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Figure 1. MDES service area with respect to UPRM and the Pueblo borough, and Mayagüez’s location within PR 

 
On August 3, 2019, a dockless e-scooter rental service (MDES) began operating in Mayagüez within a 
service area that included UPRM, its adjacent neighborhoods, and the center of the Pueblo borough 
(Figure 1). MDES is the first micromobility service to operate in PR. The service area has been periodically 
expanded since its inception. The boundary depicted in Figure 1 represents the 3.5 km2 area in which 
there was service during the 2019-2020 academic year. Skootel, a local micromobility company, owns and 
operates the system. The price of a trip is $1 to activate the e-scooter plus 20 cents per travel minute. The 
hours of operation of the e-scooter service are from 6:00 AM to 8:00 PM; in the morning, the operator 
located e-scooters within the service area, and they were collected after 8:00 PM. Rebalancing operations 
were conducted during the day. The number of units in daily operation was approximately 90 e-scooters 
during weekdays and 30 e-scooters during weekends. The service paused its operations due to the COVID-
19 pandemic.  
 

2.3. Description of Data Sources 
This section describes the three data sources used in the study: the e-scooters trip data, the region’s 
demographic and network data, and data obtained from an online survey. Additionally, a method used to 
disaggregate the available sociodemographic data is discussed.  

2.3.1. E-scooters Data and its Processing  
The operator provided records on approximately 66,000 e-scooter trips completed during the 2019-2020 
academic year. A trip record consisted of the trip date, the trip starting and ending times, the trip starting 
and ending coordinates, the price paid, and unique identifiers for the user and the e-scooter. The main 
source of error in the data was the trip end location, as it appears that the system was registering 
intermediate GPS coordinates as the ending coordinate of trips, meaning that subsequent locations trip 
ends and starts of the same e-scooter would not be reasonably close even considering normal GPS error. 
Approximately 51% of the ending and starting coordinates of successive trips were 150 meters or more 
apart. To address this problem and standard GPS errors, an algorithm was created to match trip starts and 
ends when possible, or it would preserve the coordinate difference, and label it as the result of a 
rebalancing (see Appendix A for details on the algorithm). Less than 1% of trip records were not 
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Sets 
 

𝑱 : set of zones 
 

Parameters: 
 

𝑠𝑖 : number of vehicles in zone 𝑖 ∈ 𝑱 
𝑘 : truck capacity 
𝜆𝑖 : target number of vehicles for zone 𝑖 ∈ 𝑱 according to the efficiency objective 
𝜇𝑖 : target number of vehicles for zone 𝑖 ∈ 𝑱 according to the equity objective 
𝑐𝑖𝑗  : cost of travel from zones 𝑖 to 𝑗 

𝑚𝑖 : minimum number of vehicles that must be present in zone 𝑖 according to equity or 
efficiency considerations 

𝜔𝑧  : weight given to objective 𝑧 (𝑧 = (1,2,3), with 1 referring to the transportation cost 
component, 2 to the efficiency objective, and 3 to the equity objective) 

 
Variables:  
 

𝑥𝑖𝑗  : 1 if the truck goes from zones 𝑖 to 𝑗; 0 otherwise 

𝑦𝑖𝑗 : number of micromobility vehicles moved from zones 𝑖 to 𝑗 

𝑛𝑖𝑧  : vehicle deficits in zone 𝑖 based on objective 𝑧 
 

Objective Function: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝜔1 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑱𝑖∈𝑱

+ 𝜔2 ∑ 𝑛𝑖2

𝑖∈𝑱

+ 𝜔3 ∑ 𝑛𝑖3

𝑖∈𝑱

 (6) 

 
Constraints: 

∑ 𝑥0𝑗

𝑗∈𝑱

= 1  
(6.1) 

∑ 𝑥𝑖0

𝑖∈𝑱

= 1  
(6.2) 

∑ 𝑥𝑖𝑟

𝑖∈𝑱

− ∑ 𝑥𝑟𝑗

𝑗∈𝑱

= 0 ∀𝑟 ∈ 𝑱 (6.3) 

