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Figure 2.6: Overview of proposed modeling framework

individual’s readmission and discharge events and further to evaluate service utilization

of different types of healthcare facilities.

2.2.2 Modeling of Heterogeneous Time-to-readmission Data

Consider a heterogeneous population of N elderly individuals, and each individual

i can be readmitted to one of M different healthcare facilities, namely, type m facility,

i = 1...N, m = 1...M. Denote the jth time-to-readmission observation of type m facility

of an elderly individual i as Tij, j = 1...mi, where mi is the total number of readmissions

to healthcare facility m of individual i. To account for the uncertainty and variability

of individualized multi-types facility readmission, an advanced statistical modeling ap-

proach needs to be developed. Several issues involved in the statistical modeling and

analysis of time-to-readmission data should be addressed: (i) the data right-skewness

which invalidates the conventional normality assumption; (ii) the consideration of both

within-individual dependency and between-individual independency; (iii) the individ-

ualized model of considering both individual facility-specific observed and unobserved

heterogeneity; and (iv) the competing risk of individuals requesting for healthcare ser-

vices among multiple types of healthcare facilities.
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To simultaneously address the aforementioned issues, we develop a data-driven indi-

vidualized multi-type healthcare facility readmission model with latent survival analysis.

The facility-specific readmission risk, rim(t), can be expressed as

rim(t) = lim
∆t→0

Pr(t ≤ Tij ≤ t + ∆t, Jij = m | Tij ≥ t)
∆t

, i = 1...N, m = 1...M, j = 1...mi (2.2)

where Jij is an indicator taking value m if the target facility of jth readmission of individual

i is type m. rim(t) captures the instantaneous probability of individual i being readmit-

ted to healthcare facility m at time t. The model can be further formulated by hazard

regression, written as

rim(t) = rb
m(t) exp(βT

mxi + γim), i = 1...N, m = 1...M (2.3)

where rb
m(t) is the baseline readmission rate to type m healthcare facility of an individ-

ual in the absence of facility-specific individual observed and unobserved heterogeneity.

βm and xi are vectors of facility-specific covariate coefficient and covariates, which repre-

sent the facility-specific individual observed heterogeneity. γim is a random factor and is

used to quantify the facility specific individual unobserved heterogeneity. Weibull hazard

function can be assumed for rb
m(t) due to its flexibility in modeling right-skewness data,

i.e., rb
m(t) = λmkmtkm−1 where λm and km are facility-specific rate parameter and shape

parameter of Weibull distribution respectively. The overall probability of no readmission

to any facilities for individual i, i = 1...N is then given by

Si(t) = exp

(
−
∫ t

0

M

∑
m=1

rim(v)dv

)
= exp

[
−

M

∑
m=1

λmtkm exp(βT
mxi + γim)

]
(2.4)

The probability density function of facility-specific time-to-readmission can be expressed

as fim(t) = rim(t)Si(t), i = 1...N, m = 1...M. Denote D as the set of all available data, i.e.,

D = {tij, xi, i = 1...N, j = 1...mi}, and Θ as a collection of all unknown parameters, i.e.,
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Θ = {λm, km, βm, m = 1...M}. The marginal likelihood function can be obtained as

L(Θ | D) =
N

∏
i=1

∫ ∞

0
...
∫ ∞

0

M

∏
m=1

∏
j∈Im

fim(tij)π(γi1)...π(γiM)dγi1...dγiM (2.5)

where Im is an index set of all readmission records that the target facility of individual

i is type m. π(·) represents an arbitrary probability density function. Conventional es-

timation methods, such as maximum likelihood estimation method, fail to carry out the

estimation of all γim’s, since they will be integrated out in the marginal likelihood function

maximization. To achieve the joint estimation of both the unknown parameters and all

γim’s, we develop estimation algorithm under Bayesian framework. The joint posterior

of Θ and γim’s can be expressed as

π (Θ, {γim} | D) ∝
N

∏
i=1

[
M

∏
m=1

(
∏
j∈Im

fim(tij)

)]
· π (Θ) (2.6)

The above joint posterior can further be derived as

π (Θ, {γim} | D) ∝ L (Θ | D, {γim}) · π (Θ) ·
N

∏
i=1

M

∏
m=1

π(γim) (2.7)

where π(Θ) is joint prior density function of unknown parameters. L (Θ | D, {γim}) is

joint likelihood function and can be calculated as

L (Θ | D, {γim}) =
N

∏
i=1

[
M

∏
m=1

∏
j∈Im

rim(tij) ·
mi

∏
j=1

Si(tij)

]
(2.8)

Markov Chain Monte Carlo (MCMC) method (Roberts and Sahu, 1997) can be em-

ployed to obtain the posteriors of all unknown parameters and all γim’s. The sampling

algorithm can be summarized as below. τmax is the maximum number of iterations in the

sampling. It is noticed that the total time-to-readmission data of all individuals contribute
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Algorithm 1 Sampling algorithm for parameter estimation of proposed model

