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Quandle coloring and cocycle invariants of composite knots and 
abelian extensions

W. Edwin Clark,
Department of Mathematics and Statistics, University of South Florida, Tampa, Florida, USA

Masahico Saito, and
Department of Mathematics and Statistics, University of South Florida, Tampa, Florida, USA

Leandro Vendramin
Departamento de Mathemática, Facultad de Ciencias Exactas y Naturales, Universidad de 
Buenos Aires Buenos Aires, Argentina

Abstract

Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality 

and abelian extensions. The square and granny knots, for example, can be distinguished by 

quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of 

composite knots. We investigate this and related phenomena. Quandle cocycle invariants are 

studied in relation to quandle coloring of the connected sum, and formulas are given for 

computing the cocycle invariant from the number of colorings of composite knots. Relations to 

corresponding abelian extensions of quandles are studied, and extensions are examined for the 

table of small connected quandles, called Rig quandles. Computer calculations are presented, and 

summaries of outputs are discussed.
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 1. Introduction

Sets with certain self-distributive operations called quandles have been studied since the 

1940s in various areas with different names. The fundamental quandle of a knot was defined 

in a manner similar to the fundamental group [21, 24] of a knot, which made quandles an 

important tool in knot theory. The number of homomorphisms from the fundamental 

quandle to a fixed finite quandle has an interpretation as colorings of knot diagrams by 

quandle elements, and has been widely used as a knot invariant. Algebraic homology 

theories for quandles were defined [5, 19], and investigated in [22, 25–27]. Extensions of 

quandles by cocycles have been studied [1, 4, 16], and invariants derived thereof are applied 

to various properties of knots and knotted surfaces (see [8] and references therein).

Tables of small quandles have been made previously (e.g. [8, 15, 17]). Computations using 

GAP [34] significantly expanded the list for connected quandles. These quandles may be 

found in the GAP package Rig [33]. Rig includes all connected quandles of order less than 

HHS Public Access
Author manuscript
J Knot Theory Ramif. Author manuscript; available in PMC 2017 April 01.

Published in final edited form as:
J Knot Theory Ramif. 2016 April ; 25(5): . doi:10.1142/S0218216516500243.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. We refer to these quandles as Rig quandles, and use the notation Q(n, i) for the ith 

quandle of order n in the list of Rig quandles. As a matrix Q(n, i) is the transpose of the 

quandle matrix SmallQuandle(n, i) in [33]. In this paper, however, we focus on Rig 

quandles of order less than 36. There are 431 such quandles.

In [11], it was investigated to what extent the number of quandle colorings of a knot by a 

finite quandle can distinguish the prime oriented knots with at most 12 crossings in the knot 

table at KnotInfo [14]. It is known that quandle colorings do not distinguish K from its 

reversed mirror, rm(K). It is also known [10] that the quandle cocycle invariant can 

distinguish a trefoil 31 from its mirror image. Since 31 is reversible, it cannot be 

distinguished from its mirror by quandle colorings. However, we show here that quandle 

colorings can be used via connected sums to distinguish K from rm(K) for many knots (we 

conjecture for all knots K such that K ≠ rm(K)). In particular, for some reversible knots, we 

can distinguish K from m(K) using this technique. For example, by distinguishing the square 

and granny knots by quandle colorings, we distinguish a trefoil from its mirror image. In this 

paper, we investigate this phenomenon, and other properties and applications of quandle 

invariants under connected sum. In particular, we relate quandle colorings of composite 

knots to quandle 2-cocycle invariants.

We also note that quandle colorings of the connected sum can be used to recover quandle 

cocycle invariants in many cases. It is well-known that quandle 2-cocycles give rise to 

abelian extensions of quandles, see for example [4]. We investigate the relations among 

abelian extensions that result from our computations, and their properties. As a result, 

several problems arise naturally.

An important part of this work depends on computer calculations. For that reason, we 

developed algorithms and techniques for computing quandle (co)homology groups and 

explicit quandle 2-cocycles, abelian extensions of quandles, dynamical cocycles and non-

abelian extensions, colorings and quandle cocycle invariants of classical and virtual knots. 

The algorithms are freely available in the GAP package Rig. Several tables with all these 

calculations are available online at the Wiki page of Rig: http://github.com/vendramin/rig/

wiki.

The paper is organized as follows. Preliminary material necessary for the paper follows this 

section, and it is shown that the number of quandle colorings by finite quandles can 

distinguish the unknot in Sec. 3. Quandle colorings of composite knots are studied in Sec. 4. 

In Sec. 5, quandle colorings of composite knots are applied to distinguish knots from their 

reversed mirror images, relations to the quandle cocycle invariant are discussed, and 

computer calculations are presented. In Sec. 6, a method of computing quandle cocycle 

invariants from colorings of composite knots is studied. Relations to abelian extensions of 

quandles are examined in Sec. 7. Further considerations regarding extensions of Rig 

quandles are presented in Sec. 7. For convenience of the reader, we collect problems, 

questions and conjectures posed all over the text in Sec. 8.
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 2. Preliminaries

We briefly review some definitions and examples of quandles. More details can be found, 

for example, in [1, 8, 19].

A quandle X is a set with a binary operation (a, b) ↦ a * b satisfying the following 

conditions:

1. For any a ∈ X, a * a = a.

2. For any b, c ∈ X, there is a unique a ∈ X such that a * b = c.

3. For any a, b, c ∈ X, we have (a * b) * c = (a * c) * (b * c).

A quandle homomorphism between two quandles X, Y is a map f : X → Y such that f(a*X 

b) = f(a)*Y f(b), where *X and *Y denote the quandle operations of X and Y, respectively. A 

quandle isomorphism is a bijective quandle homomorphism, and two quandles are 

isomorphic if there is a quandle isomorphism between them.

 Example 2.1

Any non-empty set X with the operation a * b = a for any a, b ∈ X is a quandle called a 

trivial quandle.

 Example 2.2

A conjugacy class X of a group G is a quandle with the quandle operation a * b = b−1ab. We 

call this a conjugation quandle.

 Example 2.3

Let X and Y be quandles. Then X × Y is a quandle with (x, y) * (x′, y′) = (x *X x′, y *Y y′) 

for all x, x′ ∈ X and y, y′ ∈ Y.

 Example 2.4 (see [21])

A generalized Alexander quandle is defined by a pair (G, f) where G is a group, f ∈ Aut(G), 

and the quandle operation is defined by x * y = f(xy−1)y. If G is abelian, this is called an 

Alexander (or affine) quandle.

 Example 2.5

A function ϕ : X × X → A for an abelian group A is called a quandle 2-cocycle [5] if it 

satisfies

for any x, y, z ∈ X and ϕ(x, x) = 0 for any x ∈ X. For a quandle 2-cocycle ϕ, E = X × A 
becomes a quandle by
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for x, y ∈ X, a, b ∈ A, denoted by E(X, A, ϕ) or simply E(X, A), and it is called an abelian 
extension of X by A. The set of quandle 2-cocycles of X with coefficients in A is denoted by 

. Two cocycles ϕ1 and ϕ2 are cohomologous if there is a function γ : X → A such 

that

for any x, y ∈ X. The set of equivalence classes is a group and it is denoted by . 

See [4] for more information on abelian extensions of quandles and [5–7] for more on 

quandle cohomology.

 Example 2.6

In [1], extensions by constant 2-cocycles were defined as follows. For a quandle X and a set 

S, a constant quandle cocycle is a map

where Sym(S) is the symmetric group on S, such that X × S has a quandle structure by (x, t) 
* (y, s) = (x * y, β

x,y
(t)) for x, y ∈ X and s, t ∈ S (see [1] for details). This quandle is denoted 

by X ×
β
 S. The map β satisfies the constant cocycle condition β

x*y,z
β

x,y
 = β

x*z,y*z
β

x,z for any 

x, y, z ∈ X and the quandle condition βx,x = id for any x ∈ X. Following [1], we also call 

these extensions non-abelian extensions.

Let X be a quandle. The right translation ℛa : X → X, by a ∈ X, is defined by ℛa(x) = x * a 
for x ∈ X. Then ℛa is a permutation of X by Axiom (2). The subgroup of Aut(X), the 

quandle automorphism group, generated by the permutations ℛa, a ∈ X, is called the inner 
automorphism group of X, and is denoted by Inn(X). A quandle is connected if Inn(X) acts 

transitively on X. A quandle is homogeneous if Aut(X) acts transitively on X. A quandle is 

faithful if the mapping φ : X → Inn(X) defined by φ(a) = ℛa is an injection from X to 

Inn(X). We note that abelian as well as non-abelian extensions are not faithful. The 

operation *¯ on X defined by  is a quandle operation, and (X, *¯) is called the 

dual quandle of (X, *). A quandle X is called a kei [31], or involutory, if (x * y) * y = x for 

all x, y ∈ X.

