Motions, +̂(+G ,"G) 33.62 32.30 36.78
Predicted Motions with nouns, +̂(+G ,"G ,I) 34.08 34.74 38.04

Baseline with nouns, +G ,I 38.69 38.76 41.73

Predicted Motions, +̂(+G ,I ,"G) 38.89 37.05 42.06
Predicted Motions with nouns, +̂(+G ,I ,"G ,I) 38.83 39.95 42.12

estimation, and that nouns have positive impact on motion estimation as shown in Table 2.3.

Considering these factors, we may conclude that better motion estimation is the key to the higher

verb classification accuracy, which increases the value of the motion representation via motion

codes.

Table 2.7 shows the results on the test set. One can observe that incorporating the pre-

dicted motions in the verb classification task consistently improves the overall accuracy. As in

the validation set, we can see that augmenting the verb classifier with semantic information of

the object-in-action significantly improves the performance of the baseline model. Despite such a

noticeable jump, adding the estimated motion code with nouns ("G ,I) and without nouns ("G)

shows that motion features can still contribute to the model+G ,I , even though the motion estimation

accuracy is not higher than 45%.

From both Table 2.6 and Table 2.7, we can observe that, in most cases, models that use

optical flow frames benefit more from using motion codes than their RGB counterparts. In Table

2.7, the first baseline +G classifies verbs more accurately when it uses RGB frames as opposed to

using optical flow frames. After applying motions predicted by "G , we can see that the optical flow

model improved more than the RGB model, though still giving lower overall accuracy. However,
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after applying an improved motion code estimator "G ,I , the performance of the flow model became

better than the RGB model. In the baseline model with nouns +G ,I , RGB and flow models have

very close performances, but model +̂(+G ,I ,"G ,I) performs noticeably better with flow frames.

On validation set, both baseline verb classifiers, +G and +G ,I , perform significantly better on RGB

modality, but that distance gets reduced with motion code embedding and gets to its minimum

when using ground truth motion labels as shown in Table 2.6. This observation demonstrated high

correlation between our motion codes and optical flow vectors. Varol et al. have emphasized the

importance of motion feature estimation for action recognition, including more accurate optical

flow computation [22]. Therefore, we believe that our motion code embedding model has the

potential to be a significant add-on feature extractor for action recognition that would provide

explainable motion features.

2.5.3.2 Results on Automatically Annotated Dataset

The annotation via Word2Motion model let us use the whole EPIC Kitchens dataset. As

the result, the test set has increased from 1,517 samples to 5,625 samples. In addition, the models

classify all 125 verb classes instead of the previous 33 classes. However, we should keep in mind

that the dataset is still very unbalanced with about 60% of all videos belonging to 4 unique classes.

This time, we do not use any prior knowledge about the nouns, since the dataset is sufficiently

large. As we implemented our baseline by following the NTU-CML-MiRA team’s implementation

for EPIC-KITCHENS Action Recognition Challenge 2019, we also include their reported results.

We use the motion code estimator whose performance is reported in Table 2.4 on the same test set.

Table 2.8 shows that the application of the predicted motions is still beneficial for the top-

1 verb classification accuracy. Nonetheless, we can see that margin of this improvement is not

that significant, just like in the model trained on the previous dataset from Table 2.7. This is not
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Table 2.8: Verb classification accuracy on the test set after the automatic annotation. The results
are shown in top-1, top-3, and top-5 accuracy. The models were trained on 18,326 videos and
evaluated on 5,625 test videos.

Methods RGB Flow Fused

Top-1

Baseline (reported), +1
G

47.71 49.7 53.68
Baseline (ours), +G 51.77 52.94 58.74
Predicted Motions, +̂(+G ,"G) 52.43 53.49 58.93

Top-3

Baseline (ours), +G 76.46 76.96 82.47

Predicted Motions, +̂(+G ,"G) 77.60 76.18 82.38

Top-5

Baseline (ours), +G 84.46 84.30 89.16

Predicted Motions, +̂(+G ,"G) 84.96 84.23 88.92

surprising, since the motion code annotations were quite noisy. Additionally, Table 2.4 shows that

the motion code estimation is still lower than 50%, while Table 2.5 shows that using this model

on manually annotated videos has about 20% accuracy. These numbers suggest that we need to

have a more robust way to annotate videos with motion codes, which is in our plans for the future

work. However, even with this motion code prediction performance, we are still getting some

performance boost for verb classification. Table 2.8 also shows that our implementations have

better accuracy than the reported accuracy for the same model with the same architecture, training

process, and other hyper-parameters. This is probably due to the variations of our and their test

sets. However, we made sure to precisely follow their dataset split strategy.

