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THE ∞(x)-EQUATION IN GRUSHIN-TYPE SPACES

THOMAS BIESKE

Abstract. We employ Grushin jets which are adapted to the geometry of

Grushin-type spaces to obtain the existence-uniqueness of viscosity solutions
to the ∞(x)-Laplace equation in Grushin-type spaces. Due to the differences

between Euclidean jets and Grushin jets, the Euclidean method of proof is not

valid in this environment.

1. Introduction

Recently, the p(x)-Laplace equation and its limit equation, the ∞(x)-Laplace
equation, have been the focus of much attention as a tool for exploring applications
such as image restoration [7] and electrorheological fluid flow [10]. Linqvist and
Luukari [9] recently proved existence-uniqueness of viscosity solutions to the∞(x)-
Laplace equation in (Euclidean) Rn. However, this proof is not valid in general
Carnot-Carathéodory spaces, such as Grushin-type spaces, because it relies on two
important Euclidean properties, namely that the so-called viscosity penalty function
is the square of the intrinsic distance and that the two first-order jet elements
derived from the penalty function are equal. (These two phenomena are discussed
more below.) The main result of this paper is that the lack of these phenomena in
Grushin-type spaces can be overcome to produce existence-uniqueness of viscosity
solutions in this environment. In particular, we prove the following theorem.

Theorem 1.1. Let Ω be a bounded domain in the Grushin-type space Gn and let
f : ∂Ω→ R be a (Grushin) Lipschitz function. Then the Dirichlet problem

−∆∞(x)u = 0 in Ω
u = f on ∂Ω

has a unique viscosity solution u.

In Section 2, we review the geometry of Grushin-type spaces and definitions of
various viscosity solutions. Section 3 collects all the Grushin tools we will be using
in our proof of existence-uniqueness, found in Section 4. Section 5 details some
further properties of the viscosity solutions.
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2. Grushin-type spaces

2.1. The Environment. We begin by constructing the Grushin-type spaces. We
consider Rn with coordinates (x1, x2, . . . , xn) and the vector fields

Xi = ρi(x1, x2, . . . , xi−1)
∂

∂xi

for i = 2, 3, . . . , n where ρi(x1, x2, . . . , xi−1) is a (possibly constant) polynomial.
We decree that ρ1 ≡ 1 so that

X1 =
∂

∂x1
.

A quick calculation shows that when i < j, the Lie bracket is given by

Xij ≡ [Xi, Xj ] = ρi(x1, x2, . . . , xi−1)
∂ρj(x1, x2, . . . , xj−1)

∂xi

∂

∂xj
. (2.1)

Because the ρi’s are polynomials, at each point there is a finite number of iterations
of the Lie bracket so that ∂

∂xi
has a non-zero coefficient. This is easily seen for X1

and X2, and the result is obtained inductively for Xi. (It is noted that the number
of iterations necessary is a function of the point.) Thus, Hörmander’s condition is
satisfied by these vector fields. Endowing Rn with an inner product (singular where
the polynomials vanish) so that the X ′is are orthonormal produces a manifold that
we shall call gn. This is the tangent space to a generalized Grushin-type space Gn.
Points in Gn will also be denoted by x = (x1, x2, . . . , xn) with a fixed point denoted
x0 = (x0

1, x
0
2, . . . , x

0
n).

Even though Gn is not a group, it is a metric space with the natural metric
being the Carnot-Carathéodory distance, which is defined for the points x and y as
follows:

dC(x, y) = inf
Γ

∫ 1

0

‖γ′(t)‖dt

where the set Γ is the set of all curves γ such that γ(0) = x, γ(1) = y and γ′(t) is
in span{{Xi(γ(t))}ni=1}. By Chow’s theorem (see, for example, [1]) any two points
can be connected by such a curve, which means dC(x, y) is an honest metric. Using
this metric, we can define a Carnot-Carathéodory ball of radius r centered at a
point x0 by

Br = B(x0, r) = {p ∈ Gn : dC(x, x0) < r}
and similarly, we shall denote a bounded domain in Gn by Ω. The Carnot-
Carathéodory metric behaves differently when the polynomials ρi(x1, x2, . . . , xi−1)
vanish. Fixing a point x0, consider the n-tuple rx0 = (r1

x0
, r2
x0
, . . . , rnx0

) where rix0

is the minimal length of the Lie bracket iteration required to produce

[Xj1 , [Xj2 , [· · · [Xjrix0
, Xi] · · · ](x0) 6= 0.

Note that even though the minimal length is unique, the iteration used to obtain
that minimum is not unique. Note also that

ρi(x0
1, x

0
2, x

0
3, . . . , x

0
i−1) 6= 0↔ rix0

= 0.