Initialization: Θ and {γim} as Θ0 ← {{λ(0)
m }, {k

(0)
m }, {β

(0)
m }} and {γ0

im}
for τ ← 1 to τmax do

Draw samples γ
(τ)
im ∼ π

(
γim | Di, {λ

(τ−1)
m }, {k(τ−1)

m }, {β(τ−1)
m }

)
, i=1...N,m=1...M

Draw samples λ
(τ)
m ∼ π

(
λm | D, {γ(τ)

im }, {k
(τ−1)
m }, {β(τ−1)

m }
)

,m=1...M

Draw samples k(τ)m ∼ π
(

km | D, {γ(τ)
im }, {λ

(τ)
m }, {β

(τ−1)
m }

)
,m=1...M

Draw samples β
(τ)
m ∼ π

(
βm | D, {γ(τ)

im }, {λ
(τ)
m }, {k

(τ)
m }

)
,m=1...M

end for

to the estimation of facility specific unknown parameters, while time-to-readmission data

to any facilities of individual i contribute to the estimation of γim’s.

Based on the estimated parameters, individual cumulative risk can be analyzed. The

cumulative probability of readmission to a specific healthcare facility m of individual i

over time can be represented as Fim(t) =
∫ t

0 fim(v)dv where Fim(t) is essentially a repre-

sentation of cumulative incidence function (CIF). The upper limits of Fim(t) quantify the

eventual probability that readmission to healthcare facility m will happen on individual i.

The upper limits of Fim(t) approximate to proportion value mi
∑m mi

where mi is the number

of readmission to healthcare facility m for individual i, and ∑m mi is the total number of

readmission events of individual i.

2.2.3 Modeling of Heterogeneous Length-of-stay Data

Based on the above developed model, we can analyze personalized risk of readmis-

sion to any types of healthcare facilities. When an individual is readmitted to a specific

healthcare facility, the individual stays in that facility and utilize healthcare service for

a certain time. We can employ Bayesian statistical modeling techniques to characterize

individual dwelling duration in a specific healthcare facility Consider a population of n

elderly individuals in a studied healthcare facility and let a random variable Yij repre-

sent the jth LOS of an elderly individual i in that facility, i = 1...n, j = 1...ui, where ui is

the total number of times that individual i is discharged from healthcare facility of inter-
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est. Denote yij as an actual observation of Yij, the observed LOS data can be expressed

as {yij, i = 1...n, j = 1...ui}. To account for both the effects of observed individual char-

acteristics (e.g., age, race, health conditions, etc.) and latent effects due to unavailable

clinical information, we develop a personalized LOS model under Bayesian framework

with latent survival analysis. The individual LOS in a specific healthcare facility can be

determined by the following model

di(t) = lim
∆t→0

Pr(t ≤ Yij ≤ t + ∆t | Yij ≥ t)
∆t

= db(t) exp(αTwi + δi), ∀i = 1...n, j = 1...ui (2.9)

where db(t) is the baseline discharge rate of an individual from studied healthcare facil-

ity in the absence of influences of all observed individual characteristics and unobserved

factors. We use Weibull hazard to represent the baseline discharge rate due to its flex-

ibility in modeling right-skewed data, i.e., db(t) = νζtζ−1, where ν is rate parameter

and ζ is shape parameter of Weibull distribution. wi and α are vectors of covariates and

corresponding coefficients to represent individual characteristics and to quantify their ef-

fects, respectively. δi is a random variable with continuous distribution function G(·),

i.e., δi ∼ G(·), ∀i. δi is incorporated to capture the individual latent heterogeneity of the

unobserved factors due to unavailable detailed individual information. di(t) can be in-

terpreted as the instantaneous probability of being discharged from the facility of interest

of individual i at time t given this individual is still in the health care setting. It can mea-

sure how likely an individual will be discharged from hospital. A larger value of di(t)

indicates a shorter LOS of individual patient i and vice versus.

To estimate the above LOS model, we utilize available data Dl, i.e., Dl = {yij, wi, i =

1...n, j = 1...ui}. Denote Θl as a collection of all unknown parameters in the proposed

LOS model, i.e., Θl = {ν, ζ, α}. To estimate Θl, the conventional non-Bayesian estima-

tion method, e.g., maximization likelihood estimation, can be employed to maximize the
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marginal likelihood function, i.e., Θ̂l = arg maxΘl L(Θl | Dl). The marginal likelihood

function L(Θl | Dl) can be expressed as

L(Θl | Dl) =
n

∏
i=1

∫ ∞

0

ui

∏
j=1

(
νζyζ−1

ij exp
[
δi + αTwi − νyζ

ij exp(αTwi + δi)
])

π(δi)dδi (2.10)

where π(·) represents an arbitrary probability density function. As shown in Eq. (2.10),

all δi’s are integrated out in the marginal likelihood function and therefore, they cannot

be estimated. However, δi’s carry important information to quantify the individual LOS.