In addition to the more accurate video annotation, we are working on a more sophisticated

method for combining the predicted motion codes into the verb classifier. One way can be the

application of attention modules in the learning algorithm. For instance, we could use the predicted

motion codes to generate attention maps that will attend important features from the final feature

map. Another method is to use the output of the baseline as the input to the neural network that

maps it to the motion codes. Hence, in addition to be able to classify verb classes, the final layer
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Figure 2.12: Number of videos that were correctly classified by +̂(+G , "̄G), but not by +G . Red bars
show the opposite.

of the baseline must be able to predict the motion codes. Such kind of constraint may encourage

the model to learn more salient visual features and we can balance the learning process by using

different weights for two loss functions.

2.5.3.3 Qualitative Results

Figure 2.12 shows the number of videos that were incorrectly classified by the baseline

model+G and were corrected by our model that uses ground truth motion labels +̂(+G , "̄G). It also

shows videos that were misclassified by our model but were correct on the baseline. We can see

that most of the classes benefit from using ground truth motion codes, with some exceptions. Five
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(a) fill kettle with water (b) fill water filter (c) fill kettle (d) fill pan

(e) insert carafe (f) put in pan (g) put in food bin (h) put in lunch box

Figure 2.13: Videos from 2 classes that were incorrectly classified by our model. The top row
shows the frames for class “fill" and the bottom row shows the frames from class “insert".

videos of class “fill" were predicted correctly with the baseline model and were misclassified by

our model. Instead, they were classified as “put" (2 instances) or “take" (3 instances). By watching

those videos, we noticed that motions executed on them were indeed closer to put or take, as all

of them illustrate person holding a kettle, water filter, or pan under the tap while the tap is filling

those containers with water. Figure 2.13 demonstrates sample frames of those videos with their

annotated narrations.

The other class that suffered from our model is “insert" with 4 misclassified videos. What

is interesting about those videos is that three out of four of them were narrated as “put-in" action,

while the class key is called “insert". Our model classified these videos as “put" class and we,

as humans, agreed on that after watching the videos as shown on the bottom row of Figure 2.13.

All four videos show putting an object on the table, pan, or plate. Only video on Figure 2.13 (e)

could be argued to be labeled as an “insert" rather than “put", where the actor places the glass

carafe under the coffee maker. However, this is true from the semantic perspective and only from

the assumption that the carafe is a part of the coffee maker setup. From the motion perspective,
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it appears as if the actor is putting an object on a stand while the top part of the coffee maker is

occluding the final segment of the motion.

In short, the results shown in Figure 2.12 and the analysis of videos that were misclassified

by our model confirm that motion codes provide additional robustness to action recognition from

the motion mechanics perspective. However, we assume that this is mostly due to the limitation

of the way the verbs were grouped into classes. This problem could have been also avoided with

other methods for fine-grained action recognition, such as our proposed method in Chapter 3.

Had more fine-grained labels been used, the predicted labels would more adequately describe the

action taking place.
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Chapter 3: Action Recognition with Cross-Modal Embedding

In this chapter, we introduce our method for action recognition with application of em-

bedding principles. Our framework was inspired by the work from [36], where Wray et al. use

cross-modal embedding functions to map the visual data from the videos and the semantic data

from the annotation sentences into a shared embedding space. The idea is to use the loss function

that encourages the resulting embeddings to be close to each other if the video-text pairs match.

Otherwise, it will push them further away. We found such a method to be suitable to be converted

into the verb classification framework, that we can later compare to other action recognition frame-

works. However, since the model is trained using the actual words narrated by the annotators, it

learns more fine-grained representation, rather than the traditional classification models that use

one-hot vector representations for the coarse-grained class groups.

