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Abstract A numerical scheme combining the features of quintic Hermite interpolating polynomials and
orthogonal collocation method has been presented to solve the well-known non-linear Burgers’ equation.
The quintic Hermite collocation method (QHCM) solves the non-linear Burgers’ equation directly without
converting it into linear form using Hopf–Cole transformation. Stability of the QHCM has been checked
using Eucledian and Supremum norms. Numerical values obtained from QHCM are compared with the val-
ues obtained from other techniques such as orthogonal collocation method, orthogonal collocation on finite
elements and pdepe solver. Numerical values have been plotted using plane and surface plots to demonstrate
the results graphically.

Mathematics Subject Classification 35K05 · 35K10 · 35K57 · 65M60 · 65M70

1 Introduction

The majority of the problems arising in the field of physics, engineering, chemistry and biology, etc. are
modelled using linear or non-linear partial differential equations. One such type of equation having numerous
applications in physics and engineering is Burgers’ equation. It is a well-known non-linear problem which
gives an insight into the relation between convection and diffusion.

Consider the following Burgers’ equation

∂u

∂t
= ε

∂2u

∂x2
− u

∂u

∂x
, (x, t) ∈ � × (0, T ). (1)
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Initially,

u(x, 0) = u0(x), ∀x ∈ �. (2)

Boundary condition:

u(0, t) = g1(t) and u(1, t) = g2(t), ∀t ∈ (0, T ). (3)

A variety of numerical methods have been developed to solve the Burgers’ equation, such as finite differ-
ence scheme [12,14], finite element method [2], quadratic B-spline [13,16], cubic B-spline [5,9], automatic
differentiation [6], and modified Adomain method [1]. In the present study, numerical solution of Burgers’
equation has been shown by applying the quintic Hermite collocation method directly, without transforming
the non-linear form into the linear form using Hopf–Cole transformation.

The paper is divided into six sections. Section 1 gives the introduction of Burgers’ equation, whereas Sect.
2 discusses about QHCM and collocation points. In Sect. 3, application and implementation of QHCM are
discussed. In Sect. 4, stability analysis is discussed and Sect. 5 gives the discussion of all the results obtained
and finally in Sect. 6, the crust of the present study is concluded.

2 Quintic Hermite collocation method(QHCM)

Quintic Hermite collocation is one of the Hermite collocation method [10,17], where Hermite interpolating
polynomials are used as base functions. The trial function is approximated by Hermite interpolating polyno-
mials of the order 2k + 1(k > 0). It is the generalization of the Lagrange interpolation with polynomials that
not only interpolate function at each node but also its consecutive derivatives. In general for real numbers
x1 < x2 < x3 < · · · < xk and all integers m1, m2, m3, . . . , mk greater than zero, there exists a unique polyno-
mial of degree m1 + m2 + m3 + · · · + mk − 1. In the present work, quintic Hermite interpolating polynomials
which are of order 5 are used to approximate the trial function.

Quintic Hermite interpolating polynomials can be expressed in the following form [8]:

6∑

j=1

p(x j )Pj (x) + p
′
(x j )P̄j (x) + p

′′
(x j )

¯̄Pj (x), (4)

where Pj , P̄j ,
¯̄Pj can be expressed as: Pj (x) =

⎧
⎪⎪⎨

⎪⎪⎩

6
(

xi+1−x
xi+1−xi

)5 − 15
(

xi+1−x
xi+1−xi

)4 + 10
(

xi+1−x
xi+1−xi

)3 ; xi ≤ x ≤ xi+1

6
(

x−xi−1
xi −xi−1

)5 − 15
(

x−xi−1
xi −xi−1

)4 + 10
(

x−xi−1
xi −xi−1

)3 ; xi−1 ≤ x ≤ xi

0; elsewhere

P̄j (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 (xi+1−x)5

(xi+1−xi )
4 − 7 (xi+1−x)4

(xi+1−xi )
3 + 4 (xi+1−x)3

(xi+1−xi )
2 ; xi ≤ x ≤ xi+1

−3 (x−xi−1)
5

(xi −xi−1)
4 + 7 (x−xi−1)

