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4.9.1 Painlevé II hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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Abstract

The long-time asymptotics of nonlinear integrable partial differential equations is one of important research

areas in the field of integrable systems. The main tool to analysis the long-time behaviors is the so-called

nonlinear steepest descent method, or Deift-Zhou’s method, which was born in 1993. To apply Deift-Zhou’s

method, one first uses the inverse scattering transform to formulate the nonlinear PDEs in terms of an oscil-

latory 2 by 2 matrix Riemann-Hilbert problem (RHP). After about 15 years of development, a generalized

version of Deift-Zhou’s method, the ∂̄−steepest method, came out. The ∂̄−steepest descent method is a

useful method for analyzing RHP with rough scattering data, or in the view of inverse scattering, with rough

initial data. Recently, the ∂̄−steepest descent method has been applied to study long-time behaviors of NLS,

DNLS, mKdV and sine-Gordon equations as well as their corresponding soliton resolutions.

In this dissertation, we use the ∂̄− steepest descent method to fully study the asymptotic behavior of a

class of oscillatory Riemann-Hilbert problems. We restrict ourselves to the case of defocusing mKdV type

of reductions of the AKNS hierarchy and consider the initial data in Hn−1,1 for the nth member of the

hierarchy, n is an odd integer. The formulas for the long-time asymptotics in three regions are presented.

The three regions are defined in the main results. In the oscillatory region (i.e. region I), we find

q(x, t) = qas(x, t) +O(t−3/4), t→∞,

where

qas(x, t) = −2i
l∑

j=1

|η(zj)|1/2√
2tθ′′(zj)

eiϕ(t),

where θ, η, ϕ(t) and zj’s are defined in the introduction.

In the case of mKdV hierarchy, we derive some interesting result for the other two regions. In this case,

θ = xz + ctzn, n is odd.
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In the Painlevé region (i.e. region II), we find

q(x, t) = (nt)−
1
nun(x(nt)−

1
n ) +O(t−

3
2n ), t→∞,

where un(x) belongs to Painlevé II hierarchy.

In the fast decay region (i.e. region III), we find

q(x, t) = O(t−1), t→∞.

In the second part, we study exact solutions to the focusing 5th-order mKdV and formulate multi-

poles soliton solutions, i.e., solitons associated with the reflection coefficients having arbitrary order poles.

We use the generalized Vandermonde-like determinant to present the resulting solitons, which reduces the

complexity of the involved computation..

In conclusion, in the first part, we develop a generic scheme of applying the ∂̄-steepest descent method

to an oscillatory RHP with arbitrary stationary phase points. Our results can be directly applied to any

nonlinear PDEs generated from defocusing reductions of the AKNS hierarchy. In the second part, we show

that the generalized Vandermonde-like determinant is a more efficient way to present higher order pole

soliton solutions, based on generalized Darboux transformations.
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Chapter 1

Introduction and main results

1.1 Introduction

The AKNS system [2], named after Mark J. Ablowitz, David J. Kaup, Alan C. Newell and Segur, Harvey,

is one of the most famous models in the study of integrable systems. In this dissertation, for a reduced

integrable AKNS hierarchy, two aspects have been carefully studied : the long-time asymptotics and exact

solutions. Both can be handled within the framework of inverse scattering transforms (IST) associated with

Riemann-Hilbert problems.

The IST of first order linear systems with initial data in L1 has been well studied by Beals and Coifman

[5]. Beals-Coifman’s main theorem states that there always exist a dense subset of L1 such that the IST,

considered as a map between initial data and reflection coefficients, is bijective. Later on, Xin Zhou gener-

alized the result to some L2-Sobolev space [26]. This provides a framework to study long-time asymptotics

and exact solutions for the AKNS hierarchy with low-regularity initial data.

In the first half of the dissertation, we will carefully study the defocusing type long-time asymptotics of

the following 2 by 2 AKNS hierarchy (Lax pair form):

ψx(x, t; z)ψ(x, t; z)−1 = izσ3 +Q(x, t), (1.1)

ψt(x, t; z)ψ(x, t; z)−1 = anz
n + V0(x, t; z), (1.2)

where Q is off-diagonal, V0 is a polynomial of z with matrix-valued coefficients and the degree of V0 is less

than n. We are interested in mKdV-type reductions, which corresponding to odd n ≥ 3. For n = 3, the com-

patibility condition gives the mKdV equation, and its long-time asymptotics with Schwartz initial data has

been well-studied in Deift-Zhou’s paper [11], where the nonlinear steepest descent method was raised. The

method has been successfully applied to study the long-time asymptotics of most of the classical integrable

equation as well as their multi-components version [20, 19]. Recently, the long-time asymptotics for the
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mKdV with low-regularity data has been studied by Chen and Liu [8] using the ∂̄−steepest descent method.

∂̄−steepest descent was originally applied to solving the asymptotics problem in the field of orthogonal

polynomial [22] and later applied to long-time asymptotics for nonlinear Schrödinger (NLS) equation[13].

One advantage of the ∂̄−steepest descent method is that the analysis for the oscillating Cauchy integrals

becomes some relatively simple double integrals.

The rest of the dissertation will mainly study the exact solution (including solitons) to the AKNS hierar-

chy. Since the V0 will becomes extremely complicated as n increases, we will only focus on the case n = 5.

We consider the Cauchy problem of the corresponding nonlinear integrable PDE:
qt = 30q4qx − 10q2qxxx − 40qqxxqx − 10q3

x + qxxxxx

q(x, t = 0) = q0(x)→ 0, |x| → ∞.
(1.3)

Constructing solitons within the framework of inverse scattering or RHP is straightforward but that is not

an efficient way. In this dissertation, we will mainly apply Darboux transformation(DT) to construct the

N -soliton for the 5th-order mKdV. And, by a slight generalization of the classical DT, we construct the

so-called double pole soliton [25]. The whole procedure of DT can be compactly represented by a Darboux

matrix and the potentials can be recovered from the quotients of some Vandermonde-like determinants. We

will introduce a method to reduce the complexity of computing the Vandermonde-like determinants from

order (2N)! to order
(

2N
N

)
.

1.2 Main results

Let’s denote the weighted Sobolev space by

Hk,j(R) = {f ∈ L2(R)|∂kxf, xjf ∈ L2(R)}, (1.4)

with norm

‖f‖Hk,j =

(
‖f‖2L2 +

k∑
l=1

‖∂lxf‖2L2 +

j∑
m=1

‖xmf‖2L2

)1/2

. (1.5)

First, we consider the defocusing reduction (see, (1.1)) : Q∗ = Q, where ∗ means complex conjugate

transpose. We mainly focus on the following three regions 1: denote z0 = maxj{|zj | : θ′(zj) = 0} and

τ = tzn0 , where θ is the phase function and is a polynomial of degree n, then2

1A more detailed definition was given in [11].
2In the region I and III, |x/t| is bounded, while in region II |x/t1/n| is bounded.

2



• Region I (the oscillatory region) Fix M > 1, z0 ≤M, x > 0, τ →∞.

• Region II (the Painlevé region) Fix M ′ > 1, z0 < M ′, (M ′)−1 ≤ τ ≤M ′.

• Region III (the fast decaying region) z0 > M,x→ −∞.

In each region, as t → ∞, solution q(x, t), with initial data in the some weighted Sobolev spaces, has

uniform leading asymptotics described ( fix a large t) in each region. The leading asymptotic presented

in theorems (1.1), (1.5) and (1.7) have to be understood in such way: fix t large, the asymptotics valid

uniformly for any compact intervals of x which satisfy the definition of the regions. Due to the fact that x, t

are connected by z0, the compact interval of x in each region will become larger as t becomes larger. The

main results are as follows:

Theorem 1.1. In the region I, the leading asymptotics for the potentials q(x, t), for fixed large t, associ-

ated with a generic oscillatory RHP whose phase function is θ(z;x, t) 3 and initial data q(x, 0) 4 in some

weighted Sobolev space, reads

q(x, t) = qas(x, t) +O(t−3/4), (1.6)

where

qas(x, t) = −2i
l∑

j=1

|η(zj)|1/2√
2tθ′′(zj)

eiϕj(t), (1.7)

and

ϕj(t) =
π

4
− arg Γ(−iη(zj))− 2tθ(zj)−

η(zj)

2
ln |2tθ′′(zj)|+ 2 arg(δj) + arg(Rj), (1.8)

in which {zj}lj=1 are the stationary phase points, and

η(z) = − 1

2π
ln(1− |R(z)|2), z ∈ R,

Rj = R(zj),

δj = lim
z=zj+ρe

iφ,
ρ→0,

φ∈(0,π/2)

δ(z)(z − zj)iη(zj).

3The θ(z, x, t) will be determined in a specific problem. In the current theorem, θ is a polynomial of z with only l simple

stationary phase points.
4From the view of inverse scattering, q(x, 0) determines the reflection coefficient R(z; t).
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Corollary 1.2. For the AKNS system, the phase function θ(z) = xz + ctzn. For the mKdV hierarchy, n is

odd and θ only has two real stationary phase points: z± = ±
∣∣− x

nct

∣∣ 1
n−1 , then suppose the initial data is in

Hn−1,1, the long-time asymptotics for the potentials in the AKNS systems is a special case of the Theorem

1.1, say, l = 2.

Remark 1.3. In the case of the mKdV hierarchy, the stationary points are coming in pairs, then qas(x, t) is

easily seen to be a real function. The graph of qas, for fix t, is oscillating over a compact interval of x.

Remark 1.4. It is well-known that linear combination of the members from the same hierarchy gives a new

integrable PDEs, in such case, the phase function is a generic polynomial. So it is meaningful to study the

asymptotics for generic phase function θ in the region I. However, in other two region, the situation seems

to be very complicated. The author will study those problems in the future. In current dissertation, we only

deal with the mKdV type reduction.

The following two theorems are under the mKdV type reductions of the AKNS hierarchy. So the phase

function θ(z;x, t) = xz + ctzn,where n is odd and c is some constant depends on n.

Theorem 1.5. In the region II, the leading asymptotics for the potentials reads

q(x, t) = (nt)−
1
nun(x(nt)−

1
n ) +O(t−

3
2n ), (1.9)

where un solves the nth member of the Painlevé II hierarchy.

Remark 1.6. The asymptotics for the Painlevé II equation was presented in the book [16]. There are also

some recent works on the asymptotics or special solutions to the Painlevé II equations, to name few such as

[23],[7],[9].

Theorem 1.7. In the region III, the leading asymptotics for the potentials reads

q(x, t) = O(t−1). (1.10)

Remark 1.8. To justify our results, one can compare our result with two recently published work on the

long-time asymptotics of the defocusing mKdV equation [8] and the fifth order defocusing mKdV equation

[17].

Remark 1.9. Historically, the first general result regarding the AKNS system was due to Varzugin [24].

Varzugin considered the case where the initial data was in the Schwartz class and the phase functions were

4



smooth with first order stationary phase points. His analysis was mainly based on the approximation and

decomposition of some Cauchy type integrals. Then later, the asymptotic problem of the general oscillatory

matrix RHP was considered by Yen Do [15], where the method was heavily based on the harmonic analysis

and the author considered arbitrary order stationary points of the phase. While, now, the ∂̄−steepest descent

method has been used to significantly simplify the analysis of the asymptotics for the oscillatory RHP.

The second part of the dissertation is devoted to the study of exact solutions of the focusing reductions,

which is in general much harder than the defocusing case due to the occurrence of solitons. For that reason,

we will focus only on a specific example, the fifth-order focusing mKdV equation.

Theorem 1.10 (N−fold generalized DT for the AKNS hierarchy). Suppose q0(x, t) = Q1,2 solves the

nonlinear PDE generated by the lax pair (M0, N0), the the new potential generated by the N -fold DT is

q(x, t) = q0 − 2iBN−1, (1.11)

where BN−1 is defined in the equation (6.61), respectively.

Remark 1.11. In Chapter V, we present several kinds of interesting exact solutions of the focusing 5th order

mKdV by applying the Theorem 1.10.

1.3 Organization of the dissertation

First, we formulate the direct scattering for the AKNS hierarchy in some L2 weighted Sobolev space. The

main purpose of the second chapter is to show the bijectivity of the scattering map from the initial data

to scattering data. Most of the theorems in the second chapter is a reformulation of Zhou’s work [26]. A

minimal knowledge on the matrix RHP in L2 space will be introduced, which serves as fundamental tool to

formulate the inverse scattering transform. After that, we will attack the main problem of this dissertation:

looking for the long-time asymptotics for the mKdV type defocusing reduced equations. More specifically,

we divide the (x, t) ∈ R × R+ into three regions: the oscillatory region, the fast decay region and the

Painlevé region. After that, we will discuss how to use the Darboux transformation to construct several

kinds of soliton solutions. Finally, those solutions will be represented by quotients of some Vandermonde-

like matrices. In the last chapter, we simply discuss some further questions and possible generalizations.

5



Chapter 2

Direct scattering

2.1 Constructing scattering data and Riemann-Hilbert problems

Consider the spectral problem

ψx(x, t; z) =

izσ3 +

 0 q(x, t)

εq(x, t) 0

ψ(x, t; z), (2.1)

and one can see that the z =∞ is an essential singularity to the solution of the equation. To remove it, make

the following transformation,

ψ(x, t; z) = µ(x, t; z)eixzσ3 ,

and then the original equation is transformed into the following one:

µx = iz[σ3, µ] +Qµ, (2.2)

for which we can impose normalization condition as x→ ±∞:

µ(±)(x, z)→ I

The task is equivalent to establish the following two integral equations:

µ(±)(x, z) = I +

∫ x

±∞
eiz(x−y) ad σ3Q(y)µ(±)(y; z)dy

= I +Kq,z,±µ
(±)(x, z). (2.3)

Note that for now, the time variable t is a dummy variable, and it is fixed. So in the remainder of this chapter

we will not write t explicitly.

From now on, the superscripts indicate the normalization of x → ±∞ while the subscripts relate to the

analytic continuation to the upper/lower half z-planes. As usual, define the scattering matrix as follows,

ψ(+)(x, t) = ψ(−)(x, t)S(z), (2.4)

6



where

ψ(±) = µ(±)eixzσ3 ,

and set

S(z) =

a(z) b̆(z)

b(z) ă(z)

 , z ∈ R.

Next we will discuss defocussing/focusing cases separately. First, for the defocussing case, we have

Q =

0 q

q 0

 ,
which satisfies the following two obvious symmetries:

Q̄ = Q, (2.5)

σQσ = Q, σ =

0 1

1 0

 (2.6)

Substituting back to the spectral problem (2.1), one can see that the solution ψ also satisfies the following

two properties:

ψ̄x(−z̄) = (izσ3 +Q)ψ̄(−z̄), (2.7)

(σψ(−z)σ)x = (izσ3 +Q)σψ(−z)σ, (2.8)

which in turn implies that ψ enjoys the following symmetry property:

ψ̄(−z̄) = σψ(−z)σ = ψ(z). (2.9)

Then by the definition of S(z), we have

S̄(−z) = S(z) = σS(−z)σ, (2.10)

and thus,

ă(z) = a(−z) = ā(z), (2.11)

b̆(z) = b(−z) = b̄(z). (2.12)

Since the coefficient matrix of the spectral problem is trace-free, the Wronskian of the fundamental system

of solutions is independent of x. Combining with the normalization conditions at infinite, we have for z ∈ R,

|a(z)|2 − |b(z)|2 = 1. (2.13)
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For the focusing case, we have

Q =

 0 q

−q 0

 , (2.14)

which has the symmetries

QT = −Q, (2.15)

Q̄ = Q. (2.16)

From those we found that

[ψ−T (−z)]x = [izσ3 +Q]ψ−T (−z). (2.17)

Thus, again due to the uniqueness of the first-order ODE, we have

ψ(−z)ψT (z) = I. (2.18)

Similarly, the scattering matrix satisfies

S(−z)ST (z) = I, (2.19)

which implies

ă(z) = a(−z), (2.20)

b̆(z) = −b(−z), (2.21)

and the determinant det S(z) = 1 leads to

|a(z)|2 + |b(z)|2 = 1. (2.22)

Here we have also applied that S(−z) = S̄(z) which comes from the assumption that the potential matrix

Q is real. Historically, one can then define the so-called Jost solutions and rewrite the spectral problem as

Volterra-type integral equations, from where one can then use Fourier techniques to construct the Gelfand-

Levitain-Marchenko (GLM) equation. Later, A.B.Shabat formulated the direct problem as a Riemann-

Hilbert problem. These two methods have their own advantages. In the one hand, it is better to apply

the RHP when studying the long-time asymptotics to the solutions since the Deift-Zhou’s steepest descent
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method relies on the RHP formulation. On the other hand, for constructing exact solutions such as N -

soliton/breathers, especially, for the multiple-pole solutions (see Wadati [25]) or for studying nonlocal in-

tegrable equations (see Ablowitz [3], [4] and also our recent work [21] ), the GLM equation seems more

convenient than the RHP formulation. A good survey of the inverse scattering and linear spectral problem

is [6].