∑ 𝑥𝑖𝑖

𝑖∈𝑱

= 0 ∀𝑖 ∈ 𝑱 (6.4) 

𝑘𝑥𝑖𝑗 ≥ 𝑦𝑖𝑗  ∀𝑖, 𝑗 ∈ 𝑱 (6.5) 

𝑠𝑖 + ∑ 𝑦𝑗𝑖

𝑗∈𝑱

≥ ∑ 𝑦𝑖𝑗

𝑗∈𝑱

 ∀𝑖 ∈ 𝑱 (6.6) 

𝑠𝑖 + ∑ 𝑦𝑗𝑖

𝑗∈𝑱

− ∑ 𝑦𝑖𝑗

𝑗∈𝑱

≥ 𝑚𝑖 ∀𝑖 ∈ 𝑱 (6.7) 

𝑛𝑖2 ≥ 𝜆𝑖 − (𝑠𝑖 + ∑(𝑦𝑗𝑖 − 𝑦𝑖𝑗)

𝑗∈𝑱

) ∀𝑖 ∈ 𝑱 (6.8) 
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𝑛𝑖3 ≥ 𝜇𝑖 − (𝑠𝑖 + ∑(𝑦𝑗𝑖 − 𝑦𝑖𝑗)

𝑗∈𝑱

) ∀𝑖 ∈ 𝑱 (6.9) 

𝑦0𝑗 = 0 ∀𝑖 ∈ 𝑱 (6.10) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑱 (6.11) 

𝑛𝑖2, 𝑛𝑖3, 𝑦𝑖𝑗 ∈ ℤ+ ∪ {0} ∀𝑖, 𝑗 ∈ 𝑱 (6.12) 

 
Objective function (6) minimizes the costs associated with the truck routing and deficits resulting from 

not meeting the target distributions. Constraint (6.1) and (6.2) ensure that the truck starts and ends in 
zone 0 (the depot or parking zone). Constraints (6.3) ensure flow conservation. Constraints (6.4) prevent 
dwelling or loops in the same zone. Constraints (6.5) ensure that pickups and drop-offs only occur when 
leaving or arriving at a zone and that the number of vehicles moved does not exceed the truck capacity. 
Constraints (6.6) ensure that the vehicle does not pick up more than the number of vehicles in each zone 
and they prevent negative inventory. Constraints (6.7) ensure that a given vehicle supply 𝑚𝑖 is available 
in each zone 𝑖 (𝑚𝑖 ≥ 0), which, as previously mentioned, is an alternative approach to capture equity 
considerations. Constraints (6.8) and (6.9) give the deficit value at the end of the route based on the 
respective targets. These constraints consider the zones’ initial vehicle supply, the vehicle movements in 
and out to the zones, and the target levels. Constraint (6.10) blocks the flow of vehicles from the depot. 
Finally, constraints (6.11) and (6.12) define the characteristics of the decision variables. 

The 𝜔𝑧  weights can be defined using different analysis perspectives. For example, the transportation 
costs and the efficiency deficit terms could be combined into a measure of loss of profit. Or the problem 
could be solved with different sets of weights and the rebalancing decision would be made based on the 
different rebalancing plans generated (the feasibility of this idea would depend on the computational cost 
of solving a single PDP instance).   

3.3. Numerical Experiments   
 
Two sets of experiments were conducted to illustrate the application of the proposed models. In the first 
set of tests, the outputs of the PDP were examined, and in the second set of tests, the two-step 
methodology was incorporated in a simulation of e-scooter demand in MDES. In both sets of tests, OR-
Tools, and specifically the CBC solver, were used to solve the PDP (Perron & Furnon, 2019).  

