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fluorescence from a sample excited by an external light source. Further analysis was then conducted to inves-
tigate the efficiency of the back coupling of light if measured while forward coupled light was simultaneously
propagating through the endoscope.

Following this, single cell nanoendoscopes of three different taper lengths 30 um, 44 pum and 59 pm were fab-
ricated from cleaved single mode silicon dioxide 125/8 um fibres using HF wet etching®"*2. The resultant tapered
fibre tips were characterized using a HITTACHI SU-70 scanning electron microscope (SEM) and then spliced to
a regular single mode fibres using an IFS 10 Arc fusion splicer to provide an optical connection with minimal
loss. Several nanoendoscope viability tests have been conducted on single cells and reported in Supplementary
Information.

After these simulations, experiments that measured the light collected from sub cellular organelle via the
single cell nanoendoscope were conducted using two experimental setups. In the first setup, a human lung fibro-
blast cell was stained with Acridine orange and excited using an external light source generated by a built-in
Nikon, blue excitation, fluorescent filter. The fluorescent emission signal was then collected using the nanoen-
doscope which had been inserted into nucleus of the cell. Similarly, signal was collected from Hoechst stained
Liver cells. In the second setup, the nanoendoscope was inserted into an MDA-MB-231 cell that was stained
with MitoTracker Red. The fluorescence in the cell was excited using green light (532 nm) forward coupled into
the nanoendoscope. Simultaneously, the back coupled fluorescent emission signal was collected and measured
using the same nanoendoscope. Following this, in-vivo experiments were conducted using C. elegans worms.
Neurodegeneration model animals that stably express polyglutamine residues fused to Yellow Fluorescent Protein
(YFP) in the body wall muscle (strain AM140, genotype rmls132 unc-54p::Q35::YFP)®, were anesthetized with
10 mM Levamisole, mounted on 2% agarose pads, and then probed with the nanoendoscope. The emitted spec-
trum was then collected by the nanoendoscope.
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