Using [1, Theorem 7.34] we obtain the local estimate at x0,

dC(x0, x) ∼
n∑
i=1

|xi − x0
i |

1
1+rix0 . (2.2)
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Given a smooth function f on Gn, we define the horizontal gradient of f as

∇0f(x) = (X1f(x), X2f(x), . . . , Xnf(x))

and the symmetrized second order (horizontal) derivative matrix by

((D2f(x))?)ij =
1
2

(XiXjf(x) +XjXif(x))

for i, j = 1, 2, . . . n. We can then define function spaces Ck and the Sobolev spaces
W 1,p, etc with respect to these vector fields in the usual way.

We may also define the ∞-Laplace operator

∆∞u = 〈((D2u(x))?)∇0u,∇0u〉.
This operator is the “limit” operator of the p-Laplace operator (for 2 < p < ∞),
which is given by

∆pu = ‖∇0u‖p−2∆u+ (p− 2)‖∇0u‖p−4∆∞u

= divG (‖∇0u‖p−2∇0u)

where the divergence is taken with respect to the Grushin vector fields.
Following [9], we generalize these operators by replacing the constant p with an

appropriate function p(x) ∈ C1∩W 1,∞ and scalar k > 1 to obtain the p(x)-Laplace
operator

∆p(x)u = ‖∇0u‖kp(x)−2∆u+ (kp(x)− 2)‖∇0u‖kp(x)−4∆∞u

+ ‖∇0u‖kp(x)−2〈∇0u,∇0kp(x)〉 ln ‖∇0u‖

= divG (‖∇0u‖kp(x)−2∇0u).

The corresponding equation ∆p(x)u = 0 is the Euler-Lagrange equation associ-
ated to the energy functional(∫

Ω

‖∇0u‖kp(x)

kp(x)
dx
)1/k

.

Allowing k →∞, one has the tool for analysis of the extremal problem

min
u

max
x
‖∇0u‖p(x).

Letting k →∞, we have ∆p(x)u→ ∆∞(x)u where

∆∞(x)u = ∆∞u+ ‖∇0u‖2〈∇0u,∇0 ln p(x)〉 ln ‖∇0u‖.
For more details concerning the geometry of Grushin-type spaces, the interested
reader is directed to [4, 6] and the references therein.

2.2. Viscosity Solutions. Because we will be considering viscosity solutions, we
will recall the main definitions and properties. We begin with the Grushin jets J2,+

and J2,−. (See [3, 4] for a more complete analysis of such jets.)

Definition 2.1. Let u be an upper semi-continuous function. Consider the set

K2,+
X u(x) =

{
ϕ ∈ C2 in a neighborhood of x, ϕ(x) = u(x),

ϕ(y) ≥ u(y), y 6= x in a neighborhood of x
}
.

Each function ϕ ∈ K2,+
X u(x) determines a vector-matrix pair (η,X) via the relations

η =
(
X1ϕ(x), X2ϕ(x), . . . , Xnϕ(x)

)
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Xij =
1
2
(
Xi(Xj(ϕ))(x) +Xj(Xi(ϕ))(x)

)
.

We then define the second order superjet of u at x by

J2,+u(x) = {(η,X) : ϕ ∈ K2,+u(x)},
the second order subjet of u at x by

J2,−u(x) = −J2,+(−u)(x)

and the set-theoretic closure

J
2,+
u(x) =

{
(η,X) : ∃{xn, ηn, Xn}n∈N with (ηn, Xn) ∈ J2,+u(xn)

and (xn, u(xn), ηn, Xn)→ (x, u(x), η,X)
}
.

There is an analogous definition for J
2,−

v(x).

We then use these Grushin jets to define viscosity ∞(x)-harmonic functions as
follows:

Definition 2.2. A lower semi-continuous function v is viscosity ∞(x)-superhar-
monic in a bounded domain Ω if v 6≡ ∞ in each component of Ω and for all x0 ∈ Ω,
whenever (ξ,Y) ∈ J2,−

v(x0), we have

−
(
〈Yξ, ξ〉+ ‖ξ‖2〈ξ,∇0 ln p(x)〉 ln ‖ξ‖

)
≥ 0.

An upper semi-continuous function u is viscosity ∞(x)-subharmonic in a bounded
domain Ω if u 6≡ −∞ in each component of Ω and for all x0 ∈ Ω, whenever
(η,X ) ∈ J2,+

u(x0), we have

−
(
〈Xη, η〉+ ‖η‖2〈η,∇0 ln p(x)〉 ln ‖η‖

)
≤ 0.

