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Abstract

Peer-to-peer (P2P) botnets have become one of the major threats in network security for

serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing

work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves

more challenges. In this dissertation, we present two P2P botnet detection systems, PeerHunter

and Enhanced PeerHunter. PeerHunter starts from a P2P hosts detection component. Then, it

uses mutual contacts as the main feature to cluster bots into communities. Finally, it uses commu-

nity behavior analysis to detect potential botnet communities and further identify bot candidates.

Enhanced PeerHunter is an extension of PeerHunter, aiming to use network-flow level community

behaviors to detect waiting stage P2P botnets, even in the scenario that P2P bots and legitimate

P2P applications are running on the same set of hosts. Through extensive experiments with real

and simulated network traces, both PeerHunter and Enhanced PeerHunter can achieve very high

detection rate and low false positives.

The major component of our P2P botnet detection is a community detection algorithm.

Community detection is of great importance for online social network analysis. The volume, variety

and velocity of data generated by today’s online social networks are advancing the way researchers

analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twit-

ter, are inherently growing rapidly and expanding aggressively over time. However, most of the

studies so far have been focusing on detecting communities on the static networks. It is compu-

tationally expensive to directly employ a well-studied static algorithm repeatedly on the network

snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic com-

munity detection algorithm, aiming to detect communities of dynamic networks as effective as

repeatedly applying static algorithms but in a more efficient way. In the experimental evaluation, a

comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic

algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 syn-

x



thetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms

in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm.

In the big data era, many real-world applications, e.g., botnet detection, community detec-

tion, image recognition, require to collect a large amount of data from individuals, which involves

more privacy concerns. The collected data could be repurposed in different ways, so it could be

reused for entirely different purposes by different data users, which were not envisioned at the data

collection stage by the data publisher but might jeopardize someone else’s privacy. To provide

strong privacy guarantees for the collected data and to give the data users greater flexibility in

conducting the required data analysis, it is of great importance to enable privacy-enhancing tech-

nologies in such analysis. In this dissertation, we present several privacy-enhancing technologies for

data mining and machine learning applications, utilizing the concept of dimensionality reduction

and differential privacy, including (i) a privacy-preserving facial recognition approach utilizing di-

mensionality reduction techniques; (ii) a perturbation-based utility-aware privacy-preserving data

releasing framework; and (iii) a locally differentially private distributed deep learning framework

via knowledge distillation.

xi



Chapter 1: General Introduction

Since the last decades, botnets have become one of the major threats in network security

for serving as the fundamental infrastructure for various cyber-crimes, such as distributed denial-

of-service (DDoS), email spam, click fraud, etc. For instance, recent botnet attacks including those

carried out by WhiskeyAlfa (responsible for Sony Pictures Entertainment attack) and WannaCry

(responsible for ransoming healthcare facilities in Europe) showed the scale and scope of damage

that botnets can cause.

A botnet is a set of compromised machines controlled by botmasters through command

and control (C&C) channels. Botnets may have different communication architectures. Traditional

botnets are known to use centralized architectures, which have potential single point of failure. Peer-

to-peer (P2P) network is modeled as a distributed architecture, where even if a certain number of

peers do not function properly, the whole network is not compromised. Most of the recent botnets

(e.g., Storm, Waledac and ZeroAccess) attempted to use P2P architectures, and P2P botnets were

proved to be highly resilient even after a certain number of bots being identified or taken down [2].

Therefore, detecting P2P botnets effectively is rather important for securing cyberspace.

However, designing an effective P2P botnets detection systems is rather challenging. First,

botnets tend to act stealthily [1] and spend most of their time in the waiting stage before performing

any malicious activities [3]. Approaches using malicious activities would have small window of

opportunities to detect such botnets. Second, botnets tend to encrypt the C&C channels, causing

deep-packet-inspection (DPI) based methods ineffective. Third, the role of a single bot can be

changed dynamically depending on the current structure of a botnet [4] (e.g., P2P bot can shift its

functionality to act as a botmaster when the prior botmaster has been taken down). Hence, it is

difficult to characterize a botnet just by looking at a single bot.

In this report, the main focus is to design and build an effective and efficient P2P botnet

detection system relying on the community behavior analysis of the network traffic generated by

1



the suspicious machines. We consider a botnet community as a group of compromised machines

that communicate with each other or connect to the same set of botmasters through the same C&C

channel, are controlled by the same attacker, and aim to perform similar malicious activities. In

the “waiting stage”, no malicious activities could be observed. As discussed in [4], the dynamic

change of communication behaviors of P2P botnets makes it extremely hard to identify a single

bot. Nonetheless, bots belonging to the same P2P botnet always operate together as a community

and share the same set of community behaviors.

In chapter 2, we present a novel community behavior analysis based P2P botnet detection

system, PeerHunter, which operates under several challenges: (a) botnets are in their waiting stage;

(b) the C&C channel has been encrypted; (c) no bot-blacklist or “seeds” are available; (d) none

statistical traffic patterns known in advance; and (e) do not require to monitor individual host. We

propose three types of community behaviors that can be utilized to detect P2P botnets effectively.

In the experimental evaluation, we propose a network traces sampling and mixing method to

make the experiments as unbiased and challenging as possible. Experiments and analysis have

been conducted to show the effectiveness and scalability of our system. With the best parameter

settings, our system can achieved 100% detection rate with none false positives.

In chapter 3, we present Enhanced PeerHunter, an extension of PeerHunter [5], aiming

to use network-flow level community behaviors to detect waiting stage P2P botnets, even in the

scenario that P2P bots and legitimate P2P applications are running on the same set of hosts. We

propose two evasion attacks (i.e., passive and active mimicking legitimate P2P application attacks),

where we assume the adversaries know our techniques in advance and attempt to evade our system

via instructing P2P bots to mimic the behavior of legitimate P2P applications. The experiment

results showed that our system is robust to both attacks. We experimented our system using a

wide range of parameter settings. With the best parameter settings, our system achieved 100%

detection rate with zero false positive.

The major component of our P2P botnet detection is a community detection algorithm.

Detecting community structure is of great challenge, and most of the recent studies are proposed

to detect communities in the static networks, such as spectral clustering [6], label propagation [7],

modularity optimization [8], and k-clique communities [9]. However, real-world networks, especially

the botnet network and most of the online social networks, are not static. Most popular online

2



social networks (e.g., Facebook, LinkedIn and Twitter) are de facto growing rapidly and expanding

aggressively in terms of either the size or the complexity over time. For instance, in Facebook

network, the updating of its community structure could be simply caused by new users joining in,

old users leaving, or certain users connecting (i.e., friend) or disconnecting (i.e., unfriend) with the

other users. Facebook announced that it had 1.52 billion daily active users in the fourth quarter

of 2018 [10], which shows a 9% increase over the same period of the previous year, and 4 million

likes generated every minute as of January 2019 [11]. Hence, it is rather important and impending

to enable community detection in such dynamic networks. As such, another focus of this report is

designing an effective and efficient algorithm to detect communities in (general) dynamic networks.

In chapter 4, we present DynaMo, a novel modularity-based dynamic community detec-

tion algorithm, aiming to detect non-overlapped communities of dynamic networks. DynaMo is an

adaptive and incremental algorithm designed for maximizing the modularity gain while updating

the community structure of dynamic networks. To update the community structures efficiently,

we model the dynamic network as a sequence of incremental network changes. For each incre-

mental network change, we design an operation to maximize the modularity. In the experimental

evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) [12] and

5 dynamic algorithms (i.e., QCA [13], Batch [14], GreMod [15], LBTR-LR [16] and LBTR-SVM

[16]). Extensive experiments have been conducted on 6 large-scale real-world networks and 10,000

synthetic networks. Our results show that DynaMo consistently outperforms all the other 5 dy-

namic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain

algorithm.

Furthermore, designing a promising botnet detection system usually relies on collecting

the vast amount of network related data, which involves more privacy concerns. The collected

data could be repurposed in different ways, so it could be reused for entirely different purposes by

different data users, which were not envisioned at the data collection stage by the data publisher

but might jeopardize someone else’s privacy. For instance, the collected network data being used for

botnet detection, can also be used to detect or infer the benign applications (e.g. P2P applications,

websites) that the data owners are using or running on their hosts, which could be considered as a

privacy leakage. To provide strong privacy guarantees for the collected data and to give the data

users greater flexibility in conducting the required data analysis, it is of great importance to enable

3



privacy-enhancing technologies in such analysis. As such, in the second half of this report, we focus

on designing privacy-enhancing technologies for data mining and machine learning, utilizing the

concept of compressive privacy [17, 18] and differential privacy [19].

In chapter 5, we present a privacy-preserving facial recognition approach utilizing dimen-

sionality reduction techniques. These techniques can efficiently transform the raw data from the

data owner to a new set of data before they are given to the data users. Without revealing the

raw data, the transformation is irreversible. We have implemented our approach in a system called

FRiPAL, Face Recognition in Privacy Abstraction Layer, which is a privacy-preserving face recog-

nition service design. RapidGather [20] proposed an architecture of Privacy-Enhanced Android

(PE-Android) which is an extension of the current Android OS with new privacy features. One

of the most important components in PE-Android is the Privacy Abstraction Layer (PAL), which

is defined as a wrapper of the low level PE-Android services that allows the developers to de-

velop privacy preserving applications in their traditional way. FRiPAL has been integrated into

RapidGather as a privacy-preserving face recognition service for image data. Extensive experiments

have been conducted on three different public datasets to evaluate FRiPAL in terms of accuracy,

privacy and efficiency. The accuracy results show that our system maintains the utility for face

recognition. The privacy results illustrate that our system protects the privacy which motivates

the data owners to submit photos. The efficiency results demonstrate that our system is efficient

for practical usage.

In chapter 6, we present a perturbation-based utility-aware privacy-preserving data releasing

framework. Given certain specific utility/privacy targets (i.e., the inference problems and the

corresponding domain knowledge and public domain data), our approach precisely transforms the

original data into privatized data that can be successfully utilized for certain intended purpose

(learning to succeed), without jeopardizing certain predefined privacy (training to fail). In the

experiments, we have tested our frame on three public datasets: Human Activity Recognition,

Census Income and Bank Marketing datasets. The experiment results demonstrate that (a) our

approach is a more general utility-aware dimensionality reduction approach compared with DCA

[21] and MDR [18]; (b) given certain predefined privacy target, our fine-grained data perturbation

approach can reduce the accuracy of the corresponding inference attack to the level of random

guessing.

4



In chapter 7, we present a privacy-preserving distributed deep learning framework, LDP-

DL, via local differential privacy [22] and knowledge distillation [23]. Our approach adopts the

same “teacher-student” paradigm as described in PATE [24], where each data owner learns a

teacher model using its own (local) private dataset, and the data user aims to learn a student

model to mimic the output of the ensemble of the teacher models using the unlabelled public

data. Knowledge distillation [23] has been applied on the ensemble of the teacher models to enable

faster and more accurate knowledge transferring to the student model, and leverage the advantage

of having multiple data owners (teacher models). To ensure privacy, our approach employs local

differential privacy on the data owners’ side, i.e., the query results of each teacher model, which

does not require any trusted aggregator (compared to [24]). Since more queries to the teacher

models tends to result in more privacy leakage (i.e., cost more privacy budget), we also design an

active query sampling approach that could actively select a subset of the unlabelled public dataset

for the data user to query from the data owners. In the experimental evaluation, a comprehensive

comparison has been made among our proposed approach (i.e., LDP-DL), DP-SGD [25], PATE

[24] and DP-FL [26], using three popular deep learning benchmark datasets (i.e., CIFAR10 [27],

MNIST [28] and FashionMNIST [29]). The experimental results show that our LDP-DL framework

consistently outperforms the other competitors in terms of privacy budget and model accuracy.

Chapter 8 concludes the dissertation’s contributions.
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Chapter 2: P2P Botnet Detection through Host-level Community Behavior Analysis

Peer-to-peer (P2P) botnets have become one of the major threats in network security for

serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing

work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves

more challenges. In this chapter, we present PeerHunter, a community behavior analysis based

method, which is capable of detecting botnets that communicate via a P2P structure. PeerHunter

starts from a P2P hosts detection component. Then, it uses mutual contacts as the main feature

to cluster bots into communities. Finally, it uses community behavior analysis to detect potential

botnet communities and further identify bot candidates. Through extensive experiments with

real and simulated network traces, PeerHunter can achieve very high detection rate and low false

positives. 1

2.1 Introduction

A botnet is a set of compromised machines controlled by botmaster through a command and

control (C&C) channel. Botnets may have different communication architectures. Classical botnets

were known to use a centralized architecture, which has a single point of failure. Peer-to-peer (P2P)

network happens to be modeled as a distributed architecture, where even though a certain number

of peers fail to function properly, the whole network is not compromised. In this case, the most

of recent botnets (e.g. Storm, Waledac, ZeroAccess, Sality and Kelihos) attempt to build on

P2P network, and P2P botnets have proven to be highly resilient even after a certain number

of bots being identified or taken-down [2]. P2P botnets provide a fundamental infrastructure for

various cyber-crimes [30], such as distributed denial-of-service (DDoS), email spam, click fraud,

etc. Therefore, detecting P2P botnets effectively is rather important for cyber security.

1 This chapter was published in IEEE Conference on Dependable and Secure Computing 2017 [5]. Copyright per-
mission is included in Appendix A.
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However, designing an effective P2P botnets detection system is extremely hard, due to

several challenges. First, botnets tend to act stealthily [1] and spend most of their time in the

waiting stage before actually performing any malicious activities [31, 3]. Second, botnets tend to

encrypt C&C channels, which makes deep-packet-inspection (DPI) based methods fail to work.

Third, botnets can randomize their communication patterns dynamically without jeopardizing any

primary functions [32, 33, 34], which makes statistical traffic signatures based methods unable to

work.

In this chapter, we present PeerHunter, a novel community behavior analysis based P2P

botnet detection system, which could address all the challenges above. We consider a botnet

community as a group of compromised machines that communicate with each other or connect to

the botmaster through the same C&C channel, are controlled by the same attacker, and aim to

perform similar malicious activities. Due to the dynamic changes of communication behaviors of

P2P botnets [4], it would be extremely hard to identify a single bot. However, bots within the

same P2P botnet always work together as a community, thus, have distinct community behaviors

to be identified. PeerHunter begins with a general P2P hosts detection component. Then, it builds

a mutual contact graph (MCG) of the detected P2P hosts. Afterwards, it applies a community

detection method on the MCG, which uses mutual contacts [35] as the main feature of P2P botnets

to cluster bots within the same botnet together, and separate bots and legitimate hosts or different

types of bots into different communities. Finally, it uses destination diversity and mutual contacts

as the natural features to capture the “P2P behavior” and “botnet behavior” respectively of each

P2P botnet community, and further identify all the P2P botnets.

Specifically, PeerHunter is capable of detecting P2P bots with the following challenges and

assumptions: (a) botnets are in their waiting stage, which means there is no clear malicious activity

can be observed [31]; (b) the C&C channel has been encrypted, so that no deep-packet-inspection

(DPI) can be deployed; (c) no bot-blacklist or “seeds” information [35] are available; (d) none

statistical traffic patterns [4] known in advance; and (e) could be deployed at network boundary

(e.g. gateway), thus, do not require to monitor individual host.

In the experiments, we mixed a real network dataset from a public traffic archive [36] with

several P2P botnet datasets and legitimate P2P network datasets [37]. To make the experimen-

tal evaluation as unbiased and challenging as possible, we propose a network traces sampling and
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mixing method to generate synthetic data. We tested our system with 24 synthetic experimental

datasets that each contains 10,000 internal hosts. We implemented our P2P hosts detection compo-

nent using a Map-Reduce framework, which could dramatically reduce the number of hosts subject

to analysis by 99.03% and retained all the P2P hosts in our experiments. The Map-Reduce design

and implementation of our system could be deployed on popular cloud-computing platforms (e.g.

amazon EC2), which ensures the scalability of our system to deal with a big data. With the best

parameter settings, our system achieved 100% detection rate with none false positives.

The rest of this chapter is organized as follows: Section 2.2 presents the related works.

Section 2.3 explains the motivation and details of the features applied in our system. Section 2.4

describes the system design and implementation details about PeerHunter. Section 2.5 presents

the experimental evaluation of PeerHunter. Section 2.6 makes the conclusion.

2.2 Related Work

A few methods attempt to detect P2P botnets have been proposed [38, 3, 37, 1, 35, 33,

39, 34, 40, 41, 4, 42, 43]. Host-level methods have been proposed [42]. However, in host-level

methods, all the hosts are required to be monitored individually, which is impractical in real

network environments. Network-level methods can be roughly divided into (a) traffic signature

based methods, and (b) group/community behavior based methods.

Traffic signature based methods [3, 37, 1, 33, 34, 40, 41, 39] rely on a variety of statistical

traffic signatures. For instance, Entelecheia [3] uses traffic signatures to identify a group of P2P

bots in a super-flow graph. PeerRush [37] is a signature based P2P traffic categorization system,

which can distinguish traffic from different P2P applications, including P2P botnet. Nevertheless,

these methods suffer from botnets that have dynamic statistical traffic patterns. Traffic size sta-

tistical features can be randomized or modified, since they are only based on the communication

protocol design of a botnet. Traffic temporal statistical features can also act dynamically without

jeopardizing any primary functions of a botnet.

Group or community behavior based methods [4, 35] consider the behavior patterns of a

group of bots within the same P2P botnet community. For instance, Coskun et al. [35] developed

a P2P botnets detection approach that start from building a mutual contact graph of the whole
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Table 2.1: PeerHunter notations and descriptions.

Notations Descriptions

MNF the management network flows

AVGDD the average # of distinct /16 MNF dstIP prefixes

AVGDDR the average destination diversity ratio

AVGMC the average # of mutual contacts between a pair of hosts

AVGMCR the average mutual contact ratio

Table 2.2: PeerHunter measurements of features.

Trace AVGDD AVGDDR AVGMC AVGMCR

eMule 8,349 17.6% 3,380 3.7%

FrostWire 11,420 15.2% 7,134 4.5%

uTorrent 17,160 8.7% 13,888 3.5%

Vuze 12,983 10.1% 18,850 7.9%

Storm 7,760 25.1% 14,684 30.2%

Waledac 6,038 46.0% 7,099 37.0%

Sality 9,803 9.5% 72,495 53.2%

Kelihos 305 97.4% 310 98.2%

ZeroAccess 246 96.9% 254 100.0%

network, then attempt to utilize “seeds” (known bots) to identify the rest of bots within the same

botnet. However, most of the time, it is hard to have a “seed” in advance. Yan et al. [4] proposed a

group-level behavior analysis based P2P botnets detection method. However, they only considered

to use statistical traffic features to cluster P2P hosts, which is subject to P2P botnets that have

dynamic or randomized traffic patterns. Besides, their method cannot cope with unknown P2P

botnets, which is the common case in botnet detection [30], because of relying on supervised

classification methods (e.g. SVM).

2.3 Background and Motivation

To demonstrate the features discussed in this section, we conducted some preliminary ex-

periments using dataset shown in Table 3.3 and Table 3.4.Table 3.1 shows the notations and de-

scriptions, and Table 3.2 shows the measurements of features.

2.3.1 P2P Network Characteristics

Due to the decentralized nature of P2P network, a P2P host usually communicates with

peers that distributed in a large range of distinct physical networks, which results in the desti-
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Figure 2.1: Illustration of network (a) and its mutual contact graph (b).

nation diversity (DD) characteristic [37] of P2P management network flow (MNFs). MNF is the

network flow for maintaining the function and structure of the P2P network. The P2P network

flow mentioned in this section and the rest only refers to P2P MNF.

We use DD as our main feature to detect P2P network flows and further identify P2P hosts.

In addition, we use the number of distinct /16 IP prefixes of each host’s network flows, rather than

BGP prefix used in [1] to approximate DD feature of each P2P host/network flow. /16 IP prefix is

a good approximation of network boundaries. For instance, it is very likely that two IP addresses

with different /16 IP prefixes belong to two distinct physical networks. This is also supported by

Table 3.2, which shows the network flows in a P2P network spreading across a large number of

distinct physical networks according to the number of /16 IP prefixes.

2.3.2 Mutual Contacts

The mutual contacts (MC) between a pair of hosts is a set of shared contacts between the

corresponding pair of hosts. Consider the network illustrated in Figure 3.1a which contains an

internal network (Host A, B, C, D and E) and an external network (Host 1, 2, 3, 4 and 5). A link

between a pair of hosts means they have at least one connection. In Figure 3.1a, Host 1, 2 are the

mutual contacts shared by Host A, B.
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Mutual contacts is the natural characteristic of P2P botnet. Compared with legitimate

hosts, a pair of bots within the same P2P botnet has a much higher probability to share a mutual

contact [35]. Because bots within the same P2P botnet tend to receive or search for the same

C&C messages from the same set of botmasters (peers) [44]. Moreover, in order to prevent peers

from churning in a P2P botnet, botmaster has to check each bot periodically, which results in a

convergence of contacts among peers within the same botnet [1]. However, since bots from different

botnets are controlled by different botmasters, they won’t share many mutual contacts. Legitimate

host pairs may have a small set of mutual contacts, since nearly all hosts communicate with several

extremely popular servers, such as google.com, facebook.com [35]. Furthermore, the host pairs

running the same P2P applications may also result in a decent ratio of mutual contacts, if they

are accessing the same resource from the same set of peers by coincidence. However, in reality,

legitimate P2P hosts with different purposes will not search for the same set of peers. Thus, we

can use mutual contacts as a feature to cluster the bots within the same botnet.

The basic idea is to build a mutual contacts graph (MCG) as shown in Figure 3.1, where Host

A, B are linked together in Figure 3.1b, since they have mutual contacts Host 1, 2 in Figure 3.1a.

Similarly, Host C, D, E are linked to each other in Figure 3.1b, since every pair of them share at

least one mutual contacts in Figure 3.1a. More details about MCG is discussed in Section 2.4.2.

2.3.3 Community Behavior Analysis

We consider three types of community behaviors: (a) flow statistical feature, (b) numerical

community feature and (c) structural community feature.

2.3.3.1 Flow Statistical Feature

Botnet detection methods using flow statistical features, have been widely discussed [34,

45, 46, 33]. We use the statistical features of P2P MNFs, which are usually generated through

the same P2P protocol for a specific P2P application, and some of the statistical patterns of P2P

MNFs fully depend on protocols. However, the other network flows, such as data-transfer flows,

are usually situation-dependant, which vary a lot even in the same P2P network. In this work, we

use the ingoing and outgoing bytes-per-packets (BPP) of network flows in one P2P network as the

community flow statistical feature.
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2.3.3.2 Numerical Community Feature

We consider two types of features: average destination diversity ratio (AVGDDR) and

average mutual contacts ratio (AVGMCR).

The average destination diversity ratio (AVGDDR) captures the “P2P behavior” of P2P

botnet communities. The destination diversity (DD) of a P2P host is the number of distinct /16

IP prefixes of each host’s network flows. The destination diversity ratio (DDR) of each host is its

DD divided by the total number of distinct destination IPs of its network flows.

Due to the decentralized nature of P2P networks, P2P network flows tend to have higher

DDR than non-P2P network flows. Furthermore, network flows from P2P botnet communities

usually have higher average DDR (AVGDDR) than network flows from legitimate network commu-

nities. Network flows from bots within the same botnet tend to have similar DDR, since those bots

are usually controlled by machines, rather than humans. However, the destinations of legitimate

P2P network flows are usually user-dependant, which result in their DDR varying greatly from

user to user. Besides, our botnet community detection method aims to cluster bots within the

same botnets together, rather than clustering the same legitimate P2P hosts together. Legitimate

communities might contain both P2P hosts and non-P2P hosts, leading to lower AVGDDR than

botnet communities.

Table 3.2 shows the number of distinct destination IP /16 prefixes in MNFs of each type of

P2P host, where both legitimate hosts and bots spread across a large number of distinct networks.

However, most of the botnets communities have higher AVGDDR than legitimate communities,

except Sality. We could combine the next feature to identify Sality.

The average mutual contacts ratio (AVGMCR) captures the “botnet behavior” of P2P

botnet communities. The mutual contacts ratio (MCR) between a pair of hosts is the number of

mutual contacts between them, divided by the number of total distinct contacts of them. This

idea is based on three observations: (a) P2P botnet communities are usually formed by at least

two bots, otherwise they cannot act as a group, (b) MCR between a pair of bots within the same

botnet is much higher than that between a pair of legitimate hosts or bots from different botnets,

and (c) each pair of bots within the same botnet has similar MCR. Thus, we consider the average
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Figure 2.2: PeerHunter system overview.

MCR (AVGMCR) among all pairs of hosts within one network community as another numerical

community feature.

Table 3.2 shows the average number of mutual contacts between a pair of hosts within the

same community, where both botnets and certain legitimate network communities have a consid-

erable number of mutual contacts. That is because those legitimate communities have much more

contacts than botnets. However, botnets has much higher AVGMCR.

2.3.3.3 Structural Community Feature

This captures the structural characteristics of a botnet. The basic idea is that, every pair

of bots within the same botnet tends to have a considerable number or ratio of mutual contacts.

Therefore, if we consider each hosts as a vertex and link an edge between a pair of hosts if they have

a certain amount or ratio of mutual contacts, the bots within the same botnet tend to form certain

complete graphes (cliques). On the contrary, the contacts of different legitimate hosts usually tend

to diverge into different physical networks. Thus, the probability that legitimate communities form

certain cliques is relatively low. Then, we can consider P2P botnets detection as a clique detection

problem, which detects cliques from a given network with certain requirements. However, since

clique detection problem is NP-complete, we cannot just apply such method to detect botnets.

Therefore, we use all three botnet community behaviors.

2.4 System Design

PeerHunter has three components, that work synergistically to (a) detect P2P hosts, (b)

construct mutual contact graph, and (c) detect bots. Figure 6.2 illustrates the framework of

PeerHunter.
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2.4.1 P2P Hosts Detection

This component is responsible for detecting hosts engaged in P2P communications. The

input is a 5-tuple network flow [ipsrc, ipdst, proto, bppout, bppin], where ipsrc is source IP, ipdst

is destination IP, proto is tcp or udp, and bppout and bppin are outgoing and ingoing BPP of

network flows. First, we cluster all network flows F = {f1, f2, . . . , fk} based on the 4-tuple [ipsrc,

proto, bppout, bppin] into flow clusters FC = {FC1, FC2, . . . , FCm}. Then, we calculate the

number of distinct /16 prefixes of ipdst (destination diversity) associated with each flow cluster,

ddi = DD(FCi). If ddi is greater than a pre-defined threshold Θdd, we consider FCi as a P2P

MNF cluster, and the corresponding source hosts as P2P hosts.

Algorithm 1: P2P Hosts Detection

Function Map([ipsrc, ipdst, proto, bppout, bppin]):
Key ← [ipsrc, proto, bppout, bppin];
V alue← ipdst;
return (Key, V alue);

Function Reduce(Key, V alue[ ]):
k ← Key;
ddk = Ø;
for v ∈ V alue[ ] do

ddk ← ddk ∪ {v};
if |ddk| ≥ Θdd then

for v ∈ V alue[ ] do
return (k, v);

As shown in Algorithm 1, we design this component using a MapReduce framework [47].

For a mapper, the input is a set of 5-tuple network flows, and the output is a set of key-value pairs.

For a reducer, the input is the set of key-values pairs. Then, the reducer aggregates all values with

the same key to calculate the DD of each flow cluster, and finally output the detected P2P MNFs

based on Θdd.

2.4.2 Mutual Contact Graph Extraction

This component is responsible for extracting mutual contact graph (MCG) through mutual

contacts. The input is a list of detected P2P hosts, H={h1, h2, . . ., h|H|} , and their corresponding

P2P MNFs, F={f1
1 , f1

2 , . . ., f1
n1

, f2
1 , f2

2 , . . ., f2
n2

, . . ., f
|H|
1 , f

|H|
2 , . . ., f

|H|
n|H|}, where f ji is flow i from
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hj . The output is a MCG, Gmc = (V,E), where each vertex vi ∈ V contains a DDR score ddri of

hi’s MNFs, and each edge eij ∈ E contains a nonnegative MCR weight mcrij between hi and hj .

Algorithm 2 shows the main steps in this component.

First, for each host hi, we generate a contact set Ci, that contains all the destination IPs

in its MNFs. Each host hi also contains a flow statistical pattern set Si, which contains all [proto,

bppout, bppin] 3-tuple in its MNFs. Let DD(Ci) be the set of distinct /16 prefixes of all the IPs in

Ci. Then, ddri and mcrij can be calculated as below.

ddri =
‖DD(Ci)‖
‖Ci‖

mcrij =
Ci ∩ Cj
Ci ∪ Cj

(2.1)

Furthermore, as discussed in Section 2.3.3.1, MNFs from different hosts within the same

network communities should have similar statistical patterns. Thus, for each pair of input hosts,

say hi and hj , we calculate the intersection between Si and Sj . If Si ∩ Sj = Ø, then there is no

edge between hi and hj in MCG. Otherwise, they share at least one MNF statistical pattern, and

we calculate mcrij as shown in (3.1). Let Θmcr be a pre-defined threshold. Then, if mcrij > θmcr,

there is an edge between hi and hj , with weight mcrij . Otherwise, there is no edge between hi and

hj (mcrij = 0).

2.4.3 P2P Botnet Detection

This component is responsible for detecting P2P bots from given MCG. First, we cluster

bots into communities. Then, we detect botnet communities using numerical community behavior

analysis. In the end, we perform structural community behavior analysis to further identify or

verify each bot candidates. Algorithm 3 shows the main steps.

2.4.3.1 Community Detection

In a MCG Gmc = (V,E), ∀ eij ∈ E, we have mcrij ∈ [0, 1], where mcrij = 1 means all

contacts of hi and hj are mutual contacts and mcrij = 0 means there is no mutual contacts between

hi and hj . Furthermore, bots within the same botnet tend to have a large number/ratio of mutual

contacts. Then, the bots clustering problem can be considered as a classical community detection

problem. Various community detection methods have been discussed in [48]. In this work, we utilize

15



Louvain method, a modularity-based community detection algorithm [12], due to (a) its definition

of a good community detection result (high density of weighted edges inside communities and low

density of weighted edges between communities) is perfect-suited for our P2P botnet community

detection problem; (b) it outperforms many other modularity methods in terms of computation

time [12]; and (c) it can handle large network data sets (e.g. the analysis of a typical network of 2

million nodes only takes 2 minutes [12]).

Given Gmc = (V,E) as input, Louvain method outputs a set of communities Com={com1,

com2, . . . , com|Com|}, where comi=(Vcomi , Ecomi). Vcomi is a set of hosts in comi. Ecomi is a set of

edges, where ∀ ejk ∈ Ecomi , we have ejk ∈ E and vj , vk ∈ Vcomi .

Algorithm 2: Mutual Contact Graph Extraction

Input: H, F , Θmcr.
Output: Gmc = (V,E).

1 E = Ø, V = Ø;
2 for hi ∈ H do
3 Ci = Ø;
4 Si = Ø;

5 for f ji ∈ F do
6 Cj ← Cj ∪ {ipdst};
7 Sj ← Sj ∪ {[proto, bppout, bppin]};
8 for hi ∈ H do

9 ddri ← ‖DD(Ci)‖
‖Ci‖ ;

10 vertex vi ←< ddri >;
11 V ← V ∪ {vi};
12 for ∀ hi, hj ∈ H and i < j do
13 if Si ∩ Sj 6= Ø then

14 mcrij ← Ci∩Cj
Ci∪Cj ;

15 if mcrij > Θmcr then
16 edge eij ←< mcrij >;
17 E ← E ∪ {eij};

18 return Gmc = (V,E);

2.4.3.2 Botnet Communities Detection

Given a set of communities Com, for each community comi ∈ Com, we start from calcu-

lating avgddri and avgmcri, as shown below.
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avgddri =

∑
vj∈Vcomi

ddrj

‖Vcomi‖
(2.2)

avgmcri =
2×

∑
∀ejk∈Ecomi

mcrjk

‖Vcomi‖ × (‖Vcomi‖ − 1)
(2.3)

We define two thresholds Θavgddr and Θavgmcr. Then, ∀ comi ∈ Com, if avgddri ≥ Θavgddr

and avgmcri ≥ Θavgmcr, we consider comi as a botnet community.

2.4.3.3 Bot Candidates Detection

Recall from Section 2.3.3.3, the MCG of a botnet usually has a structure of one or several

cliques. Therefore, we utilize a maximum clique detection method CliqueDetection to further

identify or verify each bot candidates from botnet communities. Each time it tries to detect one

or several maximum cliques on the given MCG of botnet communities. If maximum clique (at

least contains 3 vertices) has been found, we consider the hosts in that clique as bot candidates,

remove those hosts from the original MCG, and run the maximum clique detection algorithm on

the remaining MCG, until no more qualified maximum cliques to be found, then return the set of

bot candidates.

Algorithm 3: P2P Botnet Detection

Input: Gmc, Θavgddr, Θavgmcr.
Output: Sbot.

1 SbotnetCom = Ø, Sbot = Ø;
2 Com← Louvain(Gmc);
3 for comi ∈ Com do

4 avgddri ←
∑
vj∈Vcomi

ddrj

‖Vcomi‖
;

5 avgmcri ←
2×

∑
∀ejk∈Ecomi

mcrjk

‖Vcomi‖×(‖Vcomi‖−1) ;

6 if avgddri ≥ Θavgddr and avgmcri ≥ Θavgmcr then
7 SbotnetCom ← SbotnetCom ∪ {comi};

8 for comi ∈ SbotnetCom do
9 Sbot ← CliqueDetection(comi);

10 return Sbot
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Table 2.3: PeerHunter traces of ordinary P2P networks (24 hrs).

Trace # of hosts # of flows # of dstIP Size

eMule 16 4,181,845 725,367 42.1G

FrostWire 16 4,479,969 922,000 11.9G

uTorrent 14 10,774,924 2,326,626 57.1G

Vuze 14 7,577,039 1,208,372 20.3G

Table 2.4: PeerHunter traces of P2P botnets (24 hrs).

Trace # of bots # of flows # of dstIP Size

Storm 13 8,603,399 145,967 5.1G

Waledac 3 1,109,508 29,972 1.1G

Sality 5 5,599,440 177,594 1.5G

Kelihos 8 122,182 944 343.9M

ZeroAccess 8 709,299 277 75.2M

Table 2.5: PeerHunter traces of background network.

Date Dur # of hosts # of flows Size

2014/12/10 24 hrs 48,607,304 407,523,221 788.7G

2.5 Experimental Evaluation

2.5.1 Experiment Setup

2.5.1.1 Experiment Environment

The experiments are conducted on one single PC with an 8 core Intel i7-4770 Processor,

32GB RAM, 400GB SSD and 4TB HHD, and on the 64-bit Ubuntu 14.04 LTS operating system.

2.5.1.2 Data Collection and Analysis Tool

The dataset contains three categories: (a) ordinary P2P network traces, (b) P2P botnets

network traces, and (c) background network traces. In practice, all the network traces could be

collected at a network boundary (e.g. firewall, gateway, etc.).

We used the dataset obtained from the University of Georgia [37] as our ordinary P2P

network traces (D1), which collected the network traces of 4 different popular P2P applications for

several weeks. There are 16 eMule hosts, 16 FrostWire hosts, 14 uTorrent hosts and 14 Vuze hosts,

and we randomly selected 24 hours network traces of each host. More details about D1 are shown

in Table 3.3.
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Table 2.6: Summaries of PeerHunter experimental datasets (EDs).

Descriptions Values

the # of EDs 24

the # of bots in each ED 37

the # of ordinary P2P hosts in each ED 60

the # of internal hosts in each ED 10,000

the AVG # of external hosts in each ED 6,607,714

the AVG # of flows in each ED 91,240,099

the duration of each ED 24 hr

Part of our botnet network traces (D2) is also from the University of Georgia dataset [37],

which contains 24 hours network traces of 13 hosts infected with Storm and 3 hosts infected with

Waledac. We also collected 24 hours network traces of another three infamous P2P botnets, Sality,

Kelihos and ZeroAccess. These network traces were collected from the hosts intentionally infected

by Kelihos, ZeroAccess, and Sality binary samples obtained from [49]. Furthermore, all malicious

activities have been blocked with the same settings as shown in [37]. We collected the network

traces of 8 Kelihos bots, 8 ZeroAccess bots and 5 Sality bots. More details about D2 are shown in

Table 3.4.