4

(xi −xi−1)
3 − 4 (x−xi−1)

3

(xi −xi−1)
2 ; xi−1 ≤ x ≤ xi

0; elsewhere

¯̄Pj (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5 (xi+1−x)5

(xi+1−xi )
3 − (xi+1−x)4

(xi+1−xi )
2 + 0.5 (xi+1−x)3

(xi+1−xi )
; xi ≤ x ≤ xi+1

0.5 (x−xi−1)
5

(xi −xi−1)
3 − (x−xi−1)

4

(xi −xi−1)
2 + 0.5 (x−xi−1)

3

(xi −xi−1)
; xi−1 ≤ x ≤ xi

0; elsewhere
where,
Pj (xi ) = δi j , P

′
j (xi ) = 0, P

′′
j (xi ) = 0, i, j = 1, 2, . . . , 6

P̄j (xi ) = 0, P̄
′
j (xi ) = δi j , P̄

′′
j (xi ) = 0, i, j = 1, 2, . . . , 6

¯̄Pj (xi ) = 0, ¯̄P ′
j (xi ) = 0, ¯̄P ′′

j (xi ) = δi j , i, j = 1, 2, . . . , 6.

Orthogonal collocation is applied within each subdomain by introducing a new variable ξ = (x−xγ )

h , where
h = xγ+1 − xγ , ξ = 0 at x = xγ and ξ = 1 at x = xγ+1.

After rearranging the terms, Pj , P̄j ,
¯̄Pj can also be written in simplified form as:

H1 = (1 − 10ξ3 + 15ξ4 − 6ξ5)
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H2 = h(ξ − 6ξ3 + 8ξ4 − 3ξ5)
H3 = h2(0.5ξ2 − 1.5ξ3 + 1.5ξ4 − 0.5ξ5)
H4 = h2(0.5ξ3 − ξ4 + 0.5ξ5)
H5 = (10ξ3 − 15ξ4 + 6ξ5)
H6 = h(−4ξ3 + 7ξ4 − 3ξ5)
with H1(ξ) = H5(1 − ξ), H2(ξ) = −H6(1 − ξ), H3(ξ) = H4(1 − ξ).

2.1 Collocation points

Choice of collocation points is an important characteristic to bewell thought outwhile considering the technique
of orthogonal collocation. Collocation points are taken to be the zeros of orthogonal polynomials. Basically,
the discretization end points are taken to be 0 and 1. In QHCM, four interior collocation points are taken
within each element to discretize the problem. These interior collocation points are the zeros of orthogonal
polynomials such as Jacobi polynomials [3]. The basic recurrence formula for Jacobi polynomials P(α,β)

n (x) is

2(n + 1)(α + β + n + 1)(α + β + 2n)P(α,β)
n+1 (x)

= (α + β + 2n + 1) × [α2 − β2 + x(α + β + 2n + 2)(α + β + 2n)]P(α,β)
n (x)

−2(α + n)(β + n)(α + β + 2n + 2)P(α,β)
n−1 (x); for all x ∈ [−1, 1] (5)

with P(α,β)
0 (x) = 1 and P(α,β)

1 (x) = 0.5(α + 1)(β + 1)(x + 1) + 0.5(x − 1), n ∈ N is the degree of the

polynomial with α and β as parameters. The zeros of P(α,β)
n (x) are transformed from [−1,1] onto [0,1] using

the following one to one relation:

f (x) = x + 1

2
. (6)

In the present, the zeros of Legendre polynomials have been taken as collocation points as a special case of
Jacobi polynomials for α = β = 0.

3 Application of QHCM

To apply QHCM on system of equations of non-linear Burgers’ equation defined by (1)–(3), the approximating
function is defined as:

uγ (x, t) =
6∑

i=1

Pi (x)ci (t) + P̄i (x)ci (t) + ¯̄Pi (x)ci (t); x ∈ [xi−1xi+1]

where c′
i s are continuous function of t. As defined earlier, to apply collocation, a new variable ξ is introduced

within each of the subdomains such that the trial function takes the form:

uγ (x, t) =
6∑

i=1

Hi (ξ)cγ

i (τ ); ξ ∈ [0, 1].