A function is viscosity∞(x)-harmonic if it is both viscosity∞(x)-subharmonic and
viscosity ∞(x)-superharmonic.

Similarly, we have the following definition concerning ∆p(x)u.

Definition 2.3. A lower semi-continuous function v is viscosity p(x)-superharmonic
in a bounded domain Ω if v 6≡ ∞ in each component of Ω and for all x0 ∈ Ω, when-
ever (ξ,Y) ∈ J2,−

v(x0), we have

−
(
‖ξ‖kp(x)−2 trY + (kp(x)− 2)‖ξ‖kp(x)−4〈Yξ, ξ〉

+ ‖ξ‖kp(x)−2〈ξ,∇0kp(x)〉 ln ‖ξ‖
)
≥ 0.

An upper semi-continuous function u is viscosity p(x)-subharmonic in a bounded
domain Ω if u 6≡ −∞ in each component of Ω and for all x0 ∈ Ω, whenever
(η,X ) ∈ J2,+

u(x0), we have

−
(
‖η‖kp(x)−2 trX + (kp(x)− 2)‖η‖kp(x)−4〈Xη, η〉

+ ‖η‖kp(x)−2〈η,∇0kp(x)〉 ln ‖η‖
)
≤ 0.

A function is viscosity p(x)-harmonic if it is both viscosity p(x)-subharmonic and
viscosity p(x)-superharmonic.
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Remark 2.4. In the above definitions, we may replace the right-hand side of each
inequality by an arbitrary function. In that case, we use the term viscosity ∞(x)-
subsolution, etc.

3. Key Grushin tools and results

The Euclidean proof of the main theorem relies on two important facts, neither
of which hold in Grushin-type spaces. The first is that the square of the intrinsic
distance is a valid viscosity “penalty function”. By equation (2.2), the square of the
Grushin distance may not be sufficiently smooth. This can be rectified by choosing
a higher power of the Grushin distance, so that the penalty function is smooth. This
choice, however, is at odds with the reason for choosing the square of the distance
function: the derivative of the penalty function must be comparable to the intrinsic
distance so that we can exploit the Lipschitz property to obtain estimates that are
controllable.

We now present the Grushin tools and results we will need to overcome this
issue. The first is the Iterated Maximum Principle.

Lemma 3.1 (Iterated Maximum Principle [4]). Let u be an upper-semicontinuous
function in a domain Ω and v be a lower-semicontinuous function in Ω. Let

sup
Ω

(u(x)− v(x)) = u(x0)− v(x0) > 0

occur in the interior of Ω. Consider a real vector ~α = (α1, α2, . . . , αn) with non-
negative components and the points x and y with coordinates x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn). We define the following functions for j = 1, 2, 3, . . . , n:

ϕαj ,αj+1,...,αn(x, y) =
n∑
i=j

1
2
αi(xi − yi)2.

Using these functions and upper-semicontinuity on a compact set, we can consider
the following well-defined functions for j = 1, 2, 3, . . . , n:

Mαj ,αj+1,...,αn

= sup
Ω×Ω

(u(x)− v(y)− ϕαj ,αj+1,...,αn(x, y) : xk = yk for k = 1, 2, . . . j − 1)

= u(xαj ,αj+1,...,αn)− v(yαj ,αj+1,...,αn)

− ϕαj ,αj+1,...,αn(xαj ,αj+1,...,αn , yαj ,αj+1,...,αn).

We then have

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

ϕα1,α2,...,αn(xα1,α2,...,αn , yα1,α2,...,αn) = 0,

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

Mα1,α2,...,αn = u(x0)− v(x0).

Corollary 3.2. Under the hypotheses of Lemma 3.1, all iterated limits exist and
the full limit exists and equals the common value of the iterated limits. That is,

lim
α1,α2,...,αn→∞

Mα1,α2,...,αn = sup
Ω

(u(x)− v(x)) = u(x0)− v(x0),

lim
α1,α2,...,αn→∞

ϕα1,α2,...,αn(xα1,α2,...,αn , yα1,α2,...,αn) = 0.
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Remark 3.3. As a consequence of the Iterated Maximum Principle, its proof, and
Corollary 3.2, if we denote the points xα1,α2,...,αn and yα1,α2,...,αn by x~α and y~α,
respectively, then we have

lim
α1→∞

x~α = xα2,α3,...,αn = (x0
1, x

~α
2 , x

~α
3 , x

~α
4 , . . . , x

~α
n)

lim
α2→∞

lim
α1→∞

x~α = xα3,α4,...,αn = (x0
1, x

0
2, x

~α
3 , x

~α
4 , . . . , x

~α
n)

...