In this section, we will stay with a 2×2 matrix RHP and assume that the potential q ∈ L1(R). In order to

formulate an RHP, one needs to study the analyticity of the singular integral equation (2.3). The following

proposition shows where µ(z) can be analytically extended in the z plane.

Proposition 2.1. µ(±)
1 (z) and µ

(∓)
2 (z) are respectively analytic in the half plane C(±), where µ(±) =

[µ
(±)
1 , µ

(±)
2 ] and C(±) = {z| ± Im (z) > 0}.

Proof. First, expanding the matrix integral equation (2.3) component-wise, we have a pair of independent

scalar singular integral equations, which are related to (µ
(±)
11 , µ

(±)
21 ) and (µ

(±)
22 , µ

(±)
12 ), where µ(±)

jk are the

(j, k)-entry of µ(±). For each pair, the proofs are almost the same. Thus we will only proof the first pair,

i.e.,

µ
(±)
11 = 1 +

∫ x

±∞
q(y)µ

(+)
21 (y, z)dy, (2.23)

µ
(±)
21 =

∫ x

±∞
e−2i(x−y)zq(y)µ

(+)
11 (y, z)dy. (2.24)

Substituting the second equation into the first one, and changing the order of the integrals, we arrived at the

following integral equation:

µ
(+)
11 (x, z) = 1 +

∫ ∞
x

ds

∫ s

x
dy e−2i(y−s)zq(y)q(s)µ

(+)
11 (s, z). (2.25)

In the following analysis under this proof, without causing any confusions, we will drop the subscript and

superscript of µ(±)
11 .

Denoting U(s, x, z) := q(s)
∫ s
x e
−2i(y−s)zq(y)dy, we obtain

µ(x, z) = 1 +

∫ ∞
x

U(x, s, z)µ(s, z)ds. (2.26)

Following the standard Neumann series technique, we construct the Neumann series as follows:

µ[1](x, z) = 1, (2.27)

µ[n](x, z) = 1 +

∫ ∞
x

U(s, x, z)µ[n−1](s, z)ds, n = 2, 3, · · · . (2.28)
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Since Im(z) > 0 and y < s,

|U(s, x, z)| ≤ |q(s)|
∫ s

x
|q(y)|dy ≤ ‖q‖L1(R)|q(s)|. (2.29)

Noticing that∣∣∣∣∣
∫ ∞
x

U(s1, x, z)

∫ ∞
s1

U(s2, s1, z) · · ·
∫ ∞
sn−1

U(sn, sn−1, z)dsndsn−1 · · · ds1

∣∣∣∣∣ ≤ (
∫∞
x |q(s)|ds)

n

n!
‖q‖nL1(R),

(2.30)

we have ∣∣∣µ[N ](x, z)
∣∣∣ ≤ N−1∑

k=0

(‖q‖L1(R)

∫∞
x |q(s)|ds)

k

k!
≤ e‖q‖

2
L1(R) .

So letting n goes to infinite, the series converges uniformly as long as q is L1 and Im(z) > 0. Also, since

each µ[n] is analytic in z on C+, the limiting function is analytic and satisfies the integral equation (2.26).

Thus the proof is done.

In the next proposition, we will present the entries of the scattering matrix in terms the limiting value of

the solutions µ(±) of the ODE (2.2).

Proposition 2.2.

a(z) = µ
(+)
11 (x→ −∞) = 1−

∫
R
q(y)µ

(+)
21 (y, z)dy, (2.31)

b(z) = µ
(+)
12 (x→ −∞) = −

∫
R
e2iyzq(y)µ

(+)
22 (y, z)dy, (2.32)

ă(z) = µ
(+)
22 (x→ −∞) = 1−

∫
R
q(y)µ

(+)
12 (y, z)dy, (2.33)

b̆(z) = µ
(+)
21 (x→ −∞) = −

∫
R
e−2iyzq(y)µ

(+)
11 (y, z)dy. (2.34)

Or in matrix form as:

S(z) = I −
∫
R
e−izy adσ3Q(y)µ(+)(y, z)dy. (2.35)

Proof. Noting from the definition of the scattering matrix (2.4), we have

e−ixz adσ3 [µ(−)−1(x, z), µ(+)(x, z)] = S(z).

Then expanding the left hand side and letting x→ −∞, one has

a(z) = 1−
∫
R
q(y)µ

(+)
21 (y, z)dy.

10



The integral is well-defined provided that q(x, t) ∈ L2(R, dx)∩L1(R, dx) and µ(+)(x, z) ∈ I+L2(R, dx).

From those representations, the following analytic properties of a(z) naturally follows

Proposition 2.3. a(z) extends analytically to the upper half-plane, and a(z) = 1 + O(1/z), z → ∞.

b(z) = O(1/z), |z| → ∞, Im z = 0.

Proof. To show the asymptotic for a(s), it is sufficient to show that µ(+)
11 (x, z) = 1 + O(1/z), z →

∞, Im z ≥ 0. From the Neumann series, we know for µ[1] it is true. Now suppose for k = 1, 2, · · · , n− 1,

we have µ[k] = 1 +O(1/z), we will prove it is also true for k = n. In fact,

µ[n] = 1 +

∫ ∞
x

q(s)

∫ s

x
e−2i(y−s)zq(y)dy(1 +O(1/z))ds

= 1 +

∫ ∞
x

q(s)

∫ s

x
e−2i(y−s)zq(y)dyds+ (

∫ ∞
x

q(s)

∫ s

x
e−2i(y−s)zq(y)dyds)O(1/z).

For real z, if q ∈ L1(R). Then by Riemann-Lebesgue lemma, we have

|
∫ ∞
x

q(s)

∫ s

x
e−2i(y−s)zq(y)dy| = ‖q‖L1(R)O(1/z), z →∞.

For Im z > 0, we have e−2i(y−s)z = O(e− Im z) = O(1/z), z →∞. Thus, we have shown that

µ[n](z, x) = 1 + ‖q‖L1O(1/z) = 1 +O(1/z), z →∞, Im z ≥ 0.

Since µ[n] converges uniformly, we conclude that µ(+)
11 (x, z) = 1 +O(1/z), z →∞, Im z ≥ 0.

Similarly, one can also show µ
(+)
22 (x, z) = 1 + O(1/z) for real z. Moreover, due to the representation

(2.32) of b(z), via the Riemann-Lebesgue lemma, b(z) = O(1/z). Thus, the proof is done.

Remark 2.4. For sufficiently smooth initial data, one can always perform integration by parts to derive

similar results.

2.2 Bijectivity of the direct scattering map

Now, we formulate the RHP as follows. Motivated by the proposition 2.1 and for the purpose of normaliza-

tion, we define

m+(x, z) = (µ
(+)
1 (x, z)/a(z), µ

(−)
2 (x, z)), Im z ≥ 0, (2.36)

m−(x, z) = (µ
(−)
1 (x, z), µ

(+)
2 (x, z)/ă(z)), Im z ≤ 0. (2.37)
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Such m is normalized at x = ±∞.

From the previous analysis on the defocusing type reduction, we have, for all z ∈ C+

|a(z)|2 = 1 + |b(z)|2 > 0.

This implies that a(z) has no zeros and hence m±(z) := m±(x, z) are continuous in C± and analytic in

C±. Since both m± are solutions to the same ODE(2.2), it is straightforward to check that

m−1
− m+ = eixz adσ3v(z)

for some matrix v(z) which dose not depend on x. Thus, we define the jump matrix as

v(z) = e−izx adσ3 [m−1
− m+]. (2.38)

Direct computation gives us

v(z) =

1 b̆
ă

0 1

−11 0

b
a 1

 =

1− |r|2 r

−r̄ 1

 ,

where r(z) = −b̄(z)
ā(z) .

We use the following notation to denote the RHP: (m, eixz adσ3v(z),R), which means we are seek-

ing a piecewise analytic/meromorphic matrix-valued function in C − R with the jump condition(matrix)

eixz adσ3v(z). In the scattering theory, v is often called the scattering data. The procedure from the potential

q to the scattering data v is called the direct scattering and the inverse scattering is to recovery the potentials

from the given scattering data.

We define the direct scattering map and the inverse scattering map as follows,

D : q ∈ Hj,k(R) 7→ r ∈ Hk,j(R), (2.39)

I : r ∈ Hj,k(R) 7→ q ∈ Hk,j(R). (2.40)

The following theorem is well-known. See for example [12]. Here we give a more detailed proof than the

original proof in the paper [12].

Theorem 2.5. D maps Hj,k(R, dx) into Hk,j(R, dz), j ≥ 1, k ≥ 0.

Proof. Since a(z) = 1 +O(1/z), z →∞, it is sufficient to show the L2-decay of µ(+) − I knowing thata(z)− 1 b̆(z)

b(z) ă(z)− 1

 = µ(+)(−∞, z)− I (2.41)
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Since the µ(+) satisfies the integral equation (2.3), it can be represented as

µ(+)(x, z)− I = ((I −Kq,z,+)−1Kq,z,+I)(x, z).

Provided that q ∈ Hj,k(R) ⊂ H0,0 = L2, we have

‖(Kq,z,+I)(x, z)‖L2(dz)L∞(dx) = sup
x∈R

sup
φ∈C∞0
‖φ‖L2=1

Tr
(∣∣∣∣∫

R

∫ ∞
x

ei(x−y)z ad σ3Q(y)φ(z)dydz

∣∣∣∣)

(noting Q is off-diagonal)

≤ sup
x∈R

sup
φ∈C∞0
‖φ‖L2=1

∫ ∞
x

(|φ̂12(2(y − x))|+ |φ̂21(2(x− y))|)|q(y)|dy

(by the Cauchy-Schwartz inequality and the Plancherel’s theorem)

≤ ‖q(y)‖L2 .

(2.42)

And the method of Neumann series gives us the estimate for

‖(1−Kq,z,+)−1‖L2(dz)L∞(dx)	 ≤ e‖Q‖L1 . (2.43)

Combining all two inequalities together, we arrive at

‖µ(+)(x, z)− I‖L2(dz)L∞(dx)	 ≤ e‖Q‖L1‖q‖L2 , (2.44)

which implies that if q ∈ L2(dx). Then r(z) ∈ L2. Next, add one L2-decay to the potential q, i.e. q ∈ H1,0,

we will study the regularity of the reflection coefficient r(z).

Now let us consider the z derivative of µ(+)(x, z), which enjoys the following integral equation:

∂zµ
(+)(x, z) =

∫ x

∞
i(x− y) ad σ3[ei(x−y)z ad σ3Q(y)µ(+)(y, z)]dy

+

∫ x

∞
ei(x−y)z ad σ3Q(y)∂zµ

(+)(y, z)dy.

If we set Dz(x)µ(x, z) := (∂z − ix ad σ3)µ. Then we have

Dz(x)µ(+)(x, z) = −i
∫ x

∞
ei(x−y)z ad σ3 [ ad σ3yQ(y)]µ(+)(y, z)dy

+

∫ x

∞
ei(x−y)z ad σ3Q(y)Dz(y)µ(+)(y, z)dy.
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It is easily seen that the first integral belongs to L2(dz)L∞(dx) by writing µ(+) = µ(+) − I + I and the

condition that xq(x) ∈ L2(dx), and denoting it by S1. Then the new integral equation reads

Dz(x)µ(+)(x, z) = S1 +Kq,z,+Dzµ
(+), (2.45)

which implies

‖Dzµ
(+)‖L2(dz) = ‖(1−Kq,z,+)−1S1‖L2(dz) ≤ e‖Q‖L1‖S1(x, z)‖L2L∞ . (2.46)

The L∞(dx) enables us to set x = 0. Thus ∂zµ(+)(0, z) = Dz(0)µ(+)(0, z) ∈ L2(dz), and so is

∂z(µ
(+)(0, z) − I). Similarly, one can show that ∂z(µ(−)(0, z) − I) is in L2(dz). Then by the triangle

inequality, r(z) ∈ H1,0(dz).

Next, we add one regularity to the potential, (so q ∈ H1,1 now), and study the L2 decay of the reflection

coefficient r(z). We know

b(z) = −
∫
R
e2iyzq(y)(µ

(+)
22 (y, z)− 1)dy +

∫
R
e2iyzq(y)dy. (2.47)

Clearly, by Plancherel’s theorem, the second integral is inH1,1 provided q ∈ H1,1. To show the first integral

is also in H1,1, it is sufficient to show∫
R
e2iyzq(y)(µ(+)(y, z)− I)dy ∈ H1,1. (2.48)

The regularity has now proved, next we need to show the L2-decay. First, let K = Kq,z,+, and integration

by parts gives us

(KI)(x) =
−1

2iz
σ3Q(x)−

∫ x

∞
ei(x−y)z ad σ3Q′(y)dy := I1(x, z) + I2(x, z).

Then

µ(+) − I = (1−K)−1(I1 + I2)

= (1 +K + (1−K)−1K2)I1 + (1−K)−1I2

= I1 + g1 + g2 + g3.

We need to show that
∫
R e

2iyzq(y)[I1(y, z) + g1 + g2 + g3]dy ∈ H1,0(dz).

Since q ∈ H0,1, so is q2 since H0,1 can be regarded as a Banach algebra. Thus Plancherel’s theorem tells

us that ∫
R
e2iyzq(y)I1(y, z)dy ∈ H2,0(dz) ⊂ H1,0(dz).
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Observing that

g1 = KI1 =
−1

2iz

∫ x

∞
ei(x−y)z ad σ3q2(y)σ3dy =

−1

2iz

∫ x

∞
q2(y)σ3dy,

thus

q(x)

∫ x

∞
q2(y)σ3dy ∈ H0,1,

and we have ∫
R
e2iyzq(y)g1(y, z)dy ∈ H2,0(dz) ⊂ H1,0(dz).

By replacing the I by Q
∫ y
∞Q

2σ3 in equation (2.42) and by the same argument, we have K2I1 ∈

H0,1(dz)L∞(dx) and since (1−K)−1 is bounded in L2L∞, g2 ∈ H0,1(dz)L∞(dx) and thus

(

∫
R
|
∫
R
ze2iyzq(y)g2(y, z)dy|2dz)1/2 ≤

∫
R
|q(y)|‖zg2‖L2(dz)dy

≤ π‖q‖H0,1 .

Similarly, I2 ∈ H0,1L∞, so is g3 and thus∫
R
e2iyzq(y)g3dy ∈ H1,0.

Thus, so far we have proved that D maps H1,1(dx) to H1,1(dz).

Finally, by performing integration by parts several times, the general statement follows.

Remark 2.6. Here j ≥ 1 is for keeping the function in L1.

Remark 2.7. For the general case, such as the focusing type reduction with arbitrary singularities (ze-

ros/poles or spectral singularities), one can refer to Zhou’s fundamental work [26].
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Chapter 3

Inhomogeneous Riemann-Hilbert Problems in weighted Sobolev spaces

3.1 Introduction to the Cauchy operator in L2

In this chapter, we will review some basic properties of the Cauchy operator and how to apply it to solve the

so-called inhomogeneous Riemann-Hilbert problem (RHP). Note that most notations follow from [12]. As

usual, given a smooth oriented contour Γ ⊂ C, define the Cauchy operator as

Cf(z) :=

∫
Γ

f(s)

s− z
ds

2πi
, z ∈ C\Γ. (3.1)

Also define the Cauchy boundary value on the contour Γ:

C±f(z) := lim
ε↓0

Cf(z ± iεz), z ∈ Γ. (3.2)

It is well known (see for example, Duren’s book) that such limit (as a special case of non-tangential limits)

exit for a.a. z ∈ Γ provided f ∈ L2(Γ, |dz|).

Corollary 3.1 (M. Riesz). The Hilbert transformHf(z) := limε↓0
∫

Γ\{s:|s−z|≤ε}
f(s)
z−s

ds
iπ is a bounded linear

operator in L2(Γ). Moreover, ‖H‖L2 = 1.

Theorem 3.2 (Sokhotski-Plemelj). C+ − C− = 1 and C+ + C− = −H .

Corollary 3.3. ‖C±‖L2 = 1.