The boundary conditions are defined on x = 0 and x = 1. At j th collocation point, the system of equations
(1)–(3) can be expressed as:

6∑

i=1

dcγ

i

dτ
Hi (ξ j ) = ε

h2

6∑

i=1

cγ

i H
′′
i (ξ j ) − 1

h

6∑

i=1

cγ

i Hi (ξ j )

×
6∑

i=1

cγ

i H
′
i (ξ j ); j = 2, 3, 4 and γ = 1, 2, . . . , ne (7)

Initially,

u(xγ + ξ j h, 0) = u0(xγ + ξ j h) (8)

u1(ξ1, τ ) = g1(τ ) and une(ξ6, τ ) = g2(τ ) (9)
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Fig. 1 Matrix structure for system of equations defined in Eq. (7)

After application of QHCM, the system of equations defined from (1) to (3) transforms into a set of ordi-
nary differential equations (ODEs) with four ODEs within each subinterval [xi−1, xi ]. As the approximating
function consists of quintic Hermite interpolating polynomials which have the property to interpolate the first-
and second-order derivatives at node points, due to which the additional condition of continuity waives off. It
reduces the system of partial differential equations into a system of ODEs instead of the system of differential
algebraic equations as in orthogonal collocation on finite elements (OCFE) [4,7]. After implementation of
QHCM, the system of equations defined in Eqs. (7)–(9) can be written as:

Du = Mu (10)

whereD is the differential operator, u is the vector of collocation solutions u′
i s andM is the coefficient matrix

at j th collocation point. The Matrix structure for QHCM is shown in Fig. 1. M is the square matrix of order
4ne × 4ne, Du and u are vectors of order 4ne. Bandwidth of each subinterval except first and last in matrix
M is of order 4 × 6 and bandwidth of first and last subinterval is of order 4 × 5 due to boundary conditions.

3.1 Implementation of QHCM

Problem 3.1 First solve the Burgers’ equation (1) with the initial condition u(x, 0) = sin πx; the problem
becomes

∂u

∂τ
= ε

h2

∂2u

∂ξ2
− u

h

∂u

∂ξ
, 0 < ξ < 1 and τ > 0. (11)

Initially,

u(ξ, 0) = sin(π × (xγ + ξh)), ∀ξ ∈ (0, 1). (12)

Boundary conditions,

u(0, τ ) = 0 and u(1, τ ) = 0, ∀ τ > 0. (13)

Problem 3.2 In the second problem, the initial condition is taken to be u(x, 0) = 4x(1 − x).
The problem becomes

∂u

∂τ
= ε

h2

∂2u

∂ξ2
− u

h

∂u

∂ξ
, 0 < ξ < 1 and τ > 0. (14)

Initially,

u(ξ, 0) = 4(xγ + ξh) × (1 − (xγ + ξh)), ∀ ξ ∈ (0, 1). (15)
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Boundary condition,

u(0, τ ) = 0 and u(1, τ ) = 0, ∀ τ > 0. (16)

After the application of quintic Hermite collocation method to the above system of equations, 4ne number
of equations appear, with ne as the number of elements. The resulting system of equation has been solved
numerically using MATLAB with ode15s system solver.

4 Stability analysis

In the present work, stability of the numerical method has been checked by Eucledian norm and supremum
norm. Let E = u − uγ , where E defines the pointwise rate of error, u being the exact solution and uγ is

the approximate solution. ‖ U ‖2=
√∑ne

γ=1 hγ

∑6
i=1 wi E2

i , where Ei is the pointwise error, w′
i s are the

corresponding weight functions and hγ is the length of the γ th subdomain.