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

x~α = x0 = (x0
1, x

0
2, x

0
3, . . . , x

0
n).

Similarly,

lim
α1→∞

y~α = yα2,α3,...,αn = (x0
1, y

~α
2 , y

~α
3 , y

~α
4 , . . . , y

~α
n)

lim
α2→∞

lim
α1→∞

y~α = yα3,α4,...,αn = (x0
1, x

0
2, y

~α
3 , y

~α
4 , . . . , y

~α
n)

· · ·

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

y~α = x0 = (x0
1, x

0
2, x

0
3, . . . , x

0
n).

The importance of the Iterated Maximum Principle is that it will allow us to
isolate the vector fields by direction. In the Euclidean case, it is sufficient to use the
Lipschitz property and then take the full limit, which is independent of direction.
This approach is incompatible with the fact that the Grushin distance estimates
vary at each point. Thus, we must use the Lipschitz property with the directions
independently. This will allow us to overcome the first technical challenge. To do
this, we need the following lemma and corollary.

Lemma 3.4 ([4, Lemma 3.3]). Assume the hypotheses of the Iterated Maximum
Principle (Lemma 3.1) and the notation of Remark 3.3. Suppose that at least one
of u or v is (Grushin) Lipschitz. Define the point (x �i y) by

(x �i y) = (x1, x2, . . . , xi−1, yi, xi+1, . . . , xn).

That is, (x �i y) coincides with y in the i-th coordinate and coincides with x else-
where. Then there is a finite positive constant K so that

αi(x~αi − y~αi )2 ≤ KdC((x~α �i y~α), x~α).

The following corollary follows immediately from Equation (2.2).

Corollary 3.5. When ρi(xα1 , x
α
2 , . . . , x

α
i−1) 6= 0, locally, we have

αi(x~αi − y~αi )2 ≤ KdC((x~α �i y~α), x~α) = C|x~αi − y~αi |.

The second important fact used in the Euclidean proof is that the first-order jet
elements of a viscosity ∞(x)-superharmonic and viscosity ∞(x)-subharmonic are
identical. Because the polynomials are non-constant, this is not the case in the
Grushin environment. Using [5, Theorem 3.4] (or the main lemma in [3]), we have
for an upper semicontinuous function u and a lower semicontinuous function v,

(Υx~α ,X ~α) ∈ J2,+
u(x~α), (Υy~α ,Y~α) ∈ J2,−

v(y~α)
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where (x~α, y~α) are the points associated with Mα1,α2,...,αn (from Remark 3.3) and

(Υx~α)i = ρi(x~α1 , x
~α
2 , . . . , x

~α
i−1)αi(x~αi − y~αi ),

(Υy~α)i = ρi(y~α1 , y
~α
2 , . . . , y

~α
i−1))αi(x~αi − y~αi ).

(3.1)

We see that these vectors are, in general, not equal. We will overcome this challenge
by producing more complicated estimates that are still controllable.

4. Existence-uniqueness of ∞(x)-harmonic functions

Let Ω be a bounded domain in Gn and f : ∂Ω → R be a (Grushin) Lipschitz
function. We will first establish the existence of ∞(x)-harmonic functions using
Jensen’s auxiliary equations [8]:

min{‖∇0u‖2 − ε,−∆∞(x)u} = 0 and max{ε− ‖∇0u‖2,−∆∞(x)u} = 0

for a real parameter ε > 0 . The procedure for existence of viscosity solutions to
these equations (and viscosity ∞(x)-harmonic functions) is identical to [2, Section
4] and [9, Section 2], up to the obvious modifications. For completeness, we state
the steps as one theorem and omit the proofs.

Theorem 4.1 ([9, 2]). We have the following results:
(1) Let ε ∈ R. If uk is a continuous potential-theoretic weak sub-(super-

)solution with u ∈W 1,kp(x)(Ω) to:

−∆kp(x)uk = εkp(x)−1 in Ω
u = f on ∂Ω

then it is a viscosity sub-(super-)solution.
(2) Letting k →∞, we have uk → u∞ uniformly (possibly up to a subsequence)

in Ω with u∞ ∈W 1,∞(Ω) ∩ C(Ω).
(3) The function u∞ is a viscosity solution to

min{‖∇0u∞‖2 − ε,−∆∞(x)u∞} = 0 when ε > 0

max{ε− ‖∇0u∞‖2,−∆∞(x)u∞} = 0 when ε < 0
−∆∞(x)u∞ = 0 when ε = 0.