3.3.1. PDP Tests  
In the PDP tests, it was assumed that the service of interest operates in a 20-zone service area, the vehicle 
fleet has a size of 220, the service truck could carry up to 10 vehicles, and the minimum number of vehicles 
𝑚𝑖 for each zone was set to 60% of their 𝜆𝑖 values. Details on the scenario considered in the PDP 
experiments, including the number of scooters in the zones and the 𝜆𝑖 and 𝜇𝑖values used, can be found 
in Appendix D. The PDP was solved ten times, each time using a different set of weights. In all trials, 𝜔1 
was set to zero; 𝜔2 sequentially varied from 0 to 1 with increments of 0.1, and 𝜔3 was defined as 1 − 𝜔2. 
This trial configuration was used to focus on the tradeoffs between the efficiency and equity objectives. 
Figure 19 reports the results of the PDP tests. In the experiments, as more weight is given to the equity 
objective, the predicted deficit from the efficiency perspective increases, and vice versa. Extreme deficits 
are observed when either 𝜔2 or 𝜔3 equal 1, but interestingly the deficit values cluster for all other weight 
sets, with the efficiency deficit being lower in 90% of cases given the definition of the 𝑚𝑖 terms; had 𝑚𝑖 
been defined based on the 𝜇𝑖 values the opposite would have been true. Naturally, this is not a 
generalizable observation. The results do not generally imply that meeting equity objectives results in a 
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substantial loss in efficiency, or vice versa, (as illustrated in the next set of numerical experiments) or that 
zero deficit values are always achievable.  

 

 
Figure 19. Efficiency and equity deficits in PDP tests 

3.3.2. Simulation Tests using Agent-Based Model 
The rebalancing methodology was embedded within a computer program that simulated e-scooter travel 
demand using MDES as the background setting. The program’s inputs were generated using data 
associated with MDES, including the region’s transportation network and land use information, and the 
e-scooter travel patterns. As there are no detailed travel behavior data for the region, model structures 
and parameters were assumed to set up the travel behavior models. 

The e-scooter fleet size was set to 100, similar to the fleet size in MDES. The zonal system used in 
the simulation is presented in Figure 20. There are 219 zones in which simulated agents act (identified as 
the “zones” in the figure) and 15 regions that serve as the pickup zones from the optimization models’ 
perspective (more details on these regions next). The e-scooter pickup and drop-off decisions were made 
at the level of the 15 regions (and therefore 𝝀 and 𝝁 have dimensions 1 × 15). Note that there is a drop-
off zone associated with each region.  
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Figure 20. ABM zonal system 

 
Figure 21 presents the structure of the simulation (in the figure, 𝑡𝑚𝑎𝑥  refers to the last simulation 

period, and 𝑔𝑜 is a Boolean variable that indicates if a rebalancing plan is active or not). Time in the 
computer model was discretized into 5-minute blocks, with the day starting at 6:00 AM and ending at 8:00 
PM. In each period 𝑡 (i.e., program iteration), the travel behavior of synthetic agents was simulated, the 
location of e-scooters in the system was updated, and then the program executed a rebalancing plan if 
one was active, or it generated a rebalancing plan if the iteration corresponded to a period within the set 
𝑻𝒓 of predetermined rebalancing periods. The rebalancing period set was defined as 𝑻𝒓 ={8:00 AM, 10:00 
AM, 12:20 PM, 2:20 PM, 4:00 PM}. If 𝑡 ∈ 𝑻𝒓, the target distributions were generated using the TDP. The 
efficiency target distribution 𝝀 was defined as the vehicle distribution expected to maximize the number 
of trips in a two-hour time horizon, as predicted by a trip departure model generated by the XGBoost 
algorithm (see Appendix B). The equity target distribution 𝝁 was defined as the distribution that 
minimized the AUC-based Atkinson inequality index, with 𝜀 set to 0.75. The AUC was computed as 
discussed in Chapter 1. Instead of searching for the optimal 𝝁 each time the rebalancing model was 
invoked, a fixed 𝝁 was determined. It was assumed that the 𝝁 that minimized the inequality in spatial 
access could be treated as the static minimum number of e-scooters required by each region. The PDP’s 
𝑚𝑖 values were set to zero in the simulation. The TDPs were solved using the heuristic discussed in 
Appendix C.  
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Figure 21. Framework of the computer simulation program  