A coloring of an oriented knot diagram by a quandle X is a map  from the set of arcs  of 

the diagram to X such that the image of the map satisfies the relation depicted in Fig. 1 at 

each crossing. More details can be found in [8, 16], for example. A coloring that assigns the 

same element of X to all the arcs is called trivial, otherwise non-trivial. The number of 

colorings of a knot diagram by a finite quandle is known to be independent of the choice of 

diagram, and hence is a knot invariant. We denote by SColX(K) and ColX(K) the set and the 

number of colorings of K by X.

The fundamental quandle is defined in a manner similar to the fundamental group [21, 24]. 

A presentation of a quandle is defined in a manner similar to groups as well, and a 
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presentation of the fundamental quandle is obtained from a knot diagram (see, for example, 

[18]), by assigning generators to arcs of a knot diagram, and relations corresponding to 

crossings. The set of colorings of a knot diagram K by a quandle X, then, is in one-to-one 

correspondence with the set of quandle homomorphisms from the fundamental quandle of K 
to X.

In this paper, all knots are oriented. Let m : 3 → 3 be an orientation reversing 

homeomorphism of the 3-sphere. For a knot K contained in 3, m(K) is the mirror image of 

K, and r(K) is the knot K with its orientation reversed. We regard m and r as maps on 

equivalence classes of knots. We consider the group  = {1, r, m, rm} acting on the set of all 

oriented knots. For each knot K let (K) = {K, r(K), m(K), rm(K)} be the orbit of K under 

the action of .

For knots K and K′, we write K = K′ to denote that there is an orientation preserving 

homeomorphism of 3 that takes K to K′ preserving the orientations of K and K′. By a 

symmetry we mean that a knot (type) K remains unchanged under one of r, m, rm. As in the 

definition of symmetry type in [14] we say that a knot K is 

• reversible if the only symmetry it has is K = r(K),

• negative amphicheiral if the only symmetry it has is K = rm(K),

• positive amphicheiral if the only symmetry it has is K = m(K),

• chiral if it has none of these symmetries,

• fully amphicheiral if K = r(K) = m(K) = rm(K), i.e. if K has all three 

symmetries.

The symmetry type of each knot on at most 12 crossings is given at [14]. Thus each of the 

2977 knots K given there represents 1, 2 or 4 knots depending on the symmetry type. 

Among the 2977 knots, there are 1580 reversible, 47 negative amphicheiral, 1 positive 

amphicheiral, 1319 chiral, and 30 fully amphicheiral knots.

It is known [21, 24] that the fundamental quandles of K and K′ are isomorphic if and only if 

K = K′ or K = rm(K′).

Let X be a quandle, and ϕ be a 2-cocycle with coefficient group A, a finite abelian group; we 

use multiplicative notation. We regard ϕ as a function ϕ : X × X → A. For a coloring of a 

knot diagram by a quandle X as depicted in Fig. 1 at a positive (left) and negative (right) 

crossing, respectively, the pair (xτ, yτ) of colors assigned to a pair of nearby arcs is called the 

source colors. The third arc receives the color xτ * yτ.

The 2-cocycle (or cocycle, for short) invariant is an element of the group ring ℤ[A] defined 

by Φϕ(K) = ∑ ∏τ ϕ(xτ, yτ)ε(τ), where the product ranges over all crossings τ, the sum 

ranges over all colorings of a given knot diagram, (xτ, yτ) are source colors at the crossing τ, 

and ε(τ) is the sign of τ as specified in Fig. 1.
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When ℤn is contained as a subgroup in ℤm and in , and if a 2-cocycle ϕ : X × X 

→ ℤn is such that [ϕ] is a generator of the subgroup ℤn in , then we say that ϕ is 

a generating 2-cocycle of the subgroup ℤn.

 Lemma 2.7

If the second homology group  for X satisfies , 

ni > 0 for all i, then we have

where .

 Proof—It is known that  is isomorphic to  by the universal 

coefficient theorem and from the fact that  is torsion free [7].

The result follows from the standard facts

and Hom(ℤn, ℤm) ≅ ℤgcd(n,m), for positive integers n and m.

The groups  for some Rig quandles are found at [33]. Note that the groups given in 

[33] are rack homology , and the relationship is given by 

 [22].

The package Rig [33] includes cohomology groups, 2-cocycles, abelian extensions and 

cocycle invariants for some Rig quandles and some knots in the KnotInfo table [14]. 

Multiplication tables of Rig quandles, (co)homology groups, generating 2-cocycles, and 

abelian extensions of Rig quandles that we used for computations can be obtained online at 

the Wiki page of Rig: http://github.com/vendramin/rig/wiki.

 3. Distinguishing the Unknot by Quandle Colorings

We recall the following conjecture of [11].

 Conjecture 3.1

If K and K′ are any two knots such that K′ ≠ K and K′ ≠ rm(K) then there is a finite quandle 
X such that ColX(K) ≠ ColX(K′).

In this section, we prove this conjecture when K′ is the unknot. The idea is somewhat similar 

to that of Eisermann, see [16, Remark 59].
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 Proposition 3.1

Let K be a non-trivial knot. Then there exists a finite quandle X such that K admits a non-
trivial coloring with X.

First, we recall the facts we need for the proof, see for example [16].

1. Papakyriakopoulos [28] proved that a knot is trivial if and only its longitude is 

trivial in the fundamental group of the complement of the knot, called the knot 

group, π1( 3\K).

2. The Wirtinger presentation of the knot group of an oriented knot K is defined 

as follows. Label the arcs x1, x2, …, xn. At the end of the arc xi−1 we 

undercross the arc xk(i) and continue on arc xi. Let ε(i) be the sign of the 

crossing as in Fig. 1. Then the knot group is

where  for all i.

3. The map ∂ : π1( 3\K) → ℤ given by ∂(xi) = 1 for all i is a group 

homomorphism. By [3], Remark 3.13, the longitude lK can be written as a 

word w on all the generators x1, …, xn with ∂(w) = 0.

4. Recall that a group G is residually finite if every non-trivial g ∈ G is mapped 

non-trivially into some finite quotient of G. As a consequence of [32] one 

obtains that every knot group is residually finite, see [20] for a proof.

 Proof of Proposition 3.1—Since K is non-trivial, lK ≠ 1. Since knot groups are 

residually finite, there exists a finite group G and a surjective group homomorphism f : 
π1( 3\K) → G such that f(lK) ≠ 1. Then f maps the conjugacy class of x1 into a non-trivial 

conjugacy class X of G. From this it follows that the knot K admits a non-trivial coloring 

with the conjugation quandle X.

 4. Quandle Colorings of Composite Knots

In this section, we introduce the concept of end monochromatic, and show that if a knot K1 

or a knot K2 is end monochromatic with a finite homogeneous quandle X, then |X|

ColX(K1⋕K2) = ColX(K1)ColX(K2).

A 1-tangle is a properly embedded arc in a 3-ball, and the equivalence of 1-tangles is defined 

by ambient isotopies of the 3-ball fixing the boundary (cf. [13]). A diagram of a 1-tangle is 

defined in a manner similar to a knot diagram, from a regular projection to a disk by 

specifying crossing information, see Fig. 2(a). An orientation of a 1-tangle is specified by an 

arrow on a diagram as depicted. A knot diagram is obtained from a 1-tangle diagram by 

closing the end points by a trivial arc outside of a disk. This procedure is called the closure 
of a 1-tangle. If a 1-tangle is oriented, then the closure inherits the orientation.
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A 1-tangle is obtained from a knot K as follows. Choose a base point b ∈ K and a small 

open neighborhood B of b in the 3-sphere 3 such that (B, K ∩ B) is a trivial ball-arc pair (so 

that K ∩ B is unknotted in B, see Fig. 2(b)). Then ( 3\Int(B), K ∩ ( 3\Int(B))) is a 1-tangle 

called the 1-tangle associated with K. The resulting 1-tangle does not depend on the choice 

of a base point. If a knot is oriented, then the corresponding 1-tangle inherits the orientation.

A quandle coloring of an oriented 1-tangle diagram is defined in a manner similar to those 

for knots. We do not require that the end points receive the same color for a quandle coloring 

of 1-tangle diagrams.

 Definition 4.1

Let K be a 1-tangle diagram and X be a quandle. We say that (K, X) is end monochromatic, 

or K is end monochromatic with X, if any coloring of K by X assigns the same color on the 

two end points.