‖ U ‖∞= max
x0,x1,...,xn

| u − uγ |

The order of convergence can be determined by the lemma given in [11] and is mentioned below:

Lemma 4.1 Let H be the interpolating polynomial of function u defined on [a, b], such that H belongs to
the space of quintic Hermite interpolating polynomials. Then the order of convergence of quintic Hermite
interpolation technique is defined to be:

‖ u − H ‖≤ C ‖ u(6) ‖ h6

where C is the generic constant.

Therefore, the order of convergence of quinticHermite interpolation is of the order h6. The stability analysis
has been performed on the basis of maximum and Eucledian norm and is shown in Tables 1 and 2 for different
values of ε. It has been observed that both the norms lie between 0 and 1.

5 Results and discussion

All the numerical findings obtained in this study have been adequately described in this section. Problem
3.1 has been solved numerically using different techniques such as QHCM, OCFE [4,7], pdepe solver, OCM

Table 1 ‖U‖∞ and ‖U‖2 norm for different ε and τ = 0.1 for Problem 3.1

ε ‖U‖∞ ‖U‖2
γ γ

10 50 100 10 50 100

1 2.4900×10−3 1.8000×10−4 7.0000×10−5 7.2897×10−4 2.0668×10−5 5.4536×10−6

0.25 1.0053×10−2 1.4930×10−3 8.3100×10−4 2.5428×10−3 1.9750×10−4 7.3101×10−5

0.0625 1.6200×10−2 3.2200×10−3 1.6200×10−3 4.7004×10−3 3.9394×10−4 1.3802×10−4

0.015625 1.6165×10−1 2.9040×10−2 2.0760×10−2 2.1831×10−2 2.0577×10−3 8.9404×10−4

Table 2 ‖U‖∞ and ‖U‖2 norm for different ε and τ = 0.1 for Problem 3.2

ε ‖U‖∞ ‖U‖2
γ γ

10 50 100 10 50 100

1 2.5600×10−3 1.8000×10−4 7.0000×10−5 7.5291×10−4 2.0936×10−5 5.3571×10−6

0.25 1.0031×10−2 1.4510×10−3 6.9100×10−4 2.5093×10−3 1.8355×10−4 6.1722×10−5

0.0625 1.6426×10−2 3.1550×10−3 1.6150×10−3 4.5489×10−3 3.7851×10−4 1.2992×10−4

0.015625 1.2971×10−1 2.0304×10−2 8.6860×10−3 1.7878×10−2 1.3429×10−3 4.8217×10−4
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[15,18] for different values of ε and τ . In Tables 3, 4, 5, 6 and 7, the comparison between exact and the
numerical solution with different techniques has been shown. It has been observed from these tables that the
numerical values obtained from QHCM agree well with the exact ones and this fact authenticates that quintic
Hermite collocation method is better than OCFE, pdepe solver and OCM. In Fig. 2, the graphical view of the
numerical solution has been shown for different values of ε and τ in the form of 2D plots. In Fig. 3, surface
plots have been shown for the graphical view of the solution for different values of ε and all τ . It has been
observed that in all the figures values are symmetric and lie between 0 and 1. From these surface plots, the
smoothness of the solution can also be observed easily.

Table 3 Comparison between exact and numerical values at τ = 0.1 and ε = 1

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.10952 0.10947 0.10960 0.11932 0.10954
0.2 0.20976 0.20892 0.20992 0.18236 0.20979
0.3 0.29185 0.29178 0.29207 0.30825 0.29190
0.4 0.34788 0.34751 0.34745 0.35214 0.34792
0.5 0.37155 0.37154 0.37157 0.37161 0.37158
0.6 0.35903 0.35901 0.35924 0.36221 0.35905
0.7 0.30990 0.30981 0.30893 0.32517 0.30990
0.8 0.22782 0.22763 0.22791 0.19908 0.22782
0.9 0.12069 0.12058 0.12073 0.13139 0.12069