 
Given the 𝝀 and 𝝁 e-scooter distributions, the PDP was solved, and the implementation of the vehicle 

pickup and drop-off plan generated by the model was simulated. The travel time between pickup and 
delivery zones was accounted for in the simulation, although, for simplicity, instantaneous vehicle pickup 
and drop-offs were assumed. Vehicle pickups were performed at the level of the 15 pickup regions, 
meaning that if, for example, 10 e-scooters needed to be picked up from a region, those e-scooters would 
be removed from the region’s zones in which the agents left them. The truck in this simulation was 
assumed to have the capacity to carry up to 40 e-scooters.    

The travel behavior of the synthetic agents was simulated using a simple activity-based model (ABM). 
Each synthetic agent was assigned a fixed schedule that contained the agent’s location (i.e., zone) for each 
5-minute period of the day, including the periods necessary for the agent to travel between zones. As 
previously mentioned, the zonal system in which the agents operated was constituted by 219 zones. Each 
agent was also given a home zone; the agent’s schedule began and ended in the home zone. For each trip, 
the ABM simulated an agent’s mode choice decision using Monte Carlo simulation. This simulation 
depended on the mode choice probabilities generated by a logit model. Only two modes were considered: 
walk and e-scooter. Each agent was assigned a set of parameters to compute their mode choice 
probability. The deterministic utility of the walk mode was a function of a constant and the walking travel 
time between a trip’s origin and destination. The e-scooter mode’s deterministic utility was a function of 
the travel time and cost associated with the e-scooter closest to the agent, the number of previous e-
scooter trips performed by the agent, and whether the agent was returning home. Agents were also 
labeled as UPRM students or non-UPRM students. A total of 3,700 agents were generated for the 
simulation.       

The simulations were run under three scenarios: i) no rebalancing scenario, ii) scenario with 
rebalancing weights set to {𝜔1 = 0.1, 𝜔2 = 2, 𝜔3 = 0}, and iii) scenario with rebalancing weights set to 
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{𝜔1 = 0.1, 𝜔2 = 0, 𝜔3 = 2}. The computer model was run 15 times for each scenario. Note that in the 
second scenario the primary goal of the rebalancing model was to achieve the 𝝀 distribution (and 
therefore maximize trips), while in the third scenario the primary goal was to achieve the 𝝁 distribution 
(and therefore minimize the inequality in the spatial access to the e-scooters). The results of the scenario’s 
trials runs are summarized in the boxplots presented in Figure 22. In the simulation, on average, focusing 
the rebalancing operations on maximizing the number of trips increased trips by 45%, relative to the no-
rebalancing scenarios, which was only slightly higher than the 43% improvement obtained when the 
rebalancing model was focused on achieving the equity goal. However, there was a significant difference 
in the equity-based performances; relative to the no-rebalancing runs, the trip-focused model resulted in 
a reduction of the AUC-based Atkinson inequality index of 15%, while the equity-focused model resulted 
in a reduction of 30%. As in the PDP tests, these tests do not provide general insights into the expected 
performances of real-world dockless micromobility services, but the results illustrate that there could be 
situations in which seeking a more spatially equitable distribution of micromobility vehicles could result 
in a manageable loss in performance efficiency.   

 
Figure 22. Total trips and average Atkinson index values for simulation under different rebalancing regimes (NR: 

no rebalancing scenario; “Goal: Trips”: {𝝎𝟏 = 𝟎. 𝟏, 𝝎𝟐 = 𝟐, 𝝎𝟑 = 𝟎} scenarios; “Goal: Equity”: 
{𝝎𝟏 = 𝟎. 𝟏, 𝝎𝟐 = 𝟎, 𝝎𝟑 = 𝟐} scenarios) 

 