We used the dataset downloaded from the MAWI Working Group Traffic Archive [36] as

background network traces (D3), as shown in Table 3.5. This dataset contains 24 hours anonymized

network traces at the transit link of WIDE (150Mbps) to the upstream ISP on 2014/12/10 (sample

point F). This network traces contains approximate 407,523,221 flows and 48,607,304 unique IPs.

79.3% flows are TCP flows and the rest are UDP flows. We utilize ARGUS [50] to process and

cluster network traces into the 5-tuple format tcp/udp flows.

2.5.1.3 Experimental Dataset Generation

To evaluate our approach, we generate 24 experimental datasets by mixing the network

traces from D1 and D2 into different sub-datasets of D3. Table 3.7 illustrates the summaries of

experimental datasets (EDs). Each experimental datasets contains 10,000 internal hosts sampled

from D3, where the network traces of 37 randomly selected hosts are mixed with D2, and the

network traces of another 60 randomly selected hosts are mixed with D1. To make the experimental

evaluation as unbiased and challenging as possible, below we propose two criterions.
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First, we need to maintain a bipartite network structure. Our system aims to deploy at

a network boundary (e.g. firewall, gateway, etc.), where the network forms a bipartite structure,

and only network flows within the connections between internal hosts and external hosts could be

captured. Then, the network in each experimental dataset should maintain a bipartite network

structure, where any pair of internal hosts should not have any communications to each other.

Then, we need to keep the connectedness of mutual contacts graph. The easiest way to

obtain a list of background hosts is to sample the hosts randomly from D3, with the respect of bi-

partite structure. However, since D3 contains an extremely large number of hosts, simply sampling

hosts randomly will result in that most of the sampled background hosts do not have a mutual

contact with the other background hosts, which is much easier for PeerHunter to identify botnet

communities. Because less number of mutual contacts among legitimate hosts means more discon-

nected legitimate communities in the corresponding MCG, which is in favor of Louvain method

to detect strongly connected botnet communities. Therefore, we need to sample a list of internal

hosts in a way that every internal host should have at least one mutual contact with at least one

another internal host.

To follow the criterions described above without making our evaluation tasks any easier, we

propose the following experimental dataset generation procedure:

• Utilize a two-coloring approach to sample the network traces of 10,000 background hosts

from D3 without jeopardize the bipartite network structure and the connectedness of mutual con-

tacts graph: (a) initialize two counters, Cblack and Cwhite, to count the number of hosts colored

in black and white respectively; (b) coloring a random host hi as black, and Cblack plus one; (c)

coloring all contacts of hi as white, and increase Cwhite by the number of hosts colored as white in

this round; (d) for each new colored host, color its contacts with the opposite color, and adjust the

counters repeatedly, until we have Cblack ≥ 10, 000 and Cwhite ≥ 10, 000; (e) select the colored host

set with exactly 10,000 hosts as the internal hosts, the hosts in the other colored host set will be

the external hosts; and (f) extract the network traces of the 10,000 internal hosts from D3. Then,

it forms a bipartite graph, where each colored host set forms a bipartite component, and each host

shares at least one mutual contacts with some other hosts from its own bipartite component.

• To maintain a bipartite network structure of botnets and ordinary P2P network traces,

we eliminate all communications among bots in D2 and legitimate P2P hosts in D1.
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Table 2.7: PeerHunter detection rate and false positive rate for different θdd.

θdd DR FP θdd DR FP

2-10 97/97 ≥ 450/9,903 500-1,000 81/97 0

15 97/97 ≥ 8/9,903 5,000 60/97 0

20-25 97/97 ≤ 1/9,903 10,000 18/97 0

30-185 97/97 0 12,500 5/97 0

200 89/97 0 13,500 0 0

• To mix D1 and D2 with D3, each time we randomly select 97 internal hosts from one

sub-datasets sampled from D3, map those IPs to 37 bots’ IP in D2 and 60 legitimate P2P hosts’

IP in D1, and merge the corresponding network traces.

To evaluate our system, 24 synthetic experimental datasets have been created by running

this procedure repeatedly.

2.5.2 Evaluation on P2P Host Detection

We evaluate the P2P host detection with different parameter settings. This component uses

a pre-defined threshold θdd (Section 2.4.1) to detect P2P hosts. We applied this component on all

24 experimental datasets, and Table 3.8 shows the experimental results with different θdd, ranging

from 2 to 13500. If θdd is set too small, non-P2P hosts are likely to be detected as P2P hosts, which

results in many false positives. For instance, when 2 ≤ θdd ≤ 10, there are, on average more than

450 non-P2P hosts have been falsely identified as P2P hosts. In contrast, if θdd is set too large,

all P2P hosts will be removed, which results in false negatives. For instance, when θdd = 5000,

there are, on average 37 P2P hosts have been falsely discarded, and when θdd ≥ 12000, nearly all

hosts are removed. When 20 ≤ θdd ≤ 185, it detects all P2P hosts with a very small number of

false positives (≤ 1/9903), which demonstrates that our P2P hosts detection component is stable

and effective over a large range of θdd settings. The effectiveness of θdd is also subject to the time

window of the collected data. In our experiment, we used 24 hrs network traces. The destination

diversity (DD) of P2P hosts tends to grow over time. Then, θdd will be effective in a even larger

range, if the time window increase.
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Table 2.8: PeerHunter community detection results for different Θmcr.

Θmcr FLCR FBCR FBSR

0-0.25 0 0 0

0.5 0 0 2.8

1.0 0 0 6.4

2.5.3 Evaluation on Community Detection

We evaluate the performance of community detection with different parameter settings.

We applied this component on the remain network flows (24 experimental datasets) after the P2P

host detection (with θdd = 50). For each experimental dataset, this component generates a MCG

Gmc = (V,E) with a pre-defined threshold Θmcr, where each edge eij ∈ E contains a weight

mcrij ∈ [0, 1]. Then, we applied Louvain method (with default resolution 1.0) on the MCG for

community detection. The choice of Θmcr has an influence on the community detection results.

We evaluated the community detection performance in terms of (a) the ability to separate

bots and legitimate hosts, (b) the ability to separate bots from different botnets, and (c) the ability

to cluster bots within the same botnet. Let falsely-clustered hosts denote the number of legitimate

hosts that have been clustered with bots into the same community, cross-community bots denote

the number of bots of different types that have been clustered into the same community, and split-

communities botnets denote the number of detected communities that contain bots, subtract the

number of ground truth botnets (e.g. 5 in our experiments). Then, we propose three evaluation

criterions: (a) False Legitimate Cluster Rate (FLCR), which is falsely-clustered hosts divided

by the total number of legitimate hosts during community detection; (b) False Bot Cluster Rate

(FBCR), which is cross-community bots divided by the total number of bots during community

detection; (c) False Botnet Split Rate (FBSR), which is split-communities botnets divided by the

total number of ground truth botnets.

Table 3.9 shows the results with different Θmcr, ranging from 0 to 1. If Θmcr is set too

small, there will be more non-zero weight edges, which might result in less but larger communities.

In contrast, if Θmcr is set too large, most of the vertices will be isolated, which results in more but

small communities. As shown in Table 3.9, when Θmcr ≤ 0.25, FBSR also remains 0, which means

no botnets have been falsely split into different communities. However, as Θmcr increasing from 0.5
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Table 2.9: DR and FPR for different θavgddr and θavgmcr of PeerHunter.

θavgddr
θavgmcr - 0-0.0625 0.125 0.25 0.5 1

0-0.03125
DR 37/37 32/37 32/37 16/37 0/37
FP 60/60 32/60 0/60 0/60 0/60

0.0625-0.25
DR 37/37 32/37 32/37 16/37 0/37
FP 0/60 0/60 0/60 0/60 0/60

0.5
DR 21/37 16/37 16/37 16/37 0/37
FP 0/60 0/60 0/60 0/60 0/60

1
DR 0/37 0/37 0/37 0/37 0/37
FP 0/60 0/60 0/60 0/60 0/60

to 1, FBSR is also increasing, which means bots within the same botnets have been clustered into

different communities. This reflects that most of the MCG edge weighs between bots are less than

0.5. If Θmcr ≥ 0.5, bots even within the same botnets will be isolated. FLCR and FBCR are always

0 no matter how Θmcr has been changed. FLCR is 0 means that all bots are successfully separated

from legitimate hosts. FBCR is 0 means none of the communities contains more than one type of

bots. This results demonstrate that our system is very effective and robust in separating bots and

legitimate hosts, and separating different types of bots.

2.5.4 Evaluation on Botnet Detection

We evaluate the botnet detection component with different parameter settings. We ap-

plied this component on the remain network flows (24 experimental datasets) after previous two

components (with θdd = 50 and Θmcr = 0.03125). Table 3.10 shows the results with different

θavgddr ∈ [0, 1] and θavgmcr ∈ [0, 1]. The results support our idea that the AVGDDR of legitimate

host communities is lower than most of the P2P botnets. For instance, the AVGDDR of all (60/60)

legitimate host communities are less than 0.25, but the AVGDDR of 32 out of 37 botnets are

higher than 0.25. The missing ones turned out to be 5 Sality bots, which could be detected by

AVGMCR. As shown in Table 3.10, legitimate P2P hosts have lower AVGMCR than P2P bots (e.g.

θavgmcr = 0.0625). This experimental results demonstrate that our botnet detection component is

effective (detection rate equals to 100 % with zero false positives) and stable over a large range of

θavgddr (e.g. [0, 0.0625]) and θavgmcr (e.g. [0.0625, 0.25]).
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Table 2.10: Number of hosts identified by each component of PeerHunter.

- Before P2P detection After P2P detection

# of hosts 10,000 97

- After Community detection After Bot detection

# of hosts 97 37

Table 2.11: PeerHunter execution time.

- Processing Time

P2P Host Detection 15 minutes

MCG Extraction 5 minutes

Community Detection 18 milliseconds

Bot Detection 11 milliseconds

Total 20 minutes

2.5.5 Evaluation on PeerHunter

We evaluate our system according to effectiveness and scalability. Effectiveness is to evaluate

the capability of our systems to detect P2P botnets, and scalability is to evaluate the practicality

of our systems to deal with the real world big data. We applied PeerHunter on 24 experimental

synthetic datasets, with θdd=50, Θmcr=0.03125, θavgddr=0.0625 and θavgmcr=0.25, and all results

are averaged over 24 datasets.

We use detection rate and false positive rate to measure the effectiveness. As shown in

Table 3.11, our system identified all 97 P2P hosts from 10,000 hosts, and detected all 37 bots from

those 97 P2P hosts, with zero false positives. It is clear that PeerHunter is effective and accurate

in detecting P2P botnets.

Our system has a scalable design based on efficient detection algorithm and distributed

/ parallelized computation. Out of three components in our system, the P2P botnet detection

component (community detection and botnet detection as shown in Table 3.11) has a negligible

processing time compared with the other two components. This is due to previous two components

are designed to reduce a huge amount of the hosts subject to analysis (e.g. 99.03% in our experi-

ments). The P2P host detection component has linear time complexity, since it scans all the input

flows only once to compute the flow clusters and further identify P2P flows. However, since it is

the very first component to process the input data, which could be large, it still costs the highest

processing time (as shown in Table 3.11). To accommodate the growth of a real world input data

(big data), we designed and implemented the P2P host detection component using a Map-Reduce
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framework, which could be deployed in distributed fashion on scalable cloud-computing platforms

(e.g. amazon EC2). The MCG extraction component requires pairwise comparison to calculate

edges weights. Let n be the number of hosts subject to analysis and m be the maximum number of

distinct contacts of a host. We implemented the comparison between each pair of hosts parallelly

to handle the growth of n. If we denote k as the number of threads running parallelly, the time

complexity of MCG extraction is O(n
2m
k ). For a given ISP network, m grows over time. Since our

system uses a fixed time window (24 hours), for a given ISP network, m tends to be stable and

would not cause a scalability issue. Besides, since the percentage of P2P hosts of an ISP network is

relatively small (e.g. 3% [1]), and an ISP network usually has less than 65,536 (/16 subnet) hosts,

n would be negligible compared with m. Furthermore, even if n and m are both big numbers, our

system could use an as large as possible k to adapt the scale of n and m. In a nutshell, PeerHunter

is scalable to handle the real world big data.

2.6 Conclusion

In this work, we present a novel community behavior analysis based P2P botnet detection

system, PeerHunter, which operates under several challenges: (a) botnets are in their waiting stage;

(b) the C&C channel has been encrypted; (c) no bot-blacklist or “seeds” are available; (d) none

statistical traffic patterns known in advance; and (e) do not require to monitor individual host. We

propose three types of community behaviors that can be utilized to detect P2P botnets effectively.

In the experimental evaluation, we propose a network traces sampling and mixing method to

make the experiments as unbiased and challenging as possible. Experiments and analysis have

been conducted to show the effectiveness and scalability of our system. With the best parameter

settings, our system can achieved 100% detection rate with none false positives.
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Chapter 3: P2P Botnet Detection through Flow-level Community Behavior Analysis

Peer-to-peer (P2P) botnets have become one of the major threats in network security for

serving as the fundamental infrastructure for various cyber-crimes. More challenges are involved

in the problem of detecting P2P botnets, despite a few work claimed to detect centralized botnets

effectively. We present Enhanced PeerHunter, a network-flow level community behavior analysis

based system, to detect P2P botnets. Our system starts from a P2P network flow detection

component. Then, it uses “mutual contacts” to cluster bots into communities. Finally, it uses

network-flow level community behavior analysis to detect potential botnets. In the experimental

evaluation, we propose two evasion attacks, where we assume the adversaries know our techniques in

advance and attempt to evade our system by making the P2P bots mimic the behavior of legitimate

P2P applications. Our results showed that Enhanced PeerHunter can obtain high detection rate

with few false positives, and high robustness against the proposed attacks. 2

3.1 Introduction

A botnet is a set of compromised machines controlled by botmasters through command

and control (C&C) channels. Botnets may have different communication architectures. Traditional

botnets are known to use centralized architectures, which have potential single point of failure. Peer-

to-peer (P2P) network is modeled as a distributed architecture, where even if a certain number

of peers do not function properly, the whole network is not compromised. Most of the recent

botnets (e.g., Storm, Waledac and ZeroAccess) attempted to use P2P architectures, and P2P

botnets were proved to be highly resilient even after a certain number of bots being identified or

taken down [2]. P2P botnets provide a fundamental infrastructure for various cyber-crimes, such

as distributed denial-of-service (DDoS), email spam, click fraud, etc. For instance, recent botnet

attacks including those carried out by WhiskeyAlfa (responsible for Sony Pictures Entertainment

2 This chapter was published in IEEE Transactions on Information Forensics and Security ( Volume: 14, Issue: 6,
June 2019) [51]. Copyright permission is included in Appendix A.
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attack) and WannaCry (responsible for ransoming healthcare facilities in Europe) showed the scale

and scope of damage that P2P botnets can cause. As such, detecting P2P botnets effectively is

rather important for securing cyberspace.

Designing an effective P2P botnets detection systems is very challenging. First, botnets

tend to act stealthily [1] and spend most of their time in the waiting stage before performing

any malicious activities [3]. Approaches using malicious activities would have small window of

opportunities to detect such botnets. Second, botnets tend to encrypt the C&C channels, causing

deep-packet-inspection (DPI) based methods ineffective. Third, the role of a single bot can be

changed dynamically depending on the current structure of a botnet [4] (e.g., P2P bot can shift its

functionality to act as a botmaster when the prior botmaster has been taken down). Hence, it is

difficult to characterize a botnet just by looking at a single bot.

In this work, we present Enhanced PeerHunter, an extension of PeerHunter [5], aiming

to use network-flow level community behaviors to detect waiting stage P2P botnets, even in the

scenario that P2P bots and legitimate P2P applications are running on the same set of hosts. We

consider a botnet community as a group of compromised machines that communicate with each

other or connect to the same set of botmasters through the same C&C channel, are controlled

by the same attacker, and aim to perform similar malicious activities. In the “waiting stage”, no

malicious activities could be observed. As discussed in [4], the dynamic change of communication

behaviors of P2P botnets makes it extremely hard to identify a single bot. Nonetheless, bots

belonging to the same P2P botnet always operate together as a community and share the same

set of community behaviors. Our system starts from a P2P network flow detection component,

and builds a network-flow level mutual contacts graph (MCG) depending on the mutual contacts

characteristics [35] between each pair of the P2P network flows. Afterwards, it employs a community

detection component to cluster the same type of bots into the same community, and separate bots

and legitimate applications or different types of bots into different communities. Finally, our

system uses the destination diversity (the “P2P behavior”) and the mutual contacts (the “botnet

behavior”) as the natural behaviors to detect P2P botnet communities.

In the experiments, we mixed a background network dataset [36] with 5 P2P botnets

datasets and 4 legitimate P2P applications datasets [37]. To make our experimental evaluation

as unbiased and challenging as possible, we propose a network traces sampling and mixing method
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to generate synthetic experimental datasets. To be specific, we evaluated our system with 100

synthetic experimental datasets that each contains 10,000 internal hosts. We implemented our

P2P network flow detection component using MapReduce framework, which dramatically reduced

the number of hosts subject to analysis by 99.03% and retained most of the P2P hosts. Also,

the MapReduce design and implementation of our system could be deployed on cloud-computing

platforms (e.g., Amazon EC2), which ensures the scalability of our system (i.e., processing an av-

erage of 97 million network flows in about 20 minutes). To summarize, our work has the following

contributions:

•We present a novel, effective and efficient network-flow level community behavior analysis

based system, Enhanced PeerHunter, which is capable of detecting P2P botnets when (a) botnets

are in their waiting stage; (b) the C&C channel has been encrypted; (c) the botnet traffic are

overlapped with legitimate P2P traffic on the same host; and (d) none statistical traffic patterns

are known in advance (unsupervised).

• We experimented our system using a wide range of parameter settings. With the best

parameter settings, our system achieved 100% detection rate with zero false positive.

• We propose two evasion attacks (i.e., passive and active mimicking legitimate P2P appli-

cation attacks), where we assume the adversaries know our techniques in advance and attempt to

evade our system via instructing P2P bots to mimic the behavior of legitimate P2P applications.

The experiment results showed that our system is robust to both attacks.

• We compared Enhanced PeerHunter with PeerHunter [5] (i.e., our previous work) and

Zhang et al. [1]. Extensive experiments were conducted to show that (a) our system outperforms

Zhang et al. [1] in terms of the detection rate of different botnets, the overall precision, recall and

false positives, and (b) our system is more robust to MMKL attacks compared with PeerHunter [5]

and Zhang et al. [1].

The rest of this chapter is organized as follows: Section 3.2 presents the related work.

Section 3.3 explains the motivation and details of the features applied in our system. Section 3.4

describes the system design and implementation details. Section 3.5 presents the experimental

evaluation. Section 3.6 discusses the evasions and possible solutions, deployment and the potential

extensions of our system. Section 3.7 concludes.
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3.2 Related Work

To date, a few methods attempting to detect P2P botnets were proposed [38, 35, 52, 3,

4, 37, 1, 5, 53, 54, 55, 56]. From the data perspective, recent approaches can be divided into two

categories [56]: payload-based and flow-based. Payload-based systems [38, 57, 58] use payload

content and header information of network packets to detect botnets. For instance, BotHunter

[38] is a well-known packet inspecting bot detection system that relies on a modified Snort [59]

(i.e., a rule-based intrusion detection system that requires the access to the full payload) to detect

potential malicious activities and further identify infected hosts. Lu et al. [57] proposed to use

decision tree models trained on the n-gram features extracted from the network traffic payload to

detect botnets. Wang et al. [58] proposed to use lexical features of HTTP header (TCP payload)

to discover malicious behaviors of Android botnets.

Flow-based systems [35, 52, 60, 3, 4, 37, 1, 5, 53, 54, 55, 56, 61] use header information

of network packets (i.e., network flow characteristics) to capture botnets behaviors. Compared

with payload-based systems, flow-based systems use less information from the network packets.

Since recent botnets tend to use encryption to hide their payload information from the detection

systems, most of the packet-based systems that applying deep packet inspection (DPI) on the

payload information (e.g., BotHunter [38]) will be foiled. Zhang et al. [34] proposed to add a high-

entropy flow detector into BotHunter to detect bots, when part of the packets payloads of botnets’

network flows are encrypted. Their assumption is that the presence of high-entropy flows (detected

from the encrypted packets payloads) together with existing botnets events (detected from the

non-encrypted packets payloads by BotHunter) could identify botnets using encrypted network

traffic. However, if all the packets payloads are encrypted [56], it will be hard for their approach

to perform. The flow-based detection systems have advantage over the packet-based systems that

applying deep packet inspection (DPI) on the payload information (e.g., BotHunter [38]) given

that they can be applied to encrypted traffic. Some flow-based systems applied one or several

different supervised machine learning algorithms on a set of well extracted network flow features

to model the botnets behaviors. For instance, Jianguo et al. [62] applied three supervised machine

learning algorithms (i.e., SVM, Logistic Regression and Neural Network) on network flow features

extracted from Netmate and Tranalyzer to detect botnets. They obtained very high performance
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metrics, while employing a fully labelled dataset. Khanchi et al. [61] proposed an approach using

genetic programming and ML on data streams to detect botnets flows. However, since most of

the supervised ML-based approaches usually generate models that are focusing on specific types of

botnets (existing in the training data), those approaches will not be effective to detect botnets not

appeared in the training data (unknown botnets).

Some flow-based systems utilized a combination of different heuristics to model P2P botnets

behaviors. For instance, Botgrep [52] proposed to detect P2P botnets through localizing structured

communication graphs, where they found that the communication graph of P2P applications have

fast convergence time of random walks to a stationary distribution. However, their method can

only identify structured communication subgraphs, rather than ensure those subgraphs containing

P2P botnets. Entelecheia [3] proposed to use a synergistic graph-mining approach on a super-flow

graph built from network flow features (i.e., volume per hour, duration per flow) to identify a

group of P2P bots, where they claimed that P2P botnet network flow tend to have low volume and

long duration. Group or community behavior based methods [4, 35, 5, 53] considered the behavior

patterns of a group of bots within the same P2P botnet community. Coskun et al. [35] developed

a P2P botnets detection approach that started from building a mutual contacts graph of the whole

network, then attempted to use “seeds” (known bots) to identify the rest of botnets. However, it

is impractical to have a “seed” in advance. Similar to the idea of using mutual contacts graph, Ma

et al. [63] proposed to use the coexistence of domain cache-footprints distributed in networks that

participate in the outsourcing service (i.e., coexistence graph) to detect malicious domains. Yan

et al. [4] proposed a group-level behavior analysis based P2P botnets detection method, where

they started from clustering P2P hosts into groups, and then used supervised machine learning

methods (e.g., SVM) to identify bots through a set of group-level behavior features. Since their

approach relied on supervised classification methods (e.g., SVM) which required to train the model

of each botnet on fully labelled dataset in advance, it would be hard for their method to detect

unknown botnets. Chen et al. [64] applied three unsupervised machine learning algorithms (i.e.,

self-organising map, local outlier factor and k-NN outlier) to build a normal behavior profile to

detect botnet. They obtained a very high detection rate (91.3%), but with inherited high false

positive rates due to the nature of the unsupervised ML algorithms employed. PeerHunter [5], our

previous work, proposed to use the host level community behavior analysis to detect P2P botnets,
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which did not consider the scenario that P2P bots and legitimate P2P applications could run on the

same set of hosts. Zhang et al. [1] proposed a scalable botnet detection system capable of detecting

stealthy P2P botnets (i.e., in the waiting stage), where no knowledge of existing malicious behavior

was required in advance. They also claimed to work in the scenario that the botnet traffic are

overlapped with the legitimate P2P traffic on the same host. However, their experimental dataset

was slightly biased and less challenging. For example, in their dataset, the number of bots was

twice as many as the number of legitimate P2P hosts, which was much easier for bots to form

clusters than legitimate P2P hosts.

In this work, we present Enhanced PeerHunter, a network-level flow-based system that

relies on community behavior analysis to detect P2P botnets. We compared Enhanced PeerHunter

with PeerHunter [5] and Zhang et al. [1] on a more challenging and comprehensive experimental

datasets, and showed that our system outperforms both systems in terms of detection rate, false

positives and the performance under the proposed mimicking legitimate P2P application attacks.

3.3 Background and Motivation

In this section, we investigate the characteristics being used to detect P2P network traffic,

and introduce the concept of “mutual contacts”, which motivated us to formulate the P2P botnet

detection problem as a network community detection problem. Also, we explore the P2P botnet

community behaviors being used to identify botnets communities. To demonstrate the features

discussed in this section, we conducted some preliminary experiments using the dataset shown in

Table 3.3 and Table 3.4. Table 3.1 shows the notations and descriptions, and Table 3.2 shows the

measurements of features.

3.3.1 P2P Network Characteristics

Due to the nature of P2P networks, P2P hosts usually communicate with their peers through

IP addresses directly, without any queries from DNS services [65], namely, non-DNS connections

(NoDNS). Also, peer churn is another typical behavior in P2P networks [66], which results in a

significant number of failed connections in P2P network flow. Furthermore, due to the decentralized

nature of P2P network, a P2P host usually communicates with peers distributed in a large range

31



Table 3.1: Enhanced PeerHunter notations and descriptions.

Notations Descriptions

MNF the management network flow

AVGDD the average # of distinct /16 MNF dstIP prefixes

AVGDDR the average destination diversity ratio

AVGMC the average # of mutual contacts between a pair of hosts

AVGMCR the average mutual contacts ratio

Θdd the threshold of destination diversity

Θmcr the threshold of mutual contacts ratio

Θavgddr the threshold of AVGDDR

Θavgmcr the threshold of AVGMCR

BSI Bot Separation Index

BAI Bot Aggregation Index

BLSI Bot-Legitimate Separation Index

Table 3.2: Enhanced PeerHunter measurements of features.

Trace AVGDD AVGDDR AVGMC AVGMCR

eMule 8,349 17.6% 3,380 3.7%

FrostWire 11,420 15.2% 7,134 4.5%

uTorrent 17,160 8.7% 13,888 3.5%

Vuze 12,983 10.1% 18,850 7.9%

Storm 7,760 25.1% 14,684 30.2%

Waledac 6,038 46.0% 7,099 37.0%

Sality 9,803 9.5% 72,495 53.2%

Kelihos 305 97.4% 310 98.2%

ZeroAccess 246 96.9% 254 100.0%

of physical networks, which results in destination diversity (DD) [37] of P2P management network

flow (MNF). To be clearer, P2P host generate two types of network flow: (1) management network

flow, which maintains the function and structure of the P2P network, and (2) other network flow,

such as data-transfer flow, which does not necessarily have the P2P network characteristics. The

P2P network flow mentioned in this section and the rest all refers to P2P MNF.

Zhang et al. [1] proposed to remove a decent number of non-P2P network flow using NoDNS,

and then performed a fine-grained P2P hosts detection using DD. Based on their experiment results,

DD plays a much more important role in detecting P2P hosts than NoDNS. Therefore, in this work,

we decided to only use DD to simplify and speed up the P2P network flow detection procedure. In

addition, we used the number of distinct /16 IP prefixes of each host’s network flow, rather than

BGP prefix used in [1] to approximate DD, since /16 IP prefix is a good approximation of network
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Figure 3.1: Illustration of network (a) and its mutual contacts graph (b).

boundaries. For instance, it is very likely that two IP addresses with different /16 IP prefixes belong

to two distinct physical networks. This is also supported by Table 3.2, which shows the network

flow in a P2P network spreading across many distinct physical networks according to the number

of /16 IP prefixes.

3.3.2 Mutual Contacts

The mutual contacts (MC) between a pair of hosts is a set of shared contacts between them

[35]. Consider the network illustrated in Figure 3.1a which contains an internal network (A, B,

C, D and E) and an external network (1, 2, 3, 4 and 5). A link between a pair of hosts means

communication between them. In Figure 3.1a, 1, 2 are the mutual contacts shared by A, B.

Mutual contacts are the natural characteristic of P2P botnet. Compared with legitimate

hosts, a pair of bots within the same P2P botnet has higher probability to share mutual contacts

[35]. Because bots within the same P2P botnet tend to receive the same C&C messages from

the same set of botmasters [44]. Moreover, in order to prevent bots (peers) from churning, the

botmaster must check each bot periodically, which results in a convergence of contacts among peers

within the same botnet [1]. However, since bots from different botnets are controlled by different

botmasters, they will not share many mutual contacts. A pair of Legitimate hosts may have a
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small set of mutual contacts, since nearly all hosts communicate with some popular servers, such

as google.com, facebook.com [35]. Furthermore, the host pairs running the same P2P applications

may also result in a decent ratio of mutual contacts, if they communicate with the same set of peers

by coincidence. However, in practice, legitimate P2P hosts with different purposes will not search

for the same set of peers. As such, we can use mutual contacts to cluster the bots within the same

botnet, and separate P2P botnets from legitimate P2P applications.

The basic idea of using mutual contacts is to build a mutual contacts graph (MCG) as

shown in Figure 3.1, a host level MCG, where A, B are linked together in Figure 3.1b, since they

have mutual contacts 1, 2 in Figure 3.1a. Similarly, C, D, E are linked to each other in Figure 3.1b,

since every pair of them share at least one mutual contacts in Figure 3.1a. More details about

network-flow level MCG is discussed in Section 3.4.2.

3.3.3 Community Behavior Analysis

Due to the dynamic changes of a single bot’s communication behavior [4], it would be

extremely hard to identify a single bot. However, bots within the same P2P botnet always work

together as a community, thus, should have distinguishable community behaviors. We consider

three types of community behaviors: (a) flow statistical feature, (b) numerical community feature

and (c) structural community feature.

3.3.3.1 Flow Statistical Feature

Botnet detection methods using flow statistical features, have been widely discussed [4, 3,

1, 5]. For the MNFs of a specific P2P application, most of its statistical patterns depend on its P2P

network protocol. However, the statistical patterns of other network flows, such as data-transfer

flow, are usually situation-dependent, which vary a lot even in the same P2P network. In this

work, we use the ingoing and outgoing bytes-per-packets (BPP) of MNFs in one P2P network as

its community flow statistical feature.

3.3.3.2 Numerical Community Feature

We consider two numerical community features: average destination diversity ratio

(AVGDDR) and average mutual contacts ratio (AVGMCR).
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The average destination diversity ratio (AVGDDR) captures the “P2P behavior” of P2P

botnets. The destination diversity (DD) of a P2P host is the number of distinct /16 IP prefixes

of its network flows’ destination IPs. The destination diversity ratio (DDR) of each host is its DD

divided by the total number of distinct destination IPs of its network flows. Due to the decentralized

nature of P2P networks, P2P network flow tend to have higher DDR than non-P2P network flow.

Furthermore, network flow from P2P botnets usually have higher AVGDDR than network flow

from legitimate networks. Network flow from bots within the same botnet tend to have similar

DDR, since those bots are usually controlled by machines, rather than humans. However, the

destinations of legitimate P2P network flow are usually user-dependent, which result in their DDR

varying greatly from user to user. Besides, our approach aims to cluster bots within the same

botnets together, rather than attempting to cluster the legitimate hosts. Therefore, legitimate

communities might contain both P2P hosts and non-P2P hosts, leading to lower AVGDDR. As

shown in Table 3.2, both legitimate hosts and bots spread across a wide range of distinct networks.

However, most of the botnets have higher AVGDDR than legitimate applications, except Sality.

The average mutual contacts ratio (AVGMCR) captures the “botnet behavior” of P2P

botnets. The mutual contacts ratio (MCR) between a pair of hosts is the number of mutual

contacts between them, divided by the number of total distinct contacts of them. This is based

on three observations: (a) P2P botnets are usually formed by at least two bots, otherwise they

cannot act as a group, (b) the MCR of a pair of bots within the same botnet is much higher than

the MCR of a pair of legitimate applications or a pair of bots from different botnets, and (c) each

pair of bots within the same botnet has similar MCR. Thus, we define AVGMCR as the average

MCR among all pairs of hosts within one network community. As shown in Table 3.2 both botnets

and certain legitimate network communities have a considerable number of mutual contacts. That

is because those legitimate communities have much more “base” contacts than botnets. However,

botnets have much higher AVGMCR.

3.3.3.3 Structural Community Feature

This captures the structural characteristics of a botnet. As discussed above, every pair of

bots within the same botnet tends to have a considerable number or ratio of mutual contacts. If

we consider each host as a vertex and link an edge between a pair of hosts when they have mutual
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Figure 3.2: Enhanced PeerHunter system overview.

contacts, the bots within the same botnet tend to form cliques. On the contrary, the contacts of

different legitimate hosts usually diverge into different physical networks. Thus, the probability that

legitimate communities form certain cliques is relatively low. Then, we can consider P2P botnets

detection as a clique detection problem, which detects cliques from a given network with certain

requirements. However, since clique detection problem is NP-complete, we cannot directly apply

such method to detect botnets, without any preprocessing. We propose to combine all three botnet

community behaviors, and use the previous two community behaviors as the “preprocessing” of the

clique detection problem.

3.4 System Design

Enhanced PeerHunter has three components, as shown in Figure 6.2, that work synergisti-

cally to (a) detect P2P network flow, (b) construct the network-flow level mutual contacts graph,

and (c) detect P2P botnets.

3.4.1 P2P Network Flow Detection

This component aims to detect network flow that engage in P2P communications using the

features described in Section 3.3.1. The input is a set of 5-tuple network flow [ipsrc, ipdst, proto,

bppout, bppin], where ipsrc is the source IP, ipdst is the destination IP, proto is either tcp or udp,

and bppout and bppin are outgoing and ingoing bytes-per-packets (BPP) statistics. First, we group

all network flows F = {f1, f2, . . . , fk} into flow clusters FC = {FC1, FC2, . . . , FCm} using the

4-tuple [ipsrc, proto, bppout, bppin]. Then, we calculate the number of distinct /16 prefixes of ipdst

(destination diversity) associated with each flow cluster, ddi = DD(FCi). If ddi is greater than a

pre-defined threshold Θdd, we consider FCi as a P2P MNF cluster, and its source hosts as P2P

hosts. We retain all the network flows within the P2P MNF clusters for the next component, and

eliminate all the other network flows.
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Algorithm 4: P2P Network Flow Detection

Function Map([ipsrc, ipdst, proto, bppout, bppin]):
Key ← [ipsrc, proto, bppout, bppin];
V alue← ipdst;
return (Key, V alue);

Function Reduce(Key, V alue[ ]):
k ← Key;
ddk = Ø;
for v ∈ V alue[ ] do

ddk ← ddk ∪ {v};
if |ddk| ≥ Θdd then

for v ∈ V alue[ ] do
return (k, v);

As shown in Algorithm 4, we designed this component using a MapReduce framework [47].

For a mapper, the input is a set of 5-tuple network flow, and the output is a set of key-value pairs,

where the key is the 4-tuple [ipsrc, proto, bppout, bppin], and the value is its corresponding ipdst. For

a reducer, the input is the set of key-values pairs that outputs by the mapper. Then, the reducer

aggregates all values with the same key to calculate the DD of each flow cluster, and finally output

the detected P2P MNF based on Θdd.
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3.4.2 Network-Flow Level Mutual Contacts Graph Extraction

This component aims to extract mutual contacts graph (MCG) using the network-flow level

mutual contacts. We call a pair of P2P network flow clusters are the same type, if they have the

same 3-tuple [proto, bppout, bppin]. As illustrated in Figure 3.3, each host might contain one type or

several different types of P2P network flow clusters generated by either P2P botnets or legitimate

P2P applications running on it. If a pair of the same type of P2P network flow clusters generated by

different hosts, have at least one (network-flow level) mutual contacts, we create an edge between

them in the corresponding network-flow level MCG.

Algorithm 5: Network-Flow Level MCG Extraction

Input: FC, F , Θmcr.
Output: Gmc = (V,E).