3.1 Framework Description

Wray et al. implemented an effective cross-modal retrieval algorithm that they called Joint

Part of Speech Embedding [36]. They first parse the video captions into separate parts of speech

(e.g., verbs, nouns). After that, words are encoded via a word embedding model and video features

are extracted with a deep convolutional neural network. Both features are further embedded into a

shared space, such that relevant embedded vectors (i.e., they belong to the same class) are close to

each other, while negative pairs are far away. The authors learned separate embedding functions

for each part of speech and joined them together for fine-grained action retrieval.
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Figure 3.1: Our proposed framework. Two-Stream CNN model extracts the visual features from
RGB and optical flow frames and concatenates them into a single visual vector. Word embedding
model extracts the semantic features from words. The embedding functions map the features into
a shared space.

We focused on a single part of speech, namely verbs. As in [36], we build a model that

maps visual and text features to the shared space. Formally, let {(E8 , C8)|E8 2 + , C8 2 )} be a set

of pairs, where E8 corresponds to the visual features from the video and C8 corresponds to the

word-level embedding of the verb that the video demonstrates. We want to learn embedding

functions 5 : + ! � and 6 : ) ! �, such that 5 (E8) and 6(C8) will result in vectors that are close

to each other. Both functions were implemented as 2 fully connected layers with ReLU activation.

During evaluation, we predict the verb class by finding the verb whose embedding 6(C) has the

smallest Euclidean distance to the embedding 5 (E) of the current video clip. The structure of our

framework is depicted in Figure 3.1.

To learn the embedding functions, we use a cross-modal pairwise ranking loss, also known

as triplet loss. The idea is to encourage the model to make the embeddings in positive pairs more

similar and embeddings in negative pairs less similar to each other. The loss function looks as

follows:
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!E ,C =
’

(8 , 9 ,:)2TE ,C
max(3( 5E8 , 6C9 ) � 3( 5E8 , 6C: ) + ✏, 0) (3.1)

TE ,C = {(8 , 9 , :)|E8 2 + , C9 2 )8+ , C: 2 )8�} (3.2)

!C ,E =
’

(8 , 9 ,:)2TC ,E
max(3(6C8 , 5E9 ) � 3(6C8 , 5E: ) + ✏, 0) (3.3)

TC ,E = {(8 , 9 , :)|C8 2 ) , E9 2 +8+ , E: 2 +8�} (3.4)

The function 3(G1 , G2) is the distance measurement between two vectors computed via

Euclidean distance. In these equations, the value approaches zero if the distance between positive

pairs is less than the distance between negative pairs by a constant margin ✏. During training, !E ,C

is computed by summing all valid triplets in set TE ,C , where )8+ represents set of relevant verbs and

)8� represents set of negative verbs to video E8 . Similarly for !C ,E .

The embedding space must be well-defined, and it will not be possible without having

any constraints for embedding functions. Authors suggest adding within-modal triplet losses to

preserve the structure of the neighborhood in the joint space. They use the following equations:

!E ,E =
’

(8 , 9 ,:)2TE ,E
max(3( 5E8 , 5E9 ) � 3( 5E8 , 5E: ) + ✏, 0) (3.5)

TE ,E = {(8 , 9 , :)|E8 2 + , E9 2 +8+ , E: 2 +8�} (3.6)
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!C ,C =
’

(8 , 9 ,:)2TC ,C
max(3(6C8 , 6C9 ) � 3(6C8 , 6C: ) + ✏, 0) (3.7)

TC ,C = {(8 , 9 , :)|C8 2 ) , C9 2 )8+ , C: 2 )8�} (3.8)

As previously, the vectors of videos that belong to the same semantic class must be closer,

while pushing away negative pairs from each other. Similarly for the text embeddings. The final

loss function is computed via a linear combination of all 4 loss functions:

! = ⌫E ,C!E ,C + ⌫C ,E!C ,E + ⌫E ,E!E ,E + ⌫C ,C!C ,C (3.9)

In experiments, the weights of cross-modal loss functions are generally greater to focus

more on cross-modal retrieval.