Two diagrams of the same 1-tangle are related by Reidemeister moves. The one-to-one 

correspondence of colorings under each Reidemeister move does not change the colors of 

the end points. Thus we have the following.

 Lemma 4.2

The property of being end monochromatic for a 1-tangle corresponding to a knot K and a 
base point b does not depend on the choice of the base point b.

Thus, if a diagram of a 1-tangle corresponding to a knot K and some base point b is end 

monochromatic with X, then we say that a knot K is end monochromatic with X.

 Lemma 4.3

Let X be a finite homogeneous quandle, x ∈ X, and Col(X,x)(K, b) be the number of 
colorings of a diagram K by X such that the arc that contains the base point b receives the 
color x. Then

for any x ∈ X.

 Proof—First we show that Col(X,x)(K, b) = Col(X,y)(K, b) for any x, y ∈ X. Let 

SCol(X,x)(K, b) be the set of colorings  such that (α) = x, where α is the arc that contains 

b. Since X is homogeneous, there is an automorphism h of X such that h(x) = y. For any 

coloring  ∈ SCol(X,x)(K, b), h⋕( ) = h◦  satisfies h⋕( )(α) = y, hence h induces a bijective 

map h⋕ : SCol(X,x)(K, b) → SCol(X,y)(K, b). Then we have

for any x ∈ X.
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The following lemma was stated and proved in [29] for the 3-element dihedral quandle Q(3, 

1) (and dihedral quandles in [30]) and generalized by Nosaka [27]. The idea of proof is 

illustrated by Fig. 3, which was taken from [29].

 Lemma 4.4 (see [27])

If a quandle X is faithful, then for any knot K, (K, X) is end monochromatic.

 Remark 4.5

There are many examples of knots K and quandles X where X is not faithful, but (K, X) is 

end monochromatic. For example, Q(8, 1), which is an abelian extension of Q(4, 1), is not 

faithful, but 51 and 85 are end monochromatic with Q(8, 1), where 51 has only trivial 

colorings, and 85 has non-trivial colorings with Q(8, 1). The smallest non-faithful quandle 

for which 31 is end monochromatic is Q(12, 1), which is an abelian extension of Q(6, 1).

In the following lemma, a formula is given for the number of colorings of composite knots. 

For a composite knot K1⋕K2, we assume that K1 and K2 are oriented, and the composite 

K1⋕K2 is defined in such a way that an orientation of the composite restricts to the 

orientation of each factor, and such an orientation is specified for the composite to make it 

an oriented knot, see Fig. 4.

 Lemma 4.6 (cf. [27, 29])

If a knot K1 or a knot K2 is end monochromatic with a finite homogeneous quandle X, then

 Proof—Let b1, b2 be base points on diagrams of K1 and K2, respectively, with respect to 

which 1-tangles and connected sum are formed. Let x ∈ X. Let SCol(X,x)(Ki, bi), and 

Col(X,x)(Ki, bi), i = 1, 2, be the set and the number of colorings of Ki by X such that the arc 

that contains bi receives the color x. Let c1, c2 be points on a diagram K = K1⋕K2 that result 

from taking a connected sum with respect to b1 and b2 by connecting 1-tangles, see Fig. 4.

For colorings i ∈ Col(X,x)(Ki, bi), i = 1, 2, a coloring  = 1⋕ 2 of K is uniquely 

determined such that the colors of the arcs containing ci, i = 1, 2, coincide and is x. 

Conversely, any coloring  of K has the property that the color of the arcs containing ci, i = 

1, 2, coincide, since  will also be a coloring of the tangles K1 and K2. If, say, K1 is 

monochromatic with X then the colors of c1 and c2 must be the same. Hence there is a 

bijection

By Lemma 4.3, we have Col(X,x)(Ki, bi) = ColX(Ki)/|X| for any x ∈ X, hence the left side 

above has the cardinality
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as desired.

Lemmas 4.4 and 4.6 imply the following.

 Lemma 4.7 (see [27])

If X is a finite faithful quandle, then

for knots K1 and K2.

 Corollary 4.8

If X is a finite faithful quandle and R, K are knots, then

In particular, if X is a finite faithful quandle and K is reversible or positive-amphicheiral, 
respectively, then either ColX(R⋕K) = ColX (R⋕m(K)) or ColX(R⋕K) = ColX(R⋕r(K)).

 Proof—By Lemma 4.7,

This completes the proof.

According to this lemma, the situation of quandle colorings of composite knots may differ 

for non-faithful quandles, and indeed, the computer calculations reveal this. In the following 

sections we investigate these cases. We used the closed braid form for computer calculations 

of the number of quandle colorings as in [11]. In computing the number of colorings for 

composite knots, we formed the closed braid form as depicted in Fig. 5. In the braid notation 

of [14], an m-braid is represented by [a1, …, as
], ai ∈ ℤ, where ai represents the braid 

generator σk
 if ai

 = k > 0, and  if k < 0. The sign of ai, sign(ai), is defined to be 1 (−1, 

respectively), if k > 0 (resp. k < 0). If [a1, …, as
] ([b1, …, bt], respectively) is an m-braid 

(resp., n-braid) representative for a knot K (resp., K′), then

is an (m + n − 1)-braid representative for K⋕K′. For example, for a trefoil 31
, s = 3, m = 2, t 

= 3, n = 2, and [1, 1, 1, 2, 2, 2] is a (2+2−1)-braid representative of 31
⋕3

1. The orientations 

of each factor and the composite are defined by downward orientation of the braid form. It is 

known [2] that for the braid index Br, the formula Br(K1⋕K2) = Br(K1) + Br(K2) − 1 holds.
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 5. Distinguishing K from rm(K) via Colorings of Composite Knots

Since quandle colorings do not distinguish K from rm(K), they do not distinguish m(K) from 

r(K). Consequently, in [11], distinguishing K from m(K) by quandle colorings was examined 

only for chiral and negative-amphicheiral knots.

In this section, we exhibit computational results on distinguishing reversible and chiral knots 

K from rm(K) using quandle colorings of composite knots R⋕K and R⋕rm(K) for knots R 
and K.

 Proposition 5.1

Conjecture 3.1 implies that for any knot K such that K ≠ f(K) for some f ∈ , there is a finite 
quandle X and a prime knot P (with braid index 2) such that ColX(P⋕K) ≠ ColX(P⋕f(K)).

 Proof—First, we observe that for any knots K1 and K2 and f ∈ ,

and for any prime knot P and f ∈ , f(P) is prime. Let K = P1⋕⋯⋕Pn be the prime 

factorization of K. Then

is the prime factorization of f(K). Let P be a prime knot such that P is not in (Pi) for i = 1, 

…, n and P ≠ rm(P) (take, for example, a (2, n)-torus knot, that is, the closure of a 2-braid, of 

a large crossing number for P). Clearly P⋕K ≠ P⋕f(K). The prime factorization of rm(P⋕K) is

and by the definition of P we again have by uniqueness of prime factorization that rm(P⋕K) 

is not equal to P⋕f(K). By the conjecture it follows that there is a finite quandle X such that 

ColX(P⋕K) ≠ ColX(P⋕f(K))

As a corollary to the proof of Proposition 5.1, we obtain the following.

 Corollary 5.2

For any knot K such that K ≠ f(K) for some f ∈ , there exists a prime knot P such that the 
fundamental quandles of P⋕K and P⋕f(K) are not isomorphicitalic.

Recall from Corollary 4.8 that if X is a finite faithful quandle, then we cannot distinguish 

R⋕K from R⋕rm(K). Thus to apply this technique, we must use nonfaithful quandles.
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 Remark 5.3

For reversible or chiral prime knots K up to 12 crossings and up to braid index 4, among the 

Rig quandles E of order less than 36, only the quandles Q(24, 2) and Q(27, 14) distinguished 

R⋕K and R⋕m(K) for some closed 2-braids R by the condition

We noticed that these are abelian extensions of Q(6, 2) and Q(9, 6) with coefficient groups 

ℤ4 and ℤ3, respectively. In the remainder of the section, we give an interpretation of this 

method in terms of the quandle cocycle invariant, and extend this method to quandles of 

order larger than 36. Corollary 4.8 and Proposition 7.1 partly explain why only abelian 

extensions worked for this purpose among Rig quandles. Remark 5.6 suggests why many 

abelian extensions do not work.

Let X be a quandle, A be a finite abelian group, and  be a 2-cocycle with 

coefficient group A. Let Φϕ(K) = ∑g∈A agg ∈ ℤ[A] be the cocycle invariant of a knot K. We 

write Cg(Φϕ(K)) = ag. In particular, Ce(Φϕ(K)) ∈ ℤ denotes the coefficient of the identity 

element e ∈ A.