1 E = Ø, V = Ø;
2 for FCi ∈ FC do
3 Ci = Ø;
4 Si = Ø;

5 for f ji ∈ F do
6 Cj ← Cj ∪ {ipdst};
7 Sj ← Sj ∪ {[proto, bppout, bppin]};
8 for FCi ∈ FC do

9 ddri ← ‖DD(Ci)‖
‖Ci‖ ;

10 vertex vi ←< ddri >;
11 V ← V ∪ {vi};
12 for ∀ FCi, FCj ∈ FC and i < j do
13 if Si ∩ Sj 6= Ø then

14 mcrij ← ‖Ci∩Cj‖
‖Ci∪Cj‖ ;

15 if mcrij > Θmcr then
16 edge eij ←< mcrij >;
17 E ← E ∪ {eij};

18 return Gmc = (V,E);

To be specific, the input is a set of P2P network flow clusters FC={FC1, FC2, . . . , FCm},

and their corresponding P2P network flows, F={f1
1 , f1

2 , . . ., f1
n1

, f2
1 , f2

2 , . . ., f2
n2

, . . ., f
|FC|
1 , f

|FC|
2 ,

. . ., f
|FC|
n|FC|}, where f ji denotes the flow i of FCj . The output is a MCG, Gmc = (V,E), where each

vertex vi ∈ V represents network flow cluster FCi and has a DDR score ddri, and each edge eij ∈ E
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represents the existence of mutual contacts between FCi and FCj and has a nonnegative MCR

weight mcrij . Algorithm 5 shows the detailed steps.

First, for each P2P network flow cluster FCi, we generate a contact set Ci, that contains

all the destination IPs of its network flows. Each P2P network flow cluster FCi also contains a flow

statistical pattern set Si, which contains all the 3-tuple [proto, bppout, bppin] of its network flows.

Let DD(Ci) be the set of distinct /16 prefixes of all the IPs in Ci. Then, ddri and mcrij can be

calculated as follows.

ddri =
‖DD(Ci)‖
‖Ci‖

mcrij =
‖Ci ∩ Cj‖
‖Ci ∪ Cj‖

(3.1)

Furthermore, as discussed in Section 3.3.3.1, the network flows from different hosts (or

network flow clusters) within the same network communities (generated by the same type of P2P

botnet or legitimate P2P application) should have similar statistical patterns. Thus, for each pair of

input P2P network flow clusters, say FCi and FCj , we calculate the intersection between Si and Sj .

If Si∩Sj = Ø, then there should be no edge between FCi and FCj in MCG. Otherwise, they share

at least one network flow statistical pattern, and we calculate mcrij as shown in equation (3.1).

Let Θmcr be a pre-defined threshold. Then, if mcrij > Θmcr, there is an edge between FCi and

FCj , with weight mcrij . Otherwise, there is no edge between FCi and FCj (i.e., mcrij = 0).

3.4.3 P2P Botnet Detection

This component aims to detect P2P bots from given MCG. First, we cluster the bots and

the other hosts into their own communities using a community detection method. Afterwards, we

detect botnet communities using numerical community behavior analysis. Finally, we use structural

community behavior analysis to further identify or verify each bot candidate. Algorithm 6 shows

the detailed steps.

3.4.3.1 Community Detection

Given MCG Gmc = (V,E), ∀ eij ∈ E, we have mcrij ∈ [0.0, 1.0], where mcrij = 1.0 means

all contacts of FCi and FCj are mutual contacts and mcrij = 0.0 means there is no mutual contact

between FCi and FCj . Furthermore, the same type of P2P network flow clusters that generated

by different bots within the same botnet tend to have a higher ratio of mutual contacts. As such,
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the P2P bots clustering problem can be considered as a network community detection problem.

As shown in Figure 3.3, each host might be running P2P bots or legitimate P2P applications or

both, and each P2P bot or each legitimate P2P application generates different types of network

flow clusters. Our community detection aims to cluster the same type of P2P network flow clusters

generated by different bots into the same network flow cluster community. As such, each network

flow cluster should only belong to a single network flow cluster community, but each host might

belong to different host communities. Also, each botnet might contain several different network

flow cluster communities. Once one network flow cluster community has been detected as belonging

to a botnet, we consider the corresponding hosts as bots.

We used Louvain method, a modularity-based community detection algorithm [12], due

to (a) its definition of a good community detection result (high density of weighted edges within

communities and low density of weighted edges between communities) is perfect-suited for our P2P

botnet community detection problem; (b) it outperforms many other modularity methods in terms

of computation time [12]; and (c) it can handle large network data sets (e.g., the analysis of a

typical network of 2 million nodes takes 2 minutes [12]).

Given Gmc = (V, E) as input, Louvain method outputs a set of network flow cluster com-

munities Com = {com1, com2, . . . , com|Com|}, where comi = (Vcomi , Ecomi). Vcomi is a set of

network flow clusters in comi. Ecomi is a set of edges, where ∀ ejk ∈ Ecomi , we have ejk ∈ E and

vj , vk ∈ Vcomi .

3.4.3.2 Botnet Communities Detection

Given a set of communities Com, for each community comi ∈ Com, we calculate its avgddri

and avgmcri as follows.

avgddri =

∑
vj∈Vcomi

ddrj

‖Vcomi‖
(3.2)

avgmcri =
2×

∑
∀ejk∈Ecomi

mcrjk

‖Vcomi‖ × (‖Vcomi‖ − 1)
(3.3)

We define two thresholds Θavgddr and Θavgmcr. ∀ comi ∈ Com, if avgddri ≥ Θavgddr and

avgmcri ≥ Θavgmcr, we consider comi as a botnet network flow cluster community.

40



Table 3.3: Enhanced PeerHunter traces of legitimate P2P networks (24 hours).

Trace # of hosts # of flow # of dstIP Size

eMule 16 4,181,845 725,367 42.1G

FrostWire 16 4,479,969 922,000 11.9G

uTorrent 14 10,774,924 2,326,626 57.1G

Vuze 14 7,577,039 1,208,372 20.3G

3.4.3.3 Bot Candidates Detection

Recall from Section 3.3.3.3, the MCG of botnet communities usually have a structure of

one or several cliques. Therefore, we used a maximum clique detection method CliqueDetection

to verify each bot network flow cluster from botnet network flow cluster communities, and further

identify bot candidates. Each time it tries to detect one or several maximum cliques on the given

botnet (network flow cluster) communities. If the maximum clique (at least containing 3 vertices)

has been found, we consider the network flow clusters in that clique as bot network flow cluster,

and run the maximum clique detection algorithm on the remaining parts, until no more qualified

maximum cliques to be found. Afterwards, we report the corresponding source hosts of the identified

bot network flow clusters as the bot candidates.

Algorithm 6: P2P Botnet Detection

Input: Gmc, Θavgddr, Θavgmcr.
Output: Sbot.

1 SbotFCCom = Ø, SbotFC = Ø, Sbot = Ø;
2 Com← Louvain(Gmc);
3 for comi ∈ Com do

4 avgddri ←
∑
vj∈Vcomi

ddrj

‖Vcomi‖
;

5 avgmcri ←
2×

∑
∀ejk∈Ecomi

mcrjk

‖Vcomi‖×(‖Vcomi‖−1) ;

6 if avgddri ≥ Θavgddr and avgmcri ≥ Θavgmcr then
7 SbotFCCom ← SbotFCCom ∪ {comi};

8 for comi ∈ SbotFCCom do
9 SbotFC ← CliqueDetection(comi);

10 for FCi ∈ SbotFC do
11 for f ij ∈ FCi do

12 Sbot ← Sbot ∪ {ipsrc};

13 return Sbot;
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Table 3.4: Enhanced PeerHunter traces of P2P botnets (24 hours).

Trace # of bots # of flow # of dstIP Size

Storm 13 8,603,399 145,967 5.1G

Waledac 3 1,109,508 29,972 1.1G

Sality 5 5,599,440 177,594 1.5G

Kelihos 8 122,182 944 343.9M

ZeroAccess 8 709,299 277 75.2M

Table 3.5: Enhanced PeerHunter traces of background network.

Date Dur # of hosts # of flow Size

2014/12/10 24 hours 48,607,304 407,523,221 788.7G

3.5 Experimental Evaluation

3.5.1 Experiment Setup

3.5.1.1 Experiment Environment

All the experiments were conducted on a PC with an 8 core Intel i7-4770 Processor, 32GB

RAM, running 64-bit Ubuntu 16.04 LTS operating system. Our system was implemented using

Java with JDK 8.

3.5.1.2 Data Collection and Analysis Tool

We used three main datasets: (a) 24 hours network traces of 4 popular legitimate P2P

applications, (b) 24 hours network traces of 5 P2P botnets, and (c) 24 hours network traces from

a Trans-Pacific backbone line between the United States and Japan as the background network

traces (non-P2P & manually verified P2P).

Our legitimate P2P network traces Dp2p were obtained from the University of Georgia [37],

which collected the network traces of 4 popular P2P applications for several weeks. We obtained

the network traces of 16 eMule hosts, 16 FrostWire hosts, 14 uTorrent hosts and 14 Vuze hosts by

randomly selecting a set of continuous 24 hours network traces of each host (as shown in Table 3.3).

Part of our botnets network traces (Dbot) were from the University of Georgia [37], contain-

ing 24 hours network traces of 13 Storm hosts and 3 Waledac hosts. We also collected 24 hours

network traces of another three P2P botnets, Sality, Kelihos and ZeroAccess. These network traces
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were all collected from the hosts manually infected by the binary samples of Kelihos, ZeroAccess,

and Sality obtained from [49]. Our data collection was operated in a controlled environment, where

all malicious activities were blocked. The same data collection settings were used in several previous

works [4, 37, 1]. We collected the network traces of 8 Kelihos bots, 8 ZeroAccess bots and 5 Sality

bots (as shown in Table 3.4).

We used a dataset from the MAWI Working Group Traffic Archive [36] as our background

network traces (Db
non and Db

p2p), containing 24 hours anonymized and payload-free network traces

at the transit link of WIDE (150Mbps) to the upstream ISP on 2014/12/10 (as shown in Table 3.5).

The dataset contains approximate 407,523,221 flows and 48,607,304 unique IPs. 79.3% flows are

TCP flows and the rest are UDP flows.

We investigated the background network traces, and made our best effort to separate the

P2P traffic (Db
p2p) from the non-P2P traffic (Db

p2p). Since the WIDE dataset was anonymized

and payload-free, it prevented us from using payload analysis to thoroughly check if P2P traffic,

especially P2P Botnet traffic existing there. Instead, we used port analysis to manually detect

P2P traffic within the background dataset. This is based on the simple concept that many P2P

applications have default ports on which they function (see [67] for a list of default network ports

of popular P2P applications). We manually examined all the network flows of each host in the

background network traces. If a host involved in more than five flows using any of the default P2P

port values in either source port or destination port, we considered the host as a P2P host. After

this procedure, we identified 667 P2P hosts.

One thing worth to be noticed is that despite the whole background network traces lasting

for 24 hours, not all these P2P hosts were active for the entire 24 hours. P2P hosts that did

not have enough active time, may not produce sufficient network flows for our system to work (as

discussed in Section 3.5.2). To ensure a fair and rigorous evaluation, we estimated the active time

of each P2P host. We divided the 24 hours background network traces into 96 15-minute blocks.

If a P2P host had any network flow fell in a block, we considered it was active in that block. We

used the number of blocks where a P2P host was active to estimate the active time of each P2P

host. Table 3.6 reflects the active time distribution of these P2P hosts. As shown in Table 3.6,

even though there were 667 P2P hosts in total, only 4 of them had been active for the entire 24

hours and 26 of them had been active for no less than 5 hours.
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Table 3.6: Active time of P2P hosts within the background network trace. (Pi is the set of P2P
hosts have no less than i× 15 minutes active time.)

- # of hosts - # of hosts - # of hosts

P1 667 P8 66 P32 21

P2 325 P14 38 P48 13

P4 180 P20 26 P96 4

Table 3.7: Summaries of Enhanced PeerHunter experimental datasets (EDs).

Descriptions Values

the # of EDs 100

the # of bots (Dbot) in each ED 37

the # of legitimate P2P hosts (Dp2p) in each ED 60

the # of P2P hosts (Db
p2p) in each ED 667

the # of internal hosts in each ED 10,000

the AVG # of external hosts in each ED 8,642,618

the AVG # of flow in each ED 97,640,210

the duration of each ED 24 hr

We used ARGUS [50] to process and cluster network traces into the 5-tuple format tcp/udp

flow.

3.5.1.3 Experimental Dataset Generation

As illustrated in Figure 3.1a, we consider a scenario that an organization has a set of

internal hosts communicating with a set of external hosts (outside of the organization), and our

system is deployed at the boundary of the organization. Since our original datasets did not maintain

a internal-external network structure while collecting them, we generated synthetic experimental

datasets by mixing network traces from the original datasets. We considered a case that contains

10,000 internal hosts. For each synthetic experimental dataset, the 667 P2P hosts in Db
p2p were

considered as the internal hosts. Another 9,333 internal hosts were sampled from Db
non, where

the traffic of 37 randomly selected hosts were mixed with the traffic of 37 P2P bots in Dbot, and

the traffic of another 60 randomly selected hosts were mixed with the traffic of 60 P2P hosts in

Dp2p. To make the experimental evaluation as unbiased and challenging as possible, we propose

to sample the internal hosts and generate the synthetic experimental datasets under the following

two criterions.
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First, we need to maintain a bipartite network structure. Our system aims to deploy at

a network boundary (e.g., firewall, gateway, etc.), where the network forms a bipartite structure,

and only network flow within the connections between internal hosts and external hosts could be

captured. Then, the network in each experimental dataset should maintain a bipartite network

structure, where any pair of internal hosts should not have any communications to each other.

Second, we need to keep the connectedness of mutual contacts graph. The easiest way to

obtain a list of background hosts is to sample the hosts randomly from Db
non, with the respect

of bipartite structure. However, since Db
non contains an extremely large number of hosts, simply

sampling hosts randomly will result in that most of the sampled background hosts do not have a

mutual contact with the other background hosts, which is much easier for our system to identify

botnet communities. Because less number of mutual contacts among legitimate hosts means more

disconnected legitimate communities in the corresponding MCG, which happens to be in favor of

Louvain method to detect strongly connected botnet communities. Therefore, we need to sample

a list of internal hosts in a way that every internal host should have at least one mutual contact

with at least one another internal host.

To follow the criterions described above without making our evaluation tasks any easier, we

propose the following synthetic experimental dataset generation procedure:

• Use a two-coloring approach to sample the network traces from Db
non without jeopardize

the bipartite network structure and the connectedness of mutual contacts graph: (a) initialize two

counters, Cblack and Cwhite, to count the number of hosts colored in black and white respectively;

(b) coloring a random host hi as black, and Cblack plus one; (c) coloring all contacts of hi as white,

and increase Cwhite by the number of hosts colored as white in this round; (d) for each new colored

host, color its contacts with the opposite color, and adjust the counters repeatedly, until we have

Cblack ≥ 9, 333 and Cwhite ≥ 9, 333; (e) select the colored host set with exactly 9,333 hosts as the

internal hosts, the hosts in the other set will be the external hosts; and (f) extract the network

traces of the 9,333 internal hosts from Db
non. Then, it forms a bipartite graph, where each colored

host set forms a bipartite component, and each host shares at least one mutual contacts with some

other hosts from its own bipartite component.

• To maintain a bipartite network structure of botnets and legitimate P2P hosts, we elimi-

nate all communications among bots in Dbot, and P2P hosts in Dp2p and Db
p2p.
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Table 3.8: Enhanced PeerHunter detection rate and false positive rate. (Pi is the set of P2P hosts within the background network
traces that have no less than i× 15 minutes active time. All the hosts of 4 legitimate P2P applications and 5 P2P botnets have 24

hours active time.)

Θdd
Detection Rate

False Positive Rate
Bot P2P P1 P2 P4 P8 P14 P20 P32 P48 P96

2 37/37 60/60 667/667 325/325 180/180 66/66 38/38 26/26 21/21 13/13 4/4 1,052/9,236

5 37/37 60/60 364/667 242/325 180/180 66/66 38/38 26/26 21/21 13/13 4/4 110/9,236

10 37/37 60/60 156/667 133/325 106/180 66/66 38/38 26/26 21/21 13/13 4/4 44/9,236

30 37/37 60/60 36/667 36/325 36/180 33/66 30/38 26/26 21/21 13/13 4/4 4/9,236

50-180 37/37 60/60 15/667 15/325 15/180 15/66 15/38 15/26 15/21 13/13 4/4 0/9,236

185 37/37 60/60 6/667 6/325 6/180 6/66 6/38 6/26 6/21 6/13 4/4 0/9,236

200 29/37 60/60 4/667 4/325 4/180 4/66 4/38 4/26 4/21 4/13 2/4 0/9,236

500-1,000 21/37 60/60 1/667 1/325 1/180 1/66 1/38 1/26 1/21 1/13 1/4 0/9,236

5,000 13/37 45/60 0/667 0/325 0/180 0/66 0/38 0/26 0/21 0/13 0/4 0/9,236

10,000 0/37 18/60 0/667 0/325 0/180 0/66 0/38 0/26 0/21 0/13 0/4 0/9,236

12,500 0/37 5/60 0/667 0/325 0/180 0/66 0/38 0/26 0/21 0/13 0/4 0/9,236

13,500 0/37 0/60 0/667 0/325 0/180 0/66 0/38 0/26 0/21 0/13 0/4 0/9,236

Table 3.9: Enhanced PeerHunter community detection results for different Θmcr.

Θmcr BSI BAI BLSI

[0.00, 0.15) 1.00± 0.00 0.85± 0.00 1.00± 0.00

[0.15, 0.40) 1.00± 0.00 0.83± 0.02 1.00± 0.00

[0.40, 1.00) 1.00± 0.00 ≤ 0.62± 0.05 1.00± 0.00
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• To mix Dbot and Dp2p with Db
non, each time we randomly select 97 internal hosts out of

9,333 background hosts, map the 97 hosts IPs to 37 bots IPs (Dbot) and 60 legitimate P2P hosts

IPs (Dp2p), and merge the corresponding network traces.

To evaluate our system, 100 synthetic experimental datasets were generated by running this

procedure. Table 3.7 illustrates the summaries of the experimental datasets (EDs).

3.5.2 Evaluation on P2P Network Flow Detection

We evaluated the P2P network flow detection with different Θdd. We applied this component

on all 100 EDs, and Table 3.8 shows the average detection rate and false positives with different

Θdd, ranging from 2 to 13,500. If Θdd is set too small, non-P2P hosts are likely to be detected as

P2P hosts, which results in many false positives. For instance, when 2 ≤ Θdd ≤ 5, at least 110

non-P2P hosts were falsely identified as P2P hosts. If Θdd is set too large, all P2P hosts will be

removed, which results in false negatives. For instance, when Θdd = 10, 000, most of the P2P hosts

were falsely discarded, and only 18 P2P hosts were detected.

On the other hand, the effectiveness of Θdd is also subject to the active time of P2P hosts.

Since if a P2P host has less active time, it tends to generate less number of P2P network flows to

show enough destination diversity, so that it will not be distinguished from non-P2P network flows

by our system. For instance, since all the bots and P2P hosts in Dbot and Dp2p had 24 hours active

time, our system can distinguish them well from the non-P2P network flows. However, not all the

P2P hosts in Db
p2p were active for the entire 24 hours. As shown in Table 3.8, when the active

time of a P2P host was less than 5 hours (not belonging to P20, the set of hosts have no less than

20×15 minutes active time), it was hard for our system to detect P2P network flows from non-P2P

network flows (Θdd < 30). Hence, when considering P2P hosts that had no less than 12 hours

active time (P48), and setting 30 ≤ Θdd ≤ 180, our system detected all P2P hosts with a small

number of false positives (≤ 4/9, 236), which demonstrated that our P2P network flow detection

component is stable and effective over a large range of Θdd settings.

3.5.3 Evaluation on Community Detection

We evaluated the performance of community detection with different Θmcr. We applied this

component on the remaining network flows (100 EDs) of the previous component (with Θdd = 30).
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For each ED, our system generated a MCG Gmc = (V,E) with a pre-defined threshold Θmcr, where

each edge eij ∈ E contained a weight mcrij ∈ [0.0, 1.0]. Afterwards, we applied Louvain method

(with default resolution 1.0) on the MCG for community detection. The choice of Θmcr would have

an influence on the community detection results.

We evaluated the community detection performance in terms of (a) the ability to cluster a

pair of bots belonging to the same botnet, (b) the ability to separate a pair of bots coming from

different botnets, and (c) the ability to separate bots and legitimate applications. As such, we

propose three criterions to evaluate the community detection performance below.

Given a set of bots belonging to n botnets X = {X1, X2, . . . , Xn} (the ground truth), and

the community detection results, m communities Y = {Y1, Y2, . . . , Ym}, define Bot Separation

Index (BSI) and Bot Aggregation Index (BAI) as BSI = a/(a+ c) and BAI = a/(a+ b), where a

is the number of pairs of bots that are in the same botnet in X, and in the same community in Y ; b

is the number of pairs of bots that are in the same botnet in X, and in different communities in Y ;

c is the number of pairs of bots that are in different botnets in X, and in the same community in

Y . BSI denotes the degree of that bots coming from different botnets being separated into different

communities. BAI denotes the degree of that bots coming from the same botnet being clustered

into the same community. Both BSI and BAI are between 0.0 and 1.0, and the higher the better.

“BSI equals to 1.0” means all different types of bots are well separated, and “BAI equals to 1.0”

means all the same types of bots are well clustered.

Given p bots and q legitimate applications, define Bot-Legitimate Separation Index (BLSI)

as BLSI = d/(p × q), where d is the number of pairs of a bot and a legitimate application being

separated into different communities via our method. BLSI indicates the ability of our method to

separate bots and legitimate applications. BLSI is between 0.0 and 1.0, and the higher the better.

“BLSI equals to 1.0” means all pairs of one bot and one legitimate application are well separated.

Table 3.9 shows the community detection results with different Θmcr, ranging from 0.0 to

1.0. If Θmcr is set too small, there will be more non-zero weight edges, which might result in less

but larger communities. On the other hand, if Θmcr is set too large, most of the vertices will be

isolated, which results in more but smaller communities. For instance, as Θmcr increasing, BSI

decreased. When Θmcr ≤ 0.4, BSI was around 0.8 to 0.85, meaning one or more botnets have been

split into different communities. It turned out to be our algorithm separates the Storm botnet
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(13 bots) into two communities, one containing 10 bots and another containing 3 bots. Changing

Θmcr does not affect BSI and BLSI. BSI=1.0 means our system separates different types of bots into

different communities. BLSI=1.0 means our system separates bots and legitimate P2P applications

into different communities. The result demonstrated that our system is very effective and robust in

separating bots and legitimate hosts, and separating different types of bots. Since larger Θmcr will

result in less edges in the MCG, which could reduce the execution time of community detection,

we used Θmcr = 0.1 as our system parameter.

3.5.4 Evaluation on Botnet Detection

We evaluated the botnet detection component with different parameter settings. We applied

this component on the remaining network flows (100 EDs) of the previous component (with Θdd =

30 and Θmcr = 0.1). We assumed that all the host in the background trace (Db and Db
p2p) were

not malicious, and would be reported as false positives if being detected.

Table 3.10 shows the P2P botnet detection results which supports our idea that the AVGDDR

of legitimate P2P network flow cluster communities is lower than most of the P2P botnets net-

work flow cluster communities. For instance, the AVGDDR of all (60/60) legitimate P2P net-

work flow cluster communities were higher than 0.6, and the AVGDDR of 32 out of 37 botnets

were higher than 0.8. The other 5 turned out to be 5 Sality bots, which could be detected by

AVGMCR. Also, the legitimate P2P network flow clusters have lower AVGMCR than P2P bots

(i.e., Θavgmcr ∈ [0.15, 0.35]). For most of the botnets (i.e., ZeroAccess, Waledac, Kelihos and Sal-

ity), our system is effective (100% detection rate with zero false positive) and stable over a large

range of Θavgddr (i.e., [0.0, 0.6]) and Θavgmcr (i.e., [0.15, 0.8]). Storm has a relative small AVGMCR,

hence the effective parameters narrowed down to Θavgddr ∈ [0.0, 0.6] and Θavgmcr ∈ [0.15, 0.35].

3.5.5 Evaluation on Enhanced PeerHunter

3.5.5.1 Analyzing the System Effectiveness

We applied Enhanced PeerHunter on 100 EDs, with Θdd=30, Θmcr=0.1, Θavgddr=0.6 and

Θavgmcr=0.15, and all the results were averaged over 100 EDs. Using Θavgddr=0.6 and Θavgmcr=0.15

was based on our empirical study (shown in Table 3.10). As illustrated in Table 3.11, our system
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Table 3.10: Botnet detection results for different Θavgddr and Θavgmcr. (ZeroA.: the detection
rate of ZeroAccess; FP: the number of false positives.)

Θavgddr
Θavgmcr - 0.0 0.2 0.4 0.6 0.8

0.0

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 100%
Storm 100% 100% 100% 100% 100%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 28.9% 29.1% 29.3% 38.1% 34.8%
Recall 100% 100% 100% 100% 86.5%

FP 91 90 89 60 60
F-score 44.8% 45.1% 45.4% 55.2% 49.6%

0.05

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 100%
Storm 100% 100% 100% 100% 100%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 33.9% 34.2% 34.9% 47.4% 43.8%
Recall 100% 100% 100% 100% 86.5%

FP 72 71 69 41 41
F-score 50.7% 51% 51.7% 64.3% 58.2%

0.1

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 100%
Storm 100% 100% 100% 100% 100%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 56.0% 56.9% 56.9% 100% 100%
Recall 100% 100% 81% 100% 86.5%

FP 29 28 28 0 0
F-score 71.8% 72.5% 72.5% 100% 92.8%

0.15-0.35

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 100%
Storm 100% 100% 100% 100% 100%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 86.5%

FP 0 0 0 0 0
F-score 100% 100% 100% 100% 92.8%

0.4

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 100%
Storm 84.6% 84.6% 84.6% 84.6% 76.9%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 100% 100% 100% 100% 100%
Recall 94.6% 94.6% 94.6% 94.6% 78.4%

FP 0 0 0 0 0
F-score 97.2% 97.2% 97.2% 97.2% 87.9%

0.6-0.8

ZeroA. 100% 100% 100% 100% 100%
Waledac 100% 100% 100% 100% 0%
Storm 0% 0% 0% 0% 0%

Kelihos 100% 100% 100% 100% 100%
Sality 100% 100% 100% 100% 0%

Precision 100% 100% 100% 100% 100%
Recall 64.9% 64.9% 64.9% 64.9% 43.2%

FP 0 0 0 0 0
F-score 78.7% 78.7% 78.7% 78.7% 60.4%
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Table 3.11: The number of hosts identified by each component.

- Before P2P detection After P2P detection

# of hosts 10,000 97

- After Community detection After Bot detection

# of hosts 97 37

Table 3.12: Enhanced PeerHunter execution time.

- Processing Time

P2P Host Detection 15 minutes

MCG Extraction 5 minutes

Community Detection 5 minutes

Bot Detection 10 seconds

Total 20 minutes

identified all 97 P2P hosts from 10,000 hosts, and detected all 37 bots from those 97 P2P hosts,

with zero false positive, which demonstrated that Enhanced PeerHunter is effective and accurate

in detecting P2P botnets.

3.5.5.2 Analyzing the System Scalability

The system scalability is to evaluate the practicality of our systems to deal with the real

world big data. First, we applied Enhanced PeerHunter on 100 EDs of 10,000 internal hosts to

analyze the processing time of each component. Our system has a scalable design based on efficient

detection algorithm and distributed/parallelized computation. As shown in Table 3.11, community

detection and botnet detection had negligible processing time compared with P2P network flow

detection and MCG extraction, since our first two steps (i.e., P2P network flow detection and MCG

extraction) were designed to reduce a huge amount of the hosts subject to analysis (i.e., 99.03%

in our experiments). The P2P network flow detection component has linear time complexity, since

it scans all the input flows only once to get the flow clusters and further detect P2P flow clusters.

However, since it is the very first component to process the input data (data could be large), it

still costs the highest processing time (i.e., 15 minutes). To accommodate the growth of a real-

world input data, we designed and implemented the P2P network flow detection component using a

MapReduce framework, which could be deployed in distributed fashion on scalable cloud computing

platforms (e.g., amazon EC2). The MCG extraction component requires pairwise comparison to

calculate edges weights. Let n be the number of P2P network flow clusters subject to analysis and

m be the maximum number of distinct contacts of a P2P network flow cluster. We implemented
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Figure 3.4: Enhanced PeerHunter processing time.

the comparison between each pair of hosts parallelly to handle the growth of n. If we denote k as

the number of threads running parallelly, the time complexity of MCG extraction is O(n
2m
k ). For a

given ISP network, m grows over time. Since our system uses a fixed time window (24 hours), for

a given ISP network, m tends to be stable and would not cause a scalability issue. Besides, since

the percentage of P2P hosts of an ISP network is relatively small (i.e., 3% [1]), an ISP network

usually has less than 65,536 (/16 subnet) hosts, and most P2P hosts generate less than 150 P2P

network flow clusters (our empirical study), n would be negligible compared with m. Moreover,

since the waiting stage bots always act stealthily and only make necessary communications, m also

will not be large. We also tested our system using different sizes (i.e., different number of internal

hosts) of EDs. For each size, we generated 10 EDs, and recorded the average processing time of

our system with different Θdd. As shown in Figure 3.4, compared with the size of datasets, Θdd has

more influence on the system scalability. Because in our P2P network flow detection component,

Θdd has an impact on n (the number of P2P network flow clusters subject to analysis), and larger

Θdd leads to smaller n, thus less processing time. For instance, when Θdd = 10 or 30, the increase of

processing time, caused by increasing the size of data, was much less than when Θdd = 2. Therefore,
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Table 3.13: Comparison of the community detection results under attack.

-
PeerHunter [5] Enhanced PeerHunter

No Attack PMMKL No Attack PMMKL

BSI 1.00± 0.00 0.73± 0.02 1.00± 0.00 1.00± 0.00

BAI 1.00± 0.00 0.81± 0.01 0.85± 0.00 0.85± 0.00

BLSI 1.00± 0.00 0.78± 0.01 1.00± 0.00 1.00± 0.00

our system is very scalable on different sizes of data with an appropriate Θdd (e.g., 10 or 30). Also,

by tuning Θdd, our system has the potential to deal with different size of datasets in a reasonable

time. To summarize, Enhanced PeerHunter is scalable to handle the real world network data.

3.5.5.3 Analyzing the Effectiveness of System Parameters

Although we had analyzed the effectiveness of Θdd, Θavgddr and Θavgmcr within the corre-

sponding components, the effectiveness of combinations among different values of Θdd, Θavgddr and

Θavgmcr has not been studied. As shown in Figure 3.5, we used precision, recall and false positives

to evaluate the effectiveness of different parameter combinations. As discussed in Section 3.5.2,

Θdd is used to detect P2P network flow clusters. Larger Θdd tends to result in more false negatives

(lower recall), and smaller Θdd tends to result in more false positives (lower precision). For in-

stance, changing Θdd from 30 or 50 to 10 resulted in 47 or 42 more false positives (Θavgddr = 0.15)

as shown in Figure 3.5c and Figure 3.5f, respectively. When Θdd ∈ {30, 50}, Θavgddr ∈ [0.15, 0.35]

and Θavgddr ∈ [0.2, 0.6], our system yielded 100% detection rate with zero false positive. Even when

Θdd = 10, our system can still work effectively with Θavgddr ∈ [0.25, 0.35] and Θavgddr ∈ [0.2, 0.6].

This demonstrated our system can work effectively over several different parameter combinations.

3.5.5.4 Analyzing the “True” False Positives

In this section, we discuss about some interesting findings about the false positives resulted

from setting Θdd = 10. As discussed in Section 3.3.3.2, Θavgddr is used to capture the “P2P

behavior” of network flows, and Θavgmcr is used to capture the “botnet behavior” of network flows.

Hence, if we use a larger Θavgddr (i.e., 0.6) and a smaller Θavgmcr (i.e., 0.0), most of the false

positives should be legitimate P2P host. For instance, in Figure 3.5f, when Θdd = 10, Θavgddr = 0.6

and Θavgmcr = 0.0, 115 out of 118 false positives were P2P hosts (60 from Dp2p and 55 from Db
p2p).
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On the other hand, we assume that if we use a smaller Θavgddr (i.e., 0.2) and a larger Θavgmcr

(i.e., 0.15), some of the false positives might come from the other types of botnets. As shown in

Figure 3.5c, when Θdd = 10, Θavgddr = 0.2 and Θavgmcr = 0.15, 9 out of 47 false positives were not

our known legitimate P2P hosts. We investigated these false positives, with their anonymized and

payload-free network traces. It turned out that, 4 out of the 9 false positives (i.e., “180.217.2.181”,

“180.217.2.246 ”, “180.217.2.248” and “180.217.2.177”) were listed in the Barracuda Reputation

Block List (BRBL) [68], a highly accurate list of the IP addresses known to send spam. Hence, we

are convinced that those false positives were infected with virus or botnets. These interesting “true”

false positives findings demonstrated that our system has the potential to detect other unknown

botnets.

3.5.6 Mimicking Legitimate P2P Application Attacks (MMKL)

Our work is focusing on detecting P2P botnets from legitimate P2P applications. If the

adversaries (e.g., botmasters) know our techniques in advance, they might attempt to evade our

system via instructing P2P bots to mimic the behavior of legitimate P2P applications. Inspired by

[1], in this section, we propose two evasion attacks. All the parameters used in experiments of this

Section were the same as in Section3.5.5.

3.5.6.1 Passive MMKL (PMMKL)

In this attack, the botmaster can instruct the bots to passively generate network traffic

together with legitimate P2P applications running on the same machine at the same time. As

such, the botnet traffic will be overlapped with the legitimate P2P traffic. Since during most

of the time, P2P botnets will be acting stealthily, the legitimate P2P traffic will dominate the

host level behavior. Hence, the attack could effectively evade the host level group behavior based

methods [4, 5]. Also, the attack does not require the botnets to generate more or new types

of network flows, and just need to monitor the legitimate P2P application activities, which can

evade certain anomaly-based methods. Since our detection algorithm is based on network-flow

level mutual contacts graph, which could differentiate the network flows coming from different P2P

applications, it is capable of detecting P2P bots while the bots traffic and the legitimate P2P traffic

are overlapped on the same host.

54



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

avgmcr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on
 (

av
gd

dr
=

0.
2)

dd
=10

dd
=30

dd
=50

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

avgmcr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l (

av
gd

dr
=

0.
2)

dd
=10

dd
=30

dd
=50

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

avgmcr

0

50

100

150

200

250

F
al

se
 P

os
iti

ve
s 

(
av

gd
dr

=
0.

2)

dd
=10

dd
=30

dd
=50

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

avgmcr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on
 (

av
gd

dr
=

0.
6)

dd
=10

dd
=30

dd
=50

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

avgmcr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l (

av
gd

dr
=

0.
6)

dd
=10

dd
=30

dd
=50

(e)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

avgmcr

0

50

100

150

200

250

F
al

se
 P

os
iti

ve
s 

(
av

gd
dr

=
0.

6)

dd
=10

dd
=30

dd
=50

(f)

Figure 3.5: Precision, recall and false positives.
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Table 3.14: Botnet detection results under no attack and PMMKL attack. (* detection rate)

-
PeerHunter [5] Enhanced PeerHunter Zhang et al. [1] (Θbot = 0.6) Zhang et al. [1] (Θbot = 0.8)

No Attack PMMKL No Attack PMMKL No Attack PMMKL No Attack PMMKL

ZeroAccess* 100% 0% 100% 100% 100% 82.5% 100% 90%

Waledac* 100% 0% 100% 100% 100% 0% 100% 60%

Storm* 100% 37.5% 100% 100% 97.8% 61.5% 100% 95.4%

Kelihos* 100% 0% 100% 100% 85.5% 45% 85.5% 77.5%

Sality* 100% 79.2% 100% 100% 89.6% 80% 96.8% 88%

Precision 100% 99.1% 100% 100% 100% 100% 60.8% 62.7%

Recall 100% 23.9% 100% 100% 94.7% 60% 96.4% 86.5%

FP 0/9,963 39/9,926 0/9,963 0/9,926 0/9,963 0/9,926 23/9,963 19/9,926

F-score 100% 38.5% 100% 100% 97.3% 75% 74.6% 72.7%

Table 3.15: Effort needed to completely evade Enhanced PeerHunter under AMMKL.