All above mentioned theorems are classical and well-know, so their proofs are omitted here. However, it

is worth mentioning the representation of H or C by the Fourier transform in L2 distributional sense. That

is to say, for any f ∈ L2, we have

F [Hf ](z) = (− sgn(z))F [f ](z), z ∈ R. (3.3)

Also for the Cauchy operator C±, we have

F [C±f ](z) =
±1 + sgn(z)

2
F [f ](z). (3.4)
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3.2 Inhomogeneous matrix Riemann-Hilbert problems

The operator C±Γ→Γ′ is defined by f 7→ boundary value (CΓf)± on Γ′, and it is bounded from L2(Γ) to

L2(Γ′), i.e., ‖C±f‖L2(Γ′) ≤ c‖f‖L2(Γ). In this section, we will revisit some basic knowledge about the

RHP in L2 sense with jumps in GL(C, 2). In this section we will consider an oriented smooth contour Γ

with a 2× 2 jump matrix v(z) defined on Γ whose determinant is 1. One can think of this v as the scattering

data.

Definition 3.4. Given a contour Γ, we say a pair of L2(Γ) function f± ∈ ∂C(L2) if there is a function

h ∈ L2(Γ) such that

f±(z) = (C±h)(z), z ∈ Γ.

And call f(z) = Ch(z) the extension of f± off the contour Γ.

Definition 3.5. Given Γ and v, and a function f ∈ (L∞ + L2)(Γ), we say m± ∈ f + ∂C(L2) solves

IRHP1(v, f,Γ) if

m+(z) = m−(z)v(z), z ∈ Γ.

Definition 3.6. Given Γ, v and a function F (z) ∈ L2(Γ), we say M± ∈ ∂C(L2) solves IRHP2(v, F,Γ) if

M+(z) = M−(z)v(z) + F (z), z ∈ Γ.

Definition 3.7. We say m± solves the normalized RHP if m± solves IRHP1(v, I,Γ).

Proposition 3.8. Given Γ, v, f such that f(z)(v(z)− I) ∈ L2. Then

m± = M± + f (3.5)

solves IRHP1(v, f,Γ) ifM± solves IRHP2(v, F,Γ) with F = f(z)(v(z)−I) ∈ L2(Γ, |dz|). Conversely,

for a given F ∈ L2,

M+ = m+ + F, M− = m−, (3.6)

solve IRHP2(v, F,Γ) if m± solve IRHP1(v, f,Γ) with f = C−F .
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Proof. On the one hand, by assumption, f(v−I) ∈ L2, andM± solves IRHP2(v, F,Γ) with F = f(v−I),

and then

M+ = M−v + F

= M−v + fv − f

= (M− + f)v − f.

Thus

(M+ + f) = (M− + f)v,

and m± = M± + f ∈ f + ∂C(L2) solve IRHP1(v, f,Γ) by definition.

On the other hand, if m± solve the IRHP1(v, f,Γ) and let f = C−F , by the definition of solution to

IRPH1(v, f,Γ), we have

m± − f ∈ ∂C(L2).

That is to say there is a h ∈ L2 such that

m± = f + C±h = C−F + C±h, (3.7)

which in turn implies that

m+ + F = F + C−F + C+h = C+(F + h) (3.8)

m− = C−(F + h). (3.9)

Then M+ = m+ + F = m−v + F = M−v + F implies M± solve the IRHP2(v, F,Γ), and the proof is

done.

3.3 The Beals-Coifman operator

In this section, we will revisit the Beals-Coifman operator Cwf , which was applied in [5] to the inverse

scattering for the first order system.

Definition 3.9. Given a contour Γ, and a pair of weight 2×2 matrix valued functions w±, and then for each

f ∈ (L∞ + L2)(Γ), define

Cwf(z) = C+(fw−) + C−(fw+). (3.10)
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From the definition we easily see that if w± ∈ L∞(Γ) ∪ L2(Γ). Then Cw maps L∞ + L2 to L2. The

weight functions are usually from the factorization of the jump matrix v. Suppose v admits a factorization

v = v−−1v+, and suppose m± solve IRHP1(v, I,Γ). Then m+v
+−1 = m−v

−−1 := µ. Moreover, one

can show that µ solves the singular integral equation

µ = I + Cwµ, w± = ±v± ∓ I, (3.11)

if and only ifm± solves IRHP1(v, I,Γ). The following proposition connects the bijectivity of the operator

1−Cw with the solvability of the IRHP1 and IRHP2. In the future, we will estimate the L2 norm of the

operator (1 − Cw)−1 which plays a fundamental role in performing the nonlinear steepest descent method

to the oscillatory RHPs.

Proposition 3.10. The following statements are equivalent:

(1). 1− Cw is bijective from L2 to L2.

(2). IRHP1(v, f,Γ) has a unique solution for all f ∈ L2.

(3). IRHP2(v, F,Γ) has a unique solution for all F ∈ L2.

Proof. The equivalence of the last two statements has been done by the previous proposition. We only

need to show that the first two are equivalent. In fact, if m± solve the IRHP1(v, f,Γ). Then m+ = m−v.

Noting thatw comes from a decomposition of the jump matrix v, say v = v−−1v+, we havew± = ±v±∓I .

And letting µ := m+v
+−1 = m−v

−−1. Then µ is entire since the jump matrix is I and belongs to L2 since

v±−1 ∈ L∞. Further denoting H = C(µ(w+ + w−)) off Γ, it is easy to check that the boundary values on

Γ are

H+ = C+(µ(w+ + w−))

= µw+ + Cwµ

= µ(w+ + I) + (Cw − I)µ,

= m+ + (Cw − I)µ,

H− = C−(µ(w+ + w−))

= −µw− + Cwµ

= µ(I − w−) + (Cw − I)µ

= m− + (Cw − I)µ,
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which gives us

m± −H± − f ∈ ∂C(L2), (3.12)

and then by Louisville’s argument, we have m± −H± − f = 0 and hence (1− Cw)µ = f .

Conversely, if µ solves the singular integral equation (1− Cw)µ = f , and for any appropriate decompo-

sition v± of the jump matrix v, m± = µv± indeed solve that IRHP1(v, f,Γ). In fact, we have

m± − f = C±(µ(w+ + w−)) ∈ ∂C(L2). (3.13)

Next we will show that the injectivity of 1 − Cw is equivalent to the unique solvability of the

IRHP1(v, f,Γ). In fact, taking µ ∈ L2 in the kernel of 1 − Cw. Then m± = H± ∈ L2 solve the

IRHP1(v, 0,Γ), and vice verse. Here the uniqueness is in the sense of L2 space.

Next, let us consider the uniqueness for the solution of the normalized RHP in L2, which will be sufficient

for studying the 5th-order mKdV equation. The following proposition is rather general but useful in practice.

One can easily generalize even to the Lp space for 1 < p <∞; see [12] Theorem 2.9. We only consider the

case in the Hilbert space.

Proposition 3.11. Suppose the piecewise analytic matrix-valued function m solves the IRHP (v, I,Γ) by

definition (v±1 ∈ L∞) given before, and m−1 exists for all z off Γ such that

(m−1)± − I ∈ ∂C(L2(Γ)).

Then m is unique in the L2 sense.

Proof. Let m1,m2 both solve the IRHP (v, I,Γ). Then by assumption, we know m−1
2 satisfies

m−1
2+ = v−1m−1

2−,

and noting that for f, g ∈ L2,

CfCg = −1

2
C ((Hf)g + fHg) .

Both sides are in L1 by the Cauchy-Schwartz inequality, and hence the Plemelj formula works, which gives

us

C+fC+g − C−fC−g = −1

2
((Hf)g + fHg) .
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Since

m1m
−1
2 = (m1 − I)(m−1

2 − I) + (m1 − I) + (m−1
2 − I) ∈ L1 + L2,

by the Plemelj’s formula, we have

(m1m
−1
2 − I)+ − (m1m

−1
2 − I)− = 0, a.e. on Γ.

Combining with the normalization condition, we have shown that

m1m
−1
2 − I = 0,

i.e.,

m1 = m2 (3.14)

in the L2 sense.

Corollary 3.12. For the 2× 2 matrix case and det v = 1, the solution for the normalized RHP is unique.

Proof. Since the det v = 1, detm is entire and equals 1 by the normalization condition. By Louisville’s

argument, detm = 1 for all z. Hence the inverse of m is m22 −m12

−m21 m11

 ,

and so the boundary values belong to I+∂C(L2). Then by previous proposition, the solution is unique.

The following proposition is crucial when obtaining the decomposition data, say w± from the scattering

data v.

Proposition 3.13. Suppose r ∈ L2 ∩ L∞, and ‖r‖L∞ ≤ ρ < 1. Then the IRHP1(1 − |r|2, 1,Γ =

[−z0, z0]), where z0 is a positive real number, has a unique solution, denoted by δ±, is given by :

δ±(z) = eC
±
Γ log (1−|r|2), z ∈ R. (3.15)

Its extension of Γ has the following properties:

δ(z)δ̄(z̄) = 1, (3.16)

|δ±1(z)| ∈ [(1− ρ)1/2, (1− ρ)−1/2]. (3.17)
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For z ∈ R,

|δ+(z)δ−(z)| = 1, z ∈ R, (3.18)

|δ±(z)| = 1, z ∈ R\Γ, (3.19)

|δ±(z)| = (1− |r|2)1/2, z ∈ Γ. (3.20)

Moreover,

‖δ± − 1‖L2 ≤
c‖r‖L2

1− ρ
. (3.21)

Proof. Since |r| < 1, the winding number of the IRHP1 is zero, which implies there exists a unique

solution. Then by the Plemelj’s formula, it is easy to get

δ± = eC
±
Γ log (1−|r|2), z ∈ R. (3.22)

Here we have used the fact the Cauchy transform of an analytic function is 0.

Next to check the extension δ(z) = eCΓ(log(1−|r|2)), since log(1− |r|2) is real for any z,

1

2πi

∫
Γ

log(1− |r|2)

s− z̄
ds = − 1

2πi

∫
Γ

log(1− |r|2)

s− z
ds,

thus,

δ(z)δ̄(z̄) = 1.

Setting z = a+ ib. Then

|δ(z)| = e
1

2π

∫ z0
−z0

b log(1−|r(s)|2)

(s−a)2+b2
ds

= e
1

2π

∫ z0
−z0

log(1−|r(sb+a)|2)

s2+1
ds

≥ e
1

2π

∫ z0
−z0

log(1−ρ2)

s2+1
ds

= (1− ρ2)
arctan(z0)

π

≥ (1− ρ2)1/2

≥ (1− ρ)1/2.

Here we have used ρ < 1, 1− ρ2 ≥ 1− ρ > 0. Since δ(z)δ̄(z̄) = 1, we have |δ−1| ≤ (1− ρ)−1/2.
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Now back to the boundary value on the real line, again by the Plemelj formula, C± = ±1
2 −

1
2H , and

C+ + C− = −H , and knowing that H acts on a real valued function one gets a pure imaginary number,

and thus

|δ+δ−| = eIm(−H(log(1−|r|2))) = 1, (3.23)

from which it immediately follows that

|δ±(z)| = 1, z ∈ R\Γ, (3.24)

|δ±(z)| = (1− |r|2)1/2, z ∈ Γ. (3.25)

To show the last inequality, note the fact that for z ∈ C,

|ez − 1| ≤ |z|eRe(z). (3.26)

Thus,

‖δ± − 1‖L2 = ‖eC± log(1−|r|2) − 1‖L2

≤ ‖C± log(1− |r|2)‖L2

= ‖ log(1− |r|2)‖L2

= (

∫
R

(log(1− |r|2))2dz)
1
2

≤ c(
∫
R

(log(1− |r|))2dz)
1
2

≤ c(
∫
R

(
|r|

1− |r|
)2dz)

1
2

≤ c(
∫
R

(
|r|

1− ρ
)2dz)

1
2

=
c‖r‖L2

1− ρ
.

3.4 Inverse scattering problem

In this section, we will begin with the IRHP1(vx, I,R), using the operator Cw, construct the solution of

the RHP, and then the potential q. Here vx(z) = v(z) from the equation (2.38). Note that vx(z) has the
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following upper/lower triangular factorization:

v =

1 −re2izx

0 1

−1 1 0

−r̄e−2ixz 1

 ,

from which we construct

w−x =

0 re2izx

0 0

 ,

w+
x =

 0 0

−r̄e−2ixz 0

 .

Then it is easy to check that Cwx(z) is a bounded operator in L2(dz) due to the boundedness of r, r̄. In

the focusing case, we always have ‖r‖L∞ ≤ ρ < 1, which implies that ‖Cwx‖L2 ≤ ρ which further implies

that (1 − Cwx)−1 exists and its L2 bound is 1
1−ρ , together with Proposition 3.10, we have the following

proposition:

Proposition 3.14. IRHP (vx, I,R) has a unique solution for each x ∈ R and the solution can be repre-

sented by

m±(x, z) = I + C±(µ(w+
x + w−x )) = I + C±(µ(v+

x − v−x )),

where µ ∈ I + L2 solves (1− Cwx)µ = I uniquely.

Proof. By the proposition (3.10) and the fact ‖r‖L∞ ≤ ρ < 1, the proposition follows.

Also, since the the solution to the RHP solves the ODE(2.2), and since r ∈ L2, by the Riemann-Lebesgue

lemma, m→ I, x→ ±∞. And taking the limit as x goes to infinity in the ODE(2.2), we have

Q(x) = −i[σ3,m1], (3.27)

where we have assumed the expansion of m as z →∞, m(x, z) = I +m1(x)/z +O(z−2).

So the potential q can be recovered by

q(x) = 2i(m1(x))12. (3.28)

Now we are in the position to study the inverse map:

I : r ∈ Hj,k(dz) 7→ q ∈ Hk,j(dx). (3.29)
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Theorem 3.15. If r ∈ Hj,k. Then q = I(r) ∈ Hk,j .

Before we prove the theorem, we first prove some lemmas.

Lemma 3.16. For x < 0,

‖CwxI‖L2 ≤ 2(1 + x2/π2)−j/2‖r‖Hj,0 .

Proof. First we consider the C+

w−x
, where only the (1, 2) entry is nonzero, which is r(z)e2izx. Then by

Plancherel’s theorem,

‖C+(r(s)e2isx)‖L2(ds) = ‖F [C+(r(s)e2isx)]‖L2(ds)

= ‖
∫ ∞

0
r̂(s− x/π)e2πszds‖L2(dz)

≤ ‖
∫ ∞
−x/π

r̂(s)e2πi(s+x/π)ds‖L2(dz)

≤ (

∫ ∞
−x/π

|r̂(s)|2ds)
1
2

≤ (

∫ ∞
−x/π

(1 + s2)−j(1 + s2)j |r̂(s)|2ds)
1
2

≤ (1 + x2/π2)−j/2‖r̂‖H0,j

≤ (1 + x2/π2)−j/2‖r‖Hj,0 .

Also, similarly, we have

‖C−(−r̄(s)e−2isx)‖L2(ds) ≤ (1 + x2/π2)−j/2‖r‖Hj,0 .

Thus noting that CwxI = C+w− + C−w+, the lemma follows.

Lemma 3.17. If r ∈ H1,0
1 . Then q ∈ H0,1.

Proof. By analytic continuation, m = I+C(µ(w+ +w−)) andQ = limz→∞ iz[m,σ3] = ad(σ)
2π

∫
R µ(w+

x +

w−x ), and so it is sufficient to show that
∫
R µw

+
x dz ∈ L2((1 + x2)dx). In fact,

x

∫
R
µw+

x = x

∫
(µ− I)w+

x + x

∫
w+

= I1 + I2

= x

∫
(1− Cwx)−1(CwxI)w+

x + x

∫
w+.
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Since r ∈ H1,0, so xr̂(x) ∈ L2, which implies that I2 = x
∫
w+ ∈ L2(dx). For I1, note that via a limiting

process, we know that the weak derivative d
dzµ = (1− Cwx)−1(C dwx

dz
I) belongs to L2. And then we have

‖x
∫

(µ− I))w+
x ‖L2(dx) = c‖xF [(µ− I))r(z)](x)‖L2(dx)

= c‖∂z((µ− I))r(z))‖L2(dz)

≤ c‖(∂zµ)r(z)‖L2 + c‖(µ− I)∂zr(z)‖L2 .