An examination of the proof of Theorem 4.1 in [4] reveals the following two lemmas. For 

convenience of the reader, we include a proof of Lemma 5.5.

 Lemma 5.4 (see [4])

Let E be an abelian extension of X with respect to a 2-cocycle ϕ with coefficient group A. 
Let K be a knot that is end monochromatic with X. Then ColE(K) = Ce(Φϕ(K))|A|.

 Lemma 5.5

Suppose (K, X) is end monochromatic, and E = E(X, A, ϕ) is an abelian extension of X. 
Then (K, E) is end monochromatic if and only if Φϕ(K) = ColX(K) e.

 Proof—In [4], an interpretation of the cocycle invariant as an obstruction to extending a 

coloring of a knot diagram K by X to a coloring by the abelian extension E of X with respect 

to a 2-cocycle ϕ was given as follows. Let  be a coloring of a 1-tangle S of K with initial 

and terminal end points b0, b1, respectively. Suppose (K, X) is end monochromatic, so that 

(b0) = (b1) = x0 ∈ X. Let a0 ∈ A and assign a color (x0, a0) ∈ E = X × A to the arc at b0. 

By traveling along the diagram from b0 to b1, a color of S by E is defined inductively using 

colors by X; if an under-arc colored by (x, a) goes under an over-arc colored by (y, b) at a 

positive crossing, then the other under-arc receives a color (x*y, aϕ(x, y)). The color extends 

at negative crossing as well. Then the coloring thus extended to S has the color (x0, a0 d) at 

the arc at b1, where d ∈ A is the contribution of the cocycle invariant d = ∏τ ϕ(xτ, yτ)ε(τ) ∈ 

A. Thus, the coloring by X extends to that by E if and only if d is the identity element.
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 Remark 5.6

The examples mentioned in Remark 4.5 are explained by Lemma 5.5. Among Rig quandles 

of order less than 36, the following are abelian extensions and end monochromatic for all 

knots up to nine crossings:

Thus, we conjecture that this is the case for all knots. The corresponding quandle X for these 

abelian extensions E are found in [12], and they are, respectively:

Duplicates in the list of X are due to non-cohomologous 2-cocycles of the same quandle.

There are non-faithful quandles that are not abelian extensions, see Proposition 7.1, and we 

do not know any characterization of knots that are end monochromatic with such quandles. 

All prime knots up to nine crossings are end monochromatic with Q(30, 4).

 Definition 5.7 (e.g. [6])

For an element a = ∑h ahh ∈ ℤ[A], the element ā = ∑h ahh−1 ∈ ℤ[A] is called the conjugate 
of a.

 Lemma 5.8 (see [6])

.

 Definition 5.9

The value of the quandle cocycle invariant Φϕ(K) of a knot K with respect to a 2-cocycle ϕ 

of a quandle X is called asymmetric if .

 Corollary 5.10

If Φϕ(K) is asymmetric, then K ≠ rm(K).
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From the above corollary we can sometimes distinguish K from rm(K) using the cocycle 

invariant for some quandles.

 Proposition 5.11 (see [27])

Let ϕ be a 2-cocycle of a finite homogeneous quandle X with coefficient group A. Suppose 
that K1 or K2 is end monochromatic with X. Then

The following corollary relates the condition

to Corollary 5.10 via asymmetry of the cocycle invariant.

 Corollary 5.12

Let ϕ be a 2-cocycle of a finite connected faithful quandle X with coefficient group A. 
Assume that Φϕ(R) = ree + ruu for re, ru ∈ ℕ, the identity element e, and a non-identity 
element u ∈ A, and that re = |X|, that is, any nontrivial coloring contribute u to the cocycle 
invariant. Suppose a knot K satisfies

where V does not contain terms in e, u or u−1. Then ku ≠ ku−1 if and only if

where E is the abelian extension of X by ϕ.

 Proof—By Proposition 5.11,

By Lemma 5.4, ku ≠ ku−1 if and only if

This completes the proof.
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We note that often computing the number of colorings has computational advantage over 

applying Corollary 5.10 by computing the cocycle invariant, even though Corollary 5.12 

theoretically derives the condition

from asymmetry of the cocycle invariant in many cases.

 Example 5.13

Let X = Q(6, 2) and ϕ be a generating 2-cocycle over ℤ4 such that the abelian extension of X 
with respect to ϕ is E = Q(24, 2). Let us take an example of R⋕K and R⋕rm(K) for a trefoil 

R = 31 and K = 61. It was found in [10] that there is a multiplicative generator u of ℤ4 such 

that the trefoil has the cocycle invariant Φϕ(31) = 6 + 24u for Q(6, 2). With the same 2-

cocycle, it is computed that Φϕ(K) = 6 + 24u−1. By Corollary 5.12, ColE(R⋕K) ≠ 

ColE(R⋕rm(K)), where E = Q(24, 2). For a more complex knot K, however, it becomes 

difficult to compute the cocycle invariant, and easier to confirm the condition ColE(R⋕K) ≠ 

ColE(R⋕rm(K)), which then implies that K ≠ rm(K) and K has an asymmetric invariant 

value.

We summarize outcomes of the methods described in this section, i.e. using Corollary 5.10 

and cocycle invariants, or by directly computing

First we summarize our results for prime knots with nine crossings or less using the cocycle 

invariant. Among 84 knots in the table up to nine crossings, they are all reversible except:

• Fully amphicheiral knots: 41, 63, 83, 89, 812, 818.

• Negative amphicheiral knot: 817.

• Chiral knots: 932, 933.

The rest are 75 reversible knots. The colorings of 31⋕K and 31⋕rm(K) or the method 

described in Corollary 5.12 distinguished the following reversible knots from their mirrors.

• Using Q(24, 2), the following knots are distinguished from mirrors:

31, 61, 74, 77, 811, 91, 92, 94, 96, 910, 911, 915, 917, 923, 929, 934, 935, 937, 938, 

946, 947, 948.

• Using Q(27, 14), the following knots are distinguished from mirrors:

31, 61, 74, 85, 815, 819, 821, 92, 94, 916, 917, 928, 929, 934, 938, 940.

Furthermore, computer calculations show that the following knots K in the KnotInfo table 

up to 12 crossings with braid index less that 4 have the property ColE(31⋕K) ≠ 

ColE(31⋕m(K)).

• Both E = Q(24, 2) and Q(27, 14) have this property for:
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105, 109, 10112, 10159, 12a0805, 12a0878, 12a1210, 12a1248, 12a1283, 12n0571, 

12n0666, 12n0750, 12n0751.

• Only E = Q(24, 2) but not Q(27, 14) has this property for:

11a355, 12a1214, 12n0574, 12n0882.

• Only E = Q(27, 14) but not Q(24, 2) has this property for:

1064, 10139, 10141, 11a338, 12a1212, 12n0604, 12n0850.

 Remark 5.14

To distinguish more knots from their mirrors using the property ColE(R⋕K) ≠ ColE(R⋕m(K)) 

for some abelian extensions E and for some R, we further computed abelian extensions of 

some Rig quandles. We computed cohomology groups for some coefficient groups and 

found some 2-cocycles for Rig quandles up to order 23, and obtained 40 abelian extensions. 

This information is available online at http://github.com/vendramin/rig/wiki.

Let ℰ be this set of quandles. It is likely that there are other abelian extensions that are not in 

this list.

There are 168 chiral, reversible or positive amphicheiral knots with braid index less than 4 

and crossing number at most 12. Of these, we computed that 144 knots have the property 

ColE(R⋕K) ≠ ColE(R⋕m(K)) with E ∈ ℰ and for R = 31, 51, or 91.

 Remark 5.15

Reversible prime knots K, up to 12 crossings with braid index less than 4, distinguished 

from their mirror images by a quandle knot pair (X, R) are listed in Table 1. The table shows 

a quandle X, a knot R and knots K such that ColX(R⋕K) ≠ ColX(R⋕m(K)). We recall that 

Q(24, 2) and Q(27, 14) are also abelian extensions.

 Remark 5.16

Chiral prime knots K, up to 12 crossings with braid index less than 4, distinguished from 

rm(K) by a quandle knot pair (X, R) are listed in Table 2. The table shows a quandle X, a 

knot R and knots K such that such that ColX(R⋕K) ≠ ColX(R⋕rm(K)).

 6. Recovering Cocycle Invariants from Colorings

In this section, we obtain formulas for computing the cocycle invariant from the number of 

colorings for some cases. The formulas give computational advantage in many cases. To 

obtain formulas, however, one needs information on concrete non-trivial invariant values for 

a few knots.