- # of P2P flow clusters # of peers per flow cluster # of peers per host γ extra # of peers needed

ZeroAccess 3 686 2,058 220% 4,528

Waledac 171 244 41,724 180% 75,104

Storm 67 740 49,580 80% 39,664

Kelihos 15 252 3,780 200% 7,560

Sality 1,158 918 1,063,044 80% 850,436

56



To simulate this attack on each ED, we randomly selected 37 hosts out of the 60 legitimate

P2P application hosts, and randomly mapped their IPs to 37 bots’ IPs. By doing this, the traffic of

each bot were overlapped with the traffic of one legitimate P2P host. And we made a comparison

between Enhanced PeerHunter and PeerHunter [5] under this attack, where PeerHunter [5] was

using one of its best parameter setting Θdd=50, Θmcr=0.05, Θavgddr=0.06 and Θavgmcr=0.2. As

shown in Table 3.13, all three community detection indices (i.e., BSI, BAI and BLSI) decreased

around 20% while running PeerHunter under this attack. However, PMMKL had no effects on

Enhanced PeerHunter’s community detection performance. As shown in Table 3.14, PMMKL

completely failed PeerHunter in detecting ZeroAccess, Waledac and Kelihos, and dramatically

reduced the detection rate of Storm and Sality. On the contrary, PMMKL had no affects on

Enhanced PeerHunter’s P2P botnet detection performance.

To summarize, compared with our previous work, Enhanced PeerHunter can detect P2P

botnets effectively even if bots are running on the same host as legitimate P2P applications.

3.5.6.2 Active MMKL (AMMKL)

In this attack, the botmaster can instruct the bots to mimic the behaviors of legitimate

P2P applications actively. For instance, each bot can actively communicate with an extra set of

randomly selected peers to decrease the rate of mutual contacts between a pair of bots. Compared

with PMMKL, in AMMKL, bots do not need to monitor and wait until some legitimate P2P

application running to work. However, communicating with much more extra but unnecessary

peers will lead the botnets to act less stealthy and less efficient, and enable certain anomaly-based

methods (e.g., high volumes of network traffic) to detect them.

To simulate this attack on each ED, after the P2P network flow detection procedure, for

each botnet network flow cluster that communicates with n peers, we inserted certain network

flows communicating with an extra of γ ∗ n randomly selected peers. As shown in Figure 3.6, our

community detection component is robust to AMMKL, since both BAI and BLSI were unchanged

and only BSI dropped a little bit when γ increased. When combining both attacks, both BSI and

BAI dropped a lot, and BLSI dropped from 1.0 to around 0.88, as γ increasing from 0.0 to 3.0.

This is because when combining both attacks, as γ increasing, the community detection component

tends to cluster different types of bots into the same community and separate the same type of bots
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into different communities. The good news is, it can still well separate bots and legitimate P2P

hosts into different communities. In summary, even though combining both attacks makes it harder

for our method to separate different or aggregate the same type of bots, Enhanced PeerHunter is

still robust in separating P2P bots from other hosts in the community detection process.

As shown in Figure 3.7c, both scenarios (i.e., AMMKL and combining both attacks) did not

introduce new false positives (i.e., precisions equals to 1.0). Compared with conducting AMMKL,

combining both attacks has more influences on the dropping of detection rate. Figure 3.7a and

Figure 3.7b illustrate the detection rate of each botnet under two different scenarios, where the

detection rate of different botnets started to drop around different γ. Table 3.15 shows the analysis

of all 5 botnets. Take Storm for instance, to affect the detection of Storm, each P2P network flow

cluster of Storm needs to communicate with at least an extra 40% of its current peers, and in order

to completely evade our system, γ needs to be increased to 80%. Consider the fact that each Storm

host generates an average of 67 P2P network flow clusters in 24 hours, and each network flow cluster

communicates to an average of 740 peers. As such, to completely evade our system, each Storm

host must communicate with at least an extra of 67 × 740 × 80% ≈ 39, 664 peers. In this case, it

makes the P2P botnet less stealthy, less efficient and more exposed to trigger anomaly-based P2P

botnet detection approaches [69]. In conclusion, although our system could not completely mitigate

AMMKL, conducting AMMKL makes the botnets less stealthy, less efficient and more exposed,

which still shows a winning of our system against P2P botnets.

3.5.7 Comparison to Zhang et al. [1]

We compared our system to one of the state of art P2P botnet detection system Zhang et al.

[1]. They proposed a scalable botnet detection system capable of detecting stealthy P2P botnets

(i.e., in the waiting stage), where no knowledge of existing malicious behavior is required in advance.

The system first applies a two-step flow clustering approach to create the fingerprints of hosts that

have engaged in P2P activities. Afterwards, it applies two layers of filtering to detect potential

P2P bots: a coarse-grained filtering to detect “persistent” P2P hosts that have longer active time

of P2P behaviors, and a fine-grained filtering that applies hierarchical clustering to group pairs of

P2P hosts that have less distance between their fingerprints. Our system shares many similarities

with Zhang et al. [1]. For instance, both systems are (a) using network flow-based approach, (b)
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using unsupervised approach (i.e., no knowledge of existing malicious behaviors are required and

have the potential to detect unknown botnets), (c) claiming to work while the botnet traffic are

overlapped with the legitimate P2P traffic on the same set of hosts, (d) designed to have the built-in

scalability, and (e) deployed at the network boundary (e.g., gateway), thus could be evaluated on

the same datasets.

The main differences between our system and Zhang et al. [1] are listed as follows. First,

two systems are using different network flow features. Zhang et al. [1] uses the absolute number

of bytes and packets of each flow; Enhanced PeerHunter uses the bytes-per-packet rate of each

flow. Second, two systems are using different approach to cluster network flows (i.e., at different

granularity). Zhang et al. [1] uses a two-step distance-based clustering (i.e., k-means, BIRCH) to

cluster network flows of similar feature values; Enhanced PeerHunter clusters the network flows

that have exactly the same feature values. Third, two systems apply the botnet detection step at

different levels (i.e., host-level or network-flow-level). Zhang et al. [1] uses the distance between each

pair of hosts to detect bots; Enhanced PeerHunter uses the distance between each pair of network

flows to detect botnet network flow communities and then further identify the corresponding bots.

Last but not least, two systems are using different heuristics to detect botnets. Zhang et al. [1]

uses an threshold on the height of the hierarchical clustering dendrogram to detect bot clusters,

which is very sensitive to the experimental datasets (as shown in Table 3.14); Enhanced PeerHunter

uses network-flow level community behavior analysis (i.e., AVGDDR and AVGMCR) to identify

botnet (network flow) communities, which is more robust to the proposed attacks and can also be

extended to other/new community behaviors.

We implemented a prototype system of Zhang et al. [1], since Zhang et al. [1] did not

have a publicly available implementation. Most of our implementations followed the description

as in [1], other than the system parallelization, which has no impact on the system effectiveness

evaluation. The experimental datasets used in both works are also different. For instance, we

evaluated our system on 100 synthetic experimental datasets (of different background traffic and

different topology, as described in Section 3.5.1.3) and took the average results; Zhang et al. [1]

was evaluated on single customized dataset. Furthermore, even though both datasets use the same

24 hours time window, our datasets have much more internal hosts (i.e., 10,000 vs. 953), higher
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legitimate P2P hosts to P2P bots ratio (i.e., 727:37 vs. 8:16), and more types of botnets (i.e., 5 vs.

2). To summarize, our experimental datasets is more challenging and comprehensive.

We applied our implemented Zhang et al. [1] on the same experimental datasets as Enhanced

PeerHunter under two circumstances (i.e., No Attack and PMMKL). We followed the same settings

for most of the system parameters as described in [1], such as ΘBGP = 50, Θp2p = 0.5, K = 4, 000,

λ = 0.5. Since the default value of Θbot (i.e., 0.95) used by the original paper, did not perform well

on our dataset, we evaluated Zhang et al. [1] using two other different well selected values of Θbot

(i.e., 0.6 and 0.8) that shows better results.

From the experimental results (Table 3.14), we achieved several observations as follows.

First, Zhang et al. [1] is more sensitive to the experimental dataset. For instance, Zhang et al.

[1] was reported to achieve 100% detection rate and 0.2% false positive rate on their own datasets

(using Θbot = 0.95), while could not achieve similar results on our datasets using either the default

parameter (Θbot = 0.95) or the well selected parameter (Θbot = 0.6 or Θbot = 0.8). Second, as

discussed in Section 3.5.5, our system is more stable and effective over a large range of system

parameters (Θavgddr and Θavgmcr), while Zhang et al. [1] is more sensitive to its system parameter

(Θbot). For instance, Zhang et al. [1] had higher precision (lower false positives) and lower recall

(higher false negatives) while using Θbot = 0.6 comparing with using Θbot = 0.8. Third, our system

outperforms Zhang et al. [1] in terms of the detection rate of different botnets, the overall precision,

recall and false positives. For instance, our system achieved 100% detection rate with zero false

positives under different circumstances, while Zhang et al. [1] failed to detect all the bots under

both well selected parameters. At last, our system is more robust to PMMKL attack. For instance,

PMMKL attack had no impact on the effectiveness of our system, while decreasing the F-score of

Zhang et al. [1] from 97.3% to 75% (Θbot = 0.6) or from 74.6% to 72.7% (Θbot = 0.8).

3.6 Discussion

3.6.1 Evasions and Possible Solutions

To avoid being detected by Enhanced PeerHunter, the botmaster could use a combination

of the following three approaches: (a) adding randomized paddings or junk packets to influence

the bytes-per-packet characteristics for network flow clustering, (b) reducing the number or rate
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of destination diversity, or (c) reducing the number or rate of mutual contacts. To deal with the

randomized spatial-communication behavior, we could adopt more time-communication features,

such as packet/flow duration and inter-packet delays, or apply more generalized features, such as

the distribution, mean or standard deviation of bytes-per-packet. The other two evasion approaches

would be the victory of our system. On one hand, to reduce the number or rate of destination

diversity, a bot has to limit its communication to the network of certain locations, which degrades

the P2P botnet into a centralized fashion. On the other hand, reducing the number of mutual

contacts means there will be less bots targeting on the same set of victims, and less bots playing the

role as botmasters, which will jeopardize the effectiveness and the decentralized structure of a P2P

botnet. Also, as shown in Section 3.5.6.2, reducing the rate of mutual contacts while maintaining

the same number of mutual contacts (i.e., by conducting AMMKL) will make the botnets less

stealthy, less efficient and more exposed to the other detection systems (e.g., anomaly-based botnet

detection using high volumes of network traffic).

3.6.2 The Deployment of Enhanced PeerHunter

In the previous sections, we simply assumed that our system is deployed at the boundary

of a single organization. In this section, we discuss about the deployment of Enhanced PeerHunter

in three more realistic scenarios.

• If The number of bots within an organization is too small, it would be challenging to

build the MCG of botnet communities (i.e., the number of bots belonging to the same botnet is

less than 3). In this case, we can deploy multiple Enhanced PeerHunter systems at the boundaries

of multiple organizations, and correlate the network flows collected by those multiple Enhanced

PeerHunter systems to build an appropriate size of MCG to detect botnet communities.

• If the number of bots within an organization is too large, the mutual contacts of cer-

tain bots might be within the organization internal network, hence invisible to the single system

monitoring at the network boundary. In this case, we can deploy multiple Enhanced PeerHunter

systems within the organization, that divide the organization network into several appropriate size

of sub-internal networks. Each system is responsible for one sub-internal network.

• If the botmaster knows the system deployment location, the botmaster could assign the

location of bots or control the communications of the bots based on the knowledge of the system
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Figure 3.6: Community detection results under attacks. (a) Bot Separation Index (BSI). (b)
Bot Aggregation Index (BAI). (c) Bot-Legitimate Separation Index (BLSI).

deployment location to evade our system. For instance, the botmaster could assign bots into

different sub-internal networks, and instruct most of the bots communicate with the others within

the same sub-internal network. In this case, we could use the concept and idea of Moving Target

Defense (MTD) [70] to develop a strategy that makes it more difficult for botmasters to learn the

deployment locations of our systems, by dynamically changing the settings or deployments of our

systems.

3.6.3 Extend Enhanced PeerHunter to Detect Other Botnets

Although Enhanced PeerHunter is designed to detect P2P botnets, our idea of using mutual

contacts graph has the potential to detect not only unknown botnets, but also the other types of
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Figure 3.7: The P2P botnet detection results of Enhanced PeerHunter. (a) P2P botnet
detection rate when conducting AMMKL. (b) P2P botnet detection rate when combining

PMMKL and AMMKL. (c) Precision, recall and F-score, when conducting AMMKL, and when
combining PMMKL and AMMKL.

botnets (e.g., centralized botnets, such as IRC botnets [60], mobile botnets [71]). Since bots

are usually controlled by machines, rather than humans, bots from the same botnets tend to

communicate with a similar set of peers or attacking targets. For instance, bots from the same

IRC botnets tend to contact a similar set of C&C servers, while bots from the same mobile botnets

tend to contact a similar set of satellite servers. Hence, we argue that Enhanced PeerHunter could

be easily extended to detect the other types of botnets.
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3.7 Conclusion

We present a novel community behavior analysis based P2P botnet detection system, En-

hanced PeerHunter, which operates under several challenges: (a) botnets are in their waiting stage;

(b) the C&C channel has been encrypted; (c) the botnet traffic are overlapped with legitimate

P2P traffic on the same host; (d) no bot-blacklist or “seeds” are available; (e) none statistical

traffic patterns known in advance; and (f) does not require to monitor individual host. We propose

three types of community behaviors (i.e., flow statistical features, numerical community features

and structural community features) that can be used to detect P2P botnets effectively. In the

experimental evaluation, we propose a network traces sampling and mixing method to make the

experiments as unbiased and challenging as possible. Experiments and analysis were conducted

to show the effectiveness and scalability of our system. With the best parameter settings, our

system achieved 100% detection rate with none false positives. We also propose two mimicking

legitimate P2P application attacks (i.e., PMMKL and AMMKL). The experiment results showed

that our system is robust to PMMKL, and will make the botnets less stealthy, less efficient and

more exposed while conducting AMMKL.
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Chapter 4: Dynamic Community Detection by Incrementally Maximizing Modularity

Community detection is of great importance for online social network analysis. The vol-

ume, variety and velocity of data generated by today’s online social networks are advancing the

way researchers analyze those networks. For instance, real-world networks, such as Facebook,

LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. How-

ever, most of the studies so far have been focusing on detecting communities on the static networks.

It is computationally expensive to directly employ a well-studied static algorithm repeatedly on

the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based

dynamic community detection algorithm, aiming to detect communities of dynamic networks as ef-

fective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive

and incremental algorithm, which is designed for incrementally maximizing the modularity gain

while updating the community structure of dynamic networks. In the experimental evaluation, a

comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic

algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 syn-

thetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms

in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm. 3

4.1 Introduction

With the advance of online social network analysis, more and more real-world systems, such

as social networks [73], collaboration relationships [74], recommendation systems [75] and intrusion

detection system [5, 51], are represented and analyzed as networks, where the vertices represent

certain objects and the edges represent the relationships or connections between the objects. Most

social networks have been shown to present certain community structures [76], where vertices are

densely connected within communities and sparsely connected between communities. Community

3 This chapter was published in IEEE Transactions on Knowledge and Data Engineering (2019) [72]. Copyright
permission is included in Appendix A.
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detection is one of the most important and fundamental problem in the field of graph mining,

network science and social network analysis.

Detecting community structure is of great challenge, and most of the recent studies are

proposed to detect communities in the static networks, such as spectral clustering [6], label propa-

gation [7], modularity optimization [8], and k-clique communities [9]. However, real-world networks,

especially most of the online social networks, are not static. Most popular online social networks

(e.g., Facebook, LinkedIn and Twitter) are de facto growing rapidly and expanding aggressively

in terms of either the size or the complexity over time. For instance, in Facebook network, the

updating of its community structure could be simply caused by new users joining in, old users

leaving, or certain users connecting (i.e., friend) or disconnecting (i.e., unfriend) with the other

users. Facebook announced that it had 1.52 billion daily active users in the fourth quarter of 2018

[10], which shows a 9% increase over the same period of the previous year, and 4 million likes

generated every minute as of January 2019 [11]. Hence, it is rather important and impending to

enable community detection in such dynamic networks.

Designing an effective and efficient algorithm to detect communities in dynamic networks

is highly difficult. First, an efficient algorithm should update the communities adaptively and

incrementally depending on the changes of the dynamic networks, and avoid redundant and repet-

itive computations. Second, it is hard to design a dynamic algorithm that performs as effective as

the static algorithms by only observing the historical community structures and the incremental

changes of the dynamic networks. Third, it is still quite open about how to categorize the in-

cremental changes of dynamic networks, and how to assess the influence of different types of the

incremental changes on the community structure updates, which is rather important to design an

effective and efficient dynamic algorithm.

A few algorithms have been proposed to detect communities in dynamic networks [77, 78,

13, 15, 79, 16, 80, 14, 81]. An intuitive way to detect communities in dynamic networks is to

slice the network into small snapshots based on the timestamps, and directly employ well-studied

static algorithms repeatedly on each network snapshot. However, these algorithms [77, 78] usually

are computational expensive, since they compute the current community structures completely

independent from the historical information (i.e., the previous community structures), especially

when the dynamic network changes rapidly and the time interval between two consecutive network
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snapshots are extremely small. Another way to update the communities is using not only the

current network changes but also the previous community structures. These algorithms [13, 15,

79, 16, 80, 14, 81] adaptively and incrementally detect communities in dynamic networks, without

re-executing any static algorithms on each entire network snapshot. Those algorithms are usually

more efficient than repeatedly applying static algorithms on network snapshots. However, most

of those algorithms are still not practical enough to be directly used to analyze the real-world

networks. For instance, some algorithms [13, 16] only considers vertices/edges additions, while

vertices/edges deletions happen quite often in online social networks (e.g., “unfriend” in Facebook).

Some algorithms [13, 15, 16, 14] only consider unweighted networks, which are not applicable for

weighted networks. Furthermore, some algorithms [82, 83, 81] need certain prior information about

the community structures (e.g., the number of communities, the ratio of vertices in overlapped

communities) or need certain predefined parameters which are not available in practice.

We present DynaMo, a novel modularity-based dynamic community detection algorithm,

aiming to detect non-overlapped communities of dynamic networks. DynaMo is an adaptive and

incremental algorithm designed for maximizing the modularity gain while updating the community

structure of dynamic networks. To update the community structures efficiently, we model the

dynamic network as a sequence of incremental network changes. We propose 6 types of incremental

network changes: (a) intra-community edge addition/weight increase, (b) cross-community edge

addition/weight increase, (c) intra-community edge deletion/weight decrease, (d) cross-community

edge deletion/weight decrease, (e) vertex addition, and (f) vertex deletion. For each incremental

network change, we design an operation to maximize the modularity.

In the experimental evaluation, a comprehensive comparison has been made among Dy-

naMo, Louvain (static) [12] and 5 dynamic algorithms (i.e., QCA [13], Batch [14], GreMod [15],

LBTR-LR [16] and LBTR-SVM [16]). Extensive experiments have been conducted on 6 large-scale

real-world networks and 10,000 synthetic networks. Our results show that DynaMo consistently

outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by

average) faster than Louvain algorithm. To summarize, our work has the following contributions:

• We present a novel, effective and efficient modularity-based dynamic community detec-

tion algorithm, DynaMo, capable of detecting non-overlapped communities in real-world dynamic

networks.
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• We present the theoretical analysis to show why/how DynaMo could maximize the mod-

ularity, while avoiding certain redundant and repetitive computations.

• A comprehensive comparison among our algorithm and the state-of-the-art algorithms

has been conducted (Section 4.5). For the sake of reproducibility and convenience of future studies

about dynamic community detection, we have released our prototype implementation of DynaMo,

the experiment datasets and a collection of the implementations of the other state-of-the-art algo-

rithms. 4

The rest of this chapter is organized as follows: Section 4.2 presents the related work.

Section 4.3 presents the notations, the concept of dynamic networks and the definition of modu-

larity, and introduces a baseline static community detection algorithm (i.e., Louvain algorithm).

Section 4.4 describes our algorithm design and theoretical analysis. Section 4.5 presents the exper-

imental evaluation. Section 4.6 concludes.

4.2 Related Work

To date, a few dynamic community detection approaches were proposed [84, 77, 78, 82, 83,

85, 86, 87, 81, 88, 13, 14, 15, 16, 89]. Rossetti et al. [90], a comprehensive survey on dynamic

community detection, divide most of the algorithms into three categories (i.e., instant-optimal,

temporal trade-off and cross-time) in terms of their ability to solve the community instability and

temporal smoothing issue. However, some approaches in the literature are not belonging to any of

these categories. For instance, some approaches, such as our proposed algorithm, do not consider

the community instability and temporal smoothing issue, but still aim to detect communities in

dynamic networks effectively and efficiently. The concept of “cross-time” approaches is also beyond

the scope of this chapter. After incorporating the taxonomy of [90], we consider three categories

of related approaches: instant-optimal, temporal trade-off and incremental approaches (to replace

the “cross-time” in [90]).

The instant-optimal approaches [84, 77, 78] have two steps: (i) static algorithms are applied

on each network snapshot independently to detect static communities, (ii) communities detected

on each network snapshot are matched with communities detected on the previous one. Greene

4 https://github.com/nogrady/dynamo
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et al. [84] proposed a general model for tracking communities in dynamic networks via solving a

classic cluster matching problem on the communities independently detected on consecutive network

snapshots. Such approaches take advantage of existing static algorithms. However, repeatedly

applying static algorithms on all network snapshots of the dynamic networks is computationally

expensive.

The temporal trade-off approaches [82, 83, 85, 86, 87, 81, 88] incorporate the community

detection and tracking via considering the community structures of the current and historical

network snapshots at the same time. Those approaches aim to maintain the evolution of the

community structures of the dynamic networks, where the community structure (e.g., the number

of communities, the size of communities) of the current network snapshot should be similar to

that of the previous one. Tang et al. [85] propose a temporally regularized clustering algorithm to

identify evolving groups in dynamic networks, where they use a metric that attempts to optimize two

objectives: the quality of the current community structure and the similarity between the current

and the previous community structures. However, most of those approaches, such as [82, 83, 88],

require determining the number of communities to be detected/tracked in advance, which is rather

impractical for the real-world dynamic networks where the number of communities changes over

time.

The incremental approaches [13, 14, 15, 16, 89] adaptively update the community struc-

tures fully based on the network changes happened during the current snapshot and the community

structure of the previous snapshot. For instance, GreMod [15] is a rule-based incremental algorithm

that performs the predetermined operations on different types of the edge addition changes of the

dynamic network. QCA [13] is another rule-based adaptive algorithm that updates the commu-

nity structures according to the predefined rules of different types of the incremental changes (i.e.,

vertices/edges addition/deletion) on the dynamic network. QCA is also one of the most efficient dy-

namic community detection algorithms in the literature. However, since the rule-based algorithms,

such as GreMod [15] and QCA [13], considers each network change as an independent event, they

are less efficient when abundant (i.e., a batch of) network changes appear in the same network

snapshot. Chong et al. [14] propose a batch-based incremental modularity optimization algorithm

that updates the community structures by initializing all of the new and changed vertices of the

current network snapshot (i.e., the batch) as singleton communities and using Louvain algorithm
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to further update the community structures. However, since their initialization approach, that

generates the intermediate community structure of a batch of network changes, is rather coarse,

it is less efficient to apply Louvain algorithm on those intermediate community structures. LBTR

[16] is a learning-based framework that uses machine learning classifiers and historical community

structure information to predict certain vertices’ new community assignments after each round

of network changes. In those learning-based algorithms, once the models are being trained, the

testing phase could be very efficient. However, since the supervised nature of the learning-based

algorithms, it would be extremely hard to generalize the trained models. For instance, the models

trained on one type of dynamic networks (e.g., social network) might be less effective to another

type of dynamic networks (e.g., collaboration network). Furthermore, even for the same dynamic

network, the network patterns change over time. Thus, the models have to be updated periodically,

which would be rather illogical, since the network usually changes rapidly and updating models is

also time consuming.

Our proposed approach, DynaMo, is an adaptive and incremental algorithm. Compared

with rule-based algorithms [15, 13], our approach is capable of processing a set of network changes

as a batch, and redesigns the “rules” by considering more extreme cases (Section 4.4.3). Compared

with batch-based algorithms [14], our approach has a more fine-grained initialization phase (Sec-

tion 4.4.3), which could reduce the computation time dramatically. Compared with learning-based

algorithms [16], our approach is more generalized to real-world networks. In Section 4.5, we com-

pare DynaMo with Louvain algorithm and 5 other dynamic algorithms on 6 real-world networks and

10,000 synthetic networks, showing that DynaMo consistently outperforms all the other 5 dynamic

algorithms in terms of effectiveness, and much more efficient than Louvain algorithm.

4.3 Preliminaries

In this section, we introduce 1) the notations; 2) the dynamic network model; 3) modularity,

to quantify the quality of a community structure; and 4) Louvain algorithm, a modularity-based

static community detection approach.
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4.3.1 Notations

Let G = (V,E) be an undirected weighted network, where V is a set of vertices (n = |V |),

E is a set of undirected weighted edges (m = |E|), and there could be more than one edge between

a pair of vertices. Let C denote a set of disjoint communities associated with G, Aij denote the

sum of the weights of all the edges between vertices i and j, ki denote the sum of the weights of

all the edges linked to vertex i, and ci denote the assigned community of vertex i.

4.3.2 Dynamic Network

Let G(t) denote the snapshot of a network at time t, and 4G(t) = (4V (t),4E(t)) denote

the incremental change from G(t) to G(t+1) (i.e., G(t+1) = G(t) ∪ 4G(t)), where 4V (t) and 4E(t)

are the sets of vertices and edges being changed during time period (t, t+ 1]. A dynamic network

G is a sequence of its network snapshots changing over time: G = {G(0), G(1), . . . , G(t)}.

4.3.3 Modularity

Modularity [91] is a widely used criteria to evaluate the quality of given network community

structure. Community structures with high modularity have denser connections among vertices in

the same communities but sparser connections among vertices from different communities. Given

network G = (V,E), its modularity is defined as follows:

Q =
1

2m

∑
i,j∈V

[Aij −
kikj
2m

]δij =
1

2m

c∑
c∈C

(αc −
β2
c

2m
) (4.1)

where αc =
∑

i,j∈cAij , βc =
∑

i∈c ki and δij equals to 1, if i, j belong to the same community,

otherwise equals to 0.

4.3.4 Louvain Method for Community Detection

Since the modularity optimization problem is known to be NP-hard, various heuristic ap-

proaches are proposed [92, 93, 8]. Most of the algorithms have been superseded by Louvain al-

gorithm [12], which attempts to maximize the modularity using a greedy optimization approach

composed of three steps: (i) Initialization, where each vertex forms a singleton community. (ii)
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Figure 4.1: The overview of DynaMo.

Local Modularity Optimization, where each vertex moves from its own community to its neighbor’s

community to maximize the local modularity gain. If there is no positive modularity gain, keep

the vertex in its original community. Repeat this step over all vertices multiple times until the

modularity gain is negligible. (iii) Network Compression, where vertices belonging to the same

community are aggregated as super vertices and a new network is built with the super vertices.

Louvain algorithm repeats the last two steps, until the modularity improvements is negli-

gible. Although the actual computational complexity of Louvain depends on the input network, it

has an average-case time complexity of O(m) with most of the computational effort spending on

the optimization of the first level network (i.e., before creating the super vertices).

4.4 Dynamic Community Detection

4.4.1 Problem Statement

Given a dynamic network G = {G(0), G(1), . . . , G(t)}, where G(0) is the initial network

snapshot, let C = {C(0), C(1), . . . , C(t)} denote the list of community structures of the correspond-

ing network snapshots. As illustrated in Figure 4.1, we aim to design an adaptive and incremental

algorithm to detect C(t+1), given G(t), C(t) and 4G(t).

4.4.2 Methodology Overview

As shown in Figure 4.1, our approach has three components:

4.4.2.1 Initialization

Use well-studied static algorithms (i.e., Louvain [12]) to compute C(0), which generates a

comparatively accurate community structure of G(0).
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4.4.2.2 Adaptive Modularity Maximization (DynaMo)

Given G(t), C(t) and 4G(t), update the community structure of G(t+1) from C(t) to C(t+1)

while maximizing the modularity gain, using predesigned strategies that fully depend on 4G(t) and

C(t). This is the core component of our framework that relies on fine-grained and theoretical-verified

strategies (Section 4.4.3) to maximize the modularity gain while maintaining the efficiency.

4.4.2.3 Refinement

Once the obtained modularity of C(t+λ) is less than a predefined threshold, use G(t+λ) as the

new initial network snapshot to restart our algorithm from the initialization step. This component

prevents our frame from being trapped in the suboptimal solutions.

4.4.3 The DynaMo Algorithm

DynaMo is an adaptive and incremental algorithm aiming to maximize the community

structure modularity gain based on the incremental changes of a dynamic network. We propose

a two-step approach: (i) initialize an intermediate community structure, depending on the incre-

mental network changes and the previous network community structure, and (ii) repeat the last

two steps of Louvain algorithm (Section 4.3.4) on the intermediate community structure until the

modularity gain is negligible.

Our algorithm benefits community detection in dynamic networks in three folds. First,

in the initialization step, we categorize the incremental changes into 6 types. For each type of

the incremental change, we design a strategy to initialize its corresponding intermediate commu-

nity structure. Most of the strategies are theoretically verified to incrementally maximize the

modularity, while avoiding redundant and repetitive computations. Second, compared with the

original initialization step of Louvain algorithm, our initialization step takes advantage of the his-

torical information, thus reduces most of the unnecessary computations happened at Louvain’s first

level network optimization, where Louvain spends most of its computational effort (Section 4.3.4).

Hence, DynaMo would be much more efficient than Louvain algorithm while detecting communities

in dynamic networks. Third, in the initialization, our algorithm could process a set of incremental

changes as a batch, which makes the computational complexity of our algorithm less sensitive to
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Figure 4.2: Change of communities by adding an intra-community edge. (a) unchanged, (b)
splitting to smaller communities.

the amount of incremental changes and the frequency of network changes. So, DynaMo can detect

communities while the network changing rapidly.

In this section, 6 different types of the incremental changes have been defined, where the

initialization strategy of each type is also designed accordingly. Eight propositions are proposed and

proved to provide the theoretical guarantees of our strategies towards maximizing the modularity.

4.4.3.1 Edge Addition/Weight Increase (EA/WI)

In this scenario, an edge (i, j, wij) between two existing vertices i and j has been changed

to (i, j, wij + 4w), where wij ≥ 0 and 4w > 0. Edge addition is a special case of edge weight

increase, where wij = 0. Depending on the edge property, we define two sub-scenarios:

The first scenario is called Intra-Community EA/WI (ICEA/WI), where ertices i and j

belong to the same community (i.e., ci = cj). According to Proposition 1, ICEA/WI will never

split i and j into different communities. And according to Remark 1, sometimes ICEA/WI will

split ci into multiple communities, while keeping i and j in the same community. Proposition 2

also provides us a convenient tool to decide when ci should be bi-split into two smaller communities

(i.e., cp and cq). However, this approach requires checking all the bi-split combinations of ci, which

is time consuming, especially when ci is huge. In this case, we propose to initialize i and j as a

two-vertices community, and all the other vertices in ci as singleton communities.

Proposition 1. Adding an edge or increasing the edge weight between vertices i and j, that belong

to the same community (ci = cj), will not split i and j into different communities.

Proof. Let Q
(t+1)
1 denote the new modularity value if the community structure keeps unchanged

(i.e., ci = cj), and Q
(t+1)
2 denote the new modularity value if i and j are split into different
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communities (i.e., c′i ⊆ ci and c′j = ci\c′i).

Q
(t+1)
1 =

1

2m+ 24w

(
αci + 24w − (βci + 24w)2

2m+ 24w

+

c6=ci∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.2)

Q
(t+1)
2 =

1

2m+ 24w

(
αc′i −

(βc′i +4w)2

2m+ 24w
+ αc′j

−
(βc′j +4w)2

2m+ 24w
+

c6=ci∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.3)

where βci = βc′i + βc′j .

Let Q
(t)
1 denote the modularity value of the “optimal” community structure of network snap-

shot G(t), and Q
(t)
2 denote its modularity value while i and j were split into different communities

as in the calculation of Q
(t+1)
2 .

Q
(t)
1 =

1

2m

(
αci −

β2
ci

2m
+

c6=ci∑
c∈C

(
αc −

β2
c

2m

))
(4.4)

Q
(t)
2 =

1

2m

(
αc′i −

β2
c′i

2m
+ αc′j −

β2
c′j

2m

+

c 6=ci∑
c∈C

(
αc −

β2
c

2m

)) (4.5)

Since ci = cj is the “optimal” community structure of G(t), we have:

Q
(t)
1 −Q

(t)
2 ≥ 0

⇔ 1

2m

(
αci − αc′i − αc′j −

βc′iβc′j
m

)
≥ 0

⇔ αci − αc′i − αc′j −
βc′iβc′j
m

≥ 0

⇒ αci − αc′i − αc′j −
βc′iβc′j
m+4w

≥ 0

(4.6)
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By comparing Q
(t+1)
1 and Q

(t+1)
2 , we get the difference of the modularity gain between the

“unchanged” and “split” operations as follows:

(
Q

(t+1)
1 −Q(t)

1

)
−
(
Q

(t+1)
2 −Q(t)

1

)
= Q

(t+1)
1 −Q(t+1)

2

=
1

2m+ 24w

(
αci − αc′i − αc′j −

βc′iβc′j
m+4w

)
+

1

2m+ 24w

(4w(2m− βc′i − βc′j ) + (4w)2

m+4w

) (4.7)

Since βc′i + βc′j = βci ≤ 2m, 4w > 0 and equation (4.6), we have Q
(t+1)
1 − Q(t+1)

2 > 0 and

the conclusion follows.

Remark 1. Although our Proposition 1 shows that ICEA/WI between i and j, where ci = cj,

will not split them into different communities, sometimes splitting ci into smaller communities

in other ways (i.e., keeping i and j in the same community after the splitting) might maximize

the modularity. For instance, as shown in Figure 4.2, assume all the edge weights are 1.0, and

the red dash line between i and j is a newly added intra-community edge. Before adding the

new edge, the modularity of community structure in Figure 4.2a (i.e., 0.561) is higher than that

in Figure 4.2b (i.e., 0.558). However, after adding the new edge, the modularity of community

structure in Figure 4.2a (unchanged, i.e., 0.564) becomes lower than that in Figure 4.2b (split, i.e.,

0.568). In this case, although an intra-community edge has been added, splitting ci into cp and cq

provides higher modularity. Our algorithm carefully considers these “counterintuitive” cases, which

is different from QCA [13, 94], thus, leading our algorithm to be more effective (Section 4.5.5).

Proposition 2. (ICEA/WI Community Bi-split) After ICEA/WI between vertices i and j, where

ci = cj, if a bi-split of ci (i.e., cp ⊆ ci and cq = ci\cp) does not exist such that 4w >
mα1−βcpβcq

2βcq−α1
,

where α1 = αci −αcp −αcq , any other bi-split of ci will not improve the modularity gain comparing

with keeping the community structure unchanged.

Proof. By Proposition 1, i and j should belong to the same community after ICEA/WI happened

between i and j, where ci = cj . Without loss of generality, we assume i and j belong to community
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cp, even after certain bi-split operation. Therefore,

4w >
mα1 − βcpβcq

2βcq − α1
⇔(

1

2m+ 24w

(
αci + 24w − (βci + 24w)2

2m+ 24w

+

c 6=ci∑
c∈C

(
αc −

β2
c

2m+ 24w
)))

−

(
1

2m+ 24w

(
αcp + 24w −

(βcp + 24w)2

2m+ 24w
+ αcq

−
β2
cq

2m+ 24w
+

c 6=ci∑
c∈C

(
αc −

β2
c

2m+ 24w
)))

< 0

(4.8)

where βci = βcp + βcq , and {cp, cq} is a bi-split of ci.