3.4. Closing Remarks 
 
An optimization-based framework was proposed for vehicle rebalancing operations based on efficiency 
and equity objectives relevant to dockless micromobility services. This quantitative approach can be a 
complement to the essential community engagement work required to identify the barriers faced by 
people when accessing micromobility services. As discussed by Shaheen et al. (2017), there are spatial, 
temporal, economic, physiological, and social barriers that can hinder the full participation of individuals 
in shared mobility services. Naturally, the community engagement work is also fundamental for specifying 
the objectives and constraints of the optimization-based framework, particularly when selecting the 
definitions and measures of equity and access. More work is required, for example, to examine if voluntary 
data-sharing programs designed to enhance the equity-based operations of micromobility services are 
acceptable among different community groups, or, more generally, if people are interested in efforts to 
guide micromobility operations based on equity measures that use person-level information. More work 
is also required to quantify what are the costs of different equity enhancing strategies in micromobility 
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services, including the approaches proposed in this report, and to determine how these costs can be 
covered to ensure that the operations of microbiology services are economically sustainable.  

The algorithms used to solve the optimization problems (TDP and PDP) are likely to be the main 
challenge to the practical implementation of the proposed methodology. In the context of the 
experiments presented in Section 3.3  and of the small-scale services like MDES, the proposed heuristics 
are sufficient. However, given that the presented models are supposed to operate in real-time decision-
making applications, more work is required to identify or develop heuristics that can be used to quickly 
find good solutions to the proposed models in large-scale systems.  
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4. Conclusions and Potential Research Opportunities   
 

This project explored the issues of equity and access in micromobility services by studying the 
experience of a dockless e-scooter service in Puerto Rico and by proposing a rebalancing model that 
considered spatial and social inequity in the distribution of vehicles. In Chapter 2, an analysis of the 
dockless micromobility experience of Mayagüez, PR, was presented. In this analysis, MDES user and 
nonuser characteristics were identified, and the spatiotemporal patterns of e-scooter trips were explored. 
In addition, regression analyses were used to examine the relationship between the sociodemographic 
and land-use characteristics of the region and the demand levels observed in MDES. Lastly, spatial access 
indicators were developed and applied to the MDES case.  

The key findings of the research presented in Chapter 2 are:  

• MDES users tended to be young and male, and trips were concentrated in and around a 
university’s campus. 

• Costs, the built environment, and safety concerns were identified as the main reasons for not 
using MDES. 

• Traffic congestion and lack of parking spaces were identified among the main reasons for using 
MDES, which suggest that the service reduced the number of auto trips in the service area. The 
magnitude of the auto trip reduction is unclear, but it could point to the congestion reduction 
potential of micromobility services, particularly in cities that lack effective public transportation 
services.   

• Spatial access differences were observed among the neighborhoods in MDES. These differences 
are probably the results of the spatial distribution of MDES main users (UPRM students), the 
sociodemographic characteristics of the population (generally low-income and older), and the 
rebalancing operations aimed, naturally, at satisfying user demand. 

In Chapter 3, a two-step methodology was presented for conducting rebalancing operations according 
to efficiency and equity objectives relevant to micromobility systems. An optimization model was 
proposed for identifying target micromobility vehicle distributions to achieve efficiency and equity goals 
in the performance of a system. Two objective function formulations were proposed to account for spatial 
and social equity considerations. Additionally, a pickup and delivery problem was proposed that balances 
efficiency and equity objectives in the search for a vehicle redistribution plan. The methods and concepts 
presented in this chapter contribute to the body of literature on the use of quantitative methods to design, 
plan, and operate systems considering equity. The simulation results suggest that, relative to efficiency-
focused rebalancing, there are scenarios in which equity-focused rebalancing operations could result in 
minor reductions in total trips and significant improvements in spatial access to micromobility services. 
Additional research is necessary to reach generalizable conclusions on the likely effects of equity-focused 
rebalancing operations on the overall performance of dockless micromobility services. 

This research contributes to real-world practice by presenting network-based methods and metrics 
that can be applied in the equity evaluation of dockless micromobility services. It also helps planners, 
engineers, and community organizers by providing additional real-world evidence that can be used to 
advocate for investments in infrastructure that can accommodate bicyclists, scooter users, and other 
travelers that do not rely on automobiles. Additionally, the research points to additional types of equity 
performance requirements that could be included as part of the operational goals that micromobility 
companies must satisfy.  