 Proposition 6.1

Let X, A, ϕ be as above. Suppose that X is end monochromatic with K. Suppose further that 
for an elemen υ ∈ A that is not the identity element e, there exists a knot Rυ such that 
Φϕ(Rυ) = ree + rυυ ∈ ℤ[A]. Then
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 Proof—By Proposition 5.11, we have |X|Φϕ(Rυ⋕K) = Φϕ(Rυ)Φϕ(K). By assumption 

Φϕ(Rυ)Φϕ(K) = (ree + rυυ)(∑u∈A auu). The coefficient of the identity element in the left-

hand side is reae + rυaυ−1. Hence we obtain |X|Ce(Φϕ(Rυ⋕K)) = reae + rυaυ−1. Let E be the 

abelian extension of X with respect to ϕ. Then by Lemma 5.4, we have

and ColE(K) = ae|A|. By substitution and solving for aυ−1, we obtain the lemma.

In the following examples, we focus on the Rig quandles of order up to 12 where the second 

cohomology group is non-trivial when the coefficient group is other than ℤ2. When the 

coefficient group A is cyclic of order n, even though we write A = ℤn (a notation usually 

used for the additive group of integers modulo n), we specify a multiplicative generator u, so 

that A = 〈u〉 where u has order n, and write A multiplicatively.

 Example 6.2

Let X = Q(6, 2) and ϕ be a generating 2-cocycle over A = ℤ4 such that the abelian extension 

of X with respect to ϕ is E = Q(24, 2). Since X is faithful, any knot is end monochromatic 

with X.

The cocycle invariants of X = Q(6, 2) using this cocycle are given in the wiki page of Rig at 

http://github.com/vendramin/rig/wiki, for knots up to 10 crossings. Some of the results are 

shown in Table 3. Knots that are not listed have the trivial invariant value 6. We abbreviate 

the identity element in the remaining of the paper. For example, 6 + 24u means 6e + 24u for 

the identity element e. In particular, in order to use Proposition 6.1, we obtain the following 

invariant values:

Proposition 6.1 implies that
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We also have

from Lemma 5.4. Therefore we obtain

See the appendix for examples of cocycles invariants computed using this formula.

 Remark 6.3

In computing the coloring numbers of knots by quandles, some computational techniques 

have been developed in [11], such as fixing a color of the first braid strand to reduce the 

computation time. On the other hand, to compute the cocycle invariant, every coloring must 

be computed, and the cocycle value must be evaluated for each coloring. The latter increases 

the computational time significantly. Thus, the formula of Proposition 6.1 is useful in 

determining invariant values for higher crossing knots with lower braid indices.

 Remark 6.4

There are discrepancies of representatives of knots and their mirrors in different notations in 

[14] for the following knots up to nine crossings: 77
, 9

11
, 9

17
, 9

34
, 9

46
, 9

47
, 9

48. Specifically, 

the diagram of 77 listed agrees with the braid notation, but its PD notation seems to represent 

its mirror. In our first computation up to nine crossings, we used the PD notation in [14], and 

the second computations for those with braid index less than 4 are performed using the braid 

notation. For up to nine crossings, these calculations showed discrepancies for the above 

listed knots. The discrepancies are all related by conjugate values of the invariant. We note 

that in the following computations, these knots are not used for R in ColE(R⋕K) in the 

formulas.

Below we give a summary of the formula in Proposition 6.1 for Rig quandles of order up to 

12, as examples to indicate how to use the formula, and to illustrate varieties of actual 

formulas obtained.

 Example 6.5

Let X = Q(9, 6) = ℤ3[t]/(t2+2t+1) and ϕ be a generating 2-cocycle over A = ℤ3 such that the 

abelian extension of X with respect to ϕ is E = Q(27, 14). Since X is faithful, any knot is end 

monochromatic with X. Computer calculation shows that Φϕ(31) = 27 + 54u, where u is a 

multiplicative generator of A and it also implies that Φϕ(m(31)) = 27 + 54u2. Proposition 6.1 

implies that
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 Example 6.6

Let X = Q(12, 3). This quandle is not Alexander, not kei, not Latin, faithful, and 

 for A = ℤ10. Let E be the abelian extension corresponding to a cocycle that 

represents a generator of ℤ10. We obtain the following invariant values:

One computes

and the other terms are similar with the corresponding knots listed above. We note that the 

coefficient of every term is computed by these formulas, but we needed to compute the 

invariant for up to nine crossings for this conclusion, as u4 and u6 are missing up to eight 

crossing knots.

 Example 6.7

Let X = Q(12, 5). This quandle is not Alexander, not kei, not Latin, faithful, and 

. With a choice of a generating cocycle ϕ, up to eight crossings, all knots 

have the cocycle invariant of the form Φϕ(K) = a + bu2, a, b ∈ ℤ. Thus we conjecture that 

this is the case for all knots. The trefoil has the invariant value Φϕ(31) = 12 + 96u2. Hence 

we obtain

If the conjecture does not hold and a knot with the term u or u3 is found, then it can be used 

to evaluate other terms.

 Example 6.8

Let X = Q(12, 6). This quandle is not Alexander, not kei, not Latin, faithful, and 

. With a generating 2-cocycle ϕ of ℤ4 the invariant values Φϕ(K) for K up to 
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nine crossing knots are listed in Table 4. Thus, we conjecture that the invariant values are of 

the form

for a, b ∈ ℤ and for all knots K. One computes

We note that we needed to compute the invariant for knots up to nine crossings to obtain this 

formula.

 Remark 6.9

The second cohomology groups for Q(12, 7), Q(12, 9) with coefficient group ℤ4 are ℤ2 × ℤ4 

and ℤ4 × ℤ4, respectively, and for choices of generating cocycles, the cocycle invariants are 

non-trivial. Situations and computations are similar to those for Q(6, 2) and Q(12, 5) for 

each factor, for up to seven crossings.

 Example 6.10

Let X = Q(12, 10). This quandle is not Alexander, not kei, not Latin, faithful, and 

. With a generating cocycle ϕ of ℤ6, we obtain

Since we observed, up to eight crossings, one or more of the terms with u2, u3 and u4 (and 

no terms of u or u5), we conjecture that it is the case for all knots. One computes

 Remark 6.11

The 2-cocycle invariants discussed in this section are derived from the following invariant: 

Let R1, …, Rn be knots and X1, …, Xm be finite quandles. Then an invariant is defined for a 

knot K by
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It is, then, a natural question whether for any quandle 2-cocycle invariant Φϕ(K), there is a 

sequence of knots R1, …, Rn and quandles X1, …, Xm such that Φϕ(K) is derived from 

CLX1, …, Xm, R1, …, Rn(K).

 7. Properties of Abelian Extensions

Finding abelian extensions have, for example, the following applications: (1) nontriviality of 

the second cohomology group can be confirmed, (2) knots and their mirrors may be 

distinguished by colorings of composite knots as in Sec. 5, (3) they are useful in computing 

cocycle knot invariants via colorings as in Sec. 6.

We summarize our findings on extensions of Rig quandles in this section. Among the 790 

Rig quandles of a order < 48 there are 66 non-faithful quandles. All but 8 are extensions by 

ℤ2.

 Proposition 7.1

Among the non-faithful Rig quandles (of order less than 48), Q(30, 4),Q(36, 58), and Q(45, 

29) are the only quandles that are not abelian extensions.

 Proof—Computations show that the only non-trivial quotient of Q(30, 4) is X = Q(10, 1). 

So it suffices to show that there is no abelian extension of X of order 30. We have 

 [33]. To get an abelian extension of X of order 30 we would have to have a 

non-trivial 2-cocycle X × X → ℤ3 which would give an element of 

, a contradiction.

The only non-trivial quotients of Q(36, 58) are Q(4, 1) and Q(12, 10). Since H2(Q(4, 1)) ≅ 

ℤ2, a similar argument implies that Q(36, 58) is not an abelian extension of Q(4, 1). We have 

H2(Q(12, 10)) ≅ ℤ6, and let f be a 2-cocycle that generates H2(Q(12, 10), ℤ6) ≅ ℤ6. Then 2f 
and 4f take values in ℤ3, and computations show that the corresponding abelian extensions 

are both isomorphic to Q(36, 57). Since cohomologous cocycles give rise to isomorphic 

quandles, this implies that Q(36, 58) is not an abelian extension of Q(12, 10).

The only non-trivial quotient of Q(45, 29) is Q(15, 7). Since H2(Q(15, 7)) ≅ ℤ2, a similar 

argument implies that Q(45, 29) is not an abelian extension of Q(15, 7).