The second scenario is called Cross-Community EA/WI (CCEA/WI), where vertices i and

j are from two different communities (i.e., ci 6= cj). CCEA/WI between i and j leads to three

possible operations: (a) keeping the community structure unchanged; (b) merging ci and cj into

one community; and (c) splitting ck = ci ∪ cj into other smaller communities. According to

Proposition 3, if 4w is large enough, merging ci and cj into one community (e.g., ck) provides

higher modularity gain than keeping the community structure unchanged. However, if 4w is too

large (as shown in Proposition 4), CCEA/WI is equivalent to a two-step process: (a) CCEA/WI

between i and j (ci 6= cj), that results in merging ci and cj into one community ck (Proposition 3);

(b) ICEA/WI between i and j (ci = cj = ck). Proposition 4 provides a bi-split condition. However,

Proposition 4 also requires checking all bi-split combinations of ck. Hence, to deal with CCEA/WI,

we propose: (a) if 4w ≤ 1
2

(
α2 + β2 − 2m +

√
(2m− α2 − β2)2 + 4(mα2 + βciβcj )

)
, where α2 =

αci +αcj −αck and β2 = βci + βcj , we keep the community structure unchanged; (b) otherwise, we

employ the same initialization approach proposed to deal with ICEA/WI on ck = ci ∪ cj , where we

consider ICEA/WI has happened between vertices i and j, where ci = cj = ck.

Proposition 3. (CCEA/WI Community Merge) After CCEA/WI between i and j, where ci 6= cj, if

and only if4w > 1
2

(
α2+β2−2m+

√
(2m− α2 − β2)2 + 4(mα2 + βciβcj )

)
, where α2 = αci+αcj−αck

and β2 = βci + βcj , merging ci and cj into ck (i.e., ck = ci ∪ cj) has higher modularity gain than

keeping the community structure unchanged.
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Proof. Let Q
(t+1)
1 denote the modularity value if the community structure keeps unchanged, and

Q
(t+1)
2 denote the modularity value if ci and cj are merged into ck (i.e., ck = ci ∪ cj). Then, we

have:

Q
(t+1)
1 =

1

2m+ 24w

(
αci −

(βci +4w)2

2m+ 24w
+ αcj

−
(βcj +4w)2

2m+ 24w
+

c6=ci,cj∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.9)

Q
(t+1)
2 =

1

2m+ 24w

(
αck + 24w − (βck + 24w)2

2m+ 24w

+

c 6=ci,cj∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.10)

where βck = βci + βcj . Therefore, we have the follows:

4w >
1

2

(
α2 + β2 − 2m+√

(2m− α2 − β2)2 + 4(mα1 + βciβcj )
)

⇔ α1 − 24w +
(βci +4w)(βcj +4w)

m+4w
< 0

⇔ Q
(t+1)
1 < Q

(t+1)
2

(4.11)

Hence, the conclusion follows.

Proposition 4. (CCEA/WI Community Bi-split) After CCEA/WI between i and j, where ci 6= cj,

ck = ci∪cj, and {cp, cq} is another bi-split of ck (i.e., cp ⊆ ck and cq = ck\cp), if and only if 4w >

1
2

(
α2 +β2− 2m+

√
(2m− α2 − β2)2 + 4(mα2 + βciβcj )

)
+

mα1−βcpβcq
2βcq−α1

, where α1 = αci −αcp −αcq ,

α2 = αci +αcj −αck and β2 = βci + βcj , splitting ck into cp and cq has higher modularity gain than

either keeping the community structure unchanged or merging ci and cj into ck.

The proof could be easily derived from Proposition 2 and Proposition 3.
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4.4.3.2 Edge Deletion/Weight Decrease (ED/WD)

In this scenario, an edge (i, j, wij) between two existing vertices i and j has been changed

to (i, j, wij −4w), where wij ≥ 4w > 0. Edge deletion is a special case of edge weight decrease,

where wij = 4w. Depending on the edge property, we define two sub-scenarios:

The first scenario is called Intra-Community ED/WD (ICED/WD), where vertices i and

j belong to the same community (i.e., ci = cj). According to Proposition 5, if i or j has one

degree, decreasing the edge weight between i and j will keep the community structure unchanged.

Also, intuitively, if i or j has one degree, deleting the edge between i and j will result in the same

community structure plus one or two singleton communities (i.e., the vertex of one degree becomes

singleton community). Except for the case above (i.e., i or j has one degree), ICED/WD between

i and j leads to three other possible operations: (a) keeping the community structure unchanged,

if ci is still densely connected; (b) splitting ci into multiple smaller communities, if ci becomes

sparsely connected; and (c) merging ci with some of its neighbor communities (i.e., the opposite

situation of Remark 1). Since the analytical approach is complex and time consuming, we propose

to initiate all vertices within the communities, that adjacent to i or j (including ci), as singleton

communities.

Proposition 5. For any pair of vertices i, j that belong to the same community (i.e., ci = cj), if

i or j has only one neighbor vertex (j or i), decreasing the edge weight between i and j, does not

split i and j into different communities.

Proof. Suppose the edge weight between vertices i and j has been decreased, where ci = cj . Let

Q
(t+1)
1 be the modularity value if the community structure keeps unchanged, and Q

(t+1)
2 be the (best

case) modularity value if i and j are split into smaller communities (i.e., c′i ⊆ ci and c′j = ci\c′i).

Q
(t+1)
1 =

1

2m− 24w

(
αci − 24w − (βci − 24w)2

2m− 24w

+

c 6=ci∑
c∈C

(
αc −

β2
c

2m− 24w
)) (4.12)
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Q
(t+1)
2 =

1

2m− 24w

(
αc′i −

(βc′i −4w)2

2m− 24w
+ αc′j

−
(βc′j −4w)2

2m− 24w
+

c 6=ci∑
c∈C

(
αc −

β2
c

2m− 24w
)) (4.13)

where βci = βc′i + βc′j .

Q
(t+1)
1 −Q(t+1)

2

=
1

2m− 24w

(
αci − 24w − αc′i − αc′j

−
(βc′i −4w)(βc′j −4w)

m−4w

)
=

(w′ij −4w)
(

(2m− αci) + (w′ij −4w)
)
− αc′iαc′j

2(m−4w)2

(4.14)

where w′ij =
αci−αc′i

−αc′
j

2 , βc′i = αc′i + w′ij , βc′j = αc′j + w′ij .

If i or j has only one neighbor vertex (j or i), then,

Q
(t+1)
1 −Q(t+1)

2

=
(w′ij −4w)

(
(2m− αci) + (w′ij −4w)

)
2(m−4w)2

> 0

(4.15)

where w′ij > 4w, 2m > αci . The conclusion follows.

The second scenario is called Cross-Community ED/WD (CCED/WD), where vertices i

and j are from two different communities (i.e., ci 6= cj). By Proposition 6, CCED/WD strengthens

the community structure, thus, keeping the community structure unchanged.

Proposition 6. If vertices i and j are from different communities (ci 6= cj), deleting an edge or

decreasing the edge weight between i and j, will increase the modularity gain coming from ci and

cj.
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Proof. Let Q
(t+1)
i and Q

(t)
i be the modularities of ci before and after the CCED/WD scenario.

Then, we have:

4Q = Q
(t+1)
i +Q

(t+1)
j −Q(t)

i −Q
(t)
j =

4w(αci + αcj )

2m(m+4w)

+
1

4

(βci
m
− βci −4w
m−4w

)(βci
m

+
βci −4w
m−4w

)
+

1

4

(βcj
m
−
βcj −4w
m−4w

)(βcj
m

+
βcj −4w
m−4w

)
(4.16)

Let k = min{
(βci
m +

βci−4w
m−4w

)
,
(βcj
m +

βcj−4w
m−4w

)
}. Thus,

4Q >
k

4

(βci + βcj
m

−
βci + βcj − 24w

m−4w
)

=
k4w(2m− βci − βcj )

4m(m−4w)
> 0

(4.17)

where 2m > βci + βcj , m > 4w. The conclusion follows.

4.4.3.3 Vertex Addition (VA)

In this scenario, a new vertex i and its associated edges are added. On one hand, if i has

no associated edge, we make it as a singleton community and keep the rest community structure

unchanged. On the other hand, if i has one or more associated edges, some interesting cases would

happen. For instance, if all of i’s associated edges are connected to the same community, i.e., cj , by

Proposition 7, we should merge i into cj and treat all of i’s associated edges as ICEA/WI. A more

complicated case occurs when i’s associated edges are connected to different communities. In this

case, by Proposition 8, we could merge i into community cj that has the highest 4wij . However,

other than simply determining which community i should merge into, we should also consider which

set of vertices could together with i to form a new community, or which community could be split

into smaller communities, to further maximize the modularity. To cope with all the cases, where

i has one or more associated edges, we propose to initialize i and j as a two-vertices community,

where edge eij has the highest weight among all of i’s associated edges (randomly selecting a vertex

j if there are ties), and initialize all the other vertices within i’s adjacent communities as singleton

communities.
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Proposition 7. If a new vertex i has been added and all of its associated edges are connected to

the same community, i.e., cj, merging i into cj has higher modularity gain than keeping i as a

singleton community.

Proof. Let Q
(t+1)
1 denote the modularity value while merging i into community cj , Q

(t+1)
2 denote

the modularity value while keeping i as a singleton community, and 4w > 0 denote the sum of the

weights of all of i’s associated edges. Then, we have:

Q
(t+1)
1 =

1

2m+ 24w

(
αcj + 24w −

(βcj + 24w)2

2m+ 24w

+

c 6=cj∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.18)

Q
(t+1)
2 =

1

2m+ 24w

(
αcj −

(βcj +4w)2

2m+ 24w

− (4w)2

2m+ 24w
+

c 6=cj∑
c∈C

(
αc −

β2
c

2m+ 24w
)) (4.19)

Q
(t+1)
1 −Q(t+1)

2 =
4w(2m− βcj ) + (4w)2

2(m+4w)2
> 0 (4.20)

where 2m ≥ βcj . Hence, the conclusion follows.

Proposition 8. Suppose a new vertex i has been added and its associated edges are connected to

different communities. Let 4wij denote the sum of the edge weights of vertex i’s associated edges

that are connected to community cj. Given two communities cp and cq, if 4wip > 4wiq, merging

i into cp has more modularity gain than merging i into cq.

Proof. Let Q
(t+1)
1 and Q

(t+1)
2 denote the modularity values while merging i into community cp and

community cq, respectively. Suppose 4wip > 4wiq, and 4w denoting the sum of the weights of all
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of i’s associated edges. Then, we have:

Q
(t+1)
1 −Q(t+1)

2 =
1

2m+ 24w

(
αcp + 24wip

−
(βcp + 24wip)2

2m+ 24w
+ αcq −

(βcq +4wiq)2

2m+ 24w

)
− 1

2m+ 24w

(
αcp −

(βcp +4wip)2

2m+ 24w
+ αcq

+ 24wiq −
(βcq + 24wiq)2

2m+ 24w

)
=

(4m− 2βcp)4wip − (4m− 2βcq)4wiq
(2m+ 24w)2

+
(44w − 34wip)4wip − (44w − 34wiq)4wiq

(2m+ 24w)2

≥ (k1 + k2)(4wip −4wiq)
(2m+ 24w)2

(4.21)

where k1 = min{(4m− 2βcp), (4m− 2βcq)} and k2 = min{(44w − 34wip), (44w − 34wiq)}.

Since 2m > βcp , 2m > βcq , 4w > 4wip, 4w > 4wiq and 4wip > 4wiq, we have k1 > 0,

k2 > 0, and Q
(t+1)
1 −Q(t+1)

2 > 0. Hence, the conclusion follows.

4.4.3.4 Vertex Deletion (VD)

In this scenario, an old vertex i and its associated edges are deleted. On one hand, if i has no

associated edge, deleting i has no influence on the rest of the network, and hence, we should keep the

community structure unchanged. On the other hand, if i has too many associated edges, deleting

i might cause its community and its neighbor communities being broken into smaller communities

and potentially being merged into other communities. To handle this case, we propose to initialize

all the vertices within ci and i’s neighbor communities as singleton communities.

4.4.4 Implementation and Analysis

4.4.4.1 Implementation

Algorithm 7 presents the DynaMo Initialization, where we implement the operation of each

type of incremental network change to initialize the intermediate community structure towards

maximizing the modularity. The input contains the current network G(t+1), the previous network

G(t) and the previous community structure C(t). The output contains two set of communities, 4C1
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Algorithm 7: DynaMo Initialization (Init)

Input: V (t+1), E(t+1), V (t), E(t), C(t).
Output: 4C1, 4C2.

1 4E ← A set of edges changed from E(t) to E(t+1);

2 4Vadd ← V (t+1)\V (t); 4Vdel ← V (t)\V (t+1);
3 4C1 ← Ø; 4C2 ← Ø;
4 for eij ∈ 4E do
5 for k ∈ {i, j} do
6 if k ∈ 4Vdel then
7 4C1 ←4C1 ∪ {ck};
8 for ekl ∈ E(t) do
9 4C1 ←4C1 ∪ {cl};

10 if k ∈ 4Vadd then
11 4C1 ←4C1 ∪ {ck};
12 wmax = 0; c← Ø;

13 for ekl ∈ E(t+1) do
14 4C1 ←4C1 ∪ {cl};
15 if wkl > wmax then
16 wmax = wkl; c← {k, l};

17 4C2 ←4C2 ∪ {c};

18 if i, j /∈ 4Vdel ∪4Vadd then

19 if eij /∈ E(t+1) or wtij > wt+1
ij then

20 if ci = cj then
21 4C1 ←4C1 ∪ {ci};
22 for k ∈ {i, j} do

23 for ekl ∈ E(t) do
24 4C1 ←4C1 ∪ {cl};

25 if eij /∈ E(t) or wtij < wt+1
ij then

26 if ci = cj then
27 4C1 ←4C1 ∪ {ci}; c← {i, j};
28 4C2 ←4C2 ∪ {c};
29 else
30 4w = wt+1

ij − w
t
ij ; ck = ci ∪ cj ;

31 α2 = αci + αcj − αck ; β2 = βci + βcj ;
32 δ1 = 2m− α2 − β2; δ2 = mα2 + βciβcj ;

33 if 24w + δ1 >
√
δ21 + 4δ2 then

34 4C1 ←4C1 ∪ {ci, cj}; c← {i, j};
35 4C2 ←4C2 ∪ {c};

36 return 4C1, 4C2.

and 4C2, that will be modified to initialize the intermediate community structure at the beginning

of the second phase. 4C1 contains a set of communities in C(t) to be separated into singleton

communities, and 4C2 contains a set of two-vertices communities to be created. Algorithm 8

presents the second phase, where the last two steps of Louvain algorithm is applied on the initialized

intermediate community structure of G(t+1).
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Algorithm 8: DynaMo

Input: G(t+1), G(t), C(t).
Output: C(t+1).

1 4C1, 4C2 ← Init(V (t+1), E(t+1), V (t), E(t), C(t));

2 C(t+1) ← C(t);
3 for ci ∈ 4C1 do

4 C(t+1) ← C(t+1)\{ci};
5 for k ∈ ci do
6 Create singleton community: ck ← {k};
7 C(t+1) ← C(t+1) ∪ {ck};

8 for c = {i, j} ∈ 4C2 do
9 Create two-vertices community: ck ← {i, j};

10 C(t+1) ← (C(t+1)\{ci, cj}) ∪ {ck};
11 C(t+1) ← Louvain(C(t+1), G(t+1));

12 return C(t+1).

Most of the operations in Algorithm 7 are theoretically guaranteed by our propositions de-

scribed in Section 4.4.3 to maximize the modularity, while some of the operations are heuristically

designed for the sake of the efficiency. For instance, according to Proposition 1, Remark 1 and

Proposition 2, given ICEA/WI between vertices i and j, we initialize i and j as a two-vertices

community to incrementally maximize the modularity, and initialize all the other vertices in ci as

singleton communities to take all the influenced vertices into consideration carefully while main-

taining the algorithm efficiency (lines 26-28). According to Proposition 3 and Proposition 4, we

use a designed threshold condition (lines 30-33) to determine the operation of given CCEA/WI. If

the condition is true, we use the same operation of ICEA/WI to tackle CCEA/WI (lines 33-35).

Otherwise, we keep the community structure unchanged to incrementally maximize the modularity.

According to Proposition 5 and the analysis in Section 4.4.3.2, given ICED/WD, we initialize all

the potentially influenced vertices as singleton communities to maintain a trade-off between the

effectiveness and efficiency (lines 18-24). According to Proposition 6, given CCED/WD, we keep

the community structure unchanged to maximize the local modularity gain. According to Propo-

sition 7 and Proposition 8, given new vertex i and its associated edges, we initialize i and its most

closely connected neighbor vertex as a two-vertices community (lines 12, 15-17), and initialize all

the potentially influenced vertices as singleton communities (lines 10-16). After deleting vertex

i, we heuristically initialize all the vertices within ci and i’s neighbor communities as singleton
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communities (lines 6-9). To summarize, initializing 4C2 aims to incrementally maximize the mod-

ularity with certain theoretical guarantees, and initializing 4C1 aims to heuristically maximize the

modularity (by Algorithm 8) while maintaining the algorithm efficiency.

4.4.4.2 Time Complexity Analysis

The computation of our algorithm tackling one network snapshot comes from two parts:

(a) the initialization, and (b) the last two steps of Louvain algorithm. In the initialization, different

network changes trigger different operations, thus resulting in different computation time. For

instance, if one network change is ICEA/WI (i.e., eij , ci = cj), our algorithm (line 26-28) will add

ci into 4C1, and add c = {i, j} into 4C2. The time complexity of both operations are O(1), thus,

the time complexity to deal with single change of ICEA/WI is O(1). Similarly, the time complexities

to deal with single change of CCEA/WI (line 29-35) and CCED/WD (no operation needed) are

also O(1). To deal with single change of ICED/WD, VA or VD, our algorithm runs through the set

of neighbor vertices of the changed edge, and thus, result in O( |E||V |) time complexity. Furthermore,

as shown in Algorithm 7, each network snapshot usually has multiple network changes. Since the

number of network changes is proportional to 4E, the overall time complexity of the initialization

is O(|4E|) or O(|4E| · |E||V |).

The time complexity of the original Louvain algorithm is O(|E|). However, compared with

the Louvain algorithm initialization, our algorithm considers the historical information and designs

an initialization phase to reduce the number of edges left for the second phase analysis as much

as possible. Thus, the time complexity of the second phase of our algorithm is O(|E|∗), where

|E|∗ � |E|. Hence, the overall best case time complexity of our algorithm is O(|4E|+ |E|∗), and

the worst case is O(|4E| · |E||V | + |E|∗).

4.5 Experimental Evaluation

4.5.1 Experiment Environment

All the experiments were conducted on a PC with an Intel Xeon Gold 6148 Processor, 128GB

RAM, running 64-bit Ubuntu 18.04 LTS operating system. All the algorithms and experiments are

implemented using Java with JDK 8.
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Table 4.1: Description of the real-world dynamic networks. [Notations: |V | (|E|): # of unique vertices (edges); E[|4V |] (E[|4E|]):
avg. # of vertices (edges) changed per network snapshots; # of snapshots: total number of consecutive network snapshots;

time-interval: period of time between two consecutive network snapshots; time-span: total time spanning of each network dataset].

networks |V| E[|4V|] vertex-type |E| E[|4E|] edge-type # of snapshots time-interval time-span

Cit-HepPh 30,501 6,460 author 346,742 11,127 co-citation 31 4 months 124 months

Cit-HepTh 7,577 1,253 author 51,089 2,042 co-citation 25 5 months 125 months

DBLP 1,411,321 122,731 author 5,928,285 191,233 co-authorship 31 2 years 62 years

Facebook 59,302 12,765 user 592,406 20,943 friendship 28 1 month 28 months

Flickr 780,079 93,253 user 4,407,259 168,977 follow 24 3 days 72 days

YouTube 3,160,656 91,954 user 7,211,498 175,303 subscription 33 5 days 165 days

Table 4.2: Comparison of the time complexities of the competing algorithms. [Notations: n = |V | (m = |E|): # of unique vertices
(edges); υ = |4V | (ε = |4E|): # of vertices (edges) changed; m∗b (m∗d): # of unique vertices (edges) after the initialization phase of

Batch (DynaMo), and m∗b � m (m∗d � m); TLR (TSVM ): the time complexity of using logistic regression (support vector machine) in
LBTR].

algorithms the best case the worst case

Louvain [12] O(m) O(m)

Batch [14] O((υ + ε) · mn +m∗b) O((υ + ε) · mn +m∗b)

DynaMo O(ε+m∗d) O(ε · mn +m∗d)

QCA [13] O(ε) O(ε ·m)

GreMod [15] O(ε) O(ε · n)

LBTR-LR [16] O(υ · TLR) O(υ · TLR)

LBTR-SVM [16] O(υ · TSVM ) O(υ · TSVM )
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4.5.2 Baseline Approaches

We compare DynaMo with Louvain (Section 4.3.4), and 5 dynamic algorithms: (i) Batch

[14]: a batch-based incremental modularity optimization algorithm; (ii) GreMod [15]: a rule-based

incremental algorithm that performs predetermined operations on edge additions; (iii) QCA [13]:

a rule-based incremental algorithm that updates the community structures according to predefined

rules of vertex/edge additions/deletions; (iv) LBTR [16]: a learning-based algorithm that uses

classifiers to update community assignments. We use Support Vector Machine (SVM) and Logistic

Regression (LR) as the classifiers, namely LBTR-SVM and LBTR-LR.

4.5.3 Experiment Datasets

We conduct our experiments on two categories of networks: real-world networks (ground-

truth is unknown), and synthetic networks (ground-truth is known).

4.5.3.1 Real-world Dynamic Networks

As shown in Table 4.1, six real-world networks are used in our experiments. (i) Cit-HepPh

(Cit-HepTh) [95] contains the citation network of high-energy physics phenomenology (theory)

papers from 1993 to 2003. (ii) DBLP [96] contains a co-authorship network of computer science

papers ranging from 1954 to 2015, where each author is represented as a vertex and co-authors

are linked by an edge. (iii) Facebook [97] contains the user friendship establishment information

from about 52% of Facebook users in New Orleans area, spanning from September 26th, 2006

to January 22nd, 2009. In this network, each vertex represents a Facebook user, and each edge

represents an user-to-user friendship establishment link that contains a timestamp representing the

time of friendship establishment. (iv) Flickr [98] was obtained on January 9th, 2007, and contains

over 1.8 million users and 22 million links, and each link has a timestamp that represents the time

of the following link establishment. We select a sub-network, where all the user-to-user following

links were established from March 6th, 2007 to May 15th, 2007. (v) YouTube [99] was obtained on

January 15th, 2007 and consists of over 1.1 million users and 4.9 million links, and each link has a

timestamp that represents the time of the subscribing link establishment. We select a sub-network,
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where all the user-to-user subscribing links were established from February 2nd, 2007 to July 23rd,

2007.

4.5.3.2 Synthetic Dynamic Networks

We use RDyn [100], a benchmark model focusing on community changes in dynamic net-

works, to generate synthetic networks and their ground-truth communities. It allows us to specify

different parameters, such as the number of vertices (N), the number of time points (T ), the max-

imum number of community change events (e.g., splitting or merging) per time point (M), etc..

We use various combinations of N , T and M to generate synthetic networks, where N ∈ {200, 400,

600, 800, 1000}, T ∈ {25, 50, 75, 100, 125}, M ∈ {1, 2, 3, 4} and all the other parameters set by

default values. For each parameter combination (out of 100 combinations in total), we randomly

generate 100 synthetic networks, resulting in 10,000 synthetic networks in total.

4.5.4 Experimental Procedure

For each real-world network, we apply Louvain algorithm on its initial snapshot to obtain

its initial community structure (Section 4.4.2). For each synthetic network, we use the ground-truth

communities of its initial snapshot as its initial community structure. For the rest of snapshots of

real-world and synthetic networks, the dynamic algorithms only use the initial community struc-

ture and the network changes between two consecutive snapshots to update the new community

structures, while the static algorithm will be applied on the whole network of each snapshot. All

experiments are performed for 200 times to obtain the average results.

4.5.5 Effectiveness Analysis

4.5.5.1 Effectiveness Metrics

We evaluate the effectiveness of the community detection algorithms using three metrics:

modularity, Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). Modularity

(Section 4.3.3) is designed to measure the strength of dividing a network into communities, and

does not require the ground-truth information. Hence, we use modularity to evaluate the results

of the real-world networks. NMI and ARI are designed to measure the similarities between the
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community structure obtained from the experiments and that of the ground-truth, which are used

to evaluate the results of the synthetic networks.

Let Ct denote the ground-truth community division, and Cr denote the experiment result.

NMI is defined as follows:

NMI(Ct, Cr) =
2× I(Ct;Cr)

[H(Ct) +H(Cr)]
(4.22)

where H(Cr) is the entropy of Cr, and I(Ct;Cr) is the mutual information between Ct and Cr.

NMI ranges from 0 to 1. NMI closing to 1 indicates Cr is similar to Ct, while closing to 0 means

Cr is random compared with Ct.

Let a be the number of pairs of vertices in the same community in both Ct and Cr, b be the

number of pairs of vertices in the same community in Ct and in different communities in Cr, c be

the number of pairs of vertices in different communities in Ct and in the same community in Cr, d

be the number of pairs of vertices in different communities in both Ct and Cr. ARI is defined as

follows:

ARI(Ct, Cr) =
2(ad− bc)

b2 + c2 + 2ad+ (a+ d)(b+ c)
(4.23)

where its upper bound is 1, and the higher, the better.

4.5.5.2 Experimental Results

Figure 4.3 shows the modularity results of 7 algorithms running on 6 real-world networks,

respectively. We observe that DynaMo consistently outperforms all the other dynamic algorithms

in terms of modularity. Compared with the runner-up algorithm (Batch), DynaMo obtains 2.6%,

2.2%, 4.3%, 2.1%, 1.1% and 2.2% higher modularity averaged over all the time points, and 3.2%,

4.4%, 17.3%, 2.4%, 1.2% and 4.7% higher modularity on the last time point of Cit-HepPh, Cit-

HepTh, DBLP, Facebook, Flickr and YouTube, respectively. Compared with Louvain, DynaMo

achieves nearly identical performance, with only 0.49%, 0.38%, 0.06%, 0.7%, 0.5% and 0.5% lower

modularity averaged over all the time points, and only 0.52%, 0.74%, 0.27%, 0.46%, 0.5% and 1.7%
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lower modularity on the last time point of Cit-HepPh, Cit-HepTh, DBLP, Facebook, Flickr and

YouTube, respectively.

Figure 4.4 shows the NMI results (mean and standard deviation) of 6 dynamic algorithms

running on 10,000 synthetic networks. We observe that DynaMo obtains the highest NMI value

among all the dynamic algorithms regardless of any RDyn parameters. DynaMo outperforms

the runner-up algorithm (QCA) by 69.1%, 66.4% and 70.3% on average with the increase of the

number of vertices, the maximum number of events per time point, and the number of time points,

respectively, which is statistically significant according to the two-sample t-test with 95% confidence

interval. The NMI standard deviation of DynaMo is also lower than that of QCA, demonstrating

the consistency of DynaMo in detecting communities of various dynamic networks. Furthermore,

as the maximum number of events per time point and the number of time points increase, DynaMo

has the minimum NMI value loss among all the dynamic algorithms, indicating DynaMo is more

robust and consistent while detecting communities of dynamic networks that last longer and have

more events per time point.

Figure 4.5 shows the ARI results (mean and standard deviation) of 6 dynamic algorithms

running on 10,000 synthetic networks, which share similar patterns as the NMI results. DynaMo

outperforms the runner-up algorithm (QCA) by 211.1%, 224.5% and 257.6% on average with the

increase of the number of vertices, the maximum number of events per time point, and the number

of time points, respectively, which is statistically significant according to the two-sample t-test

with 99% confidence interval. As the number of vertices increases, the ARI standard deviation of

DynaMo dramatically decreases, while as the maximum number of events per time point and the

number of time points increase, the standard deviation of DynaMo slightly increases. However,

even considering the standard deviation difference, DynaMo still significantly outperforms all the

other dynamic algorithms.

4.5.6 Efficiency Analysis

4.5.6.1 Time Complexity Analysis

Table 4.2 shows the theoretical time complexities of all the competing algorithms. Dy-

naMo, QCA and GreMod have different time complexities while running in different scenarios (i.e.,

91



best/worst case). As discussed in Section 4.4.4.2, DynaMo has the best case time complexity when

the network changes are ICEA/WI, CCEA/WI or CCED/WD, and otherwise, has the worst case

time complexity. Similarly, QCA and GreMod have the best case time complexity if the network

changes are ICEA or CCED, and otherwise, have the worst case time complexity. For the other

algorithms, the time complexities of the best and the worst cases are identical. Below show the

details about our analysis.

• Compared with Louvain [12], DynaMo has less time complexity, when the impact of the

network changes of a given network snapshot on its community structure updating is small enough

to ensure m∗d � m. First, the evolutionary nature of the real-world dynamic networks assumes

two consecutive network snapshots of the same network should have similar community structures.

Therefore, each snapshot of a dynamic network should only result in a small part of its community

structure being updated (i.e., m∗d � m). Also, from our empirical studies, the assumption of

m∗d � m always holds. Hence, DynaMo should be more efficient than Louvain for most of the time.

• Compared with Batch [14], DynaMo has less initialization time complexity (i.e., O(ε·mn ) <

O((υ + ε) · mn )), and different second phase time complexities (i.e., m∗d vs. m∗b ).

• Compared with QCA [13] and GreMod [15], who update the community structure accord-

ing to certain predefined rule of each network change and one at a time (i.e., not in a batch fashion),

DynaMo is more efficient if each network snapshot has more network changes, since DynaMo is

capable of handling a batch of network changes.

• Compared with LBTR [16], who uses machine learning models to decide if a vertex needs

to revise its community, DynaMo is more consistent and practical when dealing with different real-

world networks. Since the characteristics of an dynamic network keep changing over time, LBTR

has to keep updating the machine learning models to adapt the new characteristics. In such case,

we have to take the training time into account. Also, the time complexity of LBTR highly depends

on the machine learning algorithm used for the classification problem (e.g., O(TSVM ) > O(TLR)).

4.5.6.2 Empirical Result Studies

Since the theoretical time complexities always depend on the ideal scenarios or extreme

cases, it is necessary to conduct empirical studies using real-world networks. To ensure the com-

parison is as unbiased as possible, all the algorithms are implemented using Java and running on
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the same environment. Figure 4.6 shows the cumulative elapsed time results, and below show the

details about our observations.

• Compared with Louvain [12], DynaMo obtains over 2x, 2x, 4x, 3x, 4x and 3x speed up on

the series of network snapshots of Cit-HepPh, Cit-HepTh, DBLP, Facebook, Flickr and YouTube,

respectively.

• Compared with Batch [14], DynaMo obtains over 3x, 5x, 2x, 7x and 5x speed up on the

series of network snapshots of Cit-HepPh, Cit-HepTh, DBLP, Facebook and Flickr, respectively.

DynaMo spends nearly the same amount of time as Batch on YouTube network.

• Compared with QCA [13], DynaMo obtains over 2x, 2x, 4x and 5x speed up on the series

of network snapshots of Cit-HepTh, Facebook, Flickr and YouTube, respectively. DynaMo is as

efficient as QCA on DBLP network, and spends slightly more time on Cit-HepPh network than

QCA.

• Compared with GreMod [15], DynaMo spends more time on most of the networks, and

only performs better on the Flickr and YouTube network.

• Compared with LBTR [16], DynaMo is much more efficient than LBTR-SVM, and spends

slightly more time than LBTR-LR on certain networks.

4.5.7 Summary of the Experimental Evaluation

DynaMo consistently outperforms all the other 5 dynamic algorithms on 6 real-world net-

works and 10,000 synthetic networks in terms of the effectiveness (i.e., modularity, NMI and ARI)

of detecting communities. DynaMo has almost identical performance as Louvain in terms of the

effectiveness, with only 0.27% to 1.7% lower modularity on certain networks. DynaMo also per-

forms comparably well in terms of the efficiency. For instance, in terms of the cumulative elapsed

time results, DynaMo outperforms Louvain, Batch and LBTR-SVM, and obtains similar perfor-

mance as QCA and LBTR-LR. Even though GreMod acts more efficient than DynaMo, DynaMo is

much more effective than GreMod (e.g., GreMod has the worst effectiveness performance running on

nearly all datasets). In conclusion, DynaMo significantly outperformed the state-of-the-art dynamic

algorithms in terms of effectiveness, and demonstrated much more efficient than the state-of-the-

art static algorithm, Louvain algorithm, in detecting communities of dynamic networks, while also

maintaining similar efficiency as the best set of competing dynamic algorithms.
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Figure 4.3: The modularity results of real-world networks. (a) Cit-HepPh. (b) Cit-HepTh. (c) DBLP. (d) Facebook. (e) Flickr. (f)
YouTube.
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Figure 4.4: The NMI results of synthetic networks. (a) The # of vertices. (b) The maximum # of events per time point. (c) The #
of time points.
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Figure 4.5: The ARI results of synthetic networks. (a) The # of vertices. (b) The maximum # of events per time point. (c) The # of
time points.
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Figure 4.6: The cumulative elapsed time results of real world networks. (a) Cit-HepPh. (b) Cit-HepTh. (c) DBLP. (d) Facebook. (e)
Flickr. (f) YouTube.
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4.6 Conclusion

In this chapter, we presented DynaMo, a novel modularity-based dynamic community detec-

tion algorithm, aiming to detect communities in dynamic networks. We also present the theoretical

guarantees to show why/how our operations could maximize the modularity, while avoiding redun-

dant and repetitive computations. In the experimental evaluation, a comprehensive comparison

has been made among our algorithm, Louvain algorithm and 5 other dynamic algorithms. Exten-

sive experiments have been conducted on 6 real world networks and 10,000 synthetic networks.

Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the

effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm.
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Chapter 5: FRiPAL: Face Recognition in Privacy Abstraction Layer

Data-driven mobile applications are becoming increasingly popular in civilian and law en-

forcement. RapidGather, for instance, is an smartphone application that collects data from indi-

vidual, and spreads rapid emergency responses. Image data is widely used in such applications,

and machine learning methods could be utilized to analyze the image data. However, people would

hesitate to share the data without protecting their privacy. In this chapter, we propose to utilize

dimensionality reduction techniques for privacy-preserving machine learning in face recognition for

the image data. To demonstrate the proposed approach, we implement a client server system,

FRiPAL. With extensive experiments, we show that FRiPAL is efficient, and could preserve the

privacy of data owners while maintaining the utility for data users. 5

5.1 Introduction

Modern data-driven applications are becoming increasingly popular in civilian and law

enforcement. Such applications collect data from the smartphones, analyze the data at back-end

systems, and help people to make decisions. RapidGather [20], for instance, is a data-driven

emergency response application that collects different types of data from smartphones, and spreads

rapid emergency response to citizens and authorities. However, smartphone users might hesitate

to share their data, if RapidGather could not protect the data privacy properly.

Gathering and analyzing photos rapidly is of great importance in emergency events. For

instance, in the Boston Marathon bombing scenario (a potential RapidGather use case), even if

information transmission immediately through Internet, social media and news report, it still took

several days for authorities to gather photos from smartphone users who were in that area, and

pore through thousands of photos to identify the suspects. We come up with a privacy-preserving

mechanism that could motivate the data owners to share their photos with the authorities, and the

5 This chapter was published in IEEE Conference on Dependable and Secure Computing 2017 [101]. Copyright
permission is included in Appendix A.
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authorities could query photos from the crowd around the scene rapidly, and recognize the wanted

suspects effectively.

In this chapter, we propose a privacy-preserving machine learning framework for face recog-

nition for the image data in the RapidGather application. Machine learning is an important tool to

model the appearance of faces and to classify them. Eigenface [102] and Fisherface [103] have been

utilized for a long time for face recognition. However, those traditional methods do not consider

privacy issues. As the demand for privacy increasing, privacy-preserving machine learning becomes

an emerging area. To date, a few approaches rely on cryptographic protocols (e.g. homomorphic

[104] or commutative encryption [105]) or data perturbation (e.g. random projection [106]) tech-

niques have been proposed. However, the cryptography-based approaches suffer from low efficiency,

due to high computation and communication cost. The data perturbation based approaches suffer

from low accuracy, due to the loss of useful information. Therefore, instead of utilizing cryptogra-

phy or data perturbation techniques, we propose to utilize dimensionality reduction techniques for

privacy-preserving machine learning. These techniques can efficiently transform the raw data from

the data owner to a new set of data before they are given to the data users. Without revealing the

raw data, the transformation is irreversible.

We have implemented our methods in a system called FRiPAL, Face Recognition in Privacy

Abstraction Layer, which is a privacy-preserving face recognition service design. RapidGather

proposed [20] an architecture of Privacy-Enhanced Android (PE-Android) which is an extension

of the current Android OS with new privacy features. One of the most important components

in PE-Android is the Privacy Abstraction Layer (PAL), which is defined as a wrapper of the low

level PE-Android services that allows the developers to develop privacy preserving applications in

their traditional way. FRiPAL has been integrated into RapidGather as a privacy-preserving face

recognition service for image data.