In light of [2, Lemma 5.6] and [9, Lemma 2.2], the Main Theorem follows from
showing the uniqueness of viscosity solutions to the Jensen auxiliary equations. We
will establish this result.

Theorem 4.2. Let v = u∞ be the viscosity solution from Theorem 4.1 to

min{‖∇0u‖2 − ε,−∆∞(x)u} = 0 (4.1)

in a bounded domain Ω. If u is an upper semi-continuous viscosity subsolution to
Equation (4.1) in Ω so that u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. Following [9, Lemma 3.1] and [2, Theorem 5.3], we may assume without loss
of generality that v is a strict viscosity supersolution. Suppose

sup
Ω

(u− v) > 0

and let

ϕα1,α2,...,αn(x, y) =
n∑
i=1

1
2
αi(xi − yi)2.
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be the function in the Iterated Maximum Principle (Theorem 3.1). By [5, Theorem
3.2], we have vectors Υx~α ,Υy~α and symmetric matrices X ~α,Y~α so that

(Υx~α ,X ~α) ∈ J2,+
u(x~α) and (Υy~α,Y~α) ∈ J2,−

v(y~α).

The vectors are explicitly given by (3.1).
Since u is a viscosity subsolution and v a strict viscosity supersolution, we have,

for some µ > 0,

0 ≥ min{‖Υx~α‖2 − ε,−〈X ~αΥx~α ,Υx~α〉 − ‖Υx~α‖2〈Υx~α ,∇0 ln p(x~α)〉 ln ‖Υx~α‖}

0 < µ ≤ min{‖Υy~α‖2 − ε,−〈Y~αΥy~α ,Υy~α〉 − ‖Υy~α‖2〈Υy~α ,∇0 ln p(y~α)〉 ln ‖Υy~α‖}.

Subtracting these equations, we obtain

0 < µ ≤ max
{
‖Υy~α‖2 − ‖Υx~α‖2, 〈X ~αΥx~α ,Υx~α〉 − 〈Y~αΥy~α ,Υy~α〉

+ ‖Υx~α‖2〈Υx~α ,∇0 ln p(x~α)〉 ln ‖Υx~α‖

− ‖Υy~α‖2〈Υy~α ,∇0 ln p(y~α)〉 ln ‖Υy~α‖
}
.

(4.2)

By [3, Equation 5.6], we have

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

‖Υy~α‖2 − ‖Υx~α‖2 = 0. (4.3)

Also by [4, Section 3], we have

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

〈X ~αΥx~α ,Υx~α〉 − 〈Y~αΥy~α ,Υy~α〉 = 0.

We therefore turn our attention to

‖Υx~α‖2〈Υx~α ,∇0 ln p(x~α)〉 ln ‖Υx~α‖ − ‖Υy~α‖2〈Υy~α ,∇0 ln p(y~α)〉 ln ‖Υy~α‖.

We begin by expanding this term:

‖Υx~α‖2〈Υx~α ,∇0 ln p(x~α)〉 ln ‖Υx~α‖ − ‖Υy~α‖2〈Υy~α ,∇0 ln p(y~α)〉 ln ‖Υy~α‖

= ‖Υx~α‖2〈Υx~α ,∇0 ln p(x~α)〉
(

ln ‖Υx~α‖ − ln ‖Υy~α‖
)

+
(
‖Υx~α‖2 − ‖Υy~α‖2

)
〈Υx~α ,∇0 ln p(x~α)〉 ln ‖Υy~α‖

+ ‖Υy~α‖2
(
〈Υx~α ,∇0 ln p(x~α)〉 − 〈Υy~α ,∇0 ln p(x~α)〉

)
ln ‖Υy~α‖

+ ‖Υy~α‖2
(
〈Υy~α ,∇0 ln p(x~α)〉 − 〈Υy~α ,∇0 ln p(y~α)〉

)
ln ‖Υy~α‖

Using the fact that 1 < p(x) ∈ C1(Ω) ∩W 1,∞(Ω) and the fact that ln a2 = 2 ln a,
we have the absolute value of these terms is controlled by a finite constant C times

T ≡ ‖Υx~α‖3
∣∣∣ ln ‖Υx~α‖2

‖Υy~α‖2
∣∣∣+ ‖Υx~α‖

∣∣∣‖Υx~α‖2 − ‖Υy~α‖2
∣∣∣∣∣∣ ln ‖Υy~α‖

∣∣∣
+ ‖Υy~α‖2‖Υx~α −Υy~α‖

∣∣∣ ln ‖Υy~α‖
∣∣∣

+ ‖Υy~α‖3‖∇0 ln p(x~α)−∇0 ln p(y~α)‖
∣∣∣ ln ‖Υy~α‖

∣∣∣.
(4.4)

We will need to consider several cases. These cases rely on the fact that v is a
strict supersolution, so that ‖Υy~α‖2 > ε > 0.
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Case 1:
∣∣ ln ‖Υy~α‖

∣∣ > | ln ε| and

ln
‖Υx~α‖2

‖Υy~α‖2
> 0.