To estimate the first integral, note that by a limit process in the Sobolev space, we can determine the L2

weak derivative ∂zµ = (1 − Cwx)−1(C∂xwxI), and again due to that r ∈ H1,0, the weight function ∂zwx

also belongs to L2, so by the boundedness of the Cauchy operator, we have ∂zµ ∈ L2. The second integral

is finite since r ∈ H1,0 and due to the Sobolev embedding, and Lemma 3.16, we have

‖µ− I‖L∞ ≤ ‖µ− I‖L2 + ‖∂zµ‖L2 .

Thus we have shown that the second integral is also bounded in L2. Similarly, we can show x
∫
µw+

x ∈

L2(dx) then by triangularity, we see that q ∈ H0,1.

Lemma 3.18. If r ∈ H1,1
1 . Then q ∈ H1,1.

Proof. By the Dominated Convergence theorem, we have

∂xµ = (izadσ3 +Q)µ.

Thus,

∂x(µ(w+
x + w−x )) = ∂xµ(w+

x + w−x ) + µ∂x(w+
x + w−x )

= (izadσ3 +Q)µ(w+
x + w−x ) + µadσ3(w+

x + w−x )

= (izadσ3 +Q)(µ(w+
x + w−x )),

which in turn implies

Q′ =
adσ3

2π
Q

∫
µ(w+

x + w−x )dz +
adσ3

2π

∫
izadσ3µ(w+

x + w−x ).
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The first term is in L2 since Q ∈ L2 and since r ∈ H0,1, we have

|
∫
µw+

x | ≤ |
∫

(µ− I)w+
x |+ |

∫
w+
x |

≤ ‖µ− I‖L2‖r(z)‖L2 + ‖ 1

(1 + z2)1/2
‖L2‖r(z)‖L2((1+z2)dz)

≤ ‖(1− Cwx)−1CwxI‖L2‖r(z)‖L2 +
√
π‖r(z)‖L2((1+z2)dz).

Then by triangularity, the first term is in L2.

For the second term, knowing that the function of adσ3 only generates a constant, it is sufficient to show∫
µzw+

x dz in L2. Actually, applying the Cauchy-Schwartz inequality, we can compute

‖
∫
µzw+

x ‖L2(dx) = ‖
∫

(µ− I)zr(z)e2izxdz‖+ |
∫
zr(z)e2izxdz|

≤
∥∥‖µ− I‖L2‖zr‖L2(dz)

∥∥
L2(dx)

+ ‖F [zr]‖L2(dx)

≤ ‖ 1

(1 + x2)1/2
‖L2(dx) + ‖zr‖L2(dz)

<∞.

So we have shown that q ∈ H1,0. Together with the previous lemma, the whole proof is done.

Proof. [Theorem 3.15] The proof follows mainly from the previous two lemmas and performing integration

by parts. The rest is trivial.

Remark 3.19. Here the RHP is established based on Proposition 2.2. However, there is a counterpart

problem when x → ∞, and the new RHP whose scattering data has a opposite factorization. Combining

with the estimate of δ, one can move all the proofs for x→ −∞ to the x→∞ case. We will skip the proof.

Finally, we will show that the maps D and I are bijections and inverse of each other. Let’s first consider

the case for x→∞, we have a new IRHP1(ṽx, I,R), where ṽx = δσ3
− vxδ

σ3
+ . Let m̃ be the solution to the

IRHP1(ṽx, I,R), and then since both m, m̃ solve the fundamental ODE 2.2, it is easy to check that they

are connected by the following relation:

m = m̃δσ3 . (3.30)

This relation gives us that m is bounded as x → ∞, by definition, such m is a unique solution to the

fundamental ODE 2.2. That means for any given r, which is contained in the scattering matrix vx, one can
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always find a solution m and hence the potential such that both solve the fundamental ODE. This means

the map D is onto. The uniqueness comes from the fact that ‖r‖L∞ ≤ ρ < 1 so Ker(1 − Cwx) = {0}.

Then apply Proposition 3.10, the solution to the IRHP1(vx, I,R) is unique for given r, and so is q which

is uniquely determined by the solution to the IRHP1(vx, I,R).

28



Chapter 4

Asymptotic analysis of the Oscillatory Riemann-Hilbert Problem

4.1 Introduction

In this chapter, we will study the phase function θ(or weight function) with the following setup:

1). θ is a real polynomial of degree N .

2). θ′(zj) = 0, θ′′(zj) 6= 0 for j = 1, · · · , l.

Now let us begin with a RHP, in terms of the previous notation, IRHP1(vθ, I,R). And denote the solution

by m[0] ∈ I + ∂C(L2(R)). We will first consider the defocusing case and then the focusing case by an

algebraically modification. So we begin with the jump matrix

vθ(z) =

1− |R(z)|2 −R̄(z)e−2itθ(z)

R(z)e2itθ(z) 1

 (4.1)

In the following sections, we will execute several steps which have been commonly shown in many liter-

atures. The first step is called conjugation, which coincides with the previous chapters. After conjugation,

we are able to to factorize the jump matrix into lower/upper or upper/lower matrices whose diagonals are all

one and the exponential terms will decay (as t → ∞) due to the signature of Re(itθ). The next step is the

so-called ”lenses opening”. In each interval where θ is monotonic, we can deform those intervals into new

contours off the real line such that those exponential terms will decay as t goes to infinity. Also in this step,

we will use a ∂̄-RHP. In the spirit of the method of steepest descent, the asymptotics are dominated near

those saddle points. Hence the next step is to study how one can separate the contributions from each saddle

point. Then in each saddle point, one can study the RHP part of the ∂̄−RHP through the so-called small

norm technique. The last step is to estimate the errors from the pure ∂̄ problems which dominate the errors

generated from the small norm approximation. Then we conclude this chapter by representing a general

formula for our setup of the phase function.
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4.2 Conjugation

As we have already knew that that our jump matrix can be factorized into upper/lower triangular matrices

in the interval where θ is increasing and lower/diagonal/upper matrices in where θ is decreasing. So let

us denote D± = {z ∈ R : ±θ′(z) > 0}. To eliminate the diagonal matrix in the second factorization,

we introduction a new scalar RHP, IRHP1((1 − |R|2)χD− + χD+ , I,R), whose solution is denoted by δ

as usual. Then we conjugate vθ by δ and arrive at a new RHP, IRHP1(δσ3
− vθδ

σ3
+ , I,R), and denoting the

solution by m[1](z) ∈ I + ∂C(L2).

Here δ shares all the properties shown previously in the last chapter. In this section, we will study

IRHP1((1− |R|2)χD− + χD+ , I,R) in more detail.

This scalar RHP can be easily solved by the Plemelj formula, one can obtain

ln (δ(z)) = (CD−(ln(1− |R|2)))(z), z ∈ C\D−, (4.2)

where the Cauchy operator CD−f = 1
2πi

∫
D−

f(s)
s−z ds . Now if we assume R ∈ H1,1

1 (R). Then it is obvious

that ln(1 − |R|2) is in H1,0. Then by the Sobolev embedding, we know it is also Hölder continuous with

index 1/2. Then the Plemelj-Privalov theorem, which says that the Cauchy operator perseveres H Older

continuity with index less than 1, tells us ln(δ(z)) is Hölder continuous with index 1/2 except for those end

points. So we need to study the behavior near those points. Let us denote

η(z) = − 1

2π
ln(1− |R(z)|2), z ∈ R. (4.3)

We will prove the following proposition.

First we define a function supported on the interval [−1, 1],

sε(z) =


0, |z| ≥ ε,

±1
ε z + 1, 0 < ±z < ε.

(4.4)

Proposition 4.1. For each ε > 0, and ε ≤ 1
3 minj 6=k |zj − zk|,there exists an interval I = I(ε), such that
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the identity

ln(δ(z)) = i

∫
D−\I

η(s)

s− z
ds+ i

l∑
j=1

[η(zj)(1 + ln(z − zj))] εj (4.5)

+ i
l∑

j=1

∫
I∩D−

η(s)− ηj(s)
s− z

ds (4.6)

+ i
l∑

j=1

1

ε
η(zj)[(z − zj) ln(z − zj)− (z − zj + εjε) ln(z − zj + εjε)] (4.7)

is true, where εj = sgn(θ′′(zj)) and ηj(z) = η(zj)sε(z − zj) and for the logarithm function, the branch is

chosen such that arg ∈ (−π, π).

Proof. Let I = ∪lj=1(Ij+ ∪ Ij−), where Ij± = {z : 0 < ±(z − zj) < ε}. Now we have

ln(δ(z)) = i

∫
D−\I

η(s)

s− z
ds

+ i
l∑

j=1

(

∫
Ij−∩D−

+

∫
Ij+∩D−

η(s)

s− z
ds).

For each j, we have ∫
Ij−

η(s)

s− z
ds =

∫
Ij−

η(s)− ηj(s)
s− z

ds+

∫
Ij−

ηj(s)

s− z
ds.

The first integral on the right hand side has non-tangential limit as z → zj and the second one generates a

logarithm singularity near zj .

In fact, direct computation shows∫
Ij−

ηj(s)

s− z
ds = η(zj) +

1

ε
[(z − zj) ln(z − zj)− (z − zj + ε) ln(z − zj + ε)]η(zj)

+ η(zj) ln(z − zj).

Similarly, for Ij+,∫
Ij+

ηj(s)

s− z
ds = −η(zj) +

1

ε
[(z − zj) ln(z − zj)− (z − zj − ε) ln(z − zj − ε)]

− η(zj) ln(z − zj).

And noting that only one of the Ij± ∩D− is nonempty, which depends on the sign of the second derivative

of the phase function θ. Assembling all together, the proof is done.
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Remark 4.2. The above proposition tells us how the function δ(z) behaviors near those saddle points. In

fact, near those saddle points, there are mild singularities (z − zj)iη(zj). Fortunately, those singularities are

bounded along any rays off R and hence in some sense they do not affect asymptotics much. Also it is worth

mentioning that this general treatment has been taken in [24] and [15] before.

Let us denote v[1](z) = δσ3
− vθδ

σ3
+ . Now the conjugated jump matrix v[1] enjoys the following factoriza-

tion:

v[1] =



1 −R̄(z)δ2(z)e−2itθ(z)

0 1


 1 0

R(z)δ−2(z)e2itθ(z) 1

 , z ∈ D+

 1 0

R(z)δ−2
− (z)e2itθ(z)

1−|R(z)|2 1


1 − R̄(z)δ2

+(z)e−2itθ(z)

1−|R(z)|2

0 1

 , z ∈ D−.

4.3 Lenses opening

The purpose of opening lenses is to deform the real line to some new contours where the exponential terms

will decay as t→∞. We begin with a study of the signature of Im θ near the saddle points zj . Since there

θ′ = 0

zj Ij+Ij−
α

Σj,1Σj,2

Σj,3 Σj,4

Ωj,1Ωj,3

Ωj,4 Ωj,6

Ωj,2

Ωj,5

Figure 1. Notations for studying signatures of Im(θ(z)) near zj

are only a finite number of saddle points, we choose α sufficiently small such that Im(θ) shares the same sign

in the shaded region. Let Ij+ = [zj ,
zj+zj+1

2 ] and Ij− = [
zj+zj−1

2 , zj ]. Two cases need to be discussed. The

first case, if θ′′(zj) > 0. Then we have Ij± ⊂ D±. Recall the factorization of the conjugated jump matrix,

and to deform Ij+ to Σj,1 and keep the exponential term (e2iyθ(z)) decay, we need to discuss Im θ on Σj,1.

Consider the Taylor expansion of θ(z) at zj , and we denote θ(z) = θ(zj) + εjAj(z − zj)2 +O((z − zj)3),

where Aj =
∣∣∣ θ′′(zj)2

∣∣∣.
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Let z− zj = u+ iv = ρeiφ. Then Im(θ(z)) = εjAjρ
2 sin(2φ) +O(ρ3), where φ ∈ (0, α] is fixed. Since

α is sufficiently small, say less then π/2. Then 2φ will be less than π/2. Note that we have

ρ2 sin(2φ) = 2uv.

And for those higher order terms, we have

ρk sin(kφ) ≥ cρk sin(φ) cosk−1(φ) = cuk−1v.

Putting all together, we conclude that |e2itθ(z)| is dominated by e−4t|Aj |uv. Similarly, one can show in all

other contours Σj,k, k = 2, 3, 4, the exponential terms will decay as t→∞. And now we are in the position

to open lenses.

First we introduce a bounded smooth function K defined on [0, α] such that K(0) = 1 and K(α) = 0.

Consider εj = 1 first. And ∂̄ extension functions are defined as follows. Let z − zj = u+ iv, |z − zj | = ρ

and the arg z − zj at the right upper corner is denoted by φ, then we can define

Ej,1(z) = K(φ)R(u+ zj)δ
−1(z) + [1−K(φ)]R(zj)δ

−2
j (z − zj)−2iεjη(zj), z ∈ Ωj,1, (4.8)

Ej,3(z) = K(π − φ)(− R̄(u+ zj)

1− |R(u+ zj)|2
δ2

+(z)) + [1−K(π − φ)](− R̄(zj)

1− |R(zj)|2
δ2
j (z − zj)2iεjη(zj)), z ∈ Ωj,3,

(4.9)

Ej,4(z) = K(π + φ)(
R(zj + u)

1− |R(zj + u)|2
δ−2
− (z)) + [1−K(π + φ)](

R(zj)

1− |R(zj)|2
δ−1
j (z − zj)−2iεjη(zj)), z ∈ Ωj,4,

(4.10)

Ej,6(z) = K(−φ)(−R̄(zj + u)δ2(z)) + [1−K(−φ)](−R̄(zj)δj(z − zj)2iεjη(zj)), z ∈ Ωj,6. (4.11)

For the case εj = −1, one only needs to switch the index 1 with 3 and 4 with 6 due to the difference

of factorization, based on the local monotonicity of the phase function. The boundary values of those

Ej,k, k = 1, 3, 4, 6 at R are just the original conjugated jump matrices. And the boundary values on the new

contours are just some function with a mild singularity compared to the exponential decay. Now using those
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Ej,k, we construct the lens-opening matrix O(z) as follows:

O(z) =



On(z) =

 1 0

(−1)nEj,ne
2itθ(z) 1

 , z ∈ Ωj,n, n = 1, 4,

Om(z) =

1 (−1)mEj,me
−2itθ(z)

0 1

 , z ∈ Ωj,m, m = 3, 6,

Ok(z) = I, z ∈ Ωj,k, k = 2, 5.

(4.12)

Now letm[2](z) = m[1](z)O(z), z ∈ C\R, due to a lack of analyticity ofO(z), we arrive at a mixed ∂̄-RHP:

1. The RHP

(1.a). m[2](z) = m[2](u, v) ∈ C1(R2\Σ) and m[2](z) = I +O(z−1), z →∞.

(1.b). On the new contour Σj,k, j = 1, · · · , l, k = 1, 2, 3, 4, v[2](z) = Oj(z), z ∈ Σj,k.

2. The ∂̄ problem

For z ∈ C, we have

∂̄m[2](z) = m[2](z)∂̄O(z). (4.13)

Remark 4.3. By multiplying m[1](z) by O(z), we can actually remove the jumps on the real line, where

the exponential factor e±2itθ(z) is oscillating. The regularity of m[2] is determined by the regularity of O(z)

which is inherited from the construction of Ej,k, and the fact R(zj + u) is no longer analytic but is C1

in the weak sense. Moreover, due to the boundedness of Ej,k(z) along any non-real ray, and the fact the

exponential factors are all exponential decaying as z → ∞, we will have O(z) = I + o(1), z → ∞, i.e.,

uniformly in t. In the next sections, we will see the error eventually dominated by the ∂̄ problem.

To close the section, we formulate a bound for ∂̄Ej,k which will be used in later sections.

Lemma 4.4. For j = 1, · · · , l, k = 1, 2, 3, 4, and z ∈ Ωj,k, u = Re(z − zj),

|∂̄Ej,k(z)| ≤ c(|z − zj |−1/2 + |R′(u+ zj)|). (4.14)

Proof. In polar coordinates, ∂̄ = eiφ

2 (∂ρ + iρ−1∂φ). And thus for z in any ray (not parallel to R) and away

from zj , we have

∂̄Ej,1(z) =
ieiφK′(φ)

2ρ
[R(u+ zj)δ

−2(z)−R(zj)δ
−2
j (z − zj)−2iη(zj)]

+K(φ)R′(u+ zj)δ
−2(z),
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where

δj = lim
z=zj+ρe

iφ,
ρ→0,

φ∈(0,π/2)

δ(z)(z − zj)iη(zj).