Then one checks by computer that all the other non-faithful Rig quandles are abelian 

extensions. We note that many cases satisfy the condition in Lemma 8.1 below.

In [1, Proposition 2.11], it was proved that if Y is a connected quandle and X = φ(Y) ⊂ 

Inn(Y), then each fiber has the same cardinality, and if S is a set with the same cardinality as 

a fiber, then there is a constant cocycle β : X × X → Sym(S) such that Y is isomorphic to X 
×β S.

 Proposition 7.2

The quandles Q(30, 4),Q(36, 58), and Q(45, 29) are non-abelian extensions of the quandles 
Q(10, 1), Q(12, 10) and Q(15, 7), respectively, by constant 2-cocycles.
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 Proof—By calculation we see that the image of the mapping φ from Q(30, 4) (resp., 

Q(36, 58), Q(45, 29)) to its inner-automorphism group is isomorphic to Q(10, 1) (resp., 

Q(12, 10), Q(15, 7)). The claim follows from [1, Proposition 2.11],

We noticed that some non-cohomologous cocycles give isomorphic extensions, such as 

Q(36, 57) over Q(12, 10) as in the proof of Proposition 7.1. We also had the following 

observation from computer calculations.

 Remark 7.3

Let X = Q(15, 2), which has cohomology group . Hence there are 

three 2-cocycles that are non-trivial and pairwise non-cohomologous. There are, however, 

only two non-isomorphic abelian extensions of X by ℤ2, Q(30, 1) and Q(30, 5). Then 

calculations show that two non-cohomologous cocycles define the extension Q(30, 5). 

Similar examples are found for some 12 element quandles, see below.

 Lemma 7.4

For abelian groups B and C and a quandle X, let

be 2-cocycles with abelian extensions E(X, B, ϕB) and E(X, C, ϕC), respectively. Then for A 
= B × C, ϕ = (ϕB, ϕC) : X × X → A is a 2-cocycle with abelian extension E(X,A, ϕ), and 
E(X, A, ϕ) is an abelian extension of E(X, B, ϕB) and E(X, C, ϕC).

 Proof—Define  by

Then  is a 2-cocycle of E(X, B, ϕB) with coefficient C.

Define f : E(X, A, ϕ) → E(X, B, ϕB) × C by f((x, (b, c)) = ((x, b), c), which is clearly 

bijective. Then one computes

and
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as desired.

Similarly, we obtain the following.

 Lemma 7.5

Let B and C be abelian groups and A = B × C, X be a quandle, and ϕ : X × X → A be a 2-

cocycle with abelian extension E(X, A, ϕ). Further, let pB and pC be the projections from A 
onto B and C respectively. Then pBϕ : X × X → B is a 2-cocyle giving abelian extension 
E(X, B, pBϕ), and E(X, A, ϕ) is isomorphic to E(E(X, B, pBϕ), C, ϕ′), where ϕ′((x1, b1), (x2, 

b2)) = pCϕ(x1, x2) for (x1, b1), (x2, b2) ∈ X × B.

Lemma 7.5 is generalized as follows.

 Proposition 7.6

Let X be a finite quandle, and  be an exact sequence of finite 
abelian groups. Let ϕ : X × X → A be a quandle 2-cocycle. Then E(X, A, ϕ) is an abelian 
extension of E(X, B, pBϕ) with coefficient group C.

 Proof—Let s : B → A be a section of the map pB, that is, pBs = idB. Then

Thus, s(b1 + b2) − s(b1) − s(b2) lies in the kernel of pB so we can write

for some c ∈ C. Let η : B × B → C be given by η(b1, b2) = c. Then pB(a−spB(a)) = 0 and 

hence we can write a − spB(a) = ι(pC(a)) where pC : A → C. This yields

for all a ∈ A.

Define ϕ′ : E(X, B, pBϕ) × E(X, B, pBϕ) → C by
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for (xi, bi) ∈ E(X, B, pBϕ) = X × B, i = 1, 2. To show that ϕ′ is a 2-cocycle it suffices to 

show that E(E(X, B, pBϕ), C, ϕ′) is a quandle. For this it suffices to show that the mapping

defined by f(((x, b), c)) = (x, s(b) + ι(c)) is a bijection and preserves the product. To show 

that f is a bijection, since the domain and codomain of f have the same cardinality, it suffices 

to show that f is a surjection. Given (x, a) ∈ X × A we see that

Finally to show that f preservers the product we compute:

and

as desired.

If we suppress the 2-cocycle in the notation E(X, A, ϕ) and write merely E(X, A) then the 

above Lemma 7.4 and Proposition 7.6 may be stated more simply.

 Corollary 7.7

(i) If E(X, B) and E(X, C) are abelian extensions, then so is E(X, B × C), and

(ii) If E(X, A) is a finite abelian extension of a quandle X and C is a subgroup of the finite 
abelian group A then

We note that if E(X, A) is connected, then E(X, A/C) is connected since the epimorphic 

image of a connected quandle is connected.
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We examine some connected abelian extensions of Rig quandles of order up to 12. In the 

following, we use the notation  if E = E(X, ℤn, ϕ) for some 2-cocycle ϕ such that E 

is connected.  if there is a short exact sequence 0 → ℤm → ℤn → ℤd → 0 

such that  and E1, E2 are corresponding extensions as in Proposition 7.6. In 

this case  where n = md. The notation  indicates that  for any 

coefficient group A, and hence there is no non-trivial abelian extension. It is noted to the left 

when all quandles in question are keis.

In the following, we list abelian extensions of Rig quandles that contain quandles of order 

higher than 35. The notation Q(n, −) indicates that it is a quandle of order n > 35 and is not a 

Rig quandle. The notation ? → Q(n, −) indicates that we do not know if non-trivial abelian 

extension exists for the quandle Q(n, −) in question. Except for the quandle Q(120, −) in the 

third line, we have explicit quandle operation tables for the quandles appearing in the list 

and hence we can prove by computer that such quandles are connected.
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It is interesting to remark that all quandles appearing in the first and the last lines are keis.

These observations raise the following questions.

• What is a condition on cocycles for abelian, or non-abelian extensions to be 

connected?

In [1], a condition for an extension to be connected was given in terms of elements of the 

inner automorphism group

• Is there an infinite sequence of abelian extensions of connected quandles ⋯ → 

Qn → ⋯ → Q1?

We note that sequences of abelian extensions of connected quandles terminate as much as 

we were able to compute.

• Is any abelian extension of a finite kei a kei?

In relation to this question, below we observe a condition of 2-cocycles that give extensions 

that are keis.

 Lemma 7.8

Let X be a kei, ϕ be a 2-cocycle with coefficient group A, and E be the abelian extension of 
X with respect to ϕ. Then E is a kei if and only if ϕ(x, y) + ϕ(x * y, y) = 0 ∈ A for any x, y ∈ 

X, in additive notation.

 Proof—One computes, for any x, y ∈ X and a, b ∈ A,

For any x, y ∈ X and a, b ∈ A, the right-hand side is equal to (x, a) if and only if ϕ(x, y) + 

ϕ(x * y, y) = 0 for any x, y ∈ X.

 Remark 7.9

Let X = Q(12, 7). Then . By computer calculation, there is a particular 

generating 2-cocycle of the ℤ2-factor, . Notice that 

. We also note that there are epimorphisms Q(24, 14) → Q(12, 7) 
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and Q(24, 18) → Q(12, 7), where  and . 

Hence there is a quandle of order 48 corresponding to the ℤ4-factor of , that has 

epimorphic image Q(24, 14) or Q(24, 18).

 Remark 7.10

Let X = Q(12, 8). Then . There are three epimorphisms from Rig 

quandles of order less than 36:

and their cohomology groups with A = ℤ2 are (ℤ2)3, (ℤ2)2, and (ℤ2)2, respectively. We note 

that there are 7 cocycles that are not cohomologous each other, yet there are only 3 

extensions as in Remark 7.3.

 Remark 7.11

Let X = Q(12, 9). Then . There are two extensions in Rig quandles of 

order less than 36:

and with A = ℤ4 their cohomology groups are ℤ2 × ℤ2 × ℤ4 and ℤ2 × ℤ4, respectively. There 

are three cocycles that give order-two extensions, yet there are two extensions as in Remark 

7.3.

 Remark 7.12

Let X = Q(12, 10). Then . There is one extension among Rig quandles of 

order less than 36, Q(24, 20) → Q(12, 10) and we have . One 

of the order-3 cocycle corresponds to an extension of X of order 6.

 8. Finding Extensions of Higher Order

We further investigated extensions among non-faithful quandles over Rig quandles. 