Table 4 Comparison between exact and numerical values at τ = 0.1 and ε = 0.25

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.20217 0.20099 0.20252 0.22068 0.20241
0.2 0.39279 0.39827 0.39338 0.34005 0.39320
0.3 0.55961 0.56721 0.56025 0.59563 0.56007
0.4 0.68906 0.68887 0.68959 0.70053 0.68946
0.5 0.76605 0.76618 0.76634 0.76628 0.76625
0.6 0.77373 0.77418 0.77422 0.77737 0.77447
0.7 0.69999 0.69920 0.69995 0.72630 0.69991
0.8 0.53643 0.53957 0.53601 0.47294 0.53598
0.9 0.29251 0.29265 0.29220 0.31744 0.29219

Table 5 Comparison between exact and numerical values at τ = 0.1 and ε = 0.0625

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.22810 0.22913 0.22874 0.24941 0.22868
0.2 0.44558 0.44579 0.44657 0.38540 0.44643
0.3 0.64065 0.64151 0.64171 0.68411 0.64148
0.4 0.79959 0.80003 0.80054 0.81450 0.80024
0.5 0.90591 0.90581 0.90652 0.90629 0.90628
0.6 0.93943 0.93938 0.93946 0.94005 0.93940
0.7 0.87654 0.87601 0.87554 0.78907 0.87601
0.8 0.69519 0.69414 0.69361 0.61817 0.69414
0.9 0.39045 0.38936 0.38913 0.42209 0.38937

Table 6 Comparison between exact and numerical values at τ = 0.1 and ε = 0.015625

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.23421 0.23663 0.23529 0.25652 0.23517
0.2 0.45863 0.45664 0.45988 0.39665 0.45964
0.3 0.66100 0.66136 0.66222 0.70637 0.66188
0.4 0.82779 0.82866 0.82881 0.84360 0.82847
0.5 0.94258 0.94298 0.94304 0.94299 0.94298
0.6 0.98463 0.98466 0.98411 0.98441 0.98467
0.7 0.92823 0.92858 0.92904 0.95222 0.92852
0.8 0.76252 0.76944 0.76487 0.84168 0.76650
0.9 0.29116 0.29567 0.28148 0.26113 0.28470
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Table 7 Comparison between exact and numerical values at different τ and ε = 0.01

ξ τ QHCM OCFE pdepe OCM Exact solution

0.25 0.4 0.33686 0.34449 0.34206 0.33489 0.34191
0.6 0.26501 0.29989 0.26906 0.27445 0.26896
0.8 0.21826 0.26828 0.22155 0.22667 0.22148
1 0.18548 0.23456 0.18821 0.18972 0.18819
3 0.07408 0.14405 0.07507 0.07341 0.07511

0.5 0.4 0.66015 0.66182 0.66084 0.65585 0.66071
0.6 0.52895 0.55618 0.52955 0.50368 0.52942
0.8 0.43875 0.48441 0.43925 0.42531 0.43914
1 0.37410 0.43071 0.37444 0.36914 0.37442
3 0.15011 0.21979 0.15013 0.15079 0.15018

0.75 0.4 0.91228 0.91216 0.91009 0.92317 0.91026
0.6 0.76973 0.77237 0.76726 0.79907 0.76724
0.8 0.64969 0.66152 0.64747 0.67187 0.64740
1 0.55809 0.58114 0.55608 0.57230 0.55605
3 0.22568 0.28034 0.22477 0.22750 0.22481

Fig. 2 Graphical view of the numerical solution for ε = 1, 0.25, 0.0625, 0.015625 and different τ in the form of 2D plots for
Problem 3.1
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Fig. 3 Graphical view of the numerical solution for ε = 1, 0.25, 0.0625, 0.015625 using pdepe solver for Problem 3.1

Table 8 Comparison between exact and numerical values at τ = 0.1 and ε = 1

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.11287 0.11252 0.11292 0.12297 0.11289
0.2 0.21622 0.21676 0.21631 0.25604 0.21625
0.3 0.30092 0.30085 0.30102 0.31785 0.30097
0.4 0.35882 0.35880 0.35891 0.36323 0.35886
0.5 0.38339 0.38326 0.38344 0.38346 0.38342
0.6 0.37064 0.37060 0.37065 0.37391 0.37066
0.7 0.32006 0.32014 0.32005 0.33580 0.32007
0.8 0.23538 0.23537 0.23535 0.20569 0.23537
0.9 0.12472 0.12447 0.12470 0.13577 0.12472