3.2 Experiments

3.2.1 Dataset

There are 125 verb classes in total in EPIC Kitchens dataset [48]. However, we only use a

smaller subset of 26 classes that contain at least 100 clips in the dataset, leaving us with 26,710 clips

in total. This modification was done because classes with less than 100 clips would have a negligible

effect on the training and evaluation of our model. In addition to that, their elimination reduces

the size of the entire dataset by only 6%. The resulting dataset was split into train, validation, and

test sets following a 60/20/20 split strategy. The class distributions among all 3 sets are identical
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Figure 3.2: Verb class distribution in the dataset for many-shot verbs. Horizontal axis represents
the verb class labels. Vertical axis represents the percentage of the class in the dataset.

and look as in Figure 3.2. During training, we use the actual verbs that were narrated for each

video, while for testing we use the verbs that represent the class keys.

It is important to mention that the classes may refer to multiple verbs as some words have

identical semantics. Table 3.1 shows that one class may encompass more than 10 different verbs. In

fact, the class “put” has 30 different verbs. One could suggest that such kind of variation in words

can be a big challenge for the classification with cross-modal embedding. For instance, the video

that was labeled with verb “grab” must be classified with class “take”, but because during training

we embedded the word “grab”, it will be less likely classified as “take”. On the other hand,

traditional classifiers with one-hot vector representations are secured from such vulnerability.

In reality, this variation of words should not cause significant damages for classification with

embedding because the words are preliminarily encoded with a word embedding model. Modern

word embedding models, such as Word2Vec [1], were pre-trained on a large text corpus to be

able to encapsulate the context for each word. Therefore, words that may look different but have

similar semantics will be relatively close to each other, eliminating potentially negative impact on

the classification problem. In addition to that, we consider a pair verbs from the same verb class as
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Table 3.1: Set of verbs that were associated with each verb class. Some verbs from one class are
similar to the verbs in other classes (e.g., put-in from class insert is close to verbs in class put).

Class Name Verbs in the Class

put put, pose, put-away, place-that, place-down, put, set-down, put-over, place-on,
return, put-on, place-away

take take, grab, pick, draw, get, grab-up, collect-from, take-up, grab-down, pull-down,
fetch, pick-up

wash wash, sponge, lather, wash-with, rinse, rinse-off, soap-up, wash-off, soap, rise,
wash-up, clean-around, clean-off

open open, unzip, open-up
close close, close-off, shut
cut cut, chop, chop-off, cut-off, slice-into, slice-along, slice-off, stem, slice-up, cut-into,

dice, half, halve, chop-up
mix mix, beat, mix-around, stir-with, whisk, stir, blend, mix-in, stir-in
pour pour, pour-in, tip-in, pour-out, pour-on, pour-into, sieve
move move, transfer, move-around
turn-on turn-on, start, begin, ignite, switch-on, activate, water-on, play, start-to, restart,

light
remove remove, extract, take-off, remove-out, take-out, get-out, remove-inside, remove-

from, pick-out
turn-off turn-off, switch-of, water-off, switch-off, switch-out, shut-off, turn-of
throw throw, throw-out, recycle, dispose-of, throw-over, throw-away, throw-in, bin,

trow, toss
dry dry, dry-off, towel
peel peel, skin-from, skin, peel-off, peel-back
insert insert, put-in, put-into, fit, place-in, put-inside
turn turn, rotate
shake shake, shake-off, shake-out
squeeze squeeze, squidge, squidge-into, squash, squish-into, wring-out, wring, squish,

squeeze-into
press press, push-down, collapse, compress, push, press-on
check check, ensure, test, look-in, watch, inspect, check-on
scoop scoop, spoon-in, spoon, scoop-out, scoop-up
empty empty
adjust adjust, change, regulate
fill fill, fill-with, fill-up, stuff
flip flip, overturn, turn-over

a positive pair during the computation of a triplet loss. This means that the embedding function

6 : ) ! �will learn to encode the words “grab” and “take” to be very close to each other.
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3.2.2 Training Details