Using these hypotheses, we may express T in terms of coordinates. Namely,

T ≡
n∑
i=1

(
α2
i ρ

2
i (x

~α
1 , x

~α
2 , . . . , x

~α
i−1)(x~αi − y~αi )2

)3/2

× ln
(

1 +

∑n
i=2 α

2
i

(
ρ2
i (x

~α
1 , x

~α
2 , . . . , x

~α
i−1)− ρ2

i (y
~α
1 , y

~α
2 , . . . , y

~α
i−1)

)
(x~αi − y~αi )2

ε

)
+
( n∑
i=1

α2
i ρ

2
i (x

~α
1 , x

~α
2 , . . . , x

~α
i−1)(x~αi − y~αi )2

)1/2

×
∣∣∣ n∑
i=2

α2
i

(
ρ2
i (x

~α
1 , x

~α
2 , . . . , x

~α
i−1)− ρ2

i (y
~α
1 , y

~α
2 , . . . , y

~α
i−1)

)
(x~αi − y~αi )2

∣∣∣
× 1

2

∣∣∣ ln n∑
i=1

α2
i ρ

2
i (y

~α
1 , y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

∣∣∣
+

n∑
i=1

(
α2
i ρ

2
i (y

~α
1 , y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

)
×

n∑
i=2

α2
i

(
ρi(x~α1 , x

~α
2 , . . . , x

~α
i−1)− ρi(y~α1 , y~α2 , . . . , y~αi−1)

)2

(x~αi − y~αi )2

× 1
2

∣∣∣ ln n∑
i=1

α2
i ρ

2
i (y

~α
1 , y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

∣∣∣
+
( n∑
i=1

(
α2
i ρ

2
i (y

~α
1 , y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

))3/2

×
( n∑
i=1

(
ρi(x~α1 , x

~α
2 , . . . , x

~α
i−1)

∂p(x)
∂xi

|(x~α1 ,x~α2 ,...,x~αi )

− ρi(y~α1 , y~α2 , . . . , y~αi−1)
∂p(y)
∂yi

|(y~α1 ,y~α2 ,...,y~αi )

)2)1/2

× 1
2

∣∣∣ ln n∑
i=1

α2
i ρ

2
i (y

~α
1 , y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

∣∣∣.
Note that some of the sums start at i = 2 since ρ1 ≡ 1.

Using Corollary 3.5, Remark 3.3, and the fact that ρ1 ≡ 1 and p(x) ∈ C1∩W 1,∞,
we have for some finite constant K,

0 ≤ T1 = lim
α1→∞

T

≤
(
K +

n∑
i=2

(
α2
i ρ

2
i (x

0
1, x

~α
2 , . . . , x

~α
i−1)(x~αi − y~αi )2

)3/2)

× ln
(

1 +

∑n
i=3 α

2
i

(
ρ2
i (x

0
1, x

~α
2 , . . . , x

~α
i−1)− ρ2

i (x
0
1, y

~α
2 , . . . , y

~α
i−1)

)
(x~αi − y~αi )2

ε

)
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+
(
K +

n∑
i=2

α2
i ρ

2
i (x

0
1, x

~α
2 , . . . , x

~α
i−1)(x~αi − y~αi )2

)1/2

×
∣∣∣ n∑
i=3

α2
i

(
ρ2
i (x

0
1, x

~α
2 , . . . , x

~α
i−1)− ρ2

i (x
0
1, y

~α
2 , . . . , y

~α
i−1)

)
(x~αi − y~αi−1)2

∣∣∣
× 1

2

∣∣∣ ln [K +
n∑
i=2

α2
i ρ

2
i (x

0
1, y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣
+
(
K +

n∑
i=2

(
α2
i ρ

2
i (x

0
1, y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

))
×

n∑
i=3

α2
i

(
ρi(x0

1, x
~α
2 , . . . , x

~α
i−1)− ρi(x0

1, y
~α
2 , . . . , y

~α
i−1)

)2

(x~αi − y~αi )2

× 1
2

∣∣∣ ln [K +
n∑
i=2

α2
i ρ

2
i (x

0
1, y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣
+
(
K +

n∑
i=2

(
α2
i ρ

2
i (x

0
1, y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

))3/2

×
( n∑
i=1

(
ρi(x0

1, x
~α
2 , . . . , x

~α
i−1)