Table 9 Comparison between exact and numerical values at τ = 0.1 and ε = 0.25

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.21109 0.21771 0.21127 0.23033 0.21131
0.2 0.40855 0.40208 0.40887 0.35412 0.40894
0.3 0.57905 0.57615 0.57943 0.61550 0.57950
0.4 0.70951 0.70980 0.70985 0.72098 0.70989
0.5 0.78654 0.78615 0.78675 0.78676 0.78673
0.6 0.79584 0.79521 0.79596 0.79854 0.79578
0.7 0.72294 0.72214 0.72269 0.74875 0.72264
0.8 0.55796 0.55800 0.55759 0.49307 0.55755
0.9 0.30638 0.30655 0.30610 0.33236 0.30608
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Table 10 Comparison between exact and numerical values at τ = 0.1 and ε = 0.0625

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.24844 0.24586 0.24901 0.27129 0.24903
0.2 0.47740 0.47728 0.47823 0.41514 0.47826
0.3 0.67224 0.67339 0.67305 0.71414 0.67305
0.4 0.82268 0.82366 0.82331 0.83640 0.82328
0.5 0.91913 0.91936 0.91949 0.91947 0.91946
0.6 0.94944 0.94947 0.94946 0.94991 0.94949
0.7 0.89659 0.89656 0.89614 0.82010 0.89614
0.8 0.73469 0.73379 0.73370 0.66190 0.73373
0.9 0.43199 0.43191 0.43087 0.46524 0.43090

Table 11 Comparison between exact and numerical values at τ = 0.1 and ε = 0.015625

ξ QHCM OCFE pdepe OCM Exact solution

0.1 0.26281 0.26472 0.26377 0.28707 0.26384
0.2 0.49915 0.50892 0.50016 0.43564 0.50018
0.3 0.69761 0.69635 0.69850 0.74030 0.69845
0.4 0.85130 0.85119 0.85204 0.86541 0.85192
0.5 0.95177 0.95211 0.95223 0.95213 0.95211
0.6 0.98746 0.98745 0.98747 0.98722 0.98746
0.7 0.94192 0.94151 0.94138 0.96138 0.94127
0.8 0.77554 0.78198 0.78455 0.72043 0.78370
0.9 0.54206 0.54316 0.54494 0.52528 0.54869

Table 12 Comparison between exact and numerical values at different τ and ε = 0.01

ξ τ QHCM OCFE pdepe OCM Exact solution

0.25 0.4 0.36628 0.36210 0.36230 0.35715 0.36226
0.6 0.28531 0.31174 0.28207 0.28985 0.28204
0.8 0.23320 0.27690 0.23048 0.23697 0.23045
1 0.19706 0.25109 0.19466 0.19702 0.19469
3 0.07712 0.14563 0.07608 0.07444 0.07613

0.5 0.4 0.68313 0.68409 0.68364 0.67315 0.68368
0.6 0.54784 0.57712 0.54632 0.52215 0.54832
0.8 0.45332 0.50111 0.45314 0.43974 0.45371
1 0.38536 0.44356 0.38561 0.38001 0.38568
3 0.15212 0.22185 0.15211 0.15288 0.15218

0.75 0.4 0.92235 0.92059 0.92039 0.93946 0.92050
0.6 0.78539 0.78708 0.78291 0.81563 0.78299
0.8 0.66499 0.67826 0.66268 0.68849 0.66272
1 0.57136 0.59724 0.56924 0.58677 0.56932
3 0.22863 0.28391 0.22867 0.23059 0.22774