Extensions of some of the Rig quandles of order greater than 12 and less than 28 can be 

found in http://github.com/vendramin/rig/wiki. The computations of cocycles become 

difficult for quandles of order 28. Thus we take an approach of constructing non-faithful 

connected quandles and identify extensions as follows.

We considered Rig quandles of order less than 36. To find extensions of Rig quandles, we 

made a list ℱ of 315 non-faithful connected generalized Alexander quandles with respect 

to pairs (G, f) for non-abelian groups G and f ∈ Aut(G) (see Sec. 2). We considered all 

groups or order n, 36 ≤ n < 128, and for n = 128, only the first 172 groups in GAP Small 

Groups library (the library contains all the 2328 groups of size 128). All possible 
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automorphisms f ∈ Aut(G) were considered up to conjugacy. For example, there are 39 non-

abelian groups of order 108 which give 74 connected non-faithful quandles of order 108.

Lemma 2.3 and Proposition 2.11 in [1] were used to determine abelian extensions and non-

abelian extensions by constant cocycles among quandles in ℱ over Rig quandles of order 

less than 36. Specifically, quotient quandles are computed, dynamical cocycles ([1, Lemma 

2.3]) are computed, whether the cocycles are constant is determined, and whether the 

extensions are abelian is determined.

We note that most examples computed for abelian extensions are 2-fold epimorphisms, and 

observe the following.

 Lemma 8.1

Let Y be a finite connected quandle of even order 2n, and assume that φ (Y) = X ⊂ Inn(Y) 

with |X| = n. Then Y is isomorphic to an abelian extension of X by ℤ2.

 Proof—As in Proposition 7.2, it follows from Proposition 2.11 of [1] that Y is 

isomorphic to an extension X ×β S by a constant cocycle β, where a set S consists of two 

elements. Let S = {0, 1}, and we identify S with ℤ2. Then Sym(S) consists of two elements, 

the identity and the transposition of 0 and 1. We define ϕ : X × X → ℤ2 by ϕ(x, y) = 0 if βx,y 

= id and ϕ(x, y) = 1 if βx,y is the transposition. Then βx,y(t) = t + ϕ(x, y) for t ∈ ℤ2 and ϕ is a 

2-cocycle.

 Remark 8.2

Among Rig quandles of order less than 36, the following have 2-fold extensions among 

quandles in ℱ.

Other than these, we found that Q(12, 3) has a five-fold abelian extension, and Q(15, 2) has 

a four-fold non-abelian extension in ℱ. We remark that the five-fold extension of Q(12, 3) 

was predicted by Lemma 7.5, see the list in Sec. 7 for Q(12, 3). Thus this specific extension 

is found in ℱ.

We observe the following generalization of Lemma 8.1. Let Y be a finite connected quandle, 

and let φ(Y) = X ⊂ Inn(Y) with |X| = n. It follows again from Proposition 2.11 of [1] that Y 
is isomorphic to an extension X ×β S by a constant cocycle β.
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 Lemma 8.3

Let X and Y be as above. If |Y | = kn where k is a prime power, and the subgroup Hβ of 
Sym(S) generated by {βx,y | x, y ∈ X} is cyclic of order k, then Y is isomorphic to an abelian 
extension of X.

 Proof—Since |Y | = kn, we have |S| = k. Since Hβ is cyclic of order k and k is a prime 

power, it is generated by a k-cycle σ. We can identify S with ℤk in such a way that σ = (1, 2, 

…, k). Then σ(t) = 1+t for any t ∈ ℤk. Hence for any x, y ∈ X, βx,y = σi for some i ∈ ℤk, so 

that βx,y(t) = t + ϕ(x, y) with ϕ(x, y) = i.

 Remark 8.4

Although homology groups of Rig quandles have been computed in [33], as mentioned 

earlier, explicit 2-cocycles have not been computed for Rig quandles of order greater than 

23. The above computations of extensions give rise to explicit 2-cocycles, and also may be 

used for computations of cocycle invariants as in Sec. 6. Furthermore, the computations 

identify the pairs (G, f) of generalized Alexander quandles that are abelian extensions of Rig 

quandles.

 9. Problems, Questions and Conjectures

For convenience of the reader, we collect here questions, problems and conjectures 

discussed all over the text.

 Problem 9.1

Compute explicit 2-cocycles and extensions of Rig quandles of order ≥ 24.

In Remark 5.6, we made the following conjecture.

 Conjecture 9.1

Let X be one of the following quandles:

Then every knot K is end monochromatic with X.

In Examples 6.7, 6.8 and 6.10 we made the following conjectures.
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 Conjecture 9.2

Let X = Q(12, 5) and ϕ be the 2-cocycle choosen in Example 6.7. Then for each knot K the 
cocycle invariant Φϕ is of the form Φϕ(K) = a + bu2, where a, b ∈ ℤ.

 Conjecture 9.3

Let X = Q(12, 6) and ϕ be the 2-cocycle choosen in Example 6.8. Then for each knot K the 
cocycle invariant Φϕ is of the form Φϕ(K) = a + bu2, where a, b ∈ ℤ.

 Conjecture 9.4

Let X = Q(12, 10) and ϕ be the 2-cocycle choosen in Example 6.10. For each knot K write 
Φϕ(K) = a + bu + cu2 + du3 + eu4 + fu5, where a, b, c, d, e, f ∈ ℤ. Then b = f = 0 for all K.

In Sec. 6, we posed the following questions.

 Question 9.2

What is a condition on cocycles for abelian, or non-abelian extensions to be connected?

 Question 9.3

Is there an infinite sequence of abelian extensions of connected quandles ⋯→ Qn → ⋯ → 

Q1?

 Question 9.4

Is any abelian extension of a finite kei a kei?
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 Appendix

 Cocycle Invariants for Q(6, 2)

In this appendix we list the cocycle invariant Φϕ(K) for the quandle X = Q(6, 2) and the 2-

cocycle over ℤ4 discussed in Example 6.2. The list is for all knots in [14] that have braid 

index 4 or less, and 12 crossings or less. Knots with only trivial colorings (the invariant 

value 6) are not listed. These values are computed using the formula described in Example 

6.2 and programs similar to those in [11]. Note that if the 2-cocycle invariant below has the 

form a + bu + cu2 + du3 where b ≠ d then by Lemma 4.3 each of the corresponding knots K 
satisfes K ≠ rm(K) (see Tables A.1–A.3).
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Table A.1

Some cocycle invariants for the quandle Q(6, 2) of the form a + bu for some a, b ∈ ℤ.

Cocycle invariant Knot

54 1062, 1065, 10140, 10143, 10165
11a108, 11a109, 11a139, 11a157
11n85, 11n106, 11n118, 11n119

12a0290, 12a0375, 12a0390, 12a0571
12a0668, 12a0672, 12a0941, 12a0949
12a1184, 12a1191, 12a1207, 12a1215
12n0425, 12n0426, 12n0533, 12n0807
12n0811, 12n0812, 12n0831, 12n0868

198 1099

6 +24u 31, 811, 94, 910, 917, 934
105, 109, 1040, 10103, 10106

10136, 10146, 10158, 10159, 10163
11a73, 11a99, 11a146, 11a171, 11a175

11a176, 11a184, 11a196, 11a216, 11a239
11a248, 11a306, 11a346, 11a353, 11n13

11n14, 11n86, 11n98, 11n109
11n125, 11n137, 11n138, 11n158

12a0234, 12a0346, 12a0409, 12a0411
12a0422, 12a0509, 12a0519, 12a0523

12a0567, 12a0588, 12a0617, 12a0626, 12a0718
12a0723, 12a0878, 12a0894, 12a0904, 12a0907

12a0916, 12a0923, 12a0944
12a0986, 12a1002, 12a1025, 12a1029
12a1060, 12a1079, 12a1115, 12a1120
12a1136, 12a1170, 12a1177, 12a1180
12a1197, 12a1201, 12a1214, 12a1226
12a1247, 12a1248, 12a1262, 12a1270
12a1272, 12a1276, 12n0147, 12n0329
12n0369, 12n0377, 12n0409, 12n0413
12n0419, 12n0439, 12n0493, 12n0502
12n0543, 12n0597, 12n0653, 12n0655
12n0657, 12n0660, 12n0667, 12n0668
12n0752, 12n0767, 12n0782, 12n0803

12n0825, 12n0866, 12n0284

54 + 72u 12n0546

150 + 24u 11n126, 12n0440

Table A.2

Some cocycle invariants for the quandle Q(6, 2) of the form a + bu + cu2 for some a, b, c ∈ 

ℤ with c ≠ 0.