∂p(x)
∂xi

|(x0
1,x

~α
2 ,...,x

~α
i )

− ρi(x0
1, y

~α
2 , . . . , y

~α
i−1)

∂p(y)
∂yi

|(x0
1,y

~α
2 ,...,y

~α
i )

)2)1/2

× 1
2

∣∣∣ ln [K +
n∑
i=2

α2
i ρ

2
i (x

0
1, y

~α
2 , . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣.
Now, if ρ2(x0

1) = 0, the corresponding term vanishes. If ρ2(x0
1) 6= 0, we again apply

Corollary 3.5 and Remark 3.3 to obtain the existence of a finite constant K so that

0 ≤ T2 = lim
α2→∞

lim
α1→∞

T

≤
(
K +

n∑
i=3

(
α2
i ρ

2
i (x

0
1, x

0
2, . . . , x

~α
i−1)(x~αi − y~αi )2

)3/2)

× ln
(

1 +

∑n
i=4 α

2
i

(
ρ2
i (x

0
1, x

0
2, . . . , x

~α
i−1)− ρ2

i (x
0
1, x

0
2, . . . , y

~α
i−1)

)
(x~αi − y~αi−1)2

ε

)
+
(
K +

n∑
i=3

α2
i ρ

2
i (x

0
1, x

0
2, . . . , x

~α
i−1)(x~αi − y~αi )2

)1/2

×
∣∣∣ n∑
i=4

α2
i

(
ρ2
i (x

0
1, x

0
2, . . . , x

~α
i−1)− ρ2

i (x
0
1, x

0
2, . . . , y

~α
i−1)

)
(x~αi − y~αi )2

∣∣∣
× 1

2

∣∣∣ ln [K +
n∑
i=3

α2
i ρ

2
i (x

0
1, x

0
2, . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣
+
(
K +

n∑
i=3

(
α2
i ρ

2
i (x

0
1, x

0
2, . . . , y

~α
i−1)(x~αi − y~αi )2

))
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×
n∑
i=4

α2
i

(
ρi(x0

1, x
0
2, . . . , x

~α
i−1)− ρi(x0

1, x
0
2, . . . , y

~α
i−1)

)2

(x~αi − y~αi−1)2

× 1
2

∣∣∣ ln [K +
n∑
i=3

α2
i ρ

2
i (x

0
1, x

0
2, . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣
+
(
K +

n∑
i=3

(
α2
i ρ

2
i (x

0
1, x

0
2, . . . , y

~α
i−1)(x~αi − y~αi )2

))3/2

×
( n∑
i=1

(
ρi(x0

1, x
0
2, . . . , x

~α
i−1)

∂p(x)
∂xi

|(x0
1,x

0
2,...,x

~α
i )

− ρi(x0
1, x

0
2, . . . , y

~α
i−1)

∂p(y)
∂yi

|(x0
1,x

0
2,...,y

~α
i )

)2)1/2

× 1
2

∣∣∣ ln [K +
n∑
i=3

α2
i ρ

2
i (x

0
1, x

0
2, . . . , y

~α
i−1)(x~αi − y~αi )2

]∣∣∣.
We iterate this process until we arrive at

0 ≤ Tn−1 = lim
αn−1→∞

lim
αn−2→∞

· · · lim
α1→∞

T

≤
(
K +

(
α2
nρ

2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

)3/2)
× ln

(
1 +

0
ε

)
+
(
K + α2

nρ
2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

)1/2

×
∣∣∣α2
n

(
0
)

(x~αn − y~αn)2
∣∣∣

× 1
2

∣∣∣ ln [K + α2
nρ

2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

]∣∣∣
+
(
K +

(
α2
nρ

2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

))
× α2

n

(
0
)2

(x~αn − y~αn)2

× 1
2

∣∣∣ ln [K + α2
nρ

2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

]∣∣∣
+
(
K +

(
α2
nρ

2
i (x

0
1, x

0
2, . . . , x

0
n−1)(x~αn − y~αn)2

))3/2

×
( n∑
i=1

(
ρi(x0

1, x
0
2, . . . , x

0
n−1)

∂p(x)
∂xi

|(x0
1,x

0
2,...,x

0
i )

− ρi(x0
1, x

0
2, . . . , x

0
n−1)

∂p(y)
∂yi

|(x0
1,x

0
2,...,x

0
n)

)2)1/2

× 1
2

∣∣∣ ln [K + α2
nρ

2
n(x0

1, x
0
2, . . . , x

0
n−1)(x~αn − y~αn)2

]∣∣∣
= 0 + 0 + 0 + 0.