Problem 3.2 has also been solved numerically using different techniques as Problem 3.1 for different
values of ε and τ . The results are presented in Tables 8, 9, 10, 11 and 12 and it can be easily observed that
numerical values agree well with the exact ones for QHCM as compared to OCFE, pdepe solver and OCM.
In Fig. 4, numerical solution has been shown in the form of 2D plots for different values of ε and τ . In
Fig. 5, surface plots have been plotted for different values of ε and all τ . From both the problems, it has
been observed that the values obtained from QHCM agree well with the exact solution as compared to the
OCFE, OCM and pdepe solver. Since for OCFE one needs a large number of elements, pdepe solver gives
oscillations for certain values of parameter and because of stiff system of equations OCM does not give good
results.
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Fig. 4 Graphical view of the numerical solution for ε = 1, 0.25, 0.0625, 0.015625 and different τ in the form of 2D plots for
Problem 3.2

Error analysis has been performed by calculating relative error (RE) given in the following formula:

RE =
∣∣∣∣
uexact − unumerical

uexact

∣∣∣∣

RE has been presented in Tables 13 and 14 for Problems 3.1 and 3.2, respectively. It has been observed from
these tables that maximum R.E. for QHCM is of order 10−2. This simply shows that the values obtained from
QHCM agree quite well with the exact ones up to a certain degree of accuracy.
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Fig. 5 Graphical view of the numerical solution for ε = 1, 0.25, 0.0625, 0.015625 using pdepe solver for Problem 3.2

Table 13 Relative error for different ε at τ = 0.1 for Problem 3.1

ξ ε = 1 ε = 0.25 ε = 0.0625 ε = 0.015625

0.1 1.8258×10−4 1.1857×10−3 2.5363×10−3 4.0822×10−3

0.2 1.4300×10−4 1.0427×10−3 1.9040×10−3 2.1974×10−3

0.3 1.7129×10−4 8.2133×10−4 1.2939×10−3 1.3295×10−3

0.4 1.1497×10−4 5.8016×10−4 8.1226×10−4 8.2079×10−4

0.5 8.0736×10−5 2.6101×10−4 4.0826×10−4 4.2419×10−4

0.6 5.5703×10−5 9.5549×10−4 3.1935×10−5 4.0623×10−5

0.7 0 1.1430×10−4 6.0502×10−4 3.1232×10−4

0.8 0 8.3958×10−4 1.5127×10−3 5.1924×10−3

0.9 0 1.0952×10−3 2.7737×10−3 2.2691×10−2

Table 14 Relative error for different ε at τ = 0.1 for Problem 3.2

ξ ε = 1 ε = 0.25 ε = 0.0625 ε = 0.015625

0.1 1.7716×10−4 1.0411×10−3 2.3692×10−3 3.9039×10−3

0.2 1.3873×10−4 9.5369×10−4 1.7982×10−3 2.0593×10−3

0.3 1.6613×10−4 7.7653×10−4 1.2035×10−3 1.2027×10−3

0.4 1.1146×10−4 5.3529×10−4 7.2879×10−4 7.2777×10−4

0.5 7.8243×10−5 2.4151×10−4 3.5891×10−4 3.5710×10−4

0.6 5.3958×10−5 7.5398×10−5 5.2660×10−5 0
0.7 3.1243×10−5 4.1514×10−4 5.0215×10−4 6.9056×10−4

0.8 4.2486×10−5 7.3536×10−4 1.3084×10−3 1.0412×10−2

0.9 0 9.8014×10−4 2.5296×10−3 1.2083×10−2
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6 Conclusions

TheHermite collocationmethod developed here solves the non-linear Burgers’ equation directly without trans-
forming it into the linear form using Hopf–Cole transformation. The numerical study on two problems shows
the accuracy of QHCM by comparing the values with other techniques as OCFE, pdepe solver and OCM.
Results obtained from both the problems agree fairly well with the exact ones for QHCM as compared to other
techniques, which authenticate the applicability of QHCM in solving non-linear stiff system of partial differ-
ential equations. This method is efficient due to its simplicity and easily programmable nature. For stability
reasons, ‖U‖2 and ‖U‖∞ norms have been calculated.
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