From the Proposition 4.1, one can easily see that |δ(z)− δj(z − zj)iη(zj)| ≤ c|z − zj |1/2. In fact,

|δ(z)− δj(z − zj)iη(zj)| ≤ | ln(δ(z))− ln(δj)− iη(zj) ln(z − zj)|

≤ |
∫
D−\I

η(s)

s− z
ds+

l∑
k 6=j

∫
I∩D−

η(s)− ηk(s)
s− z

ds

+

l∑
k 6=j

1

ε
η(zk)[(z − zk) ln(z − zk)− (z − zk + εkε) ln(z − zk + εjε)]− ln(δj)|.

Since R ∈ H1,1, from the standard Sobolev embedding, we know η is Hölder continuous with index 1/2

and then an application of the Privalov-Plemelj theorem leads to the Hölder continuity with index 1/2 of∫
D−\I

η(s)
s−zds. Similarly one can show

∫
I∩D−

η(s)−ηk(s)
s−z ds is also Hölder continuous with index 1/2. Now

let us denote

g(z) = (z − zk) ln(z − zk)− (z − zk + εkε) ln(z − zk + εjε).

Direct computation (using the fact that ln(z) has a mild singularity at 0 which is integrable.) shows that

g′ ∈ L2 along any rays that are not parallel to R. And again by the Sobolev embedding, this term is

also Hölder continuous with index 1/2. All those three together eventually approach ln(δj) and the rate of

convergence is controlled by |z − zj |1/2.

Thus

|∂̄Ej,1(z)| ≤ cρ−1|z − zj |1/2 + c|R′(u+ zj)|

≤ c(|z − zj |−1/2 + |R′(u+ zj)|).

Note that ρ = |z − zj | and δ(z) and K(φ) are bounded along any rays that is not parallel to R.

Note also that sup |R| < 1, we have R
1−|R|2 ≤

R
1−sup |R| , and thus by the dominated converge theorem, all

estimations for Ej,1 can be smoothly moved to Ej,k, k = 3, 4, 6.

4.4 Separate Contributions and reduce the degree of the phase

Since there are multiple saddle points on the real line, we have to separate contributions from each saddle

point. And at each saddle point, we may approximate the RHP by a model RHP locally which will be
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discussed in the next section. Also as we assumed all saddle points are of order 1, so the phase function

can be approximated by θ(zj) +
θ′′(zj)

2 (z − zj)2. Thus we need to estimate the error generated by reduce

the order of the phase function. Since our phase function is a polynomial, we can always choose sufficient

small α, such that the small triangular region along two saddle points shares the same signature of Im(θ(z)).

And a difference between two situations of multiple saddle points and a single saddle point is that there are

jumps in that small triangular region. So in this section, we will show that those jumps can be ignored with

a sufficiently fast decaying error, say faster than the error generated from the pure ∂̄−problem.

Let us consider two saddle points zj , zj+1, and discuss εj = 1 = −εj+1 for example.

zj zj+1zj+ 1
2

Σj+ 1
2

Ωj,1 Ωj+1,3

Ωj,2 Ωj+1,2
Σj,1 Σj+1,2

Figure 2. Jumps in a small triangular region.

Recall the constructions of Ej,1 and Ej+1,3, and the boundary value of m[2](z) on Σj+ 1
2

from Ωj,1 is

m[1](zj+1/2 + iv)Oj,1(zj+1/2 + iv),

while from Ωj+1,3 is

m[1](zj+1/2 + iv)Oj+1,3(zj+1/2 + iv).

Both correspond to locally increasing part of the phase function, and thus correspond to a upper/lower

factorization. So the jump on the new contour Σj+1/2 is Oj+1,3O
−1
j,1 , where the nontrivial entry is

(1−K(φ))[R(zj)δ
−2
j (zj+1/2−zj+iv)−2iη(zj)−R(zj+1)δ−2

j+1(zj+1/2−zj+1+iv)−2iη(zj+1)]e2itθ(zj+1/2+iv),

where v ∈ (0, (zj+1/2 − zj) tan(α)).

Note that

|(zj+1/2 − zj + iv)−2iη(zj)| = e2η(zj)φ ≤ e2η(zj)α,

and

|e2itθ(zj+1/2+iv)| ≤ ce−2tdv, d = (zj+1 + zj)/2.
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We actually have shown that

Oj+1,3O
−1
j,1 = I +O(e−ct), c > 0, t→∞. (4.15)

Since m[1] is analytic in a neighborhood of Σj+1/2, O(zj+1/2 + iv) is at least C1 with respect to v. Then

we have

lim
z→∞

|z(m[2](z)− I)| ≤ 1

2π

∫ d tan(α)

0
|m[1]
− (zj+1/2 + s)|e−2tdsds

by integration by parts since O is C1 near Σj+1/2

= O(t−1).

This limit is in fact from the construction of potential, and this estimation show that if we drop the contour

Σj+1/2, the potential induced by the new RHP will generate an error term O(t−1), which is dominated by

the error generated by the ∂̄−problem. Actually, we will later show that the ∂̄−problem will generate an

error O(t−3/4).

For the triangular region below and for the cases when εj = −1, one can do slight modification to

guarantee that the errors are still O(t−1). Thus we will remove the jumps on Σj+1/2 for the RHP of m[2].

Now for the ∂̄Oj,1 and ∂̄Oj+1,3 ,we have, for z − zj = ρeiφ, ρ = d/ tan(φ),

|∂̄Qj,1| ≤ c1|
ieiφ cos(φ)

d
K′(φ)|

≤ c.

The implicit constant comes from the fact that both R(z) and δ(z) are bounded on the contour Σj+1/2.

Comparing to the estimation on Lemma 4.4, we see that the ∂̄−estimations on Σj+1/2 are also dominated

by |z − zj |−1/2 + |R′(Re(z))|.

Moreover, one can actually drop segments away from the stationary phase points. It is well-known [11,

15] that the |Ej,1e2itθ| ≤ ce−2t tan(α)u2
, where letting u ≥ u0 > 0, then the jump matrix will go to I with

a decaying rate at O(e−c0t), c0 = c0(u0) > 0. Together with the analysis of RHP on Σj+1/2, and a priori

estimate that the pure ∂̄−problem will generate an error O(t−3/4), we can in fact truncate our contours to

a new one by dropping Σj+1/2, j = 1, · · · , l. And we arrive at a new ∂̄−RHP by simply dropping those

contours which contribute less than the ∂̄−problem. See Figure 3 about the new contours, without causing

more confusion, we will still denote the new contours by Σj,k, j = 1, c . . . , l, k = 1, 2, 3, 4.
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zj zj+1

Figure 3. New contours, dashed line segments are those deleted parts.

Now we will separate contributions from the RHPs on each crosses. A countless number of literatures

(especially, [11, 24, 15]) about the nonlinear steepest descent for cases of multiple stationary phase points,

which are based on the analysis of the Beals-Coifman operators, have already shown the following lemma.

For convenience, we will reprove it based on our settings.

Lemma 4.5. As t→∞,

∫
Σ

((1− Cw)−1 I)w =

l∑
j=1

∫
Σj

((1− Cwj )−1I)wj +O(t−1), (4.16)

where wj is the factorization data supported on Σj = ∪4
k=1Σj,k, w =

∑l
j=1wj and Σ = ∪ljΣj .

Proof. First, recall the following observation by Varzugin [24],

(1− Cw)(1 +
∑
j

Cwj (1− Cwj )−1) = 1−
∑
j 6=k

CwjCwk(1− Cwk)−1.

With the hints from this observation, we need to estimate the norms of CwjCwk from L∞ to L2 and from

L2 to L2. Also from the next section (by a small norm argument), we know (1 − Cwj )−1 are uniformly

bounded in L2 sense. Now let us focus on the contour Σj,1, and ε = 1. Then the nontrivial entry of the

factorization data is Ej,1(z)e−2itθ(z), z ∈ Σj,1, and thus we have

|wj �Σj,1 | ≤ ce−2t tan(α)u2
,

which implies that ‖wj �Σj,1 ‖L1 = O(t−1/2) and ‖wj �Σj,1 ‖L2 = O(t−1/4). Then follow exactly the same
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steps in the proof of [11], Lemma 3.5, we have for j 6= k

‖CwjCwk‖L2(Σ) = O(t−1/2),

‖CwjCwk‖L∞→L2(Σ) = O(t−3/4).

Then use the resolvent identities and Cauchy-Schwartz inequality,

((1− Cw)−1I) = I +

l∑
j=1

Cwj (1− Cwj )−1I

+ [1 +

l∑
j=1

Cwj (1− Cwj )−1](1−
∑
j 6=k

CwjCwk(1− Cwk)−1)−1

(
∑
j 6=k

CwjCwk(1− Cwk)−1)I

= I +
l∑

j=1

Cwj (1− Cwj )−1I +ABCI.

thus

|
∫

Σ
ABCIw| ≤ ‖A‖L2‖B‖L2‖C‖L∞→L2‖w‖L2

≤ ct−3/4t−1/4 = O(t−1).

In the proof over theL2 boundedness, we actually use the triangularity ofwj’s, which gives us a mild orthog-

onality [15]. Then applying the restriction lemma( [11],Lemma 2.56), and also by the mild orthogonality,

one can obtain ∫
Σ

(I + Cwj (1− Cwj )−1I)w �Σj =

∫
Σj

(I + Cwj (1− Cwj )−1I)w

=

∫
Σj

((1− Cwj )−1I)wj

All together, the proof is done.

Remark 4.6. However there is a hole in the proof, which based on a priori estimate on ‖1 − Cwj‖L2 . We

will show that those bounds are uniform and they can be approximated by solving an explicitly solvable

model RHP in the following sections.

39



4.5 Model Riemann-Hilbert problem

In this section, we discuss a model RHP which can be solved explicitly by solving a parabolic-cylinder

equation. Consider the following RHP:

1. P+(ξ;R) = P−(ξ;R)J(R), ξ ∈ R, where

J(ξ) =

1− |R|2 −R̄

R 1


is a constant matrix with respect to ξ.

2. P (ξ;R) = ξiησ3e−i
ξ2

4
σ3(I + P1ξ

−1 +O(ξ−2)), ξ →∞, where P1 =

0 β

β̄ 0


Then by Liouville’s argument, P ′P−1 is analytic and thus

P ′(ξ) = (− iξ
2
σ3 −

i

2
[σ3, P1])P (ξ), (4.17)

which can be solved in terms parabolic-cylinder equation, and apply the asymptotics formulas we can even-

tually determine that

β =

√
2πeiπ/4e−πη/2

RΓ(−a)
, (4.18)

where

a = iη. (4.19)

The above result has been presented in a considerable literature in many ways. Here we followed the

representations in [11]. Next, we connect this model RHP to our RHP. Recall, near the stationary phase

point zj , we need to estimate the integral
∫

Σj
((1−Cwj )−1I)(wj+ +wj−), which is equivalent to solve the

following RHP:
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1. m[3,j]
+ (z) = m

[3,j]
− (z)v[3,j](z), z ∈ Σj . The jump matrix (εj > 0) is

v[3,j](z) =



 1 0

R]j(z − zj)−2iη(zj)eitθ
′′(zj)(z−zj)2

1

 , z ∈ Σj,1,

1 − R̄]j

1−|R]j |2
(z − zj)2iη(zj)e−itθ

′′(zj)(z−zj)2

0 1

 , z ∈ Σj,2,

 1 0

R]j

1−|R]j |2
(z − zj)2iη(zj)eitθ

′′(zj)(z−zj)2
1

 , z ∈ Σj,3,

1 −R̄]j(z − zj)−2iη(zj)e−itθ
′′(zj)(z−zj)2

0 1

 , z ∈ Σj,4,

(4.20)

where R]j = Rjδ
−2
j e2itθ(zj).

2. m[3,j] = I +O(z−1), z →∞.

Setting ξ = (2tθ′′(zj))
1/2(z − zj) and by closing lenses, we arrive at an equivalent RHP on the real line:

1. m[4,j](ξ)+ = m
[4]
− v

[4](ξ), ξ ∈ R. The new jump is

v[4,j](ξ) = (2θ′′(zj)t)
−
iη(zj)

2
ad σ3ξiη(zj) ad σ3e−

iξ2

4
ad σ3

1− |R]j |2 −R̄]j
R]j 1

 . (4.21)

2. m[4,j] = I +O(ξ−1), ξ →∞.

Compared with the model RHP, we observe that m[4,j](ξ)(2θ′′(zj)t)
−
iη(zj)

2
σ3ξiη(zj)σ3e−

iξ2

4
σ3 solves the

model RHP, which leads to

m
[4]
1,12 =

√
2πeiπ/4e−πη(zj)/2

R]jΓ(−iη(zj))
(4.22)

m
[4]
1,21 =

−
√

2πe−iπ/4e−πη(zj)/2

R̄]jΓ(iη(zj))
(4.23)

Change the variable ξ back to z, we have

m
[3]
1,12(t) =

l∑
j=1

(2tθ′′(zj))
− 1

2
−
iη(zj)

2

√
2πeiπ/4e−πη(zj)/2

R]jΓ(−iη(zj))
, (4.24)

m
[3]
1,12(t) = −

l∑
j=1

(2tθ′′(zj))
− 1

2
+
iη(zj)

2

√
2πe−iπ/4e−πη(zj)/2

R̄]jΓ(iη(zj))
. (4.25)
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Note that R]j = Rjδ
−2
j e2itθ(zj), one can rewrite in a neat way:

m
[3]
1,12(t) =

l∑
j=1

|η(zj)|1/2√
2tθ′′(zj)

eiϕ(t), (4.26)

m
[3]
1,21(t) =

l∑
j=1

|η(zj)|1/2√
2tθ′′(zj)

e−iϕ(t), (4.27)

where the phase is

ϕ(t) =
π

4
− arg Γ(−iη(zj))− 2tθ(zj)−

η(zj)

2
ln |2tθ′′(zj)|+ 2 arg(δj) + arg(Rj). (4.28)

Here we have used the fact that |β|2 = η. From the relation connecting the RHP and the potential, we have

qas(x, t) = −2i
l∑

j=1

|η(zj)|1/2√
2tθ′′(zj)

eiϕ(t), (4.29)

The variable x is implicitly contained in zj’s.

4.6 Errors from pure ∂̄−problem

In this section, we will discuss the error generated from the pure ∂̄−problem of m[2]. Let us denote

E(z) = m[2](m[3])−1. (4.30)

Since m[k] = I +m
[k]
1 z−1 +O(z−2), k = 2, 3, we have

E(z) = 1 + (m
[2]
1 −m

[3]
1 )z−1 +O(z−2), (4.31)

which can be regarded as the error of replacing m[2] by m[3]. Moreover, from this construction, there is no

jump on the contours Σj,k, k = 1, 2, 3, 4 and only a pure ∂̄−problem is left due to the non-analyticity, which

reads

∂̄E = EW, (4.32)

where

W (z) = m[3]∂̄O(z)(m[3])−1. (4.33)

From the normalization condition of m[3], we see it is uniformly bounded by c
1−supR . And to estimate the

errors of recovering the potential, one actually needs to estimate limz→∞ z(E − I), where the limit can
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be chosen along any rays that are not parallel to R. For simplicity, we will take the imaginary axis. The

∂̄−problem is equivalent to the following Fredholm integral equation by a simple application of generalized

Cauchy integral formula:

E(z) = I − 1

π

∫
C

E(s)W (s)

s− z
dA(s). (4.34)

In the following, we will show for each fixed z ∈ C, K(W )(z) :=
∫
C
E(s)W (s)
s−z dA(s) is bounded and then

by the dominated convergence theorem, we will show limz→∞ z(E − I) = O(t−3/4). First of all, since

m[3] is uniformly bounded, setting z = zj + u+ iv, we have

‖W‖ .


|∂̄Ej,k|e−2tθ′′(zj)uv, z ∈ Ωj,k, k = 1, 4,

|∂̄Ej,k|e2tθ′′(zj)uv, z ∈ Ωj,k, k = 3, 6,

, (4.35)

where ‖ · ‖ stands for matrix norm and 0 ≤ a . b means there exists C > 0 such that a ≤ Cb. Then we

have

K(W ) ≤ ‖E‖
∫
C

‖W (s)‖
|s− z|

dA(s). (4.36)

We claim the following lemma:

Lemma 4.7. Let Ω = {s : s = ρeφ, ρ ≥ 0, φ ∈ [0, π/4]}, and z ∈ Ω, then

∫
Ω

|u2 + v2|−1/4e−tuv

|u+ iv − z|
dudv = O(t−1/4). (4.37)

Proof. Since there are two singularities of the integrand at z and (0, 0). The first case, set z 6= 0, and

let d = dist(z, 0). We split Ω into three parts: Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = {s : |s| < d/3} ∩ Ω ,
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Ω2 = {s : |s− z| < d/3} ∩ Ω and Ω3 = Ω\(Ω1 ∪ Ω2). In the region Ω1, |s− z| ≥ 2d/3, and thus

|
∫

Ω1

|u2 + v2|−1/4e−tuv

|u+ iv − z|
dudv| ≤ 3

2d

∫ ∞
0

∫ u

0

e−tuv

(u2 + v2)1/4
dvdu

substituted v = wu

≤ 3

2d

∫ ∞
0

∫ 1

0

e−tu
2w

(1 + w2)1/4
u1/2dwdu

≤ 3

2d

∫ ∞
0

∫ 1

0
e−tu

2wu1/2dwdu

=
3

2d

∫ ∞
0

1− e−tu2

tu3/2
du

=
3

2d

1

2
t−3/4

∫ ∞
0

1− e−u

u5/4
du

=
3

d
Γ(3/4)t−3/4.