Cocycle invariant Knot

6 +48u2 940, 1061, 1064, 1066
10139, 10141, 10142, 10144, 10164
11a106, 11a194, 11a223, 11a232
11a244, 11a338, 11a340, 11n87

11n104, 11n105, 11n107, 11n145
11n146, 11n173, 11n183, 11n184, 11n185

12a0428, 12a0670, 12a0737, 12a0739, 12a0855
12a0864, 12a0970, 12a1111, 12a1147, 12a1212
12a1219, 12a1221, 12n0483, 12n0484, 12n0536

12n0627, 12n0779

6 +48u + 96u2 12a0701, 12a0987

30 + 24u2 85, 810, 815, 819, 820, 821, 916, 924, 928
1076, 1077, 1082, 1084, 1085, 1087

11a71, 11a72, 11a245, 11a261
11a264, 11a305, 11a351
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Cocycle invariant Knot

11n38, 11n121
12a0577, 12a0578, 12a0852
12a0861, 12a0930, 12a0979
12a0981, 12a0982, 12a0999
12a1000, 12a1059, 12a1061
12a1100, 12a1187, 12a1252
12a1253, 12a1261, 12a1284
12a1285, 12n0084, 12n0106
12n0107, 12n0290, 12n0291
12n0572, 12n0573, 12n0575
12n0576, 12n0577, 12n0578
12n0638, 12n0674, 12n0675
12n0700, 12n0753, 12n0833

12n0845, 12n0850

30 + 168u2 12n0604

54 + 144u2 12n0508

54 + 48u + 48u2 12a0742, 12n0380

78 + 48u + 24u2 12a0574, 12n0571, 12n0574

102 + 96u2 12n0518

126 + 72u2 12a0647, 12n0605

150 + 48u2 12a1288, 12n0888

Table A.3

Some cocycle invariants for the quandle Q(6, 2) of the form a + bu + cu2 + du3 for some a, 
b, c, d ∈ ℤ with d ≠ 0.

Cocycle invariant Knot

6 + 24u3 61, 74, 77, 91, 96, 911, 923, 929, 938
1014, 1019, 1021, 1032

10108, 10112, 10113, 10114
10122, 10145, 10147, 10160

11a179, 11a203, 11a236, 11a274
11a286, 11a300, 11a318, 11a335

11a355, 11a365, 11n65, 11n66, 11n92
11n94, 11n95, 11n99, 11n122, 11n136

11n143, 11n148, 11n149, 11n153, 11n176
11n182, 12a0236, 12a0321, 12a0496

12a0580, 12a0762, 12a0805
12a0806, 12a0807, 12a0809
12a0876, 12a0909, 12a0952
12a0972, 12a1036, 12a1091
12a1101, 12a1129, 12a1157
12a1196, 12a1200, 12a1210
12a1216, 12a1224, 12a1237
12a1239, 12a1255, 12n0330
12n0368, 12n0375, 12n0412
12n0438, 12n0441, 12n0443
12n0464, 12n0500, 12n0603
12n0640, 12n0641, 12n0717
12n0738, 12n0740, 12n0750
12n0751, 12n0754, 12n0769
12n0770, 12n0781, 12n0791
12n0823, 12n0832, 12n0836
12n0865, 12n0874, 12n0875

12n0882

6 +48u2+ 72u3 948, 11a293, 12a0895

6 + 144u2+ 24u3 1098

6 + 24u + 72u3 12n0666
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Cocycle invariant Knot

6 +24u + 48u2+ 48u3 11n164, 12n0402

6 +24u + 96u2+ 24u3 11n167

6 + 48u + 48u3 818, 12a1260, 12n0403

6 +48u + 48u2+ 24u3 12n0565

6 + 72u + 24u3 947, 12n0549

30 + 120u2+ 24u3 12n0737

30 + 24u + 72u2+ 24u3 12a0576, 12n0570

54 + 72u3 11a314

54 + 48u2+ 48u3 11a332, 12n0386

54 + 24u + 48u2+ 24u3 12a0297, 12n0379

54 + 48u + 24u3 946, 11a291, 12n0567

78 + 24u2+ 48u3 12a1283

78 + 24u + 24u2+ 24u3 12n0883

78 + 48u + 72u2+ 48u3 11a44, 11a47, 11a57
11a231, 11a263, 11n71
11n72, 11n73, 11n74
11n75, 11n76, 11n77

11n78, 11n81
12a0167, 12a0692, 12a0801

102 + 48u3 12n0806

102 + 24u + 24u3 11a277, 12a1225
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Fig. 1. 
Colored crossings and cocycle weights.
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Fig. 2. 
1-tangles.
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Fig. 3. 
End monochromatic tangle.
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Fig. 4. 
Taking connected sum.
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Fig. 5. 
The connected sum of two closed braids.
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Table 1

Some reversible prime knots K distinguished from their mirror images by a quandle knot pair (X,R).

X R K

E(Q(12, 3), ℤ5) 31 12n0472

E(Q(12, 3), ℤ5) 91 1046, 10127, 10155, 12n0466

E(Q(12, 3), ℤ10) 31 87, 810, 10116, 10143, 12a0576

12a1220, 12n0233, 12n0234, 12n0235

12n0570, 12n0722, 12n0830, 12n0887

E(Q(12, 3), ℤ10) 91 52, 102, 10100, 10125, 10152, 11a240

12a0835, 12a1203, 12a1222, 12n0242, 12n0467

E(Q(15, 5), ℤ5) 31 12n0888

E(Q(18, 11), ℤ6) 31 820, 1062, 12a0999, 12n0831

E(Q(20, 1), ℤ3) 51 12a1027, 12a1233, 12n0468, 12n0721

E(Q(20, 1), ℤ6) 51 51, 1047, 1048, 10157, 11a234

12a0869, 12a1114, 12a1176, 12a1199

E(Q(20, 2), ℤ3) 51 73, 12a0146, 12a0369, 12a0722, 12n0822

E(Q(20, 2), ℤ6) 51 62, 816, 93, 10126, 10161, 12a0838, 12a1246, 12a1250

12n0417, 12n0725, 12n0749, 12n0820, 12n0829

Q(24, 2) 31 31, 91, 96, 105, 109, 10112, 10159, 11a355

12a0805, 12a0878, 12a1210, 12a1214, 12a1248, 12a1283

12n0571, 12n0574, 12n0666, 12n0750, 12n0751, 12n0882

Q(27, 14) 31 85, 819, 821, 916, 1064, 10139, 10141, 11a338

12a1212, 12n0604, 12n0850

E(Q(30, 3), ℤ4) 31 12n0821
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Table 2

Some chiral prime knots K distinguished from rm(K) by a quandle knot pair (X,R).

X R K

E(Q(12, 3), ℤ5) 31 10149, 12n0344, 12n0679, 12n0688

E(Q(12, 3), ℤ10) 31 12a0815, 12a0898, 12a0981, 12n0708

E(Q(12, 3), ℤ10) 91 12a1223, 12n0748

E(Q(18, 11), ℤ6) 31 1082, 12a1191, 12a1215, 12a1253, 12n0675

E(Q(20, 1), ℤ3) 51 10148, 12a1047, 12a1227

E(Q(20, 1), ℤ6) 51 12a0850, 12a0859, 12n0113, 12n0114, 12n0345

E(Q(20, 2), ℤ3) 51 12a1227, 12a1235, 12a1258

E(Q(20, 2), ℤ6) 51 12a0920, 12n0709

Q(24, 2) 31 10106, 12a0909, 12a0916, 12a1002, 12a1120, 12a1226

12a1255, 12n0640, 12n0767

Q(27, 14) 31 1085, 12a0864, 12a1219, 12a1221, 12n0674

E(Q(30, 3), ℤ4) 31 12a1011, 12a1051, 12n0191, 12n0684
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Table 3

Some cocycle invariants for the quandle Q(6, 2).

Cocycle invariant Knot

6 +24u 31, 77, 811, 92, 94, 910, 911, 915

54 + 72u 935

6 +48u2 940

30 + 24u2 85, 810, 815, 819, 820, 821, 916, 924, 928

6 +24u3 61, 74, 91, 96, 917, 923, 929, 934, 938

6 +72u + 48u2 948

6 +48u + 48u3 818

6 +24u + 72u3 947

54 + 24u + 48u3 946

6 +48u + 48u2+ 24u3 937
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Table 4

Some cocycle invariants for Q(12, 6).

Cocycle invariant Knot

108 31, 61, 74, 77, 811

91, 92, 94, 96, 910, 911, 915, 917, 923, 929, 934, 938

204 85, 810, 815, 819, 820, 821, 916, 924, 928

396 818, 940, 947

492 + 192u2 935, 937, 946, 948

12 otherwise
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