One of the biggest challenges in training the model from Figure 3.1 is that the fusion of

RGB and optical flow features happens in the middle of the pipeline. In contrast, most of the

existing two-stream methods employ late-fusion strategy, thus allowing them to train RGB and

optical flow models separately. To be able to leverage the performance boost from optical flow

features, we first decided to separately extract visual feature vectors from both RGB and flow

frames. We used the TSN-ResNet50 model that was pre-trained on the EPIC Kitchens dataset

[57] (i.e., the target dataset). The model uniformly splits the video into 8 segments and randomly

selects one RGB frame and 5 consecutive flow frames from each segment. Both output vectors are

2048-dimensional.

The biggest drawback of the method mentioned above is the fact that we eliminate the

possibility to tune the convolutional layers for our model. Visual content has great discriminative

capabilities due to its high dimensionality and we have deprived ourselves of the opportunity to

take advantage of it. On the other side, training two deep CNNs in parallel is computationally too

expensive. Therefore, in addition to the previously described method, we decided to implement

end-to-end training by eliminating the optical flow model and only using the RGB model. From

each video, we sampled 12 frames by segmenting video into 12 segments and randomly selecting

a frame from each segment.

We tried to use the hyper-parameters that were recommended by Wray et al., but not all of

them were fulfilled. For instance, authors randomly select 100 triplets to compute the loss value

for one batch. We were not able to do that with TensorFlow [53] because any random operation

results in the loss of the gradients. Instead, we take the average value over the entire set of valid

triplets within the batch. Besides that, the authors use batches with 256 samples. When training

with pre-computed visual features, we were able to use a batch size of 256 samples, but for a model
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Table 3.2: Micro and macro F1 scores for experiments with pre-computed visuals. CM:WM column
represents the ratio of weights for cross-modal and within-modal loss functions.

Oversampling CM:WM FC Units Macro F1 (%) Micro F1 (%)

False 7:3 [1000, 500, 32] 5.11 17.92
False 7:3 [1000, 500, 32] 5.04 14.16
True 1:1 [3000, 500, 32] 5.03 15.35
True 7:3 [1000, 500, 32] 4.92 15.52
True 7:3 [1000, 500, 32] 4.77 15.43
False 7:3 [1000, 500, 32] 4.71 16.49
False 7:3 [3000, 500, 32] 4.54 17.06
False 1:1 [3000, 500, 32] 3.94 15.06

with I3D, we could not get higher than 64. In the paper, the authors did not specify the value

for the constant margin ✏ in the loss function. After some observations, we found that the most

optimal value was equal to 0.5. Finally, Wray et al. trained the model step-wise, while we decided

to perform the training based on epochs. That way we were able to run the evaluation of the model

on the validation set by performing verb classification and saving the weights with the highest

accuracy. The remaining hyper-parameters were set as recommended in [36]. Specifically, we set

the dimensionality of the embedding space to 256 and trained the model with Adam optimizer. The

weights for the cross-modal loss functions were set to be ten times higher than the within-modal

functions, 1.0 and 0.1 respectively. As in [36], we used a 100-dimensional Word2Vec model [1]

that was pre-trained on Wikipedia [54, 55, 56]. Authors state that other word embedding models

provide identical results.

Both methods were trained for 50 epochs. The training session of the model with pre-

computed visual features took less than 10 minutes and the model with I3D took more than 2.5

days on a single Titan V GPU.

3.3 Results and Discussion

In this section, we declare the results of our model using 2 previously mentioned methods.
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3.3.1 Pre-Computed Visual Features

As was mentioned in Section 3.2.2, by pre-computing visual features we lost the ability to

tune the deep CNN model. In addition to that, the dataset itself is quite unbalanced, as shown

in Figure 3.2. Due to these reasons, we were not able to avoid serious overfitting to the training

set, which resulted in the model classifying every video with the first class (i,e., 23% accuracy).