There are several future research opportunities connected to the work presented in this report. Field 
interviews and surveys of MDES users, along with naturalistic observations, can be conducted to explore 
in more detail their characteristics and the reasons for using the service. In addition, this research would 
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help to quantify the magnitude of the auto trip reductions caused by MDES and the subsequent impacts 
on traffic congestion, if any. Outside Mayagüez, dockless e-scooter services have begun operations in at 
least four other Puerto Rican cities, including the capital San Juan. The system in San Juan offers 
opportunities for micromobility travel demand research in urban environments with relatively large 
tourist populations and unreliable public transportation options. Beyond studies regarding the 
micromobility experience in PR, comparative studies using the proposed graph-based spatial equity 
measures could also be performed to gain insights on the impact of land use and transportation network 
infrastructure in the spatial access to micromobility. 

Furthermore, research opportunities in the development of optimization models to enhance equity 
and access. Extensions to the models presented in Chapter 3 can be proposed to consider the presence 
of other modes (i.e., buses) in equity-conscious rebalancing operations. An adaptive model structure that 
generates the 𝑻𝑟  would be particularly useful for operators. In addition, models can be formulated to help 
operators and city planners design the service areas of micromobility services. Service area requirements, 
including the inclusion of historically disadvantaged communities, are a common condition set by cities to 
allow the operation of micromobility services. Even without equity requirements, service area design is a 
concern for companies that want to ensure that their services generate a profit. Also, new heuristics are 
required to speed up the discovery of good solutions to the rebalancing optimization models, particularly 
for applications in large-scale micromobility systems. 

 Lastly, and perhaps more challenging, models can be developed to optimally make decisions on total 
subsidy levels for micromobility trips and on the real-time distribution of these subsidies to enhance 
access among low-income population groups. As the MDES experience suggests, costs are among the 
main barriers to access micromobility services and enhancing spatial access does not address this 
problem. Considerable work has been completed on algorithms to make real-time pricing decisions to 
maximize profits; future research can explore the potential for adapting these models to maximize equity 
and access.  

 
  



 

 
 

  
 

40 

Appendix A.  Algorithm to Process Trip Start and End 
Coordinates 

 
GPS errors are a fundamental challenge in the study of travel patterns in micromobility systems. In this 
project, GPS errors and the resulting inconsistencies in trip starting and ending locations were the main 
problems with the trip record data. For example, in approximately 51% of cases, an e-scooter’s ending 
and starting locations in sequential trips were more than 150 meters apart, and these differences were 
not consistent with rebalancing operations (if there were no errors, the ending coordinate of trip 𝑖 would 
be the same as the starting coordinate of the next trip, 𝑖 + 1). These coordinate differences would not be 
an issue in situations in which the size of the areas under analysis and the average trip lengths render 
them unimportant. In the current application context, however, the service area is relatively small, and 
the zones within this area are, naturally, even smaller. Therefore, an algorithm was developed with the 
objective of adjusting the recorded starting and ending trip coordinates in order to produce plausible trip 
sequences. The proposed procedure could be considered as a type of map-matching algorithm (Quddus, 
Ochieng, & Noland, 2007), but in this problem, the only data available are the starting and ending latitudes 
and longitudes of a sequence of trips, rather than arrays of GPS data that contain starting, intermediate, 
and ending coordinates (i.e., trajectories).  

 Next, the steps of the developed algorithm are described. Underlying this algorithm is the 
assumption that the e-scooter starting coordinates were more reliable than the e-scooter ending 
locations. This assumption was based on the observation that the starting coordinates were spatially 
clustered on a somewhat discrete number of regions known to be common e-scooter origins and 
destination, whereas the ending coordinates were spatially dispersed in travel ways (e.g., roadways), 
suggesting parking patterns that have not been observed in the city (particularly, in UPRM).   