In the region Ω2, |s|−1/2 ≤ (2d/3)−1/2,

|
∫

Ω1

|u2 + v2|−1/4e−tuv

|u+ iv − z|
dudv| ≤

√
3

2d

∫
Ω2

e−tuv

((u− x)2 + (v − y)2)1/2
dvdu

≤
√

3

2d

∫ d/3

0

∫ 2π

0
e−t(x+ρ cos(θ))(y+ρ sin(θ))dθdρ

≤ 2π

3

√
3d

2
e−txy.

While in the region Ω3,

|
∫

Ω3

|u2 + v2|−1/4e−tuv

|u+ iv − z|
dudv| ≤

∫ ∞
0

∫ u

0
e−tuvdvdu = O(t−1).
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Now consider z = 0. We have

|
∫

Ω

e−tuv

(u2 + v2)3/4
dA(u, v)| =

∫ ∞
0

∫ u

0

e−tuv

(u2 + v2)3/4
dvdu

=

∫ ∞
0

∫ 1

0

e−tu
2w

(1 + w2)3/4u1/2
dwdu

≤
∫ ∞

0

∫ 1

0

e−tu
2w

u1/2
dwdu

=

∫ ∞
0

1− e−tu2

tu5/2
du

=

∫ ∞
0

1− e−u

tt−5/4u5/4
t−1/2 1

2
u−

1
2du

=
1

2
t−1/4

∫ ∞
0

1− e−u

u7/4
du

=
3

8
t−1/4Γ(1/4).

Assembling all together, the proof is done.

Remark 4.8. The essential fact that makes the above argument work is the rapid decaying of the exponential

factor in the region. And this lemma also tells us that those mild singularities, which have a rational order

grow, can be absorbed by the exponential factor. Back to our situation, after some elementary transforma-

tions (translation and rotation), the estimation of
∫
C
‖W (s)‖
|s−z| dA(s) will eventually reduce to similar situation

discussed in the above lemma.

Based on the Lemma 4.7, we know when t is sufficiently large, ‖K‖ < 1. Thus the resolvent is uniformly

bounded and we obtain the following estimate by taking standard Neumann series, for some sufficiently

large t0,

‖E − I‖ = ‖(1−K)−1KI‖ ≤ ct−1/4

1− ct−1/4
≤ ct−1/4, t > t0 (4.38)

Now since for each z ∈ Ωj,k, we have |∂̄Ej,k(z)| ≤ c(|z − zj |−1/2 + |R′(u + zj)|), and applying the

dominated convergence theorem, we have

lim
z→∞

|z(E − I)| ≤ 1

π

l∑
j=1

4∑
k=1

‖E‖L∞
∫

Ωj,k

‖W‖ds,

and the estimate for the right hand side perfectly fits the situation z ∈ Ω1 of Lemma 4.7, and we eventually

have:

E1 = lim
z→∞

|z(E − I)| = O(t−3/4). (4.39)
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4.7 Asymptotics formulas

First, we summary all the steps as follows:

1. Initial RHP m[0].

2. Conjugate initial RHP to obtain m[1] = m[0]δ−σ3 .

3. Open lens to obtain m[2] = m[1]O(z), where O(z) = I + o(1), z →∞ in all sectors.

4. Preparing for separating contributions and the phase reduction by removing some contours, which

generate an error O(e−ct), c > 0.

5. Separating contributions and the phase reduction will generate an error O(t−1).

6. Connect each RHP(m[3,j]) near the stationary phase point to a Model RHP(m[4,j]).

7. Comparing m[2] and m[3] and computing the error by analysis a pure ∂̄−problem. The error term is

O(t−3/4).

Combining all previous results, we have

m[0](z) = E(z)m[3](z)O−1(z)δσ3 .

Since O(z) uniformly converges to I as z → ∞, and δσ3 is diagonal matrix, those two do not affect the

recovering of the potential. Finally we obtain

q(x, t) = −2i(m
[3]
1,12 + E1,12)

= qas(x, t) +O(t−3/4).

Remark 4.9. qas is O(t−1/2) as t→∞ and x > 0 and |x/t| is bounded.

4.8 Fast decay region

Observe that the contour Im(z2k+1 + z) = 0 has no intersection with real axis for k ∈ N, which cor-

responding to the mKdV hierarchy, i.e., the odd parts of the AKNS hierarchy. For those phase functions

θ(z) = zn + z, n = 2k + 1, k = 1, 2, ..., we have the following properties:

1. There exits ε = ε(n) > 0, ± Im(θ) > 0 in the strip {z : ± Im(z) ∈ (0, ε)}.
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2. There exits M ∈ (0, 1/ε) such that Im(θ) ≥ nvun−1 for |u| ≥Mε and Im(θ) ≥ v(1− (Mε)2) for

|u| ≤Mε. Here z = u+ iv.

Now, we will formulate a general RHP model as follows: Given R(z) ∈ H1,1(R), find a piecewise holo-

morphic matrix-value function m such that

1. m+ = m−e
−itθ(z) ad σ3v(z), z ∈ R, where the jump matrix is given by

v(z) =

1− |R|2 −R̄

R 1

 =

1 −R̄

0 1

1 0

R 1

 (4.40)

2. m = I +O(z−1), z →∞.

Theorem 4.10. For the above RHP, the solution m enjoys the following asymptotics as t→∞:

m1(t) = O(t−1). (4.41)

where m = I +m1(t)/z +O(z−2), z →∞.

Now we will prove the theorem again using the idea of ∂̄-steepest descent method.

Proof. We will only prove for the z ∈ {z : Im z ∈ (0, ε)}, for the other half, the same analysis works

just by a slight modification. First we open the lens (i.e., the real line) by multiplying m by a smooth(R2)

matrix-valued function O(z), where O(z) is given by

e−itθ(z)

 1 0

− R(Re z)
1+(Im z)2 1

 . (4.42)

Let us denote Σ1 = {z : Im z = ε} and

m̃ =


m, z ∈ Ω3

mO, z ∈ Ω1

where Ω1 = {z : Im z ∈ (0, ε)} and Ω3 = {z : Im z > ε}.

Now as usual, we obtain a ∂̄−RHP, and based on a traditional small norm argument, the m̃ = I + o(1)

[14]. Denote the solution to the pure RHP by m], and consider

E = m̃(m])−1. (4.43)
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Then E doesn’t have a jump on σ1 and it satisfies a pure ∂̄−problem:

∂̄E = EW, (4.44)

where W = −m]e−tθ(z)∂̄( R(Re z)
1+(Im z)2 )(m])−1, here ∂̄ = 1

2(∂Re z + i∂Im z).

Since R ∈ H1,1, ∂̄( R(Re z)
1+(Im z)2 ) is uniformly bounded by a nonnegative L2 function f(Re z). Note that m]

is uniformly close to I , set z = u+ iv. Then we have

‖W‖ ≤ f(u)e−t Im θ(u,v), u ∈ R, v ∈ (0, ε).

By the same procure as the previous sections, the error of approximating m by the identity matrix is given

by the following integral:

∆ :=

∫ ε

0

∫
R
f(u)e−t Im θdudv. (4.45)

Split the u into two regions: (1) |u| ≤ Mε, (2) |u| ≥ Mε. And denote by ∆1, ∆2 respectively. Then

∆ = ∆1 + ∆2. On the one hand, we have

∆1 ≤
∫ ε

0

∫ Mε

−Mε
f(u)e−tv(1−M2ε2)dudv

by the Cauchy-Schwartz inequality

≤ ‖f‖L2(R)(2Mε)1/2 1− e−tε(1−M2ε2)

t(1−M2ε2)

= O(t−1).

On the other hand,

∆2 ≤
∫ ε

0

∫
|u|≥Mε

f(u)e−ntvu
n−1

dudv

=

∫
|u|≥Mε

f(u)

∫ ε

0
e−ntvu

n−1
dvdu

≤ t−1‖f‖L2(

∫
|u|≥Mε

(
1− e−ntvun−1

nun−1
)2du)1/2

≤ t−1‖f‖L2

n

n− 2
(Mε)−(n−2)

= O(t−1).

Thus the error term is O(t−1) and this completes the proof.
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4.9 Asymptotics in Painlevé regions

4.9.1 Painlevé II hierarchy

It is well-known that one can generate the Painlevé II hierarchy from similarity reduction of the mKdV

hierarchy [10]. In this section, we will provide an algorithm based on the Riemann-Hilbert problems to

generate the Painlevé II hierarchy. Let’s denote Θ(x, z) = xz+ c
nz

n. Supposem solves the following RHP:

m+ = m−e
iΘσ3v0e

−iΘσ3 , z ∈ Σn,

m = I +O(z−1), z →∞.

where the contour Σn consists of all stokes lines which are determined by Θ, and v0 is a constant 2 by 2

matrix that is independent of x, z.

Now letting m̃ = meiΘσ3 , we arrive at a new RHP:

m̃+ = m̃−v0, z ∈ Σn,

m̃ = (I +O(z−1))eiΘσ3 , z →∞.

Since v0 is constant, it is easily to check, by Louisville’s argument, that both ∂zm̃m̃−1 and ∂xm̃m̃−1 are

polynomials of z. Hence we obtain the following two differential equations:

∂xm̃m̃
−1 = A(x, z), (4.46)

∂zm̃m̃
−1 = B(x, z). (4.47)

If we assume

m = I +

n−2∑
j=1

mj(x)z−j +O(z−(n−1)), z →∞, (4.48)

m = m−1 = I +
n−2∑
j=1

mj(x)z−j +O(z−(n−1)), z →∞, (4.49)

then direct computation shows

A = i[m1, σ3] + izσ3, (4.50)

B = ixσ3 + iczn−1σ3 + izn−2[m1, σ3] +

n−1∑
k=2

iczn−1−k(mkσ3 + σ3mk +
k−1∑
j=1

mk−jσ3mj). (4.51)
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Since mx,z = mz,x, we have

Az −Bx + [A,B] = 0. (4.52)

Letting the coefficients of z all vanish, and setting

mj =

 0 uj(x)

uj(x) 0

 , (4.53)

we can solve the equations recursively from the high degree of z to low degree, and eventually, we will

arrive at infinitely many nonlinear ODEs of u1, which are in face a hierarchy of Painlevé II equations. We

list the first few of them:

n = 3 : −8cu3 + cuxx − 4ux = 0, (4.54)

n = 4 : 12icu2ux −
1

2
icuxxx − 4ux = 0, (4.55)

n = 5 : −24cu5 + 10cu2uxx + 10cuu2
x −

c

4
uxxxx − 4ux = 0. (4.56)

In this dissertation, we are interested in the odd members. In particular, n = 3 corresponds to the mKdV

equation, n = 5 corresponds to the 5th-order mKdV equation, and so on. In the following section, we will

show how we can connect the long-time asymptotics of the mKdV hierarchy with solutions to the Painlevé

II hierarchy.

4.9.2 Painlevé region

Recall the phase functions of the AKNS hierarchy of mKdV type equations are

θ(z;x, t) = xz + ctzn, n is odd. (4.57)

The Painlevé region is the region of |xt−1/n| is bounded. By rescaling z → (nt)−
1
n ξ, and letting s =

x(nt)−
1
n , we have

Θ(ξ) = sξ +
c

n
ξn. (4.58)

Now the modular of the stationary phase points of (4.57) is

|z0| =
∣∣∣− x
ct

∣∣∣ 1
n−1

= O(t−
1
n ),
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|ξ0|−|ξ0|

Figure 4. Signature of Re(iθ). The gray region indicates Re(iθ) > 0.

however, after scaling, the modular of the stationary phase points of Θ(ξ) is

|ξ0| = z0t
1
n , (4.59)

which is fixed as t→∞. A direct computation shows for any odd n, the signature of Re (iθ) is just similar

to Fig 4. Since the original RHP only has a jump on the real line, all the stokes lines except those crossing

the real line can be ignored.
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Note that

e−iθ(z) ad σ3v(z) = e−iΘ(ξ) ad σ3v(ξ)

=

1− |R|2 −R̄e−2iΘ

Re2iΘ 1


=

1 −R̄e−2iΘ

0 1

 1 0

Re2iΘ 1


= e−iΘ(ξ) ad σ3v−1

− v+.

We can deform the the contour {z ∈ R : |z| > |ξ0|} as before and get the deformed contour as follows.

|ξ0|−|ξ0|

Σ1Σ2

Σ3 Σ4

Σ0

Ω1

Ω2
Ω3

Ω4

Ω5

Ω6

Figure 5. Contour for ∂̄−RHP.

As before, we set the original RHP as m[1] with jump e−iθ(z) ad σ3v(z). After rescaling and ∂̄− lens

opening, we set m[2](ξ) = m[1]O(γ), where the lens-opening matrix reads

O(γ) =



 1 0

−E+e
2iΘ(γ) 1

 , γ ∈ Ω1 ∪ Ω3,

1 −E−e−2iΘ(γ)

0 1

 , γ ∈ Ω4 ∪ Ω6,

I, γ ∈ Ω2 ∪ Ω5,

(4.60)

where

E+(γ) = K(φ)R
(

(nt)−
1
n ξ
)

+ (1−K(φ))R(ξ0(nt)−
1
n ) (4.61)

E−(γ) = E+(γ), γ = ξ0 + ρeiφ, ξ = Re(γ). (4.62)

Now we arrive at the following ∂̄−RHP:
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1. The RHP

(1.a). m[2](γ) ∈ C1(R2\Σ) and m[2](z) = I +O(γ−1), γ →∞.

(1.b). The jumps on Σ1 and Σ2 are e−iΘ(ξ) ad σ3v+, the jumps on Σ3 and Σ4 are e−iΘ(ξ) ad σ3v−,

and the jump on Σ0 is e−iΘ ad σ3v((nt)−
1
n ξ).

2. The ∂̄ problem

For z ∈ C, we have

∂̄m[2](ξ) = m[2](ξ)∂̄O(ξ). (4.63)

Again, we will need the following lemma in order to estimate the errors from the ∂̄−problem.

Lemma 4.11. For γ ∈ Ω1,3,4,6, ξ = Re γ,

|∂̄E±(γ)| ≤ (nt)−
1
n |(nt)−

1
n (ξ − ξ0)|−

1
2 ‖R‖H1,0 + (nt)−

1
n |R′((nt)−

1
n ξ)|. (4.64)

Proof. For brevity, we only prove for the region Ω1. Using polar coordinates, we have

|∂̄E+(γ)| =
∣∣∣∣ ieiφ2ρ

K′(φ)
[
R
(

(nt)−
1
n ξ
)
−R(ξ0(nt)−

1
n )
]

+K(φ)R′
(

(nt)−
1
n ξ
)

(nt)−
1
n

∣∣∣∣
by the Cauchy-Schwartz inequality

≤

∣∣∣∣∣‖R‖H1,0 |(nt)−
1
n ξ − ξ0(nt)−

1
n |1/2

γ − ξ0

∣∣∣∣∣+ (nt)−
1
n

∣∣∣R′ ((nt)−
1
n ξ
)∣∣∣

≤ (nt)−
1
n |(nt)−

1
n (ξ − ξ0)|−

1
2 ‖R‖H1,0 + (nt)−

1
n |R′((nt)−

1
n ξ)|.

Similarly, we can prove for the other regions.