We then conclude that

lim
αn→∞

lim
αn−1→∞

· · · lim
α2→∞

lim
α1→∞

T = 0.
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Case 2:
∣∣ ln ‖Υy~α‖

∣∣ ≤ | ln ε| and

ln
‖Υx~α‖2

‖Υy~α‖2
> 0.

We then have

0 ≤ T ≤ ‖Υx~α‖3
∣∣ ln ‖Υx~α‖2

‖Υy~α‖2
∣∣+ ‖Υx~α‖

∣∣∣‖Υx~α‖2 − ‖Υy~α‖2
∣∣∣| ln ε|

+ ‖Υy~α‖2‖Υx~α −Υy~α‖| ln ε|

+ ‖Υy~α‖3‖∇0 ln p(x~α)−∇0 ln p(y~α)‖| ln ε|.
We then proceed as in Case 1.
Case 3:

∣∣ ln ‖Υy~α‖
∣∣ > | ln ε| and

ln
‖Υx~α‖2

‖Υy~α‖2
< 0.

From these hypotheses, we have

T = ‖Υx~α‖3 ln
‖Υy~α‖2

‖Υx~α‖2
+ ‖Υx~α‖

∣∣‖Υx~α‖2 − ‖Υy~α‖2
∣∣∣∣ ln ‖Υy~α‖

∣∣
+ ‖Υy~α‖2‖Υx~α −Υy~α‖

∣∣∣ ln ‖Υy~α‖
∣∣∣

+ ‖Υy~α‖3‖∇0 ln p(x~α)−∇0 ln p(y~α)‖
∣∣ ln ‖Υy~α‖

∣∣.
We will use the following lemma.

Lemma 4.3. Given that ‖Υy~α‖2 > ε, we have

‖Υx~α‖2 ≥
ε

2
.

Proof. Suppose not. Then ‖Υx~α‖2 < ε/2. We then have

0 <
ε

2
≤ ‖Υy~α‖2 − ‖Υx~α‖2

Taking iterated limits of this inequality contradicts (4.3). �

Using this lemma, we have

0 ≤ T ≤ ‖Υx~α‖3 ln
(

1 +
‖Υy~α‖2 − ‖Υx~α‖2

ε
2

)
+ ‖Υx~α‖

∣∣∣‖Υx~α‖2 − ‖Υy~α‖2
∣∣∣∣∣ ln ‖Υy~α‖

∣∣
+ ‖Υy~α‖2‖Υx~α −Υy~α‖

∣∣ ln ‖Υy~α‖
∣∣

+ ‖Υy~α‖3‖∇0 ln p(x~α)−∇0 ln p(y~α)‖
∣∣ ln ‖Υy~α‖

∣∣.
This case then proceeds as in Case 1.
Case 4:

∣∣ ln ‖Υy~α‖
∣∣ ≤ | ln ε| and

ln
‖Υx~α‖2

‖Υy~α‖2
< 0.

This case is similar to Case 3 (cf. Case 2) and we omit it.
Equation (4.2) now produces a contradiction and the theorem then follows. �

An analogous argument produces the following Corollary.
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Corollary 4.4. Let v = u∞ be the viscosity solution from Theorem 4.1 to

max{ε− ‖∇0u‖2,−∆∞(x)u} = 0 (4.5)

in a bounded domain Ω. If u is an lower semi-continuous viscosity supersolution to
Equation (4.5) in Ω so that u ≥ v on ∂Ω, then u ≥ v in Ω.

5. A Harnack inequality

We include a Harnack inequality for completeness. First, we have the following
lemma whose proof is identical to [9, Lemma 4.1] and omitted.

Lemma 5.1. Let u be a positive viscosity∞(x)-harmonic function and ζ a positive,
compactly supported smooth function. Then

sup
x∈Ω

∣∣∣∇0ζ(x)∇0 lnu(x)
∣∣∣p(x)

≤ sup
x∈Ω

∣∣∣∇0ζ(x) + ζ(x) ln
( ζ(x)
u(x)

)
∇0 ln p(x)

∣∣∣p(x)

.

As in [9, Section 4], we have the following Harnack inequality as a consequence.

Theorem 5.2. Let u be a positive viscosity ∞(x)-harmonic function. Let Br be a
ball of radius r > 0 contained in the bounded domain Ω. Let B2r be the concentric
ball of twice the radius also contained in Ω. Then

sup
x∈Br

u(x) ≤ C
(

inf
x∈Br

u(x) + r
)

for some constant C depending on supx∈B2r
u(x).
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