To overcome such limitation in the conventional non-Bayesian method, Bayesian infer-

ence is considered since (i) both of the Θl and δi’s can be estimated; (ii) exact inference

of Θl and δi’s can be achieved through obtaining their posterior densities while in non-

Bayesian method, point estimate is often obtained and confidence intervals are approxi-

mated based on the asymptotic theory. Under the Bayesian framework, the joint posterior

π(Θl, {δi}n
i=1 | Dl) can be derived as

π(Θl, {δi}n
i=1 | Dl) ∝ L(Θl | {δi}n

i=1, Dl) ·
n

∏
i=1

π(δi) · π(Θl)

=
n

∏
i=1

ui

∏
j=1

(
νζyζ−1

ij exp
[
δi + αTwi − νyζ

ij exp(αTwi + δi)
])
·

n

∏
i=1

π(δi) · π(Θl) (2.11)

where L(Θl | {δi}n
i=1, Dl) is the joint likelihood function and π(Θl) is the joint prior

density of a collection of unknown parameters. Prior independence is often assumed,

i.e., π(Θl) = π(ν)π(ζ)π(α). We further employ MCMC sampling method (Roberts and

Sahu, 1997) to obtain the posterior densities of Θl and all δi’s. The full conditional poste-
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rior densities can be explicitly derived as

π(δi | Dl, ν, ζ, α) ∝ exp [uiδi − νSi exp(δi)] · π(δi), ∀i

π(ν | Dl, {δi}n
i=1, ζ, α) ∝ ν∑n

i=1 ui exp

[
−

n

∑
i=1

νSi exp(δi)

]
· π(ν)

π(ζ | Dl, {δi}n
i=1, ν, α) ∝ ζ∑n

i=1 ui exp

[
(ζ − 1)

n

∑
i=1

ui

∑
j=1

log(yij)−
n

∑
i=1

νSi exp(δi)

]
· π(ζ)

π(α | Dl, {δi}n
i=1, ν, ζ) ∝ exp

[
n

∑
i=1

uiα
Twi −

n

∑
i=1

νSi exp(δi)

]
· π(α) (2.12)

where Si = ∑ui
j=1 yζ

ij exp(αTwi). Since ζ > 0 and ν > 0, their prior distributions can

be specified as gamma distribution or log-normal distribution (McGilchrist and Aisbett,

1991). For δi’s and α, there are no such positiveness restrictions and normal prior den-

sity is often selected. Based on the above equations, we can draw the samples from

the derived posterior densities sequentially and update parameter estimates iteratively.

Since the full conditional posterior densities in Eq. (2.12) are not from common distri-

butions, e.g., distributions from the exponential family, Metropolis-Hasting algorithm

(HASTINGS, 1970) can be employed to draw the corresponding samples.

2.2.4 Predictive Analytics Integrated Simulation

With the developed Bayesian statistical models in previous sections, we further de-

velop a predictive analytics integrated ABS model to simulate the readmission and dis-

charge events of each individual who has potential healthcare service needs for multiple

types of healthcare facilities. The flow chart of ABS model is illustrated in Figure 2.7. In

the simulation model, we assume that all of the elderly individuals are in the community

dwelling status before being readmitted to any types of healthcare facilities. Individuals

in this status do not need any healthcare services. However, an individual may need a

certain type of healthcare service (e.g., care service in NH) over time, and can be readmit-

ted to the corresponding healthcare facility to receive service. An individual’s probability
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Figure 2.7: State chart for agent-based simulation of elderly individuals

of readmission to a certain type of healthcare facility is time-dependent and is driven by

the individualized readmission model, as described in Eq. (2.3). The status of an indi-

vidual is then changed to the corresponding type of the facility. The individual stays in

that status for a certain time, and the dwelling duration in that facility is driven by the

individual LOS model, as shown in Eq. (2.9). After being discharged from the healthcare

facility, an individual transit back to community dwelling status or exits the simulation

when he/she reaches a randomly generated death age. The individual healthcare service

demand of an agent is driven by the proposed statistical models and can be characterized

by the ABS simulation model. The simulation outputs include the number of individuals

in each type of healthcare facility throughout the entire simulation horizon. Animations

include the visualizations of states transition of agents and the real-time plots of number

of individuals in various healthcare facilities.
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2.3 Case Study

To illustrate the proposed approach and demonstrate its effectiveness, a real case study

is provided based on a subset of the Florida’s Medicare and Medicaid claims data (Meng

et al., 2013). The real data contain details of readmission and discharge records of mul-

tiple types of healthcare facilities. The readmission records of 217 elder people and the

discharge records of 1529 elderly individuals in total are utilized to extract the facility-

specific time-to-readmission data and individual LOS data. Two facility types, namely,

hospital and NH are considered in this study. As shown in Figure 2.8, the individual

(a) Individual time-to-readmission (b) Individual LOS

Figure 2.8: Healthcare service utilization variations

facility-specific time-to-readmission and individual LOS exhibit heterogeneity. To ac-

count for such individual heterogeneity, we employ the developed statistical models and

incorporate both observed individual characteristics as well as unobserved factors. The

individual characteristics available in the data set include binary variables, such as gender

indicator, and categorical variables, such as Assisted daily living (ADL) total score and

Charlson comorbidity index as well as ethnicity group, and continuous variables, such as

age. Classical variable selection methods, such as random forest based method, can be

used to select the significant covariates. In proposed readmission model, five covariates

are selected to estimate the proposed statistical models, including the indicator of white
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