Next, consider a pure RHP m[3] which satisfies exactly the RHP part of ∂̄−RHP(m[2]). Moreover, m[3]

can be approximated by the RHP corresponding to a special solution of the Painlevé II hierarchy. Since for

γ ∈ Ω1, ∣∣∣(R(ξ(nt)−
1
n )−R(0)

)
e2iΘ(γ)

∣∣∣
≤ |ξ(nt)−

2
n |

1
2 ‖R‖H1,0e2 Re iΘ(γ)

≤ (nt)−
1
n |Re γ|

1
2 ‖R‖H1,0e2 Re iΘ(γ),
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it is evident that

‖Re2iΘ −R(0)e2iΘ‖L∞∩L1∩L2 ≤ c(nt)−
1
n . (4.65)

Let m[4] be the solution to the RHP by change the jumps of m[3] to R(0) and R̄(0). Then, via the small

norm technique, the errors between the corresponding potentials are given by

error3,4 = lim
γ→∞

|γ(m
[4]
12 −m

[3]
12)| (4.66)

≤ c
∫

Σ
|(R(Re(s)(nt)−

1
n )−R(0))e2iΘ(s)|ds (4.67)

≤ c(nt)−
1
n . (4.68)

Then since now the jumps are all analytic, we can perform the analytic deformation and arrive at the green

contours as show in Fig6. Let’s denote the new RHP by m[5](γ), which is exactly equivalent to m[4](γ).

|ξ0|−|ξ0|

Σ1Σ
[4]
1

Σ2 Σ
[4]
2

Σ3 Σ
[4]
3

Σ4Σ
[4]
4

Figure 6. Contour for m[4](Green part).

The jumps of m[5] read:

e−iΘ(γ)v[4](0) =



 1 0

R(0)e2iΘ(γ) 1

 , γ ∈ Σ
[4]
1,2,

1 R̄(0)e−2iΘ(γ)

0 1

 , γ ∈ Σ
[4]
3,4.

(4.69)

Then according to the previous section, the (1, 2) entry of the solution m[5] (also of the solution m[4]) is a

solution to the Painlevé II hierarchy, i.e.,

m
[4]
12(γ) = m

[5]
12(γ). (4.70)
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Recall P IIn (s) = limγ→∞ γm
[5]
12 where P IIn solves the nth equation in the Painlevé II hierarchy.

Now let’s consider the error generated from the ∂̄-extension. Recall the error E satisfies the following

pure ∂̄ problem:

∂̄E = EW,

W = m[3]∂̄O(m[3])−1.

As before, the ∂̄ equation is equivalent to an integral equation which reads

E(z) = I +
1

π

∫
C

E(s)W (s)

z − s
ds = I +K(E).

As before, we can show that the resolvent is always exist for large t. So we only need to estimate the true

error which is:limz→∞ z(E − I). In fact, we have

lim
z→∞

|z(E − I)| = |
∫
C
EWds|

≤ c‖E‖∞
∫

Ω
|∂̄O|ds.

For the sake of simplicity, we only estimate the integral on the right hand side in the region of the top right

corner. Note there is only one entry is nonzero in ∂̄O, which is one of the E± and we split the integral into

two parts in the obvious way, i.e.,∫
Ω
|∂̄O|ds ≤ I1 + I2

=

∫
Ω

(nt)−
1

2n |Re s− ξ0|‖R‖H1,0e2 Re iΘ(s)ds

+

∫
Ω

(nt)−
1
nt |R′((nt)−

1
n s)|e2 Re iΘ(s)ds.

As we know from the previous sections, eRe 2iΘ(s) ≤ ce−2|Θ′′(ξ0)|uv in the region {z = u+ iv : u > ξ0, 0 <

v < αu} for some small α , where s = u+ iv + ξ0. Then we have

I1 ≤ (nt)−
1

2n

∫
Ω
|Re s− ξ0|−1/2e−cuvdudv

≤ (nt)−
1

2n

∫ ∞
0

∫ αu

0
u−1/2e−cuvdudv

≤ C(nt)−
1

2n

∫ ∞
0

1− e−2α|Θ′′(ξ0)|

u3/2
du

= O
(

(nt)−
1

2n

)
.
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And

I2 ≤ (nt)−
1
n

∫
|R′((nt)−

1
2n Re s)|e−cuvdudv

by the Cauchy-Schwartz inequality

≤ (nt)−
1
n ‖R‖H1,0

∫ ∞
0

(

∫ ∞
αv

e−2cuvdu)1/2dv

≤ (nt)−
1
n ‖R‖H1,0

∫ ∞
0

e−cαv
2

√
2αcv

dc

= O((nt)−
1
n ).

Thus, we arrive at

∂̄Error = O((nt)−
1

2n ). (4.71)

And we undo all the deformations, we obtain

m[1]((nt)−
1
nγ) = m[2](γ)O−1(γ)

= (1 +
Ot

1
2n

γ
)m[3](γ)O−1(γ)

= (1 +
Ot

1
2n

γ
)(1 +

Ot
1

2n

γ
)m[4](γ)O−1(γ),

and can be rewritten in terms variable z:

m[1](z) =

(
1 +
O(t−1/(2n))

z(nt)1/n

)
m[5]((nt)1/nz). (4.72)

Since m[5] corresponds to the RHP for the Painlevé II hierarchy, we have

m[5](γ) = I +
m

[5]
1 (s)

γ
+O(γ−1), (4.73)

where γ = z(nt)1/n. Thus,

m[1](z) =

(
1 +
O(t−

1
2n )

z(nt)1/n

)(
1 +

m
[5]
1 (s)

z(nt)1/n
+O(z−2)

)
(4.74)

= I +
m

[5]
1 (s)

z(nt)1/n
+
O(t−

1
2n )

z(nt)1/n
+O(z−2). (4.75)

Since m[5]
1 (s) is connected to solutions of the Painlevé II hierarchy, we conclude that

q(x, t) = lim
z→∞

z(m[1] − I) (4.76)

= (nt)−
1
nun(x(nt)−

1
n ) +O(t−

3
2n ), (4.77)
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where un solves the nth member of the Painlevé II hierarchy. For the case of mKdV type defocusing

reductions, we only take odd numbers for n.
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Chapter 5

The AKNS system and the focusing/defocussing 5th-order mKdV equation

Note that the 5th-order mKdV equation generates so-called isospectral flow of the following AKNS spectral

problem:

ψx(x, t; z) =

izσ3 +

 0 q(x, t)

εq(x, t) 0

ψ(x, t; z), (5.1)

ψt(x, t; z) =
(
16iz5σ3 + V0(q, ε, z)

)
ψ (5.2)

where ε = 1 and ε = −1 correspond to the defocussing/focusing 5th-order mKdV equation. In the next

section, we will discuss the time evolution part of this AKNS spectral problem in detail, i.e., how to construct

V0. For now, let us focus on the x-part. And refer to next section that the constant part of V0 with respect to

z is

V5 := 6Q5 − 10Q2Qxx − 10QQ2
x +Qxxxx. (5.3)

From which we obtain the unreduced 5th-order mKdV system

Qt = V5x :=
∂Vx
∂x

. (5.4)

Now let us consider the reductions, provided that q is a real potential:

• ε = 1: the defocusing 5th-order mKdV equation

qt = 30q4qx − 10q2qxxx − 40qqxxqx − 10q3
x + qxxxxx. (5.5)

• ε = −1: the focusing 5th-order mKdV equation

qt = 30q4qx + 10q2qxxx + 40qqxxqx + 10q3
x + qxxxxx. (5.6)
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5.1 Time evolution of the focusing/defocussing 5th-order mKdV

Here following Ma’s scheme [18] , the stationary zero curvature equation Wx = [U,W ],where

W =
∑
i≥0

W0,iz
−i,W0,i =

ai bi

ci −ai


leads to the following recursion relation:

bi+1 = 1
2I bi,x − Iqai,

ci+1 = − 1
2I − Iq̄ai,

ai+1,x = qci+1 − q̄bi+1,

(5.7)

upon taking the initial values

a0 = 16I, b0 = c0 = 0, (5.8)

also imposing the conditions of the integration for the third recursion relation:

ai|q=0 = bi|q=0 = ci|q=0 = 0,∀i ≥ 1. (5.9)

Now let

V [m] = (zmW )+ (5.10)

where (·)+ means the principle part of the Laurent expansion. Then the time-evolution problem is followed

by

Ψt = V [m]Ψ, (5.11)

and the zero curvature equation

Ut − V [m]
x + [U, V [m]] = 0 (5.12)

leads to the equivalent non-linear integrable PDEs. For m = 2, 3, we will obtain the NLS equation and the

mKdV equation , respectively. In the current paper, letting m = 5, we obtain the time-evolution part for the

5th-order mKdV equation, which reads

ψt = (16iz5σ3 + V0(q, ε, z))ψ ≡ V ψ (5.13)

where

V0 = z4(−16Q)− 8iz3(Q2 −Qx)σ3 + z2(−8Q3 + 4Qxx)− iz(12QxQ
2 − 2Qxxx)σ3 + V5, (5.14)
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provided that Q =

 0 q(x, t)

εq(x, t) 0

 .
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Chapter 6

Exact solutions to the 5th-order focusing mKdV equation

6.1 Problem setup

From now on, we will study the exact solutions of the 5th-order mKdV equation in details. In the last

chapter, we have already shown how to derive the 5th-order mKdV equation from reductions of the AKNS

system. Let’s recall the spectral problem:

ψx = (izσ3 +Q)ψ, (6.1)

which satisfies the following boundary behaviors,

ψ(±) = µ(±)eixzσ3 , x→ ±∞,

where µ(±) → I, x→ ±∞. As studied in chapter 2, µ satisfies the following Volterra integral equation:

µ± = I +

∫ x

±∞
eiz(x−y) ad (σ3)(Q(y)µ(y; z))dy. (6.2)

Now, similarly analysis shows that the first col µ+ can be analytically extended to upper half z−plane as

well as the second row of µ−. By introduce a new notations:

H1 =

1 0

0 0

 , H2 =

0 0

0 1

 .

We construct P+ = µ+H1 + µ−H2 which is analytic in C+. Observe also that, denoting µ̃ = µ−1,

µ̃± = I −
∫ x

±∞
eiz(x−y) ad (σ3)(µ̃(y; z)Q(y))dy, (6.3)

We can construct P− = H1µ̃
+ +H2µ̃

−, which is analytic in C−. Recall from chapter 2, we know

ψ(+) = ψ(−)S(z) = ψ(−)

a(z) b̆(z)

b(z) ă(z)

 (6.4)
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Also by setting E = eixzσ3 , µ(+) = µ(−)ESE−1. then by multiplying P− and P+, we have

P−P+ = H2
1 +H2

2 +H1ES
−1E−1H1 +H2ESE

−1H1 (6.5)

= E

0 −b̆

b 0

E−1. (6.6)

From the construction, it is easy to check that

detP+ = det (µ(−)ESE−1H1 + µ(−)H2)

= detµ(−1) det (ESE−1H1 +H2)

= a(z).

Similarly, detP− = ă(z). Again, recall that S(z) satisfies

ă(z) = a(−z), (6.7)

ā(z) = a(−z̄), (6.8)

which in turn implies, that if zk is a zero of detP+. Then z̄k is a zero of detP− with same multiplicity.

From the analytic Fredholm theory, the equation (6.2) has a solution which is entire in z−plane if the

kernel is small. In fact, ‖Q‖ ≤ 1 suffices. For a generic potential q(x, 0) ∈ L1(dx), the number N of zeros

of a(z) is bounded by the following inequality [1]:

N ≤ 1 +

∫
R
|x||u(x, 0)|dx. (6.9)

Then due to the Theorem 1.6 and Proposition 1.7 in [26], the scattering data can be characterized as

follows:

Theorem 6.1. There is a bijection between the scattering data {a(z), z ∈ R} ∪ {(zk, ck) : a(zk) =

0, Im zk > 0} with the potential q(x, 0).

Now we formulate the RHP as follows: Seeking a piecewise analytic matrix valued function P such that

1. For z ∈ R, P−P+ = G(z), with

G(z) = E

0 −b̆

b 0

E−1,
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2. P (z) = I +O(1/z), z →∞,

3. detP+(zk) = 0, zk ∈ C+, and the P+(zk)vk = 0, k = 1, .., N .

The solution (since to recovery the potential, we only need P+) to the above RHP is given by the following

formula:

P+(z) = P̃+(z)(I + Γ(z))

= P̃+(z)(I +

N∑
j,k=1

vj(M
−1)jkv

∗
k

z − z̄k
),

where

Mjk =
v∗j vk

z̄j − zk
, j, k = 1, · · · , N, (6.10)

and P̃ solves the RHP with jump:

Γ(z)G(z)Γ(z)−1, z ∈ R. (6.11)

6.2 Time evolution

Note that the t-part in the Lax pair of the 5th-order mKdV equation, the coefficient matrix is of trace zero.

Hence similarly, we only need consider the boundary at infinity, and we have

Et = 16iz5σ3E.

Then from the relation µ(+) = µ(−)ESE−1, we finally grt

St = 16iz5[S, σ3]. (6.12)

Writing out all the entries, we have

a(z; t) = a(z; 0) (6.13)

b(z; t) = b(z; 0)e32iz5t. (6.14)

Hence det(P+) is independent of t variable. Now from the condition 3 in our RHP setup, i.e.,

P+(zk)vk(x, t) = 0, differentiating with respect to x, t and using the Lax pair, we eventually get

P+(zk)(∂xvk − izσ3vk) = 0, (6.15)

P+(zk)(∂tvk − 16iz5σ3vk) = 0. (6.16)
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Then the column vector vk(x, t) = e(izkx+16iz5
kt)σ3vk0, and due to the formula of Mjk, the quantities

vj(M
−1)jkv

∗
k only depends on the ratios of vk0,1/vk0,2. So, without loss of generality, we can introduce

Ck = (1, ck)
T , and we have

vk(x, t) = e(izkx+16iz5
kt)σ3Ck. (6.17)

6.3 Recover the potential

From the asymptotics conditions in our RHP setup, if we assume

P (z) = I + P1/z + o(1/z), z →∞. (6.18)

and that P satisfies

µx = iz[σ3, µ] +Qµ. (6.19)

Then the potential can be recovered by the following formula:

q(x, t) = 2i(P1)12 = 2i

N∑
j,k=1

eθj−θ̄k c̄k(M
−1)jk, (6.20)

with

Mjk =
eθk+θ̄j + c̄jcke

−θk−θ̄j

z̄j − zk
, (6.21)

where θk = izkx+ 16iz5
kt.

The formula (6.20) represents the famous N -soliton solutions.

6.4 Darboux transformation and other interesting solutions

First we prove two fundamental theorems of the Darboux transformation for the AKNS hierarchy.

Theorem 6.2 (Classical Darboux Transformation). Consider a general spectral problem:

ψx = M(z;x)ψ, (6.22)

There exists an linear operator T (z;x) such that ψ̃ = Tψ satisfying a new spectral problem:

ψ̃x = M̃(z;x)ψ̃, (6.23)

where M̃ −M does not depend on z.
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Proof. Suppose such T exists and is differentiable with respect to x. Then we need to show such T has the

property that TxT−1 + TMT−1 −M does not depend on z. This can be done by constructing T from an

projection operator.

Let ψ1 be the eigenfunction(vector) corresponding to eigenvalue z1, i.e., ψ1x = M(z1;x)ψ1, and define

the projection operator

P =
ψ1ψ

†
1

ψ†1ψ1

.

Then direct computation shows

Px = MP + PM † − P (M +M †)P. (6.24)

For the sake of simplicity, denote M1 = M(z1;x), a = 1
z−z̄1 ,b = 1

z−z1 and c = z̄1 − z1, and we claim that

the following

T =
1

a
+ (

1

b
− 1

a
)P (6.25)

fulfills our purpose. Indeed, due to the good property (i.e., P (1 − P ) = 0) of the projection operator P , it

is easy to see

T−1 = a+ (b− a)P. (6.26)

Then we have

TxT
−1 = [MP + PM † − P (M +M †)P ](a(1− P ) + bP )(z)

= aPM †1(1− P ) + b(1− P )M1P.

While

TMT−1 = (
1

a
+ (1/b− 1/a)P )M(a+ (b− a)P )

= M + 1/aM(b− a)P + (1/b− 1/a)PMa+ (1/b− 1/a)(b− a)PMP

= M + bc(−1 + P )MP + acPM(1− P ).

Adding them up, we obtain that

TxT
−1 + TMT−1 = M + bc(1− P )(M1 −M)P + acP (M +M †1)(1− P )

= M − ic(1− P )σ3P + icPσ3(1− P )

= M + ic[P, σ3].