The value of the loss function was not stable and it was constantly jumping up and down. The

application of regularization techniques, such as L2 regularization [52] and dropout [58], did not

benefit the model at all. We also tried to create separate TensorFlow Dataset objects for each class,

which allowed us to feed the model with batches with a balanced distribution of classes. This

data balancing method resulted in better F1 score (about 5%), but in lower accuracy (at most 19%).

When we tried to train the model with conventional one-hot vectors, the results were identical.

Table 3.2 shows the obtained macro and micro F1 scores from additional experiments with

and without data balancing and with different ratios of weights for cross-modal and within-modal

loss functions. For oversampling, we used SMOTE algorithm introduced by Chawla et al. [59].

The column FC Units shows the number of fully connected layers and units. For example, the best

model had 3 fully connected layers, with 1000, 500, and 32 hidden units respectively.

3.3.2 I3D Model

The disappointing results of the previous method made us switch the direction towards

the training the model without optical flow features, but with the ability to tune the convolutional

filters. We were still not able to train all layers of I3D, so we relaxed only the last two 3D inception

units. Nevertheless, the results were much better than in the previous method.

As we can see from Figure 3.3a, the values of the loss functions decrease persistently. There

is not a lot of dynamics in the figure as the metrics are shown based on the average value in one
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Figure 3.3: Loss function values on the validation set.

epoch, which encapsulates more than 250 batch steps. The value of the text-to-text loss was the

lowest, which is not surprising given the fact that text data is much less dimensional than a video

clip. We can also see that both text-to-video and video-to-video losses follow the identical trend

and they are both better than video-to-text loss. Interestingly, video-to-video loss initially started

in the worse position than video-to-text, but it was able to improve and outperform the latter. This

can be explained by the fact that the variation of video features is much higher, and they are much

more discriminative. Thus, the differences between positive and negative video samples for each

anchor could be significant enough to let the embedding function to map them further away. This

could be more complicated for the video-to-text case, where the text features may not vary enough

due to the small set of unique verbs in the dataset. Despite that, the value of the video-to-text

loss, as well as all other losses, is lower than the constant margin ✏ that was set to 0.5. This means

that on average, the difference between irrelevant features is higher than the difference between

relevant ones.

The total loss function also constantly decreases, as shown in Figure 3.3b. We can see that

it is always less than zero without the margin. It could be argued that this is mostly because of
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Figure 3.4: The top-1 accuracy of the model on the validation set. The results are computed right
after each training epoch.

the exceptional performance of text-to-text embedding. However, this is not the case as the weight

of text-to-text loss is ten times lower than cross-modal losses. In addition to that, the curve of

text-to-text loss in the range of epochs 1 and 6 is quite steep, while the curve of the total loss is

more similar to losses with the video target (i.e., !E ,E and !C ,E).

Figure 3.4 shows that the dynamic of how accuracy changed is similar to the dynamics of

the loss functions. The figure also demonstrates that the ability to tune the convolutional layers

provides a significant performance boost within a single epoch of a training session. With over

30% accuracy, one training epoch already outperforms the previous model that uses pre-computed

visual features (23% accuracy) by almost 10%. The accuracy stops to increase somewhere between

epochs 35 and 40. We use the weights with the highest validation accuracy for the testing.

3.3.3 Comparison with Action Recognition Models

We compare our model with the results that were provided by the authors of EPIC Kitchens

in [57]. They compare different state-of-the-art action recognition models, namely TSN, TSM, TRN,

and M-TRN, that use 2 types of backbone CNN models, batch-normalized Inception and ResNet-

50. Unfortunately, they did not benchmark the dataset on I3D. Nevertheless, we may refer to the

results from [60], where the team from Baidu-UTS reports their results on EPIC Action Recognition
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Table 3.3: Verb classification accuracy results on the testing videos. We provide top-1 and top-5
results for all models except the I3D NTU-CML-MiRA. All results are from RGB models.