The contributions of this chapter are as follows:

•We propose to utilize dimensionality reduction techniques for privacy-preserving machine

learning in face recognition. We demonstrate the proposed approach with three dimensionality

reduction methods, including Principal Component Analysis (PCA) [107], Linear Discriminant

Analysis (LDA) [103] and Discriminant Component Analysis (DCA) [21].
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• We design and implement a privacy-preserving face recognition client server system,

FRiPAL, which could preserve the privacy of data owners while maintaining the utility for data

users.

• Extensive experiments have been conducted on three different public datasets to evaluate

FRiPAL in terms of accuracy, privacy and efficiency. The accuracy results show that our system

maintains the utility for face recognition. The privacy results illustrate that our system protects

the privacy which motivates the data owners to submit photos. The efficiency results demonstrate

that our system is efficient for practical usage.

The rest of this chapter is organized as follows. Section 5.2 presents the preliminaries

of dimensionality reduction methods. Section 5.3 describes the privacy-preserving face recognition

problem and our proposed solution. Section 5.4 describes the system design of FRiPAL. Section 5.5

presents the experimental evaluation. Section 5.6 presents the related works. Section 5.7 presents

the conclusion and future work.

5.2 Preliminaries

5.2.1 Privacy-preserving by Dimensionality Reduction

In machine learning, dimensionality reduction is a tool to transform the feature vector from

a high dimension space to a low dimension space. It has been used to deal with: (a) over-fitting

problems when the number of features far exceed the number of training samples, (b) performance

degradation due to suboptimal search, and (c) high computational cost and power consumption

resulting from high dimensional feature space. However, in this chapter, we investigate the privacy

preserving usage of dimensionality reduction.

Dimensionality reduction is more resilient to reconstruction attacks [106]. Since the map-

ping from the original feature vectors to a low dimensional subspace is a many-to-one mapping,

it is impossible to determine the privately held features from the reduced feature vectors without

knowing any of the original feature vectors, as there are infinite possible feature vectors which could

lead to identical reduced feature vector. Therefore, by utilizing dimensionality reduction, the data

privacy is preserved since this transformation is irreversible. In this chapter, we utilize three dimen-
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sionality reduction methods, Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA) and Discriminant Component Analysis (DCA).

5.2.2 Principal Component Analysis (PCA)

Consider a training data set consisting of n m-dimensional vectors: X={x1, x2, . . . , xn},

where xi ∈ Rm. Below shows the general steps of PCA:

1. Compute the m-dimensional mean vector µ of the whole data set:

µ =
1

n

n∑
i=1

xi (5.1)

2. Compute the scatter matrix S̄ (alternatively, the covariance matrix) of the whole data set:

S̄ =

n∑
i=1

(xi − µ)(xi − µ)T (5.2)

3. Compute the eigenvectors {e1, e2, . . . , em} and corresponding eigenvalues {λ1, λ2, . . . , λm}

of scatter matrix S̄ through spectral decomposition, e.g. eigen decomposition.

4. Sort the eigenvectors by non-increasing eigenvalues and choose d eigenvectors with the largest

eigenvalues to form a projection matrix Wpca ∈ Rm×d, where each column is an eigenvector.

5. Transform each sample onto the new subspace:

x′
i = W T

pca × xi (5.3)

where xi ∈ Rm, and x′
i ∈ Rd.

Wpca is the PCA projection matrix. The parameter d determines the dimension of the

subspace of the transformed data, and the signal power retained after dimensionality reduction.

For instance, suppose the original feature vectors have full signal power
∑m

i=1 λi, the transformed

data has signal power
∑d

i=1 λi, and signal power
∑m

i=d+1 λi has been irreversibly lost. We consider

more privacy is preserved, as more signal power losing. Therefore, d could be utilized to control

the level of privacy.
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5.2.3 Linear Discriminant Analysis (LDA)

Consider a k-class training data set consisting of n m-dimensional vectors X={x1, x2,

. . . , xn}, where xi ∈ Rm. Each training sample xi associates with a class label yi indicating its

belonging to one of the k classes C1, C2, . . . , Ck. Each class Cj contains nj training samples in this

data set. Below shows the general steps of LDA:

1. Compute the total mean vector µ ∈ Rm, and the class mean vector µj ∈ Rm, j = 1, 2, . . . , k:

µ =
1

n

n∑
i=1

xi µj =
1

nj

∑
yi∈Cj

xi (5.4)

2. Compute the between-class scatter matrix SB and the within-class scatter matrix SW :

SB =

k∑
j=1

nj(µj − µ)(µj − µ)T (5.5)

SW =
k∑
j=1

∑
yi∈Cj

(xi − µj)(xi − µj)T (5.6)

3. Compute the eigenvectors {e1, e2, . . . , em} and corresponding eigenvalues {λ1, λ2, . . . , λm}

of scatter matrix S−1
W SB through spectral decomposition, e.g. eigen decomposition.

4. Sort the eigenvectors by non-increasing eigenvalues and choose d eigenvectors with the largest

eigenvalues to form a projection matrix Wlda ∈ Rm×d, where each column is an eigenvector.

5. Transform each sample onto the new subspace:

x′
i = W T

lda × xi (5.7)

where xi ∈ Rm, and x′
i ∈ Rd.

Wlda is the LDA projection matrix. Unlike PCA, LDA can reduce the m dimensionality

at most to k − 1, because of the k-discriminant constraint of LDA.

102



5.2.4 Discriminant Componenet Analysis (DCA)

The training data set is the same as described in Section 5.2.3. Below shows the general

steps of DCA:

1.–2. The same as LDA’s 1.–2.

3. Compute the regulated between-class scatter matrix S′
B, the regulated within-class scatter

matrix S′
W , and the regulated total scatter matrix S̄′:

S′
B = SB + ρ′I S′

W = SW + ρI (5.8)

S̄′ = S′
B + S′

W = S̄ + (ρ+ ρ′)I (5.9)

where ρ′ and ρ are ridge parameters, and S̄ = SB + SW .

4. Compute the eigenvectors {e1, e2, . . . , em} and corresponding eigenvalues {λ1, λ2, . . . , λm}

of scatter matrix S−1
W S̄′ through spectral decomposition, e.g. eigen decomposition.

5. Sort the eigenvectors by non-increasing eigenvalues and choose d eigenvectors with the largest

eigenvalues to form a projection matrix Wdca ∈ Rm×d, where each column is an eigenvector.

6. Transform each sample onto the new subspace:

x′
i = W T

dca × xi (5.10)

where xi ∈ Rm, and x′
i ∈ Rd.

Wdca is the DCA projection matrix. Similar to LDA, DCA could at most reduce the m

dimensionality to k − 1. There are works [21] discussing about the influence of parameters ρ and

ρ′ on the performance of DCA. In this chapter, we set ρ = 0.02 and ρ′ = 0.1.
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Figure 5.1: FRiPAL Framework.

5.3 Privacy-preserving Face Recognition

5.3.1 Problem Description

We consider a two-party problem, where the data user (e.g. authorities) has a centralized

face database (e.g. suspects), and the data owner (e.g. smartphone users) owns face images for

testing. The goal of privacy-preserving face recognition is to allow the data user to determine if a

face from the data owner is contained in his database, without compromising the privacy of data

owner. Our privacy preserving face recognition framework contains three steps: feature extraction,

privacy-preserving dimensionality reduction and classification. Below describes the details of the

methods we utilized for each step to test our framework. However, in practice, the specific methods

utilized in each step could also be replaced by other corresponding (more advanced) methods.

5.3.2 Feature Extraction

In this step, we transform the face image into feature vector (FV). Two feature extraction

methods are utilized, respectively.

5.3.2.1 Pixel Feature

Pixel feature is a vector of all pixel values of a grayscale image. For instance, a 100 × 100

grayscale face image has a FV of 10, 000 length.
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5.3.2.2 Gabor Feature

Gabor feature is utilized for edge detection and texture representation of images. For a

face image, a set of Gabor filters are applied, and the downsized magnitude results forms its Gabor

feature. For instance, applying 40 Gabor filters on a 100 × 100 face image, and downsizing each

reuslt to 30× 30, results in a FV of 36,000 length.

5.3.3 Privacy-preserving Dimensionality Reduction

To preserve the privacy of testing data, PCA, LDA and DCA are utilized to transform FV

to dimension reduced feature vector (DRFV), respectively. Below shows the three dimensionality

reduction methods in detail.

In the case of PCA, suppose the projection matrix is Wpca, each testing phase begins with

selecting a parameter d. Then, project FV on the m× d matrix Wpca to get DRFV .

In our case, the dimension of FV of a image is usually much larger than the number of

training data. For LDA, this would result in (a) the within class scatter matrix Sw becoming

singular, and (b) the overfitting of the transformed data. To overcome this issue, a two step

dimensionality reduction method applies. In the training, the m-dimensional training data is

projected to a r-dimensional subspace using a m×r PCA projection matrix Wpca, where r < n−k,

n is the number of training data, and k is the number of unique classes. Then, the r-dimensional

data is projected into a k − 1 dimensional subspace using a r × (k − 1) LDA projection matrix

Wlda. In the testing, each FV is projected on a m× (k − 1) matrix Wpca ·Wlda to get DRFV .

Comparing with LDA, adding the ridge parameters in DCA makes the within class scatter

matrix Sw non-singular. However, applying two step dimensionality reduction could also relax the

overfitting issue and improve the efficiency. Therefore, we apply PCA before DCA in the same way

as described for LDA.

PCA is the common step for all three dimensionality reduction methods. As discussed in

Section 5.2.2, the number of Principal Components (PCs) in PCA, namely parameter d, has an

impact on the balance between privacy and utility. For instance, in our problem, the data user can

determine the range of acceptable number of PCs they want to keep for them to have good utility

of the data. The data owner can choose to share their data at any of the dimensions in that range,
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or not at all. Therefore, we could use the number of PCA PCs as the privacy policy level. In this

chapter, we use the privacy policy level and the number of PCs interchangeably.

5.3.4 Classification

Support Vector Machine (SVM) [108] is utilized as our classification method. Each subject

is trained multiple models, where each model subjects to a feature type, a dimensionality reduction

method and one privacy policy level. Each model specifies a threshold of the probability θ ∈ [0, 1].

In the testing phase, given a DRFV of a face image, each two-class SVM model outputs a

binary result and a probability calculated from the SVM decision value. If the probability is larger

than a model’s θ, we consider that the testing face belongs to the corresponding subject. The

testing face might be recognized as multiple subjects, we return the subject whose model outputs

the highest probability as the final result. If the testing face is not recognized as any subject, we

consider it is not in the database.

5.4 FRiPAL System Design

FRiPAL is a privacy-preserving face recognition framework, which enables rapid photo col-

lection and face recognition, while ensuring the data owner control over the data privacy. FRiPAL

supports two feature extraction methods (Pixel Feature and Gabor Feature), and three dimension-

ality reduction methods (PCA, LDA and DCA). Figure 5.1 shows the main components of FRiPAL:

back-end server, mobile application, communication server, and command center.

Figure 5.1 also shows the work flow of FRiPAL. The back-end server begins with an off-

line training to prepare the classification models, mean vectors, projection matrices and data scale

parameters. In each use case,

1. The mobile application updates the mean vectors and the projection matrices from the back-

end server.

2. The end user selects photos for face detection. Then, the mobile application performs feature

extraction and dimensionality reduction on the selected faces.

3. The mobile application sends DRFVs to the back-end server.
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4. The back-end server performs face recognition and sends results to the command center.

Below describes the design and implementation details about each components.

5.4.1 Back-end Server

This component provides the server side support of FRiPAL, including 1) information syn-

chronization, 2) privacy-preserving face recognition, and 3) results update.

5.4.1.1 Information Synchronization

This process synchronizes the mean vector and the projection matrix with the mobile ap-

plication. In each use case, mobile application sends the client-side version number to the back-end

server. The back-end server updates the newest projection matrix and mean vectors to the mobile

application if any update is available.

5.4.1.2 Privacy-preserving Face Recognition

In each use case, the server receives DRFV, the feature type, the dimensionality reduction

method, and privacy policy level from the mobile application. Then, each DRFV is tested against

all the subjects’ models with corresponding settings (Section 5.3.4).

5.4.1.3 Results Update

If a wanted subject (e.g. suspect) is recognized in a given photo, the back-end server sends

the face recognition results to the command center.

5.4.2 Mobile Application

The mobile application is developed upon Android API level 23, including 1) face detection,

2) feature reduction, and 3) DRFV upload.
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5.4.2.1 Face Detection

The Haar Feature-based Cascade Classifiers [109] are adopted for face detection, which is

implemented using OpenCV 3.0.0 library. The library contains a pre-trained classifier and API

calls to do the face detection over an grayscale image.

5.4.2.2 Feature Reduction

Given a detected grayscale face, the application first resizes it to a predefined width and

height (e.g. 100 × 100). Then, the specified type of feature is extracted. The same dimension-

ality reduction procedure (Section 5.3.3) applies on the FV to generate DRFV. As mentioned in

Section 5.3.3, the end user is allowed to specify the preferred privacy level (the number of PCs).

5.4.2.3 DRFV Upload

The application uploads the DRFV, along with the feature type, the dimensionality reduc-

tion method and selected privacy policy level to the back-end server.

5.4.3 Communication Server and Command Center

The communication server is built upon RabbitMQ [110], which is an open source message

broker software that supports the AMQP [111]. The mobile application works as a message pro-

ducer, which creates and publishes messages to the communication server. The back-end server

works as the message consumer that handles the message routed through the communication server.

The command center displays the face recognition results and provides an interface for the

agents and authorities to analyze and make further decision.

5.5 Experimental Evaluation

In this section, we evaluate FRiPAL through extensive experiments, in terms of accuracy,

privacy and efficiency.
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Table 5.1: The summaries of experimental datasets.

Number of Subjects (tr. / te.) Number of Photos (tr. / te.)

Yale 28 / 28 5600 / 840

Gatech 0 / 50 0 / 714

Caltech 0 / 11 0 / 126

Total 28 / 89 5600 / 1680

5.5.1 Experiment Setup

5.5.1.1 Environment

The back-end server and commend center have been deployed on the same commodity com-

puter with an 8 core Intel i7-4770 Processor, 32GB RAM, 400GB SSD, running 64-bit Ubuntu 14.04

LTS operating system. The communication server is a Ubuntu 14.04 LTS virtual machine, with

1 Processor, 8GB RAM and 20GB SSD, running on the same commodity computer. The mobile

application has been deployed on two Android devices, a Nexus 5X and a Nexus 6P, respectively.

The communication between the mobile devices and the commodity computer is through a wireless

access point (MWR102 USB Powered Travel Router).

5.5.1.2 Dataset

The experiment dataset consists of data from three public datasets: the Caltech Faces 1999

(Caltech) [112], the Gatech Face Database (Gatech) [113], and the Yale Face Database B (Yale)

[114]. More details for training data (tr.) and testing data (te.) are shown in Table 5.1. The

training data contains 28 subjects all from Yale, each has 200 photos. Thus, 5600 photos in total.

In order to make the experimental evaluation as unbiased and practical as possible, we

generate the testing data from three different public datasets, which contains subjects both from

and distinct from the training data. Specifically, the testing data consists of 28 subjects from

Yale, each contains 30 photos; 50 subjects from Gatech, 714 photos in total; and 11 subjects from

Caltech, 126 photos in total. Thus, 1680 photos in total.
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5.5.1.3 Off-line Training

As discussed in Section 5.3, we trained multiple models for each subject. Each training

model subjects to a feature type, a dimensionality reduction method and one privacy policy level.

In this experiment, we utilized two feature types, Pixel Feature and Gabor Feature and three di-

mensionality reduction methods, PCA, LDA and DCA, for the training of six types of models,

namely, P-PCA, P-LDA, P-DCA, G-PCA, G-LDA and G-DCA. Furthermore, for each dimension-

ality reduction method, 18 different privacy policy levels (the number of PCA PCs) are selected,

namely, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30. For each

subject in the training data, we utilize 200 (all) of his/her photos as the positive samples and 200

randomly selected photos of other subjects as the negative samples. For each subject, 2 × 3 × 18

two-class SVM models are trained in total.

5.5.2 Accuracy

We use the ROC curve to select the threshold of each model (Section 5.3.4), which is created

by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold

settings. In our experiments, we use 101 threshold settings, namely, {0, 0.01, 0.02, . . . , 0.99, 1}.

Figure 5.2 illustrates six models of subject yaleB11 in Yale, where the x-axis is FPR and the y-axis

is TPR. For each model, we consider the point of intersection of the ROC curves and y = 1− x as

the threshold. For instance, in Figure 5.2, the intersection point of P-PCA is around (0.005, 0.91),

and the corresponding threshold is 0.71, which means when the threshold is 0.71, the TPR is around

0.91 and the FPR is around 0.005.

We use F1-Score as the measure of accuracy. Figure 5.3 shows the accuracy results of six

methods. The x-axis shows 18 privacy policy levels. The y-axis shows the corresponding F1-Score

results. Each result is the average over the results of all (28) subjects’ models. It is clear that for

three dimensionality reduction methods, as the number of PCs increasing, the accuracy increases

gradually. It should be noted that the fluctuation in F1-Score is mostly due to the SVM parameter

selection. The Gabor feature achieves an overall higher accuracy than the Pixel feature. The lowest

accuracy is around 78% when we adopt P-PCA.
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Figure 5.2: The ROC curves of six models (P-PCA, P-LDA, P-DCA, G-PCA, G-LDA and
G-DCA, with 200 PCA PCs) of subject yaleB11 in Yale.

Considering the results mentioned above, for PCA, LDA and DCA, the pattern that the

accuracy is positive correlated to the number of PCA PCs, is consistent.

5.5.3 Privacy

We utilized two metrics as the measure of privacy, namely Relative Error (RE) and His-

togram Similarity (HS). The privacy metrics is conducted on the feature domain. We measure

the difference between the original and the reconstructed FV, rather than the original image and

reconstructed image. However, it is worth noting that the Pixel feature actually equals to the

original image.

The RE is defined as equation (5.11), where N is the number of testing samples and m is

the number of features. xij is the original value of jth feature in ith testing sample, and x̃ij is

the corresponding value of the reconstructed data. Higher RE means more difference, thus, in our

setting, more privacy is protected.
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Figure 5.3: F1-score.

RE =
1

N ×m

N∑
i=1

m∑
j=1

|xij − x̃ij
xij

| (5.11)

We utilize HS as the measure of image data’s privacy. Since we only use grayscale images,

the domain of feature value is [0, 255], which is suitable for generating histograms. Let H and H̃ be

the histograms of the original data and reconstructed data respectively. Then, the HS between H

and H̃ is defined as equation (5.12), where M is the color dictionary (256) of grayscale images, and

S = max(hi− h̃i), i = 0, 1, . . . ,M − 1. The value of HS is in [0, 1]. Lower HS means less similarity,

thus, in our setting, more privacy is protected.

HS(H, H̃) =
1

M

M∑
i=1

(
1− |hi − h̃i|

S

)
(5.12)

The histogram of an image describes its color distribution. Two distinct images may have a

similar total color distribution, but it is rare that they have all the same partial color distributions.

Therefore, we divide the image into grids. Then, we apply HS on each grid of the original data and

112



30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of Principal Components (PCA)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

R
el

at
iv

e 
E

rr
or

Relative Error vs Number of Principal Components (PCA)

P-PCA
P-LDA
P-DCA
G-PCA
G-LDA
G-DCA

Figure 5.4: Relative error.

the corresponding grid of the reconstructed data. Finally, we calculate the average HS among all

the grids. In this experiments, we divide each image into 40 grids.

Figure 5.4 shows the RE of PCA, LDA and DCA, with two feature types. For all privacy

policy levels listed, the RE of DCA is always the largest one, the RE of PCA is always the smallest

one, and the RE of LDA is always slight less than DCA. This pattern implies that DCA and LDA

are more effective than PCA in terms of privacy preserving. Furthermore, as the privacy policy

level increasing, the RE of PCA decreases, while the RE of DCA stays around the same value, and

the RE of LDA slightly increases. This pattern shows that DCA and LDA are more consistent

than PCA in terms of privacy preserving.

Figure 5.5 shows the HS results, which presents the same patterns as the RE results. In

addition, the maximum HS of LDA and DCA are less than the minimum HS of P-PCA (30 PCs).

Considering the results mentioned above, in terms of privacy preserving, DCA and LDA

performs better and more consistent than PCA. From Figure 5.3, it could be seen that PCA, DCA

and LDA has similarity accuracy results, with the same feature types. Therefore, the data owners
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Figure 5.5: Histogram similarity.

could choose to use DCA and LDA, which gives better and more consistent privacy protection, and

could use the number of PCs to control the utility.

5.5.4 Efficiency

We designed three experiments to show the system performance. The first experiment mea-

sures the time cost of updating projection matrix from the back-end server to the mobile application.

The second experiment measures the time cost of the privacy preserving face recognition process,

which is the core task of our proposed system. This process covers the face detection and feature

reduction on the mobile device, the face recognition on the server side, and the data transmission

between the two parties. The third experiment measures the time cost of uploading image to the

back-end server. We select 10 images of each subject from the Yale testing data, which results in

280 images in total, and put them on the mobile device. We measure the performance with different

privacy policy levels on P-PCA, P-LDA, P-DCA, G-PCA, G-LDA and G-DCA, respectively. In

the second and third experiment, 10 images is grouped and processed together.
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Figure 5.6: Performance evaluation results on Nexus 6P.

Table 5.2 shows the size of different projection matrices. Table 5.3 summarizes the results of

the first and second experiments. For instance, for G-PCA, with 200 PCs, when running on Nexus

6P, it takes 27 seconds to update the corresponding projection matrix (the size is 57.6 MB), and it

takes 28.5 seconds to accomplish the privacy preserving face recognition of 10 images. Figure 5.6

shows the performance of the second experiment on Nexus 6P. It can be seen that, since DCA and

LDA reduced the feature vector to an identical number, their performance are invariant against

the change of privacy policy levels. For the PCA method, the more PCs, the more time it takes

for processing. The experiment on Nexus 5X gives a similar result.

Considering all the experiment results above, FRiPAL is efficient, and through DCA and

LDA, FRiPAL could preserve the privacy of data owners while maintaining the utility for data

users.
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Table 5.2: The size of different projection matrices.

Projection Matrix (privacy policy level)

40 80 120 160 200

P-PCA 3.2 MB 6.4 MB 9.6 MB 12.8 MB 16 MB

P-LDA 2.2 MB 2.2 MB 2.2 MB 2.2 MB 2.2 MB

P-DCA 2.2 MB 2.2 MB 2.2 MB 2.2 MB 2.2 MB

G-PCA 11.5 MB 23.0 MB 34.6 MB 46.1 MB 57.6 MB

G-LDA 7.8 MB 7.8 MB 7.8 MB 7.8 MB 7.8 MB

G-DCA 7.8 MB 7.8 MB 7.8 MB 7.8 MB 7.8 MB

Table 5.3: The performance of UpdateProjectionMatrix and UploadProjectedData.

UpdateProjectionMatrix (second) UploadProjectedData (second / 10 images)

Nexus 5X Nexus 6P Nexus 5X Nexus 6P

30 200 30 200 30 200 30 200

P-PCA 1.305 10.647 2.058 7.566 1.331 10.797 1.608 10.493

P-DCA 1.325 1.294 1.020 1.208 1.634 1.197 1.833 1.41

P-LDA 1.266 1.277 1.133 1.024 1.472 1.212 1.786 1.378

G-PCA 3.878 30.881 3.924 27.062 6.251 29.957 5.248 28.543

G-DCA 5.135 4.476 4.030 3.653 7.198 5.365 5.259 5.170

G-LDA 4.344 4.116 3.499 3.861 6.982 5.2 5.88 4.667

5.6 Related Works

5.6.1 Data Transformation for Privacy-preserving

Data perturbation is an important technique for protecting the data privacy. [115] proposes

to perturb the individual data with additive or multiplicative noise that is generated from certain

distributions (e.g., Gaussian). [116] proposes to transforms the original whole data set by applying

a random rotation matrix. However, both approaches suffer from a decreasing of the accuracy.

Moreover, the first approach cannot resistant against the attack of noise filtering out [117], while

the perturbed data obtained by the second approach can be restored by another rotation matrix

[118]. Our proposed method maintains the utility, while is more resistant to the reconstruction

attack.

5.6.2 Privacy-preserving Face Recognition

Erkin et al. [119] has proposed the first privacy preserving face recognition. They consider

a two party problem, data user owns a database of face images, and data owner wants to know
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whether the face image he owns is in data user’s database. The data owner does not want to reveal

the image nor the recognition result, while the data user does not want to leak the privacy of his

face image database. To resolve the problem, an additively homomorphic public key encryption

scheme has been used to securely calculate the distance between the data owner’s data and the data

in the database. Their work suffers from a heavy computation and communication cost by involving

the homomorphic encryption, and it cannot be applied to other machine learning methods directly.

Sadeghi et al. [120] has proposed a hybrid solution using homomorphic encryption and garbled

circuits, which improves the previous work by shifting most of the computation and communication

cost to the pre-computation phase. Rather than encryption, we propose a more efficient and general

method by using the dimensionality reduction methods.

5.7 Conclusion

This chapter explores the usage of dimensionality reduction techniques on privacy preserv-

ing face recognition. To demonstrate the proposed approach, we implement an efficient privacy

preserving face recognition client server system, FRiPAL, using three dimensionality reduction

methods, PCA, LDA and DCA with two types of features. The system performance is evaluated

on two Android devices, Nexus 5X and Nexus 6P. The results confirm the efficiency of your system

for real life usage. Through the extensive experiments, all three methods have similar accuracy

results when using the same feature type. RE and HS is utilized to illustrate the privacy preserv-

ing performance. As the privacy policy level increasing, the privacy preserving of PCA degrades,

while DCA and LDA has a more consistent and better results than PCA. Therefore, DCA and

LDA maintain the utility while provide abetter privacy preserving. In the future, we will work on

applying our methods on the multiple data owner and multiple data user scenario.
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Chapter 6: Utility-aware Privacy-preserving Data Releasing

In the big data era, more and more cloud-based data-driven applications are developed that

leverage individual data to provide certain valuable services (the utilities). On the other hand,

since the same set of individual data could be utilized to infer the individual’s certain sensitive

information, it creates new channels to snoop the individual’s privacy. Hence it is of great impor-

tance to develop techniques that enable the data owners to release privatized data, that can still

be utilized for certain premised intended purpose. Existing data releasing approaches, however,

are either privacy-emphasized (no consideration on utility) or utility-driven (no guarantees on pri-

vacy). In this work, we propose a two-step perturbation-based utility-aware privacy-preserving data

releasing framework. First, certain predefined privacy and utility problems are learned from the

public domain data (background knowledge). Later, our approach leverages the learned knowledge

to precisely perturb the data owners’ data into privatized data that can be successfully utilized

for certain intended purpose (learning to succeed), without jeopardizing certain predefined privacy

(training to fail). Extensive experiments have been conducted on Human Activity Recognition,

Census Income and Bank Marketing datasets to demonstrate the effectiveness and practicality of

our framework.

6.1 Introduction

As the advent and advance of cloud computing and data science in this big data era, more

and more cloud-based data-driven applications are developed by different service providers (the

data users, such as Facebook, LinkedIn and Google). Most of these applications leverage the vast

amount of data collected from each individual (the data owner) to offer certain valuable service

back to the corresponding individual or for the other political and commercial purposes, such as

friend recommendation, human activity recognition, health monitoring, targeted advertising and
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election prediction. However, the same set of data could be repurposed in different ways to infer

certain sensitive personal information, which would jeopardize the individual’s privacy.

In the recent Facebook data leak scandal (April, 2018) [121], about 87 million Facebook

users’ data were collected by a Facebook quiz app (a cloud-based data-driven application) and

then paired with information taken from their social media profile (including their gender, age,

relationship status, location and “likes”) without any privacy-preserving operations being taken

other than anonymization. Thus, the data user or the other adversaries that have the access to

the data can still infer certain sensitive information of each individual from his/her data, such as

identity, sexual orientation and marital status. The unprecedented data leak scandal raised the

alarm of privacy concerns among cloud-based data-driven applications which could became a big

obstacle that impedes the individuals from releasing their data to the service providers to receive

valuable service (the utilities).

A similar situation could happen in the patient-hospital scenario as shown in Fig. 6.1. Pa-

tient Alice (the data owner) would like to release her data to hospital Bob (the data user) with the

premise of using it for disease A diagnosis. However, people like Eve (could be Bob), who works

in the same hospital and has the access to Alice’s data, could use the same data to infer certain

irrelevant sensitive information about Alice, such as her disease B diagnosis. In this case, some

individuals (e.g., Facebook users or Alice) would like to release their data to receive good utili-

ties, while on the premise that the service providers are prevented from inferring certain sensitive

information from their data (e.g., identity, sexual orientation and marital status). Therefore, it

is of vital importance to develop a utility-aware privacy-preserving data releasing framework for

cloud-based data-driven applications, which enables the released data to be utilized for certain

premised intended purpose (utility target), without jeopardizing the corresponding data owner’s

certain privacy target.

Designing such general utility-aware privacy-preserving data releasing framework is rather

challenging. To date, a few related approaches have been proposed [122, 123, 124, 125, 25, 21,

18, 17, 101]. However, these approaches cannot fulfil all the privacy requirements needed in the

cloud-based data-driven application scenario. For example, approaches that relied on additive or

multiplicative random noise perturbation [123] and k-anonymity [122] cannot handle the curse of

dimensionality. Differential privacy machine learning approaches [124, 125, 25] have been proposed
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Bob: hospital [data user] 

If I have disease A?

If Alice has disease B?

Eve: attacker [another data user] 

If Alice is adult?

If Alice is female?

disease A diagnosis 

Alice: patient [data owner]

Figure 6.1: An example in patient-hospital scenario.

to publish machine learning models while preserving the training data privacy. In this chapter,

however, we consider the scenario that the machine learning models have been trained in advance

by the cloud-based service providers (the data users). The data to be protected would appear as

the testing data, which is beyond the scope of those approaches. Besides, [126] has shown that some

record-level differential privacy approaches applied to collaborative learning scenario are ineffective

in dealing with inference attacks. Dimensionality reduction based approaches [21, 18, 17, 101, 127]

have been proposed to preserve privacy while maintaining most of the utility. However, despite of

their good experimental performance on several public datasets, those approaches didn’t introduce

any uncertainty to hide the sensitive information, which failed to show the needed guarantees on

the privacy targets mathematically.

To address the challenges mentioned above, in this chapter, we devote to solve a two-

party exemplar problem. The data user (i.e., the cloud-based service provider) use his/her domain

knowledge and public domain data to train a model to provide certain service in advance. The

data owner would like to receive the service via sharing his/her own data as the testing data to the

data user. The data owner predefines several privacy targets (sensitive information) that he/she

would like to prevent the data user from inferring from his/her data. By “predefines”, we assume

that the data owner knows what the malicious inference and the corresponding domain knowledge

and public domain data will be utilized by the malicious data users.
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In this chapter, a two-step perturbation-based utility-aware privacy-preserving data releas-

ing framework is proposed to tackle this problem. Given certain specific utility/privacy targets

(i.e., the inference problems and the corresponding domain knowledge and public domain data),

our approach precisely transforms the original data into privatized data that can be successfully

utilized for certain intended purpose (learning to succeed), without jeopardizing certain predefined

privacy (training to fail). The first step is a coarse-grained data perturbation method, Joint Util-

ity/Privacy Analysis (JUPA). JUPA is an subspace-optimized projection method, which combines

the advantages from both DCA [21] (utility driven projection) and MDR [18] (privacy empha-

sized projection), and tries to find a subspace projection that could optimize for both utility and

privacy targets with the knowledge learned from the public datasets. The second step is a fine-

grained data perturbation method inspired by the “label changing” problems (e.g., adversarial

image perturbation [128, 129, 130, 131, 132, 133, 134]) in the computer vision area, where in order

to change the image’s class membership, very small perturbations are added to the image that

remain quasi-imperceptible to a human vision system. For instance, [130] proposed a Maximum

Mean Discrepancy [135] (MMD) statistic test related approach to make semantic change to the ap-

pearance of given images. We propose to use a MMD-like loss function to leverage the knowledge

(i.e., the discriminant distance among the classes in each privacy target) learned from the public

domain dataset and precisely perturb each coarse-grain-perturbed data to a fine-grain-perturbed

data that belongs to a randomly selected privacy target class (the data owner’s secret parameter).

In the experiments, we have tested our frame on three public datasets: Human Activity

Recognition, Census Income and Bank Marketing datasets. The experiment results demonstrate

that (a) JUPA is a more general utility-aware dimensionality reduction approach compared with

DCA [21] and MDR [18]; (b) given certain predefined privacy target, our fine-grained data per-

turbation approach can reduce the accuracy of the corresponding inference attack to the level of

random guessing.

The rest of chapter is organized as follows: Section 6.2 presents the related works. Sec-

tion 6.3 presents the preliminaries about dimensionality reduction and maximum mean discrepancy.

Section 6.4 describes our proposed utility-aware privacy-preserving data releasing framework. Sec-

tion 6.5 presents the experimental evaluation. Section 6.6 presents the conclusion and future work.
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6.2 Related Work

A few privacy-preserving data releasing approaches have been proposed, including solu-

tions based on cryptography [136, 137, 138, 139], differentially private synthetic data genera-

tion [140, 141, 142, 143], and dimensionality reduction [106, 21, 18, 17, 101, 127]. Most of the

cryptography-based approaches are designed for specific applications/algorithms. For instance,

[137] developed a privacy-preserving ridge regression system that utilized additive homomorphic

encryption and Garbled circuits to train a ridge regression model with the encrypted data statistic

shares submitted by multiple data owners. [138] proposed to use cryptographic building blocks to

enable testing new samples while protecting both the ML model and the submitted samples, in

three popular classification protocols: hyperplane decision, Näıve Bayes, and decision trees. Al-

though cryptography-based approaches prevent the adversaries from performing inference attack on

the encrypted data/model, they are not flexible enough to work for general data releasing purpose.

Differential privacy (DP) [19] is one of the most popular standard for quantifying individ-

ual privacy. DP aims to protect the privacy of individuals via adding randomness to the aggregate

information. Differentially private synthetic data generation approaches utilize those differentially

private aggregate information to generate synthetic data. For instance, [141] considers to use dif-

ferential privacy component analysis for data releasing. “Plausible Deniability” [142], has been

proposed and achieved by applying a privacy test after generating the synthetic data. The genera-

tive model proposed in [142] is a probabilistic model which captures the joint distribution of features

based on correlation-based feature selection (CFS) [144]. [140] proposed an algorithm which com-

bines the multiplicative weights approach and exponential mechanism for differentially private data

release. [143] proposed a micro-aggregation [145] based differential private data releasing approach

which reduces the noise required by differential privacy based on k-anonymity. Although DP-based

approaches provide strong guarantees on individuals’ privacy, they does not take any utility targets

into account in designing their privacy-preserving data releasing mechanisms.

The dimensionality reduction approaches provide a promising way to irreversibly transform

the original data, and publish the transformed data for general usage. [106] proposed to use

random projection matrix to project the original data to a lower dimensional space. However, the

random projection method mainly focuses on the privacy targets without considering the utility
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targets, which downgrades its utility performance. A few dimensionality reduction based privacy-

preserving approaches focusing on maintaining the utility have been proposed [21, 18, 17, 101, 127].

For instance, [21] proposed to use Discriminant Component Analysis (DCA), a supervised version

of Principle Component Analysis (PCA), to project the data into a lower dimensional space that

maximizes the discriminant power for specific targets. However, since DCA mainly focuses on the

utility target, it might maintain the utility while somewhat preserve the privacy because of the

information loss through the dimensionality reduction. However, DCA could not control or adjust

the projection matrix in terms of the privacy target. [18] proposed Multi-class Discriminant Ratio

(MDR), which projects the data based on a pair of classification targets, (a) a privacy-insensitive

and (b) a privacy-sensitive target. RUCA [127], improves the MDR to provide more flexibility

to adjust the trade-off or tuning between utility and privacy. However. these approaches do not

introduce any uncertainty/randomness to hide the sensitive information, which failed to show the

needed guarantees on the privacy targets mathematically.