This completes the proof.
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Remark 6.3. From the proof we can see that the proof does not depend on the x variable, thus for if one

consider the Lax pair t-part, it is easy to see that the new zero curvature equation M̃t − Ñx + [M̃, Ñ ] =

T (Mt − Nx + [M,N ])T−1 = 0, provided the initial potential is just constant (or the so-called ‘seed’

solution). This is guaranteed by the property of the AKNS hierarchy that for a constant potential, the t-part

Lax pair shares the same structure as the x-part. Thus, the potential generated by the above procure will still

satisfy the evolutionary PDEs, which correspond to the same zero curvature equation. This enables us to

construct soliton solutions, rational solutions, breathers and other interesting solutions.

From this theorem, we have constructed a Darboux transformation. In fact, by choosing a “seed” potential

Q0(x) and any initial eigenvalue z0, Im(z0) 6= 0, we can get a new potential satisfying the AKNS spectral

problem. One applies T to the eigenvector (ψ0) generated by the seed potential and the initial eigenvalue, a

new solution ψ1 = Tψ0 will be created satisfying the following new spectral problem:

ψ1x = (izσ3 +Q1(x))ψ1, (6.27)

with Q1 = Q0 + i(z̄0 − z0)

[
ψ0ψ

†
0

ψ†0ψ0
, σ3

]
.

Theorem 6.4 (Generalized Darboux Transformation). Given a pair of eigenvalue and eigenfunction

(z1, ψ(z1)), denote ψ[2](z1) := limδ→0
T [1](z1+δ)ψ(z1+δ)

δ . Then

T [2] = z − z̄1 + (z̄1 − z)P [2],

where P [2] = ψ[2]ψ[2]†/(ψ[2]†ψ[2]), gives a so-called generalized Darboux Transformation (gDT).

Proof. Due to the classical DT, T [1](z)ψ(z1) solves ψx = (T [1](z)M)ψ, by linearity, T [1](z)/δ is also a

solution and hence T [1](z1 + δ)/δ solves the the following linear DE:

ψx(z1 + δ) = (T [1](z1 + δ)M(z1 + δ))ψ.

Assuming sufficient smoothness of ψ with respect to variable z1, one can easily see that ψ[2] = ψ[1] +

T [1](z1)ψ′[1](z1) solves the limit DE, where we have used the property that T [1](z1)ψ(z1) = 0.

Remark 6.5. From the generalized DT, the new potential is represented as

q[2] = q[1] + 2i(z̄1 − z1)(P [2])12. (6.28)

And most importantly, the above construction can be iterated any times and any constant seed potentials to

generate some new exact solutions such as rogue-wave solutions (nonzero background).
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6.5 Exact Solutions of the 5th-order mKdV equation

6.5.1 Simple-pole-solitons with zero background: q0(x, t) = 0

Starting with a trivial solution 0, we will apply the classical DT to get N -soliton solutions. Based on the

seed solution, one can immediately solve the Lax equations, which gives

ψ0(z) = eω(z;x,t)σ3(c1(z), c2(z))T , (6.29)

where ω(z;x, t) := izx + 16iz5t + γ(z). Then applying the classical DT, we first construct a projection

operator

P1(z1;x, t) =
ψ0(z1)ψ†0(z1)

ψ†0(z1)ψ0(z1)
, (6.30)

then the DT operator is readily constructed as

T1(z;x, t) = z − z̄1 + (z̄1 − z1)P1, (6.31)

which in turn gives a new potential

Q1(x, t) = 0 + i(z̄1 − z1)(P1σ3 − σ3P ). (6.32)

This gives a one-soliton solution to the 5th-order mKdV equation:

q1ss(x, t) =
4 Im(z1)c1c̄2

|c1|2e−2 ImA + |c2|2e2 ImA
, (6.33)

where A = 16z5
1t+ z1x, z1 ∈ iR and c1, c2 are constants such that c1c̄2 ∈ R.

6.5.2 Double-pole-solitons with zero background: q0(x, t) = 0

In this subsection, we will show how to apply the gDT to obtain so-called double-pole-solitons [25]. First,

we need to choose a seed solution, say

ψ1 := ψ0(z1) =

 c1e
A

c2e
−A,


where

A = i(z1x+ 16z5
1t)

z1 = iη, η ∈ R.
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Then we construct the projection operator P [1] as well as the DT operator T [1](z) as in the last section.

Now in order to get the DPS, let new eigenvalue z2 approach z1 and calculating the limit will give us a new

“seed” to construct a new projection operator P [2] as well as a new DT operator T [2]. In fact, since

T [1](z1 + δ)ψ(z1 + δ)

= (T [1](z1) + δ)(ψ(z1) + ψ′(z1)δ +O(δ2))

= (ψ1 + T [1](z1)ψ′(z1))δ +O(δ2)

=: ψ1[1](z1)δ +O(δ2).

Then the projection operator is constructed as

P [2] =
ψ1[1]ψ†1[1]

ψ†1[1]ψ1[1]
.

And the new potential is

q1dps(x, t) = q1ss + 2i(z̄1 − z1)(P [2])12 (6.34)

= q1ss +
4ηc1c̄2(1−B2)

l(1 +B2) + 2hB
, (6.35)

where

h = |c1|2e2A − |c2|2e−2A, (6.36)

l = |c1|2e2A + |c2|2e−2A, (6.37)

B = −2η(x+ 80η4t)(1− h). (6.38)

Note that the denominator of the second term of p1dps is |c1|2e2A|1 + B|2 + |c2|2e−2A|1 − B|2, since

c1c2 6= 0, that denominator is strictly greater than 0, hence the solution we obtained is real analytic in x, t.

6.5.3 Simple-pole-Solitons with nonzero background: q0(x, t) = b

If we choose “seed” solution to be q0 = b. Then the Lax pair becomes:

ψx = (izσ3 − bσ1σ3)ψ, (6.39)

ψt = (izgσ3 − gbσ1σ3)ψ, (6.40)
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Figure 7. Double pole soliton solution

where

g = 6b4 − 8b2z2 + 16z4.

Again, we need to construct a projection operator from a special solution of the Lax equations. In fact, since

both equations only involve constant coefficient with respect to x, t, we can easily solve the system. And

we then obtain a nontrivial special solution as follows:

ψ1(z1;x, t) =

 eA + z1−λ
b e−A

−i( z1−λb eA + e−A)

 :=

φ1

φ2

 , (6.41)

where λ =
√
b2 + z2

1 with a properly-chosen branch cut, and A = iλx + igλt. Then due to the classical

DT, it is east to obtain the following one-soliton solution:

qn1ss(x, t) = b+
4ηφ1φ̄2

|φ1|2 + |φ2|2
, (6.42)

where z1 = iη.

6.6 N -fold Darboux transformation

In this section, we will formulate the N -fold DT in terms a quotient of two Vandermonde-like determinants

follows the work of Steudel-Meinel-Neugebeauer’s work and constraint on the focusing reduction only. As
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usually, given a Lax pair:

ψx = M(z;x, t)ψ (6.43)

ψt = N(z;x, t)ψ. (6.44)

Set DT matrix

T =
N∑
j=0

Tjz
j ,

where

Tj =

Aj(x, t) Bj(x, t)

Cj(x, t) −Aj(x, t)

 ,

and TN = I .

As noted in the last section, we want

TxT
−1 + TM0T

−1 = izσ3 +Q, (6.45)

where here we consider the AKNS hierarchy and M0 is our initial spectral problem and α, which is inde-

pendent of z, is to be determined. The reason why it works is based on the following relation:

Mt −Nx + [M,N ] = T (M0t −N0x + [M0, N0])T−1.

And since the nonlinear PDEs are uniquely determined by the zero curvature equation, the new potential

which is contained in the pair (M,N) solves the same nonlinear PDEs as the one generated by the pair

(M0, N0). The remaining job is to determine the DT matrix T .

From the ansatz, we have

detT =
2N∏
k=1

(z − zk),

with all the zk’s are distinguished.

At those zeros, detψ = detT detψ0 = 0, hence we can represent ψ = (ψ1, ψ2) with ψ1 = bkψ2 at the

zero zk, where bk 6= 0 is independent of x, t. In fact, since

ψ1x = Mψ1 = Mbkψ2

= (bkψ2)x = bkxψ2 + bkψ2x

= (bkx + bkM)ψ2,
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we have,

bkx = bkM −Mbk = 0.

Similarly, one can show bkt = 0; hence bk is independent of x, t.

Then together with our DT matrix ansatz, we arrive at the following linear systems:

N−1∑
j=0

zjk(Aj + αkBj) = −zNk , k = 1, · · · , 2N, (6.46)

where

αk =
ψ021(zk)− bkψ022(zk)

ψ011(zk)− bkψ012(zk)
.

Let us consider the focusing type reduction, i.e., let M = izσ3 +Q with Q̄ = −QT . Under this reduction,

it is evident that the zeros come in pairs: (zk, z̄k). Without loss of generality, we set zN+k = z̄k, k =

1, · · · , N . Note also that the reduction leads to the following property of the solutions to the spectral

problem:

ψ(z)ψ†(z̄) = I. (6.47)

The same is true for ψ0 if Q̄0 = −QT0 . Then it is easy to check that

bN+k = −b̄−1
k .

Back to our linear systems, rewriting it in the matrix form, we haveVN αVN

V̄N βV̄N

A
B

 = −

ZN

Z̄N ,

 (6.48)

where

VN =


1 z1, · · · , zN−1

1

1 z2, · · · , zN−1
2

...
...

1 zN , · · · , zN−1
N

 ,

and

A =


A0

...

AN−1

 , B =


B0

...

BN−1

 , ZN =


zN1
...

zNN

 ,
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and

α = Diag(α1, · · · , αN ),

β = −ᾱ−1.

Due to the DT condition given in the equation (6.45), we have

Q = Q0 + i[TN−1, σ3]. (6.49)

To obtain a new potential, we only need to know BN−1, which can be determined by applying Cramer’s

rule:

BN−1 =
ṼN,N (α, β)

VN,N (α, β)
, (6.50)

where

VN,N (α, β) =

VN αVN

V̄N βV̄N

 ,

and

ṼN,N (α, β) =

[VN,N (α, β)]2N×(2N−1),−

ZN

Z̄N ,

 ,

[·]i×j means choosing first i rows and first j columns. Moreover, applying the Laplace expansion theorem,

one can reduce the Vandermonde-like matrix VN,N into

∑
P1,P2

σ(P ) detV(P1) detV(P2) (6.51)

where
∑

P means adding all possible permutations such that both P1 and P2 are increasing per-

mutations with length N and σ(P ) = sign(P1, P2). For example, take N = 2, P1 ∈

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} while P2 ∈ {(3, 4), (2, 4), (2, 3), (1, 4), (1, 3), (1, 2)} in order.

And for the notation V(P1) is defined by choosing the rows and columns with respect to the permutation

P1. Taking P1 = (1, 3) for example, by definition, we have

V(P1) =

1 z1

1 z̄1

 , V(P2) =

α2 α2z2

β2 β2z̄2

 . (6.52)

In fact, we have proved the following theorem.
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Theorem 6.6 (N−fold classical DT for the AKNS hierarchy). Suppose q0(x, t) = Q1,2 solves the nonlinear

PDE generated by the lax pair (M0, N0). Then the N−fold Darboux Transformation T constructed above

generates a new solution q(x, t) to the same nonlinear PDE as

q(x, t) = q0 − 2iBN−1, (6.53)

where BN−1 is defined in the equation (6.50).

Remark 6.7. If we set Q0 = 0 and zk ∈ iR, it generates the famous N−soliton solutions. If Q0 =

constant, the formula gives the breather solutions to the mKdV hierarchy (odd parts of the AKNS hierar-

chy). In particular, for the focusing 5th-order mKdV, taking Q0 = 0, we have ψ0 = exp (izx+ 16iz5t)σ3.

6.7 Generalized Darboux transformation in terms of generalized Vandermonde-like matrices

To construct the general DT matrix, it is sufficient to construct

T (z) =
N∑
j=0

Tjz
j , (6.54)

such that

detT (z) =
s∏

k=1

(z − zk)nk(z − zk+N )nk , (6.55)

where
s∑

k=1

nk = N.

Then if we also know the generalized co-linear coefficients for ψ(z) = T (z)ψ0(z) at each zeros of the

determinant of T (z), say ,

ψ1(zk) = bk0ψ2(zk)

ψ
(1)
1 (zk) = bk1ψ

(1)
2 (zk)

...

ψ
(nk−1)
1 (zk) = bk,nk−1ψ

(nk−1)
2 (zk),

with k = 1, 2, · · · , s. For the sake of simplicity, we consider the case that

detT (z) = (z − z0)N (z − zN )N . (6.56)
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Moreover, if the focusing reductions are performed. Then

detT (z) = (z − z0)N (z − z̄0)N . (6.57)

Providing the co-linear coefficient data at each zero, and using the matrix polynomial ansatz for T (z), we

obtain, for each k,

k∑
l=0

N−1∑
j=l

j!

(j − l)!
zj−l0 (αklAj + βklBj)

= −
k∑
l=0

N !

(N − l)!
zN−l0 αkl, k = 0, 1, · · · , N − 1,

where

αkl = (ψ
(k−l)
011 (z0)− bkψ

(k−l)
012 (z0))

(
k

l

)
βkl = (ψ

(k−l)
021 (z0)− bkψ

(k−l)
022 (z0))

(
k

l

)
,

To see the solvability, we rewrite the above equations in matrix form. First denote V](α) as follows:

α00 α00z0 α00z
2
0 · · · α00z

N−1
0

α10 α10z0 + α11 α10z
2
0 + α11(2z0) · · · α10z

N−1
0 + α11(N − 1)zN−2

0

α20 α20z0 + α21 α20z
2
0 + α21(2z0) + α222 · · ·

∑k
l=0 αk,l

k!
(k−l)!z

k−l
0

...
...

...
...

αN−1,0 αN−1,0z0 + αN−1,1 αN−1,0z
2
0 + αN−1,1(2z0) + αN−1,22 · · ·

∑N−1
l=0 αN−1,l

(N−1)!
(N−1−l)!z

N−1−l
0


.

(6.58)

Similarly, one can define V](β). Then the system of linear equations can be represented as

 V](α) V](β)

V̄](−ᾱ−1) V̄](β̄−1)





A0

...

AN−1

B0

...

BN−1


= −

Z]N
Z̄]N

 , (6.59)
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where

Z]N =


α00z

N
0

α10z
N
0 + α11Nz

N−1
0

...∑N−1
l=0

N !
(N−l)!αN−1,lz

N−l
0

 . (6.60)

Then by applying Cramer’s rule, it is evident that

BN−1 =
det Ṽ](α, β)

detV](α, β)
, (6.61)

where

V](α, β) =

 V](α) V](β)

V̄](−ᾱ−1) V̄](β̄−1)

 , (6.62)

and by replacing the last column of V](α, β) by −

Z]N
Z̄]N

, we got Ṽ](α, β). By simple elementary column

operations, we obtain

detV](α) =

N−1∏
j=0

αjjj!.

Again, by using the Laplace expansion theorem,

V](α, β) =
∑
P1,P2

σ(P )V](P1)V](P2) (6.63)

Remark 6.8. The Laplace expansion theorem reduces the computation complexity from 2N ! terms to
(

2N
N

)
terms.
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Chapter 7

Discussions

7.1 About the ∂̄−steepest descent method

As we already saw, during the construction of the ∂̄−extension function E, we only used the lowest regu-

larity of the initial data. A nature question to ask here is how one can improve the estimate errors if more

regularities of the initial data are provided? In Deift-Zhou 2003’s work [12], they considered the long-time

asymptotics for the defocusing NLS under H1 norm. The method they used is a nonlinear version of the

steepest descent method which can be extended to obtain smaller errors provided more regularities of the

initial data. The main idea is to get a good rational approximation to the phase function so that the Cauchy

transform of the approximation function as well as the large parameter (t) asymptotic of the oscillatory RHP

can be estimated by the classical saddle point method. On the other hand, the ∂̄−steepest descent simplified

those complicated harmonic analysis. If the theorem of ∂̄−steepest descent method for Hj,k initial data

can be established, the proceeding of long-time asymptotics for the integrable equations can be completely

simplified to some fairly simple estimates of multiple integrals.

7.2 Higher dimensional generalization

The fundamental idea of the ∂̄−steepest descent method is to apply the Cauchy-Green’s theorem. While

its higher dimensional version is Stokes’ theorem, there is a possibility to extend the method to the higher

dimensional case. So the problems such as long-time asymptotics of the KP equation and the DS equation,

could be investigated in a similar way.
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