Model Top-1 Top-5

TSN BN-Inception 47.9 87.0
TSN ResNet-50 49.7 87.2

TRN BN-Inception 58.2 87.1
TRN ResNet-50 58.8 86.6
M-TRN BN-Inception 57.6 86.9
M-TRN ResNet-50 60.1 87.1
TSM ResNet-50 57.8 87.1
I3D BN-Inception (Baidu-UTS) 59.3 82.7
I3D BN-Inception (NTU-CML-MiRA) 47.7 —

Ours 48.2 78.0

Challenge 2019 using I3D and achieving the highest accuracy in the competition. We additionally

provide results of other team from the same competition, namely NTU-CML-MiRA. The model

of the team Baidu-UTS is more powerful than ours, since they sample 64 frames from a single

video. Meanwhile, NTU-CML-MiRA team’s model, just like ours, samples 12 frames per video.

Therefore, we consider their results more relevant to our framework. We only consider the models

for RGB frames and use top-1 and top-5 accuracy for metrics. The results are shown in Table 3.3.

Table 3.3 shows that our model outperforms the TSN with BN-Inception and I3D NTU-

CML-MiRA by a small margin. The remaining models significantly outperform our model in

top-1 accuracy and all models do much better than ours in top-5 accuracy. Considering the

unconventional method for classification that our model implements, the obtained results show

that the application of cross-modal embedding concepts in action recognition can impose a decent

competition on current state-of-the-art models. In addition, if we consider the I3D NTU-CML-

MiRA model as the closest counterpart in terms of implementation, we can see the our method

actually outperforms it. We assume that with more action classes, our model could have shown

much better results relative to conventional methods. Our model learns in a more fine-grained

fashion and is more capable to predict the actual words that were mapped to the video. Meanwhile,

62



models with one-hot vector representations are limited to the coarse-grained set of classes that

were defined by the annotator, which also makes the class groups subjective.

3.4 Conclusion

To conclude, we trained the model using a cross-modal embedding strategy and evaluated

its performance in the action classification task. We were able to show that this method demon-

strates results comparable to the current state-of-the-art action classification models, even though

it was not specifically trained for this task.

For future work, we could incorporate embedding nouns for embedding object semantics.

This modification would allow us to compare this model with the full-fledged action recognition

models. Another direction could be unrolling the verb classes in the EPIC Kitchens dataset into

more fine-grained classes and train conventional action classification models with the new labels.

In this case, we could expect a better performance of our model compared to these models as they

would most likely suffer from more classes.

63



Chapter 4: Conclusion and Future Work

In this thesis, we introduce the motion taxonomy, a hierarchical structure that defines motion

attributes, such as interaction type, object trajectories, and their structural outcomes. We anno-

tated the EPIC Kitchens dataset and train a motion prediction model that may act as a high-level

motion embedding model for action recognition frameworks alongside with the optical flow vec-

tors. Throughout our experiments, we demonstrate that accurately predicted motion features can

significantly boost the performance of the baseline model. We also show that the motion codes

provide more visually salient features than the knowledge about the objects-in-action. In addition

to the motion prediction model, we developed a Word2Motion model, which allowed us to an-

notate the entire EPIC Kitchens dataset automatically. In the future work, we will try to improve

the accuracy of the automatic annotations by including the visual data and more sophisticated

sentence embedding methods. We believe that more accurate motion annotations on a large-scale

dataset will provide us with even better motion prediction results.

We also introduce an action recognition model based on cross-modal embedding concepts.

We demonstrate that this unconventional approach can compete with the state-of-the-art action

recognition. At the same time, our method eliminates the drawbacks of the tradition frameworks

that utilize one-hot vector representation for their labels. In the future work, we can decompose

the verb classes in the EPIC Kitchens dataset into more fine-grained actions, and test whether

our method will be more resistant to the increased difficulty level than the baseline counterparts.

We can also learn the embedding space for nouns to achieve the full-fledged action recognition

64



framework. Finally, we will incorporate motion codes from motion prediction model and test their

impact on performance.

Both frameworks provide us with valuable pieces of action representation. The motion

prediction model extracts high-level motion features that eliminates the mechanical ambiguity.

The action recognition via cross-modal embedding model extracts visual features that can be used

to find fine-grained semantic labels represented via word-level embedding, which eliminates the

semantic ambiguity of one-hot vectors and action classes. The combination of their outputs is a

more informative and detailed action representation that can be used to precisely visual the actions

without watching the video.
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