6.3 Preliminaries

6.3.1 Dimensionality Reduction via Eigenvalue Decomposition

An important component of our framework is supervised dimensionality reduction technique

(i.e., it relies on data labels). Consider a dataset with N training samples {x1, x2, . . . , xN}, where

each sample has M features (xi ∈ RM ). Since the same dataset could be utilized in different

classification problems, each classification problem c has a unique set of labels Lci associated with

the corresponding training samples xi. Without loss of generality, we assume the dataset could be

utilized for a single utility target U and a single privacy target P . Then, each training sample xi

has two labels Lui ∈ {1, 2, . . . , Lu} and Lpi ∈ {1, 2, . . . , Lp}. Lu and Lp are the numbers of classes

of the utility target and the privacy target, respectively.

Based on Fisher’s linear discriminant analysis [146, 147], given a classification problem, the

within-class scatter matrix of its training samples contains most of the “noise information”, while

the between-class scatter matrix of its training samples contains most of the “signal information”.
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We define the within-class scatter matrix and the between-class scatter matrix for the utility

target as follows:

SWU
=

Lu∑
l=1

( Nu
l∑

i=1

xix
T
i −Nu

l µlµ
T
l

)
(6.1)

SBU =
Lu∑
l=1

Nu
l µlµ

T
l −NµµT (6.2)

where µ = 1
N

∑N
i=1 xi, µl is the mean vector of all training samples belonging to class l, Nu

l is the

number of training samples belonging to class l of the utility target.

Similarly, for the privacy target the within-class scatter matrix and the between-class scatter

matrix define as:

SWP
=

Lp∑
l=1

( Np
l∑

i=1

xix
T
i −N

p
l µlµ

T
l

)
(6.3)

SBP =
Lp∑
l=1

Np
l µlµ

T
l −NµµT (6.4)

Let W be an K×M projection matrix, in which K < M . Given testing sample x, x̂ = xT ·W

is its subspace projection. Our framework combines the advantages of two eigenvalue decomposition

based dimensionality reduction techniques: DCA [21] (utility driven projection) and MDR [18]

(privacy emphasized projection).

6.3.1.1 Discriminant Component Analysis (DCA)

DCA [21] involves searching for the projection matrix W ∈ RM×K :

DCA =
det(W TSBUW )

det(W T (S̄ + ρI)W )
(6.5)

where det(·) is the determinant operator, ρI is a small regularization term added for numerical

stability, and S̄ = SWU
+ SBU =

∑N
i=1 xix

T
i −NµµT .

The optimal solution to this problem can be derived from the first K principal generalized

eigenvectors of the matrix pencil (SBU , S̄ + ρI).
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6.3.1.2 Multi-class Discriminant Ratio (MDR)

MDR [18] considers both the utility target and the privacy target, which is defined as:

MDR =
det(W T (SBU )W )

det(W T (SBP + ρI)W )
(6.6)

where ρI is a small regularization term added for numerical stability.

The optimal solution to MDR can be derived from the first K principal generalized eigen-

vectors of the matrix pencil (SBU , SBP + ρI).

6.3.2 Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepancy [135] (MMD) statistic has been proposed to test whether

two distributions p and q are different based on the samples drawn from each of them. In this

work, our fine-grained data perturbation utilized a MMD-like loss function inspired by a kernel-

MMD solution [148]. Let p and q be two distributions defined on a domain X . Given observations

X := {x1, x2, . . . , xm} and Y := {y1, y2, . . . , yn}, drawn i.i.d. from p and q respectively, the kernel-

MMD solution [148] is defined as:

MMD[F , X, Y ] =
1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

=
[ 1

m2

m∑
i,j=1

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, yj)

+
1

n2

n∑
i,j=1

k(yi, yj)
] 1

2

(6.7)

where F is a unit ball in a universal RKHS H, defined on the compact metric space X , with

associated kernel k(·, ·), and φ(x) = k(x, ·). MMD[F , X, Y ] ≈ 0, if and only if p = q.
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Inference Attack

𝒙 ∈ 𝑷𝟏 or 𝒙 ∈ 𝑷𝟐 ?

𝑿′ = [𝑿′𝑷𝟏 ,
𝑿′𝑷𝟐]

𝑿′𝑷𝟏 = 𝑿′𝑷𝟏
𝑻 ⋅ 𝑾′, 𝑿′𝑷𝟐 = 𝑿′𝑷𝟐

𝑻 ⋅ 𝑾′

Public Space

Private Space

Data User

(Malicious Data User)

Figure 6.2: A utility-aware privacy-preserving data releasing framework.

6.4 Utility-aware Privacy-preserving Data Releasing Framework

6.4.1 Framework Overview

6.4.1.1 Problem Statement

As illustrated in Fig. 6.2, our framework involves two parties: the data owner(s) and the

data user(s). The data user uses public data (background knowledge) to train a machine learning

model (i.e., classification model) in advance to provide certain service (the utility targets). The data

owner would like to release her private data to the data user for the purpose of the utility targets,

and prevent the malicious data user from inferring certain predefined sensitive information (the

privacy targets). Assume the data owner and the data user have access to similar set of public data

(background knowledge) utilized for both utility and privacy targets, but the data owner does’t

know the data user’s machine learning model. Our goal is to perturb the data owner’s private data

x into perturbed data z with the knowledge of predefined utility and privacy targets, such that the

perturbed data z could be utilized successfully for the intended purposes (i.e., the utility target

achieves similar accuracies using either x or z), without jeopardizing the data owner’s privacy (i.e.,

the privacy target get no better accuracy than random guessing while using z). To achieve this

goal, we propose a two-step data perturbation framework (Fig. 6.2). More details about the two

steps are described in Section 6.4.2 and Section 6.4.3.

6.4.1.2 Threat Model

The adversaries in our framework are the malicious data users, who have the access to the

public data that could be utilized as the training data for certain predefined privacy target. The

adversaries would like to infer the knowledge (i.e., class) of the privacy target (i.e., classification
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problems) associated with the data owner’s private data based on the corresponding perturbed data

and public data (background knowledge). For instance, as shown in Fig. 6.2, we shall assume that

the predefined privacy target is a two-class (i.e., {P1, P2}) classification problem (utility targets

are independent from the privacy task). Let X = [XP1 , XP2 ] be the public training samples for

the privacy target, where XPi (i ∈ {1, 2}) presents the samples associated with class i. Let x be

the data owner’s private data, where s ∈ {P1, P2} is its original (privacy target) class and t ∈

{P1, P2} is its expected (privacy target) class after our privacy-preserving data releasing operation.

The data owner could publish z (i.e., the perturbed version of x) using our framework F : z ←

F (x, t,XP1 , XP2). The adversary has to use his/her approach A(z,XP1 , XP2) to guess/infer the

original (privacy task) class s.

6.4.2 Coarse-grained Data Perturbation

In this section, we introduce a general dimensionality reduction method Joint Utility/Privacy

Analysis (JUPA). JUPA combines the advantages from both DCA [21] (utility driven projection)

and MDR [18] (privacy emphasized projection), and tries to find a subspace projection that could

optimize for both utility and privacy targets with the knowledge learned from the public datasets.

Our problem settings are exactly the same as described in Section 6.3.1. For simplicity, we shall

start from a single utility/privacy target scenario. JUPA tries to find a projection matrix W that

maximize the following function:

JUPA =
det(W T (SBU + ρ′1SWP

)W )

det(W T (SWU
+ ρ1SBP + ρ0I)W )

(6.8)

where det(·) is the determinant operator, ρ0 is regularization parameter added for numerical sta-

bility, and ρ1, ρ′1 are privacy-utility adjustment parameters.

The optimal solution to JUPA can be derived from the first K principal generalized eigen-

vectors of the matrix pencil (SBU +ρ′1SWP
, SWU

+ρ1SBP +ρ0I). After getting the projection matrix

W , we perturb the data owner’s private data x and the training data matrix X as x̂ = xTW and

X̂ = XTW .

127



Additionally, JUPA can be generalized to multiple utility/privacy targets by including mul-

tiple corresponding scatter matrices:

JUPA =
det(W T (

∑Nu
i=1 SBUi +

∑Np
i=1 ρ

′
iSWPi

)W )

det(W T (
∑Nu

i=1 SWUi
+
∑Np

i=1 ρiSBPi + ρ0I)W )
(6.9)

6.4.2.1 Utility vs. “Somewhat Privacy”

JUPA maintains a trade-off between the utility and “somewhat privacy”. “somewhat pri-

vacy” means our coarse-grained perturbation approach optimizes towards privacy, but could not

provide privacy guarantee (as in Section 6.4.3). On one hand, JUPA optimizes a subspace projec-

tion that maximizes the “signal to noise” ratio of the utility targets. On the other hand, JUPA

optimizes towards two “mappings” for privacy targets: a “many-to-one” mapping, after which data

belonging to the same privacy class are near each other (tuned by ρ′1); and a “one-to-many” map-

ping, after which data belonging to different privacy classes are far from each other (tuned by ρ1).

By adjusting ρ1 and ρ′1, JUPA could be tuned between DCA [21], MDR [18] and RUCA [127]. For

instance, if ρ1 = ρ′1 = 0, this projection method becomes DCA; if ρ1 is very large and ρ′1 = 0, it

becomes MDR as the term SBP dominates (SWU
+ ρ1SBP + ρ0I); and if ρ′1 = 0 it becomes RUCA.

Higher value of ρ1 and ρ′1 means more emphasis on the privacy targets.

6.4.3 Fine-grained Data Perturbation

In this section, we introduce a perturbation approach that gradually change the privacy

target classification label of a given data owner’s coarse-grained perturbed data x̂ from its source

(original) label s to a randomly selected target label t, via adding precisely calculated noise. For

simplicity, we shall assume a single 2-class ({P1, P2}) privacy target scenario. Except for the data

owner’s coarse-grained perturbed data x̂, another input for this approach is the coarse-grained

perturbed training data matrix X̂ = [X̂P1 , X̂P2 ], where X̂ will be split into two parts: X̂G =

[X̂G
P1
, X̂G

P2
] and X̂V = [X̂V

P1
, X̂V

P2
]. X̂G is the “ground truth” training data matrix being used to

gradually “train” the fine-grained perturbed data. X̂V is the “verification” training data matrix

being used to verify the current label of the input data x̂ and intermediate perturbed data.
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Given coarse-perturbed private data x̂, we start from randomly selecting a target label

t ∈ {P1, P2} for x̂, and use the following function to decide its current (source) label s ∈ {P1, P2}:

s =label(x̂) ={l:l∈{P1,P2}}
( 1

|X̂V
l |

∑
x̂i∈X̂V

l

φ(x̂i)− φ(x̂)
)2

={l:l∈{P1,P2}}
1

|X̂V
l |2

∑
x̂i,x̂j∈X̂V

l

k(x̂i, x̂j)

− 2

|X̂V
l |

∑
x̂i∈X̂V

l

k(x̂i, x̂) + k(x̂, x̂)

={l:l∈{P1,P2}}
1

|X̂V
l |2

∑
x̂i,x̂j∈X̂V

l

k(x̂i, x̂j)

− 2

|X̂V
l |

∑
x̂i∈X̂V

l

k(x̂i, x̂)

(6.10)

Our approach perturbs x̂ in an iterative fashion. Let zi be the ith (i = 1, 2, . . . ) intermediate

perturbed data. Then, our iterative data sanitization function is defined as:

z0 =x̂

zi =zi−1 + θ(zi−1) (i = 1, 2, . . . )

(6.11)

where θ(zi) is the noise vector being added to zi. The starting noise vector θ(z0) could be initiated

as a zero vector or a random vector.

In order to compute θ(zi) in each iteration, inspired by the kernel-MMD solution [148]

described in Section 6.3.2, we define a loss function as:

L(θ(zi)) =
( 1

nt

∑
x̂i∈X̂G

t

φ(x̂i)− φ(zi)
)2

−
( 1

ns

∑
x̂i∈X̂G

s

φ(x̂i)− φ(zi)
)2

+
λ

2
‖θ(zi)‖22

=
1

n2
t

∑
x̂i,x̂j∈X̂G

t

k(x̂i, x̂j)−
1

n2
s

∑
x̂i,x̂j∈X̂G

s

k(x̂i, x̂j)

+
2

ns

∑
x̂i∈X̂G

s

k(x̂i, zi)−
2

nt

∑
x̂i∈X̂G

t

k(x̂i, zi)

+
λ

2
‖θ(zi)‖22

(6.12)
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A large negative value of L(θ(zi)) indicates zi belongs to the target class, and a large positive

value of L(θ(zi)) indicates zi belongs to the source class. Therefore, the value of θ(zi) is obtain

by minimizing the loss function L(θ(zi)) gradually, until label(zi) is t. To solve this optimization

problem, we use a gradient descent approach:

5θ(zi)L(θ(zi)) =
1

ns

∑
x̂i∈X̂G

s

k(x̂i, zi)
x̂i − zi
σ2

− 1

nt

∑
x̂i∈X̂G

t

k(x̂i, zi)
x̂i − zi
σ2

+ λ · θ(zi)

(6.13)

θ(zi) = θ(zi)− α5θ(zi) L(θ(zi)) (6.14)

where we use RBF kernel k(xi, xj) = e−
‖xi−xj‖

2
2

2σ2 as an example, and α is the learning rate. Finding

the most appropriate kernel function is beyond the scope of this chapter, and there are a few

papers discussing about kernel selection [149, 150]. In the experimental evaluation, we use the

kernel function that gives the highest cross-validation accuracy on the training data.

6.4.3.1 Privacy Guarantee

Considering the “two-class” scenario described in Section 6.4.1, we assume the adversaries’

approach A(z,XP1 , XP2) would be certain kernel-based classification models trained by public avail-

able dataset [XP1 , XP2 ]. Inspired by semantic security [151], we give our definition of a privacy-

preserving data releasing framework as below.

6.4.3.2 Privacy-preserving Data Release

We define F as a privacy-preserving data release, if given predefined privacy target and

certain adversaries’ approach A, the advantage Adv[A,F ] = |Pr(s = P1)−Pr(s = P2)| is negligible.

(It is straightforward to generate this definition to multi-class scenarios.)

Our proposed framework is a privacy-preserving data releasing framework.
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Proof. Given predefined privacy target, certain appropriate kernel function and public available

dataset [XP1 , XP2 ], our framework precisely perturbs the private data x towards a perturbed data

z associated with a randomly selected privacy target label t. Then, given z and [XP1 , XP2 ], we

have Pr(s = P1) = Pr(s = P2) = 1
2 . Therefore, Adv[A,F ] = |Pr(s = P1) − Pr(s = P2)| = 0 is

negligible.

6.5 Experimental Evaluation

6.5.1 Experiment Datasets

We have tested our proposed frame with three public datasets: Human Activity Recognition

(HAR) [152], Census Income (Census) [153] and Bank Marketing (Bank) [154]. Each dataset has

been split into three subsets: training samples (for perturbation approaches), testing samples (data

owner’s private data), and adversary training samples (for inference attacks).

Human Activity Recognition (HAR) [152] dataset contains smartphone sensor data (i.e.,

accelerometer data) of 30 subjects’ daily activities, where each sample has 561 features and two

labels: activities of daily living (ADL) and identity (ID). In our experiments, we consider ADL as

the utility target and ID as the privacy target. Specifically, ADL has 6 types of labels: “Walking”,

“Walking Upstairs”, “Walking Downstairs”, “Sitting”, “Standing” and “Laying”. On the other

hand, ID has 30 types of labels, since 30 subjects have contributed to this dataset. The original

dataset is unbalanced. For instance, some subjects contribute more data than the others and

some ADLs happen more often than the others. As such, for each different ADL-ID combination

(6× 30 = 180 combinations in total), we randomly sampled 20 samples from the original dataset,

resulting in 3,600 samples. The numbers of training, testing and adversary training samples are

1,440, 720 and 1,440, respectively. We kept the number of samples in all ADL-ID combinations

equal in all sets.

Census Income (Census) [153] dataset has been used to predict whether someone’s income

exceeds $50K/yr based on census data. We identify two labels of this dataset: “income”, where the

data user tries to classify if someone’s income is “high” (higher than $50K/yr) or “low” (lower or

equal to $50K/yr); and “gender” (i.e., male/female) which was one feature in the original dataset.

Since based on the application, either “income” or “gender” can be served as utility or privacy
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targets, we experimented for both cases. Firstly, we removed the samples with missing features.

Secondly, we turned all categorical features into numerical features using binary encoding, which

resulted in 51 features. Lastly, we randomly sampled 750 samples for each income-gender combi-

nation (2× 2 = 4 combinations in total) from the original dataset, resulting in 3,000 samples. The

numbers of training, testing and adversary training samples are 1,200, 600 and 1,200, respectively.

As with the HAR dataset, we kept the number of samples in all income-gender combinations equal

in all sets.

Bank Marketing (Bank) [154] dataset is related with direct marketing campaigns (phone

calls) of a Portuguese banking institution. The original classification goal is to predict if the

client will subscribe a term deposit (marketing purpose). As such, we used the marketing purpose

(“marketing”) as the utility target, which is a “yes” or “no” binary classification problem. We

used marital status (“marital”) as the privacy target, which was one feature in the original dataset.

Since very few samples have “unknown” marital status, we removed those samples. Thus, “marital”

has 3 types of labels: “divorced”, “married” and “single”. As with the Census, we turned all

categorical features into numerical features using binary encoding, resulting in 31 features. We

randomly sampled 410 samples for each marketing-marital combination (2× 3 = 6 combinations in

total) from the original dataset, resulting in 2,460 samples. The numbers of training, testing and

adversary training samples are 984, 492 and 984, respectively. We also kept the number of samples

in all marketing-marital combinations equal in all sets.

6.5.2 Experiment Setups

We evaluate the performance of our proposed two perturbation approaches step-by-step,

in terms of utility and privacy. In all the experiments, we utilized RBF-kernel SVM to train the

machine learning classifiers for both the utility and privacy targets. The utility classifier is to

provide certain premised valuable service, while the privacy classifier is to perform the adversaries’

inference attack. All the experiments were performed 15 iterations. At each iteration, a 10-fold

cross-validation grid search was performed to find the best set of parameters for training utility

and privacy classifiers. As discussed in the last section (Section 6.5.1), we evaluate our frame using

three datasets and four scenarios. Given a scenario and its dataset, the evaluation metric is the

accuracy of its utility/privacy classifiers. Higher accuracy of the utility classifier means providing
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better utility. Lower accuracy of the privacy classifier means less privacy leakage. The baseline

(i.e., lowest accuracy, no privacy leakage) of the privacy classifier should be equal to the probability

of random-guess, of which the prediction is drawn i.i.d. from a uniform distribution.

For the coarse-grained perturbation, we compare our proposed JUPA with a full-dimensional

baseline method and four existing dimensionality reduction methods, including Random Projection,

PCA, DCA and MDR. Moreover, We evaluate JUPA with regularization parameter ρ0 = 0.001,

and different combinations of privacy-utility adjustment parameters ρ1 = 1, 102, 104, ρ′1 = 1, 102,

104. For the fine-grained perturbation, we set λ = 0.001, α = 0.1, and use a zero vector to initiate

the starting noise vector θ(z0).

6.5.3 Experiment Results

Table 6.1, Table 6.2, Table 6.3 and Table 6.4 shows the experimental results of four sce-

narios (three datasets), and the following are the main observations and conclusions drawn from

experimental results.

Considering the coarse-grained perturbation approach alone, JUPA outperforms the other

DR methods in terms of the utility and “somewhat privacy”. Compared with PCA and random

projection, DCA, MDR and JUPA provide better balance between the utility and “somewhat

privacy” performance, since PCA and random projection are not leveraging any help from the

“label” information. For instance, in Table 6.1, after applying random projection (coarse-grained),

the accuracy of ID (privacy) dropped from 62.78% to 13.75% (providing one of the best privacy

performance), and the accuracy of ADL (utility) dropped from 97.22% to 60.28% (giving one of the

worst utility performance). On the contrary, after applying PCA (coarse-grained), the accuracy of

either utility or privacy does not drop much (providing less “somewhat privacy”). Compared with

DCA and MDR, JUPA provides better utility and “somewhat privacy” performance under certain

privacy parameters. For instance, in Table 6.1, when ρ1 = 1 and ρ′1 = 1, compared with other

DR methods, JUPA (coarse-grained) provides the highest accuracy (96.11%) of ADL (utility), and

also the second lowest accuracy (only higher than random projection) (21.11%) of ADL (utility).

Results in the other scenarios are inline with this observation.

JUPA provides the flexibility for finding a favorable trade-off or tuning between utility and

privacy by tuning the privacy parameters. Based on our results, by increasing ρ1 = 1 or ρ′1 = 1,
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Table 6.1: The mean accuracy percentage results of HAR dataset. (K = 5, ADL is the utility
target, and ID is the privacy target.)

Projection Method
ADL ID

Coarse Fine Coarse Fine

Full-Dimensional 97.22 66.94 62.78 3.33

Random Projection 60.28 57.36 13.75 3.33

PCA 84.72 73.33 30.28 3.75

DCA 94.58 93.75 23.61 3.33

MDR 91.67 88.75 22.92 4.58

JUPA (ρ1 = 1, ρ′1 = 1) 96.11 94.31 21.11 3.75

JUPA (ρ1 = 1, ρ′1 = 102) 95.83 93.47 20.28 3.61

JUPA (ρ1 = 1, ρ′1 = 104) 95.56 93.47 19.72 3.33

JUPA (ρ1 = 102, ρ′1 = 1) 94.44 93.33 20.00 3.33

JUPA (ρ1 = 102, ρ′1 = 102) 94.17 92.64 17.78 3.33

JUPA (ρ1 = 102, ρ′1 = 104) 93.75 92.36 16.67 3.33

JUPA (ρ1 = 104, ρ′1 = 1) 92.50 88.19 13.61 3.33

JUPA (ρ1 = 104, ρ′1 = 102) 89.58 86.39 12.50 3.33

JUPA (ρ1 = 104, ρ′1 = 104) 87.50 86.11 12.08 3.33

JUPA weights more emphasis on preserving privacy (providing accuracy) with small amount of

accuracy drop on the utility. For instance, in Table 6.1, adjusting JUPA from ρ1 = 1, ρ′1 = 1 to

ρ1 = 104, ρ′1 = 104, results in a 42.78% drop of the ID (privacy) accuracy (from 21.11% to 12.08%),

while only resulting in a 8.96% drop of the ADL (utility) accuracy (from 96.11% to 87.50%).

Our fine-grained perturbation approach provides the privacy guarantee. For instance, in all

the scenarios, after applying the fine-grained perturbation, the accuracies of privacy targets are all

converging to or near to the probability of random-guess.

In our framework, combining JUPA with the fine-grained perturbation outperforms the

other options in terms of the utility. For instance, in Table 6.1, compared with other DR methods,

DCA, MDR and JUPA (fine-grained) provide relative higher accuracy of ADL (utility) (≤ 86.11%),

and when ρ1 = 1 and ρ′1 = 1, JUPA provides the best utility accuracy (94.31%). Results in

the other scenarios are inline with this observation. The reason is that even though the fine-

grained perturbation could provide guarantee for privacy, applying supervised DR methods (DCA,

MDR and JUPA) reserves more utility information and need less noise added to the coarse-grained

perturbed data to achieve the privacy guarantee.
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Table 6.2: The mean accuracy percentage results of census dataset (income). (K = 1, income is
the utility target, and gender is the privacy target.)

Projection Method
income gender

Coarse Fine Coarse Fine

Full-Dimensional 84.50 69.76 87.33 50.00

Random Projection 58.33 50.50 59.17 50.00

PCA 73.33 70.33 81.67 50.00

DCA 80.00 73.50 56.00 50.00

MDR 76.67 68.33 58.00 50.00

JUPA (ρ1 = 1, ρ′1 = 1) 82.50 75.33 55.50 50.00

JUPA (ρ1 = 1, ρ′1 = 102) 80.00 75.16 54.67 50.00

JUPA (ρ1 = 1, ρ′1 = 104) 78.33 74.33 54.67 50.00

JUPA (ρ1 = 102, ρ′1 = 1) 79.17 74.66 55.00 50.00

JUPA (ρ1 = 102, ρ′1 = 102) 77.50 74.00 54.50 50.00

JUPA (ρ1 = 102, ρ′1 = 104) 76.67 73.83 54.17 50.00

JUPA (ρ1 = 104, ρ′1 = 1) 76.00 73.67 53.17 50.00

JUPA (ρ1 = 104, ρ′1 = 102) 75.00 73.50 52.67 50.00

JUPA (ρ1 = 104, ρ′1 = 104) 72.00 66.83 51.17 50.00

Table 6.3: The mean accuracy percentage results of census dataset (gender). (K = 1, gender is
the utility target, and income is the privacy target.)

Projection Method
gender income

Coarse Fine Coarse Fine

Full-Dimensional 87.33 73.50 84.50 50.00

Random Projection 59.17 59.17 58.33 50.00

PCA 81.67 70.33 73.33 50.00

DCA 87.50 80.50 53.17 50.00

MDR 86.67 77.83 56.00 50.00

JUPA (ρ1 = 1, ρ′1 = 1) 88.00 82.5 57.17 50.00

JUPA (ρ1 = 1, ρ′1 = 102) 87.67 82.17 55.67 50.00

JUPA (ρ1 = 1, ρ′1 = 104) 87.50 82.17 55.50 50.00

JUPA (ρ1 = 102, ρ′1 = 1) 87.67 81.33 55.67 50.00

JUPA (ρ1 = 102, ρ′1 = 102) 86.67 81.17 54.67 50.00

JUPA (ρ1 = 102, ρ′1 = 104) 86.00 80.17 54.67 50.00

JUPA (ρ1 = 104, ρ′1 = 1) 87.00 80.33 54.33 50.00

JUPA (ρ1 = 104, ρ′1 = 102) 86.67 79.67 53.50 50.00

JUPA (ρ1 = 104, ρ′1 = 104) 85.67 78.67 52.67 50.00

6.6 Conclusion

In this chapter, we proposed a two-step perturbation-based utility-aware privacy-preserving

data releasing framework. In the first step, we proposed JUPA, a supervised DR method, which

outperforms several existing DR methods in terms of providing utility and “somewhat privacy”,
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Table 6.4: The mean accuracy percentage results of bank marketing dataset. (K = 1, marketing
is the utility target, and marital is the privacy target.)

Projection Method
marketing marital

Coarse Fine Coarse Fine

Full-Dimensional 86.38 69.11 45.73 34.15

Random Projection 60.57 54.88 39.23 33.33

PCA 71.14 70.73 41.06 33.33

DCA 84.76 78.66 38.01 33.33

MDR 71.75 67.48 36.79 33.33

JUPA (ρ1 = 1.0, ρ′1 = 1.0) 86.38 81.30 39.63 33.33

JUPA (ρ1 = 1.0, ρ′1 = 102) 86.18 79.67 38.82 33.33

JUPA (ρ1 = 1.0, ρ′1 = 104) 85.37 78.66 38.41 33.33

JUPA (ρ1 = 102, ρ′1 = 1.0) 86.18 76.22 38.01 33.33

JUPA (ρ1 = 102, ρ′1 = 102) 85.98 75.61 37.60 33.33

JUPA (ρ1 = 102, ρ′1 = 104) 85.98 75.41 36.18 33.33

JUPA (ρ1 = 104, ρ′1 = 1.0) 85.37 75.20 36.99 33.33

JUPA (ρ1 = 104, ρ′1 = 102) 84.35 75.00 36.59 33.33

JUPA (ρ1 = 104, ρ′1 = 104) 83.13 74.59 35.77 33.33

and provides the flexibility for finding a favorable trade-off or tuning between utility and privacy

by tuning the privacy parameters. In the second step, we proposed a fine-grained perturbation

approach, which guarantees to provide the protection against inference attacks on certain predefined

privacy targets. In the experimental evaluation, we deployed our frame in four scenarios using

three public dataset. The experiment results are inline with our expectations and demonstrating

the effectiveness and practicality of our framework. Future work will include and extension of

JUPA to support non-linear sub-space projections, and an optimized kernel selection method for

our fine-grained perturbation approach.
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Chapter 7: Locally Differentially Private Distributed Deep Learning

Deep learning often requires a large amount of data. In certain real-world applications, e.g.,

healthcare applications, the data collected by a single organization (e.g., hospital) is often limited,

and the majority of massive and diverse data is often segregated across multiple organizations.

As such, it motivates the researchers to conduct distributed deep learning, where the data user

(e.g., researcher/organization) would like to build DL models using the data segregated across

multiple different data owners (e.g., organizations). However, this could lead to severe privacy

concerns due to the sensitive nature of the data, thus the data owners would be hesitant and

reluctant to participate. In this chapter, we propose LDP-DL, a privacy-preserving distributed

deep learning framework via local differential privacy and knowledge distillation. Our approach

use a “teacher-student” paradigm, where each data owner learns a teacher model using its own

(local) private dataset, and the data user aims to learn a student model to mimic the output of the

ensemble of the teacher models using the unlabelled public data. To ensure privacy, our approach

employs local differential privacy on the data owners’ side, i.e., the query results of each teacher

model. We also design an active query sampling approach that could actively select a subset of the

unlabelled public dataset for the data user to query from the data owners, thus save the privacy

budget. In the experimental evaluation, a comprehensive comparison has been made among our

proposed approach (i.e., LDP-DL), DP-SGD, PATE and DP-FL, using three popular deep learning

benchmark datasets (i.e., CIFAR10, MNIST and FashionMNIST). The experimental results show

that LDP-DL consistently outperforms the other competitors in terms of privacy budget and model

accuracy.

7.1 Introduction

Deep learning (DL) has been shown to achieve extraordinary results in a variety of real-

world applications, such as skin lesion analysis [155], active authentication [156], facial recognition
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[157, 101], botnet detection [5, 158] and community detection [72]. In traditional DL environment,

training data is held by a single organization in a centralized fashion, that executes the DL algo-

rithms. In general, a DL model would be more accurate and robust if it has been trained with

more massive and more diverse data. However, in certain real-world applications, e.g., healthcare

applications, the data collected by a single organization (e.g., hospital) is often limited, and the

majority of massive and diverse data is often segregated across multiple organizations. As such,

it motivates the researchers to conduct DL in a distributed fashion, where the data user (e.g.,

researcher/organization) would like to build DL models using the data segregated across multiple

different data owners (e.g., organizations). However, the data owners would be hesitant and reluc-

tant to participate in the data user’s distributed deep learning, if the data user’s protocol cannot

resolve the data owners’ important privacy concerns of their data. For instance, it has been shown

that the private information could be inferred during the learning process [159], and the member-

ship of certain training data could be traced back from the resulting trained model [160]. Hence,

it is imperative to design an effective privacy-preserving distributed deep learning approach.

Designing an effective and efficient privacy-preserving distributed deep learning approach

is highly challenging. To date, a few approaches [24, 161, 26] have been proposed for privacy-

preserving (distributed) deep learning. Papernot et al. [24] proposes PATE, a “teacher-student”

paradigm for privacy-preserving deep learning, where each data owner learns a teacher model

using its own (local) private dataset, and the data user aims to learn a student model using

the unlabelled public data (but no direct access to the data owners’ private data) to mimic the

output of the ensemble of the teacher models, i.e., the student learns to make predictions that

is the same as the most number of teachers. To ensure privacy, PATE [24] assumes a trusted

aggregator to provide a differentially private query interface, where the data user could query the

ensemble of the teacher models (from the data owners) using the unlabelled public data to obtain

the labels for the training of the student model. However, a fully trusted aggregator barely exists

in most of the real-world distributed deep learning scenarios. Chase et al. [161] proposes a private

collaborative neural network learning approach, that combines secure multi-party computation

(MPC), differential privacy (DP) and secret sharing. Since the MPC protocol is implemented via

a garbled circuit whose size is subject to the number of parameters (i.e., the size of the gradient)

of the neural network, it tends to be less efficient and not scalable while training larger neural
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networks. Also, in [161], using secret sharing requires at least two non-colluding honest data users

which might not be practical.

To address the challenges mentioned above, in this chapter, we propose LDP-DL, a privacy-

preserving distributed deep learning framework via local differential privacy [22] and knowledge

distillation [23]. Our approach adopts the same “teacher-student” paradigm as described in PATE

[24], where each data owner learns a teacher model using its own (local) private dataset, and the

data user aims to learn a student model to mimic the output of the ensemble of the teacher models

using the unlabelled public data. Knowledge distillation [23] has been applied on the ensemble of

the teacher models to enable faster and more accurate knowledge transferring to the student model,

and leverage the advantage of having multiple data owners (teacher models). To ensure privacy,

our approach employs local differential privacy on the data owners’ side, i.e., the query results

of each teacher model, which does not require any trusted aggregator (compared to [24]). Since

more queries to the teacher models tends to result in more privacy leakage (i.e., cost more privacy

budget), we also design an active query sampling approach that could actively select a subset of

the unlabelled public dataset for the data user to query from the data owners. In the experimental

evaluation, a comprehensive comparison has been made among our proposed approach (i.e., LDP-

DL), DP-SGD [25], PATE [24] and DP-FL [26], using three popular deep learning benchmark

datasets (i.e., CIFAR10 [27], MNIST [28] and FashionMNIST [29]). The experimental results show

that our LDP-DL framework consistently outperforms the other competitors in terms of privacy

budget and model accuracy.

To summarize, our work has the following contributions:

• We present a novel, effective and efficient privacy-preserving distributed deep learning

framework using local differential privacy and knowledge distillation.

• We present an active sampling approach to efficiently reduce the total number of queries

from the data user to each data owners, so that to reduce the total cost of privacy budget.

• A comprehensive experimental evaluation among our approach, DP-SGD [25], PATE [24]

and DP-FL [26] has been conducted on three benchmark dataset (i.e., CIFAR10 [27], MNIST [28]

and FashionMNIST [29]). For the sake of reproducibility and convenience of future studies about

privacy-preserving distributed deep learning, we have released our prototype implementation of
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LDP-DL, information regarding the experiment datasets and the code of our comparison experi-

ments. 6

The rest of this chapter is organized as follows: Section 7.2 presents the preliminaries

including local differential privacy and knowledge distillation. Section 7.3 presents the problem

statement and notations of privacy-preserving distributed deep learning, and describes our proposed

framework. Section 7.4 presents the experimental evaluation. Section 7.5 presents the related

literature review. Section 7.6 concludes.

7.2 Preliminaries

7.2.1 Local Differential Privacy

Differential Privacy (DP) [162, 163] aims to protect the privacy of individuals while releasing

aggregated information about the database, which prevents membership inference attacks [160] by

adding randomness to the algorithm outcome. Two databases D and D′ are neighbors if they differ

in only one entry. The formal definition of (ε, δ)-Differential Privacy [162, 164] is given as follows:

A randomized mechanism A is (ε, δ)-differentially private if for every two neighboring

databases D, D′ and for any subset S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ (7.1)

where Pr[·] denotes the the probability of an event, Range(A) denotes the set of all possible outputs

of algorithm A. Smaller values of ε, δ indicates closer between Pr[A(D) ∈ S] and Pr[A(D′) ∈ S],

thus stronger privacy protection gains. When δ = 0 the mechanism A satisfies ε-DP, which provides

stronger privacy guarantee than (ε, δ)- DP, where δ > 0.

Local Differential Privacy (LDP) [22] is the local setting of DP, which does not require any

trusted aggregator. In LDP, individuals (i.e., data owners) send their data to the data aggregator

after privatizing data by perturbation. Hence, these techniques provide plausible deniability for

individuals (i.e., data owners). Data aggregator collects all perturbed values and makes an esti-

mation of statistics such as the frequency of each value in the population. The formal definition

is given as follows: ε-Local Differential Privacy [165, 166]: A randomized mechanism A satisfies

6 https://github.com/nogrady/LDP-DL
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ε-LDP if for any input v1, v2 and for any subset S ⊆ Range(A):

Pr[A(v1) ∈ S] ≤ eε · Pr[A(v1) ∈ S] (7.2)

Compared with DP, LDP provides more protection to the data owners. Other than sending

the private data directly to a trusted aggregator, the data owners could perturb their private

data with the mechanism that satisfies ε-LDP, and then release the perturbed data. As such,

LDP provides a stronger privacy protection, since the aggregator (i.e., data user) only receives the

perturbed data and the true values of the private data never leave the hands of the data owners.

7.2.2 Knowledge Distillation

Knowledge Distillation (KD) [167, 23, 168] was originally designed for deep neural network

(DNN) compression and knowledge transfer. KD usually considers a “teacher-student” paradigm,

where the teacher model is a DNN (or an ensemble of a set of DNNs) that performs well on a

given dataset, and the student model is another neural network that may or may not have the

same architecture as the teacher model, but aims to mimic the performance of the teacher model(s)

using another public dataset. Hinton, et al. [23] proposes an end-to-end knowledge distillation

framework with a loss function, namely Distillation Loss, where the output of the teacher model

is used as the soft target (i.e., soft label) for the student model, and the overall loss function is

presented as below:

L(x; Θ) = α · H(y, σ(zs;T = 1))

+ β · H(σ(zt;T = τ), σ(zs;T = τ))

(7.3)

where y is the true label of data x, zs is the output of the student model, zt is the output of the

teacher model, σ(zs;T = 1)) is the softened label of zs at temperature T = 1, and σ(·;T = τ)) is

the softened label at temperature T = τ , and usually τ > 1.
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Figure 7.1: Problem overview.

7.3 Methodology

7.3.1 Problem Statement

In this work, we aim to develop a privacy-preserving distributed deep learning framework.

As shown in Fig. 7.1, we consider the following problem: Given L data owners, each data owner l

holds a set of private samples (X l, Y l), where X l = {xl1, xl2, . . . , xlnl}, Y
l = {yl1, yl2, . . . , ylnl}, x

l
i ∈ Rd,

and yli ∈ {1, 2, . . . , k} is the label associated with sample xli, i = 1, 2, . . . , nl; the untrustworthy data

user would like to learn a DNN model with the help of all the data owners, and a public dataset

XP that comes from the same distribution (i.e., the same problem) as the data owners’ private

datasets, but does not have the label information. In our problem setting, each data owner has

two privacy requirements: (i) the value of the individual private data should not be shared to the

data user, and (ii) any inference of the individual private data should be prevented from using the

intermediate communication messages and the data user’s DNN model.

7.3.2 Threat Model

In our problem, we assume (i) the data user is untrustworthy, and (ii) the data owners are

honest-but-curious, where each data owner follows the protocol honestly, but try to use the protocol

transcripts to extract new information. We assume the value of the individual private data is what
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Figure 7.2: The overview of LDP-DL framework.

the adversaries would like to acquire during the whole protocol. Hence, the adversaries could be

the data user, the participating data owners or an outside attacker that has the access to the

intermediate communication messages or the data user’s DNN model. We also assume that the

adversaries may have arbitrary background knowledge and might collude with each other. Our

work aims to protect the privacy of each data owner’s individual private data while providing

the reasonable utility to the data user’s DNN model. Since we assume that the data user is

untrustworthy, it is of the data user’s own interest to correctly execute the algorithm or not.

However, while using our proposed framework, if the untrustworthy data user behave dishonestly,

it will not compromise data owner’s privacy, but will only hurt the utility of the data user’s DNN

model. Furthermore, since the data owners are assumed to be honest-but-curious, the poisoning

[169], backdoor [170, 171] or trojans [172] attacks (e.g., the data owner actively and maliciously

modify their inputs to influence the performance of the data user’s DNN model) are beyond the

scope of this work.

7.3.3 Privacy-preserving Distributed Deep Learning

Our proposed privacy-preserving distributed algorithm framework, as shown in Fig. 7.2,

consists of four stages that work synergistically between the data owners and the data user. Alg.9

shows the pseudo-code of our algorithm. Firstly, each data owner trains a teacher model using

his/her own private dataset (i.e., lines 1-2), and the data user initialize the student models with
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Algorithm 9: Locally Differentially Private Distributed Deep Learning (LDP-DL)

Input: {(X1, Y 1), (X2, Y 2), . . . , (XL, Y L)}; XP ; active query sampling size (per iteration)
S; the number of queries available for each selected public sample NQ; distillation
learning batch size Sdb.

Output: Student Model MS .
1 for l ∈ {1, 2, . . . , L} do
2 Data owner l trains a teacher model MTl using his/her private dataset (X l, Y l);

3 Initialize the student model MS by the data user;
4 while |XP | ≥ S and the accuracy of MS is not acceptable do
5 XQ ←− ActiveQuerySampling(MS , X

P , S);
6 XP ←− XP −XQ;

7 (XQ′ , Y Q′) = Ø;
8 for x ∈ XQ do
9 zt ←− (0, 0, . . . , 0)1×k;

10 Randomly select NQ data owners from {1, 2, . . . , L} to form a subset OQ;
11 for l ∈ OQ do
12 zlt ←− PrivacySanitize(MTl(x));

13 zt ←− zt + zlt;

14 zt ←− zt/NQ;

15 (XQ′ , Y Q′)←− (XQ′ , Y Q′) ∪ {(x, zt)};
16 while |(XQ′ , Y Q′)| ≥ Sdb do

17 Sample a batch (XQ′

i , Y Q′

i ) of size Sdb from (XQ′ , Y Q′);

18 Compute distill loss Lidistill over (XQ′

i , Y Q′

i ) by Eq.;
19 Backpropagate by Lidistill to update MS ;

20 return MS .

random or pretrained (i.e., ImageNet [173]) parameters (i.e., line 3). The student model and all

the teacher models do not have to use the same DNN architecture. Secondly, in each iteration, the

data user efficiently selects a subset of the available public dataset (i.e., lines 5-6), that could better

improve the performance of the current student model in the upcoming training, using our well-

designed active query sampling approach. The active query sampling component aims to reduce

the total number of queries to each teacher model, thus saving the privacy budgets. Thirdly, the

data user uses the selected subset of the public data (no labels) to query each of the teacher model

from its corresponding selected data owner to obtain the “knoweledge” (data’s soft label), and all

the query results are sanitised by our local differential privacy techniques before being sent back

to the data user (i.e., lines 7-15). Since the data owner might select a huge amount of query

samples, it is not realistic to use all the selected samples to query all the data owners, which cost

144



much on the privacy budge and the communication, but might not help a lot for the utility (per

our experimental results). Therefore, we predefined a parameter NQ to control/specify the upper

bound of the available data owners for each selected public sample to query (lines 10-11). Last but

not least, the data user aggregates the received sanitised query results (i.e., the distilled knowledge)

of each data, and leverage the knowledge distillation techniques (using the subset of the public data,

and the distilled knowledge) to update/train the student model. The details of the most important

three components in our framework (i.e, private query from teacher models, build student model

via knowledge transfer and active query sampling) are described in the subsequent sections.

Algorithm 10: Piecewise Mechanism for One-Dimensional Numerical Data (PM-ONE)
[22]

Input: tuple zi ∈ [−1, 1]; privacy budget ε.
Output: perturbed tuple z′i ∈ [−∆,∆].

1 ∆←− eε/2+1
eε/2−1

;

2 L(zi)←− ∆+1
2 · zi − ∆−1

2 ;
3 R(zi)←− L(zi) + ∆− 1;
4 Sample value v uniformly at random from [0, 1];

5 if v < eε/2

eε/2+1
then

6 Sample z′i uniformly at random from [L(zi), R(zi)];

7 else
8 Sample z′i uniformly at random from [−∆, L(zi)] ∪ [R(zi),∆];

9 return z′i.

Algorithm 11: Piecewise Mechanism for Multidimensional Numerical Data (PM) [22]

Input: tuple z ∈ [−1, 1]k; privacy budget ε.
Output: perturbed tuple z′ ∈ [−k ·∆, k ·∆]k.

1 z′ ←−< 0, 0, . . . , 0 >;
2 m←− max{1,min{k, b ε

2.5c}};
3 Sample m values uniformly without replacement from {1, 2, . . . , k};
4 for each sampled attribute j do

5 z′j = k
m · PM -ONE(zj ,

ε
m);

6 return z′.

7.3.4 Private Query from Teacher Models

In our proposed algorithm, upon receiving the query data from the data user, each data

owner evaluates it using his/her own teacher model and gets the data’s soft label. Each data owner
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perturbs the query data’s soft label (using LDP techniques) and then sends the perturbed value

to the data user to transfer the distilled knowledge. The data user then aggregates the perturbed

query results of each data to obtain the aggregated noisy soft label (i.e., averaged over the query

results sent by all the selected data owners) of each data. As such, we could formulate this as

a locally differentially private mean estimation problem, where we would like to protect the data

owners’ private data from the inference attacks given the perturbed query results, and ensure the

aggregated noisy soft label as close as the real value. As described in Section 7.2.1, while applying

LDP, the adversaries could not distinguish the true value from a perturbed value with a high

confidence (adjusted by the parameter ε). To protect the privacy of the data owners’ private data,

the randomization method which satisfies ε-LDP is adopted. On the other hand, the performance

of the aggregation of the perturbed data could be maintained with an error bound [166, 174], which

provides us a way to control the utility of the distilled knowledge. Furthermore, since all the soft

labels are multidimensional numerical values, different from the hard labels which are categorical

values, we can not directly adopt the encoding-based LDP techniques [166].

To achieve our goal, we adopt the Piecewise Mechanism (PM) [22] that is designed to

perturbed the multidimensional numerical values, and has an asymptotic optimal error bound for

the mean estimation problem. Alg. 10 shows the PM for one-dimensional numerical data (i.e., PM-

ONE). To simplify our explanation, in this section, the value to be perturbed (i.e., the soft labels

of k classes) is denoted as z ∈ Rk, z = [z1, z2, . . . , zk]. PM-ONE (Alg. 10) takes a one-dimentional

numerical data zi ∈ [−1, 1] as the input, and returns its perturbed value z′i ∈ [−∆,∆], where

∆ ← eε/2+1
eε/2−1

is small and thus z′i has relatively high probability (i.e., eε/2

eε/2+1
) to be close to zi. As

shown in [22], while applying PM-ONE | 1n
∑n

i=1 z
′
i − 1

n

∑n
i=1 zi| = O(

√
log(1/β)

ε
√
n

) with at least 1− β

probability for the task of mean estimation, which is an asymptotically optimal error bound.

Alg. 11 shows the PM for multidimensional numerical data (i.e., PM), where for each data

of k dimensions, it randomly selects m (i.e., m < k) attributes to perturb. Alg. 11 is designed

to reduce the amount of the noise in the task of mean estimation for multidimensional numerical

data. While using Alg. 10 to perturb k attributes, each attribute evenly shares a privacy budget of

ε
k , and the total amount of noise in the mean estimation is O(

k
√
log(k)

ε
√
n

), which is super-liner to k.

However, it has been shown [22] that while using Alg. 11, E[maxj∈[1,k]| 1n
∑n

i=1 z
′
i,j− 1

n

∑n
i=1 zi,j |] =
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O(

√
klog(k/β)

ε
√
n

) with at least 1 − β probability for the task of mean estimation, which is still an

asymptotically optimal error bound.

7.3.4.1 Privacy Budget Analysis of LDP-DL

As described in Section 7.3.1, in our proposed framework, there are |XP | public data and

L data owners in total. If each public data could query the teacher model for at most NQ times

(Section 7.3.3), each teacher model will be queried for at most r =
|XP |·NQ

L times by average.

Suppose for each private query, the perturbed query result satisfies εi-LDP. According to the

composition property of LDP [175], to meet the requirement of ε-LDP for each data owner’s private

data, we need to satisfy
∑r

i εi ≤ ε. Since each data owner would participate in the private query

for at most r times by average, it requires εi ≤ ε
r . Then, the noise of each query result becomes

O(
r
√
klog(k)

ε ), which is linear to r. Since each public data would be queried for at most NQ times,

the noise of the mean estimation of each public data’s soft label (i.e., distilled knowledge) would be

O(
r
√
klog(k)

ε
√
NQ

) = O(
|XP |·
√
NQ·
√
klog(k)

ε·L ). Since ε is the privacy budget that should be controlled by

the data owner’s preference, and NQ has the direct influence on the precision of each query result’s

mean estimation that should be decided on the data user’s empirical study, to reduce the overall

noise, it is better to increase the number of participant data owners (i.e., L) or decrease the size of

the set of public data (i.e., |XP |) utilized for private query (as described in Section 7.3.6).

7.3.5 Build Student Model via Knowledge Transfer

While the data user receiving all the query results from the data owners, our proposed

framework uses the knowledge distillation technique to transfer the knowledge learned from the

queried teacher models to the student model. Our usage of knowledge distillation is slightly dif-

ferent from the it convectional usage (as described in Section 7.2.2), where (i) we only focus on

the knowledge transfer perspective of KD, but not the model compression, thus the student model

and all the teacher models could use different and arbitrary DNN architectures; and (ii) in our

case, the public dataset does not have the true label information, thus cannot directly use equa-

tion (7.3). Hence, in our framework, the student model is trained to minimize the gap between its

own predicted soft label and the aggregated soft label from the teacher models, i.e., the knowledge
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Figure 7.3: Active query sampling.

distillation loss:

L(x; Θ) = α · H(σ(zt;T = 1), σ(zs;T = 1))

+ β · H(σ(zt;T = τ), σ(zs;T = τ))

(7.4)

where zs is the soft label predicted by the student model, zt is the aggregated soft label from the

teacher models, T is the temperature parameter, and σ(z;T ) = softmax(z/T ). The temperature

parameter is usually set to 1. While T > 1, the probabilities of the classes whose normal values

are near zero would be increased. To better distill the knowledge to the student, two temperature

values are adopted in our KD loss (i.e., T = 1 and T = τ > 1).

7.3.6 Active Query Sampling

As analyzed in Section 7.3.4.1, one direction to reduce the overall noise of the soft label

estimation (thus, enhance the overall performance) is to decrease the size of the set of public data

(i.e., |XP |) utilized for private query. In this section, we present an active query sampling approach

that could actively and adaptively choose samples from the public dataset batch-by-batch to query

the teacher models. As shown in Fig. 7.3, we adopt a “least confidence” strategy [176], where in

iteration, we attempt to select a set of query samples from the public dataset that the student model
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shows the “least confidence” at. To be specific, our active query sampling follows the procedure

described below:

1. Select an initial subset of S unlabeled public data XQ uniformly at random from XP . Update

XP ← XP −XQ.

2. Use XQ to query the teacher models, and use the distilled knowledge to train the student

initial student model MS .

3. For each available public data xi ∈ XP , evaluate it on the student model MS . Let Pij

denote the probability of xi belonging to class j ∈ {1, 2, . . . , k} predicted by MS . Let

Pi = {Pi1, Pi2, . . . , Pik}, and suppose
∑k

l=1 Pil = 1. Let P ∗i be the largest value (posterior

probability) in Pi. Then, repeat the procedure below for S times to select S query samples:

xi ← XP

Pi ←MS(xi)

XQ ← XQ ∪ argmin
xi

1

m− 1

k∑
l=1

(P ∗i − Pil)

XP ← XP −XQ

(7.5)

Then, use XQ to query the teacher models, and use the distilled knowledge to train the

student initial student model MS .

4. Repeat 3., until the student model meet the performance requirement or no more public data

available (i.e., XP = Ø).

7.4 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposal method, LDP-DL, on three

popular image benchmark datasets (i.e., CIFAR-10 [27], MNIST [28] and Fashion-MNIST [29]) with

three basic LDP mechanisms (i.e., Piecewise mechanism [22], Duchi’s mechanism [165] and Laplace

mechanism [177]). We also evaluate the performance of our proposed Active Query Sampling

(AQS) of our approach. Then, we compare LDP-DL with three state-of-the-art approaches, i.e.,

DP-SGD [25], PATE [24] and DP-FL [26].
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7.4.1 Experiment Environment

All the experiments were conducted on a PC with an Intel Core i9-7980XE processor, 128GB

RAM, a Nvidia GeForce GTX 1080Ti graphic card, running 64-bit Ubuntu 18.04 LTS operating

system. All the experiments are implemented using Python 3.7.

7.4.2 Experiment Datasets

Three popular benchmark image datasets are utilized to conduct our experimental evalua-

tion:

• CIFAR-10 [27] is a widely used benchmark dataset to evaluate deep learning algorithms.

This dataset is a subset of the 80 million tiny images dataset. It contains 60,000 32 x 32 color

photographs of objects in 10 different classes, such as frogs, birds, cats, ships, etc. For each class,

there are 6,000 images in total, where the testing set includes exactly 1,000 images that randomly

selected from each class, and the training set contains the remaining 5,000 images in a random

order.

• MNIST [28] is a collection of handwritten digits that is commonly used in the field of

image processing and machine learning. This dataset is created by ”re-mixing” samples from the

NIST dataset. It contains 70,000 28 x 28 grayscale images in 10 different classes, i.e., 10 digits,

from 0 to 9. The handwritten digits have been size-normalized and centered in each images. The

70,000 samples have been separated to 60,000 training samples and 10,000 testing samples.

• Fashion-MNIST [29] is a collection of Zalando’s article images, which is created as a drop-

in (more challenging) replacement for MNIST to better represent modern computer vision tasks.

It contains 70,000 28 x 28 gray-scale images in 10 different classes. Each class is a kind of cloth,

such as T-shirt, dress, trouser, sneaker, etc. There are 60,000 training samples and 10,000 testing

samples.

7.4.3 Experimental Setup

In our experiments, we assume the data owner’s teacher models are using ResNet50, and

the data user’s student model is using ResNet18. For each experiment dataset, we assume each

data owner has 4,000 private samples to train his/her teacher model (i.e., ResNet50). The data
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user would query 200 public samples in each iteration of the Active Query Sampling (AQS) process,

and queries 5 iterations in total to train his/her student model (i.e., ResNet18). Each teacher and

student model has been trained for 20 epochs with a batch size of 32.

As discussed in Section 7.3.4.1, there are three major parameters that we would like to tune

and evaluate in our approach, such as the privacy budget (ε), the number of queries of each public

sample (NQ) and the total number of participated data owners (L). We use various combinations

of ε, NQ and L to evaluate our approach, where ε ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, NQ ∈ {10, 20,

30, 40, 50, 60, 70, 80, 90, 100}, and L ∈ {1, 000, 2, 000, 3, 000, 4, 000, 5, 000, 6, 000, 7, 000, 8, 000,

9, 000, 10, 000}.

Then, we evaluate the performance of our approach while with and without the Active

Query Sampling (AQS) process. Also, we evaluate the performance of our approach’s private query

using three basic LDP mechanisms, including Piecewise mechanism [22], Duchi’s mechanism [165]

and Laplace mechanism [177]. All the experiments have been repeated for 10 times and we take

the average as the reported results.

7.4.4 Effectiveness Analysis

In this section, we evaluate the effectiveness of our approach on three benchmark image

datasets with different parameters and basic LDP mechanisms (as shown in Fig. 7.4, Fig. 7.5

and Fig. 7.6). We can observe that Piecewise mechanism always performs better than Duchi’s

mechanism and Laplace mechanism in our framework. Moreover, the results with our AQS process

consistently outperforms the ones without our AQS process, which demonstrates that our pro-

posed AQS could dramatically save the privacy budget and prevent privacy budget exploding from

happening in privacy-preserving distributed deep learning training.

7.4.4.1 Effectiveness Analysis of Different Parameters

The performance of our proposed LDP-DL framework is affected by multiple parameters

(ε, NQ and L). To evaluate the effectiveness of single parameter, as shown in Fig. 7.4, Fig. 7.5

and Fig. 7.6, the other parameter are set as constant values. From Fig. 7.4, Fig. 7.5 and Fig. 7.6,

we observe that:
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Figure 7.4: LDP-DL experimental results on CIFAR10 dataset.
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Figure 7.5: LDP-DL experimental results on MNIST dataset.
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Figure 7.6: LDP-DL experimental results on FashionMNIST dataset.
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• The total privacy budget (ε) controls the noise scale of the private queries from each

data owner’s teacher model. We investigate ε from 1 to 10. Fig. 7.4a, Fig. 7.5a and Fig. 7.6a

show the impact of the privacy budget on the results of our approach. As the privacy budget ε

increasing, the accuracy increases, since less noise would be added to the data owners’ perturbed

distilled knowledge. In LDP mechanisms, greater ε results in smaller-scaled noise, and vice versa.

While querying from multiple data owners’ teacher models, the aggregation of the query results

with smaller-scaled noise gives more information towards the data user’s student model. Namely,

the aggregated value is more close to the actual value, which benefits the training of the data user’s

student model. As such, a greater ε would result in a better accuracy performance.

• The number of queries (NQ) controls the number of data owners’ teacher models to be

queried for each unlabelled public data. Fig. 7.4b, Fig. 7.5b and Fig. 7.6b illustrate the results

under different number of queries of each public data. As the number of queries increasing, the

accuracy decreases, which is inline with our analysis in Section 7.3.4.1. Because increasing the

number of queries of each public data will actually result in more noise being added to each query

result while maintaining the same total privacy budget. Specifically speaking, as shown in our

results, as NQ increasing, the accuracy of the data user’s student model only slightly declines while

utilizing either Piecewise mechanism or Duchi’s mechanism. However, for the Laplace mechanism,

the accuracy significantly decreases while NQ increasing. Because different LDP mechanisms would

result in different noise scale in terms of NQ. Compared with Laplace mechanism, Using Piecewise

mechanism and Duchi’s mechanism would decrease the influence of NQ on the performance of our

LDP-DL framework.

• The number of data owners (L) indicates the number of data owners participated in our

LDP-DL framework. As analyzed in section 7.3.4.1, increasing the number of participated data

owners can reduce the overall noise of the aggregated information. Fig. 7.4c, Fig. 7.5c and Fig. 7.6c

show the influence of the number of participated data owners on the performance of our approach.

As more data owners participating in our framework, the accuracy tends to increase. Since the total

privacy budget is controlled by each data owner’s preference, to obtain an appropriate performance

of the data user’s student model, the number of participated data owners of our LDP-DL framework

should be set to a sufficient value.
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Table 7.1: In comparison with existing approaches.

Datasets CIFAR10 [27] MNIST [28] FashionMNIST [29]

Approaches Accuracy Privacy Budget Accuracy Privacy Budget Accuracy Privacy Budget

LDP-DL
77.5% 5 98.1% 5 83.4% 5
79.7% 8 98.8% 8 85.7% 8

DP-SGD [25] 73.0% 8 97.00% 8 - -

PATE [24]
73.6% 5 97.7% 5 81.5% 5
76.0% 8 98.2% 8 84.7% 8

DP-FL [26]
75.9% 5 96.4% 5 82.6% 5
78.7% 8 97.2% 8 83.6% 8

7.4.5 In Comparison with Existing Approaches

In this section, we have compared our LDP-DL framework with 3 state-of-the-art ap-

proaches: DP-SGD [25], PATE [24] and DP-FL [26].

• Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm [25] trains the

deep neural network with differential privacy under a centralized setting. It utilizes the Gaussian

mechanism on random subset of examples to produce average noisy gradient for model optimization.

This approach does not have available code from public resource. Therefore, we directly refer the

results presented in the original paper.

• Private Aggregation of Teacher Ensembles (PATE) [24] proposed a distributed teacher-

student framework. The privacy guarantee comes from the perturbation on teachers voting ag-

gregation. The ensemble decision based on the noisy voting provides the label of student model’s

training data. The student model is trained on semi-supervised learning with GANs. PATE [24]

are evaluated on the code provided by the paper authors.

• Differentially Private Federated Learning (DL-FL) [26] describes a federated optimization

algorithm under private manner. Instead of directly averaging the distributed client models updates,

an alter approach that use random sampling and Gaussian mechanism on sum of clients updates is

introduced to approximate the averaging. The curator collects the noisy updates to optimize the

center server model. Since the original paper aims at protecting the privacy at the client’s level

but not at the sample’s level, DP-FL [26] are evaluated on the code published by the author with

some minor changes to enable privacy preservation at the sample’s level.

Table 7.1 shows the results of different approaches under the same privacy budgets. The re-

sults of LDP-DL are evaluated under parameters L = 10, 000, NQ = 30. For the other approaches,
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we strictly follow the settings mentioned in the corresponding papers and keep the common pa-

rameters (such as the number of data owners (clients), privacy budgets) at the same level. Under

the same level of privacy budgets, we can observe that LDP-DL consistently outperforms the other

competitors. The improvement can be derived from the knowledge distillation and active query

sampling. Knowledge distillation leverage richer information while transferring the knowledge from

the teacher models to a student model. Meanwhile, active query sampling efficiently reduces the

total number of queries from the data user (i.e., the student model) to the data owners (i.e., the

teacher models). As such, the total cost of privacy budget is been reduced dramatically.

7.5 Related Work

Local Differential Privacy (LDP) has been proposed [165] to remove the trusted curator

of the centralized differential privacy. LDP also provides the data owner more controls on the

information left hands in a more strict and realistic privacy manner. LDP for statistical information

collection and estimation have been well studied in the past decades [178, 179, 166, 180, 181, 182,

183, 184].

Recently, more works propose to apply DP or LDP in data mining and machine learning

applications, such as clustering [185], Bayesian inference [186], frequent itemset mining [187] and

probability distribution estimation [188, 189, 190, 187]. However, only a few recent works aim to

use LDP in deep learning. For instance, Abadi et al. [25] propose to train the deep neural network

via stochastic gradient descent with differential privacy under a centralized setting. However, it

not only requires an impractical trusted third party to serve as the trusted curator but also has the

privacy budget exploding issue (i.e., causing impractical huge privacy budget to train a meaningful

deep learning model).

Papernot et al. [24] proposes PATE, a “teacher-student” paradigm for privacy-preserving

deep learning, where each data owner learns a teacher model using its own (local) private dataset,

and the data user aims to learn a student model using the unlabelled public data (but no direct

access to the data owners’ private data) to mimic the output of the ensemble of the teacher models,

i.e., the student learns to make predictions that is the same as the most number of teachers. To

ensure privacy, PATE [24] assumes a trusted aggregator to provide a differentially private query
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interface, where the data user could query the ensemble of the teacher models (from the data

owners) using the unlabelled public data to obtain the labels for the training of the student model.

However, a fully trusted aggregator barely exists in most of the real-world distributed deep learning

scenarios. Chase et al. [161] proposes a private collaborative neural network learning approach,

that combines secure multi-party computation (MPC), differential privacy (DP) and secret sharing.

Since the MPC protocol is implemented via a garbled circuit whose size is subject to the number

of parameters (i.e., the size of the gradient) of the neural network, it tends to be less efficient and

not scalable while training larger neural networks. Also, in [161], using secret sharing requires

at least two non-colluding honest data users which might not be practical. In [26], the authors

present a federated optimization algorithm under private manner. Instead of directly averaging

the distributed client models updates, an alter approach that use random sampling and Gaussian

mechanism on sum of clients updates is introduced to approximate the averaging. The curator

collects the noisy updates to optimize the center server model. However, this approach only focus

on training small deep learning models (i.e., only training one or very few number of iterations)

and easier datasets (i.e., not testing on any image datasets).

Our approach aims to solve the challenges left by the previous approaches. The difference

could be summarized in three folds: (i) our approach aims to enable training large deep neural

networks (e.g., ResNet) on popular benchmark image datasets (e.g., CIFAR-10); (ii) our approach

designs a proactive mechanism (i.e., the active query sampling) to reduce the overall privacy budget

efficiently to prevent privacy budget exploding while training large deep neural networks; (iii) our

approach is not based on federated learning, thus does not have to satisfy the requirements of

performing federated learning (e.g., clients being online around the same time period).

7.6 Conclusion

In this chapter, we proposed LDP-DL, a novel, effective and efficient privacy-preserving

distributed deep learning framework using local differential privacy and knowledge distillation. We

also present an active sampling approach to efficiently reduce the total number of queries from

the data user to each data owners, so that to reduce the total cost of privacy budget. In the

experimental evaluation, a comprehensive comparison has been made among our algorithm and
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three state-of-the-art privacy-preserving deep learning approaches. Extensive experiments have

been conducted on three benchmark image datasets. Our results show that LDP-DL consistently

outperforms the other competitors in terms of privacy budget and model accuracy.
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Chapter 8: General Conclusion

In this dissertation, I have devoted into three major projects: (i) Peer-to-peer botnet de-

tection, (ii) community detection in dynamic networks, and (iii) privacy-enhancing technologies for

data mining and machine learning. In the first project, I design and implement two two P2P bot-

net detection systems, PeerHunter and Enhanced PeerHunter. PeerHunter operates under several

challenges: (a) botnets are in their waiting stage; (b) the C&C channel has been encrypted; (c) no

bot-blacklist or “seeds” are available; (d) none statistical traffic patterns known in advance; and

(e) do not require to monitor individual host. Enhanced PeerHunter is an extension of PeerHunter

that can detect P2P bots, even in the scenario that the botnet traffic are overlapped with legitimate

P2P traffic on the same host.

In the project of community detection in dynamic networks, I desngn and implement Dy-

naMo, a novel modularity-based dynamic community detection algorithm, aiming to detect com-

munities in dynamic networks. We also present the theoretical guarantees to show why/how our

operations could maximize the modularity, while avoiding redundant and repetitive computations.

In the experimental evaluation, a comprehensive comparison has been made among our algorithm,

Louvain algorithm and 5 other dynamic algorithms. Extensive experiments have been conducted on

6 real world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms

all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average)

faster than Louvain algorithm.

In the last part of this dissertation, I design and developed three privacy-preserving frame-

works, utilizing the concept of dimensionality reduction and differential privacy, including (i) a

privacy-preserving facial recognition approach utilizing dimensionality reduction techniques; (ii) a

perturbation-based utility-aware privacy-preserving data releasing framework, JUPA; and (iii) a

locally differentially private distributed deep learning framework via knowledge distillation. I im-

plement an efficient privacy-preserving facial recognition client server system, FRiPAL, using three

160



dimensionality reduction methods, PCA, LDA and DCA with two types of features. The system

performance is evaluated on two Android devices, Nexus 5X and Nexus 6P. The results confirm the

efficiency of your system for real life usage. Extensive experiments have been conducted to demon-

strate that (i) JUPA outperforms several existing DR methods in terms of providing utility and

“somewhat privacy”, and provides the flexibility for finding a favorable trade-off or tuning between

utility and privacy by tuning the privacy parameters; and (ii) LDP-DL consistently outperforms

the other competitors in terms of privacy budget and model accuracy.
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[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[29] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[30] Ping Wang, Baber Aslam, and Cliff C Zou. Peer-to-peer botnets. In Handbook of Information

and Communication Security, pages 335–350. Springer, 2010.

[31] Xinyuan Wang and Daniel Ramsbrock. The botnet problem. Computer and Information

Security Handbook, pages 119–132, 2009.

[32] Elizabeth Stinson and John C Mitchell. Towards systematic evaluation of the evadability of

bot/botnet detection methods. 2nd USENIX Workshop on Offensive Technologies (WOOT),

8:1–9, 2008.

[33] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Botminer: Clustering analysis of

network traffic for protocol-and structure-independent botnet detection. In USENIX Security

Symposium, volume 5, pages 139–154, 2008.

[34] Junjie Zhang, Roberto Perdisci, Wenke Lee, Unum Sarfraz, and Xiapu Luo. Detecting stealthy

p2p botnets using statistical traffic fingerprints. In 2011 IEEE/IFIP 41st International Con-

ference on Dependable Systems & Networks (DSN), pages 121–132. IEEE, 2011.

[35] Baris Coskun, Sven Dietrich, and Nasir Memon. Friends of an enemy: identifying local

members of peer-to-peer botnets using mutual contacts. In Proceedings of the 26th Annual

Computer Security Applications Conference (ACSAC), pages 131–140. ACM, 2010.

[36] Mawi working group traffic archive. http://mawi.wide.ad.jp/mawi/samplepoint-F/2015/

201503101400.html. [Online; Accessed: 2015-03-15].

[37] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. Peerrush: Mining for

unwanted p2p traffic. Journal of Information Security and Applications, 19(3):194–208, 2014.

165



[38] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee. Both-

unter: Detecting malware infection through ids-driven dialog correlation. In Usenix Security

Symposium, volume 7, pages 1–16, 2007.

[39] John Felix, Charles Joseph, and Ali A Ghorbani. Group behavior metrics for p2p botnet

detection. In Information and Communications Security, pages 93–104. Springer, 2012.

[40] Junjie Zhang, Xiapu Luo, Roberto Perdisci, Guofei Gu, Wenke Lee, and Nick Feamster.

Boosting the scalability of botnet detection using adaptive traffic sampling. In Proceedings

of the 6th ACM Symposium on Information, Computer and Communications Security, pages

124–134. ACM, 2011.

[41] Ting-Fang Yen and Michael K Reiter. Are your hosts trading or plotting? telling p2p

file-sharing and bots apart. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th

International Conference on, pages 241–252. IEEE, 2010.

[42] B Soniya and M Wilscy. Fuzzy inference system based on entropy of traffic for bot detection

on an endpoint host. In Data Science & Engineering (ICDSE), 2014 International Conference

on, pages 112–117. IEEE, 2014.

[43] Liyun Li, Suhas Mathur, and Baris Coskun. Gangs of the internet: Towards automatic

discovery of peer-to-peer communities. In Communications and Network Security (CNS),

2013 IEEE Conference on, pages 64–72. IEEE, 2013.

[44] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix C Freiling. Mea-

surements and mitigation of peer-to-peer-based botnets: A case study on storm worm. First

USENIX Workshop on Large-Scale Exploits and Emergent Threats, 8(1):1–9, 2008.

[45] Sherif Saad, Issa Traore, Ali Ghorbani, Bassam Sayed, David Zhao, Wei Lu, John Felix, and

Payman Hakimian. Detecting p2p botnets through network behavior analysis and machine

learning. In Privacy, Security and Trust (PST), 2011 Ninth Annual International Conference

on, pages 174–180. IEEE, 2011.

166



[46] Carl Livadas, Robert Walsh, David Lapsley, and W Timothy Strayer. Usilng machine learning

technliques to identify botnet traffic. In Local Computer Networks, Proceedings 2006 31st

IEEE Conference on, pages 967–974. IEEE, 2006.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[48] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[49] Malware sample sources for researchers. https://zeltser.com/malware-sample-sources/. [On-

line; Accessed: 2015-03-15].

[50] Argus: Auditing network activity. http://qosient.com/argus/. [Online; Accessed: 2015-09-

30].

[51] Di Zhuang and J Morris Chang. Enhanced peerhunter: Detecting peer-to-peer botnets

through network-flow level community behavior analysis. IEEE Transactions on Informa-

tion Forensics and Security, 14(6):1485–1500, 2019.

[52] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Bot-

grep: Finding p2p bots with structured graph analysis. In USENIX Security Symposium,

pages 95–110, 2010.

[53] Jing Wang and Ioannis Ch Paschalidis. Botnet detection based on anomaly and community

detection. IEEE Transactions on Control of Network Systems, 4(2):392–404, 2017.

[54] Sridhar Venkatesan, Massimiliano Albanese, Ankit Shah, Rajesh Ganesan, and Sushil Jajo-

dia. Detecting stealthy botnets in a resource-constrained environment using reinforcement

learning. In Proceedings of the 4th ACM Workshop on Moving Target Defense, pages 75–85,

2017.
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théorique. In Annales scientifiques de l’École Normale Supérieure, volume 70, pages 267–285.

Elsevier, 1953.

[136] Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L Lagendijk. Generating private

recommendations efficiently using homomorphic encryption and data packing. IEEE trans-

actions on information forensics and security, 7(3):1053–1066, 2012.

[137] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft.

Privacy-preserving ridge regression on hundreds of millions of records. In Security and Privacy

(SP), 2013 IEEE Symposium on, pages 334–348. IEEE, 2013.

[138] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning

classification over encrypted data. In NDSS, volume 4324, page 4325, 2015.

[139] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for

privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 1175–1191. ACM, 2017.

[140] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for

differentially private data release. In Advances in Neural Information Processing Systems,

pages 2339–2347, 2012.

[141] Xiaoqian Jiang, Zhanglong Ji, Shuang Wang, Noman Mohammed, Samuel Cheng, and Lucila

Ohno-Machado. Differential-private data publishing through component analysis. Transac-

tions on data privacy, 6(1):19, 2013.

[142] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. Plausible deniability for privacy-

preserving data synthesis. Proceedings of the VLDB Endowment, 10(5):481–492, 2017.

[143] Jordi Soria-Comas and Josep Domingo-Ferrer. Differentially private data sets based on mi-

croaggregation and record perturbation. In Modeling Decisions for Artificial Intelligence,

pages 119–131. Springer, 2017.

176



[144] Mark Andrew Hall. Correlation-based feature selection for machine learning. 1999.
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