 
Step 0. Define the feasible e-scooter parking space 
Define the spaces in which e-scooters can be parked. These spaces could include sidewalks, plazas, parking 
lots, or any space that the analyst considers as a place where it would be reasonable to expect e-scooters 
to be parked. Let 𝚿 represent the set of these feasible parking spaces. In the Mayagüez context, all 
sidewalks within the service area, as well as plazas and corridors within UPRM, were defined as feasible 
parking spaces. These spaces were identified and represented as polygon objects using GIS.  

In addition, as part of Step 0, identify a set of coordinates 𝚯 that represents the locations in which the 
operator places the e-scooters at the start of the day. Again, in the current context, these locations were 
selected by first creating a GIS map with the starting coordinates of the first trip of all e-scooters on all 
days, and then identifying the centers of the resulting coordinate clusters; the center coordinates 
constituted the 𝚯 set.  

The steps that follow (Steps 1-5) are part of a loop that repeats itself for each day in the data set and 
for each scooter. In this discussion, let 𝒆𝑛𝑣𝑖 represent the recorded ending latitude and longitude of trip 𝑖 
(where 𝑖 is the index of trips in an ordered sequence of trips) for e-scooter 𝑣 on day 𝑛, and 𝒔𝑛𝑣,𝑖+1 denote 
the recorded starting latitude and longitude of trip 𝑖 + 1. Also, let 𝑟𝑚𝑎𝑥 represent the maximum distance 
from a recorded coordinate within which it would be reasonable to expect the true coordinate; that is, 
𝑟𝑚𝑎𝑥 is an error radius. This parameter could be defined based on observed GPS error ranges (Caltrans, 
2020). 

  
Step 1. Find a reasonable parking spot within the space proximal to 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 
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For the starting coordinate 𝒔𝑛𝑣1, set the adjusted starting coordinate as the coordinate in 𝚯 that is closest 

to 𝒔𝑛𝑣1. For the subsequent coordinate pairs (𝒆𝑛𝑣𝑖 , 𝒔𝑛𝑣,𝑖+1), find the geodesic distance 𝑑𝑛𝑣𝑖 between the 

pairs. If 𝑑𝑛𝑣𝑖 > 2 × 𝑟𝑚𝑎𝑥, go to Step 2. Otherwise, generate two circles of radius 𝑟𝑚𝑎𝑥, one with center at 
𝒆𝑛𝑣𝑖 and the other with center at 𝒔𝑛𝑣,𝑖+1. Then, determine the intersection between 𝒆𝑛𝑣𝑖’s circle, 𝒔𝑛𝑣,𝑖+1’s 
circle, and 𝚿 (see Figure A1). If this procedure results in a null set (i.e., there is no feasible parking space), 
go to Step 2. Otherwise, select the parking spot closest to both 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1, and return the coordinate 
of this spot as the adjusted coordinate of 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 (again, if the were no errors, 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 
would be the same). In this study, the implementation of this intersection procedure would result in a set 
of polygons from 𝚿. The polygons were then split using a polygon triangulation algorithm, and the 
centroids of the resulting triangles would be determined; these centroids constituted the candidate 

parking spots. The centroid coordinate with the minimum combined distance to the (𝒆𝑛𝑣𝑖 , 𝒔𝑛𝑣,𝑖+1) pair 

was returned as the adjusted coordinate for both 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1. Also, 𝑟𝑚𝑎𝑥 was set to 100 meters. 
 

 
Figure A1. Illustration of the intersection procedure to identify feasible parking spots 

 
Step 2. Anchor coordinates based on the 𝒔𝑛𝑣,𝑖+1 or declare a rebalanced e-scooter 

Generate a circle with radius 𝑟𝑚𝑎𝑥 and center on 𝒔𝑛𝑣,𝑖+1, and find the intersection between 𝒔𝑛𝑣,𝑖+1’s circle 
and 𝚿. If this intersection procedure results in a null set, go to Step 3. Otherwise, select the parking spot 
closest to 𝒔𝑛𝑣,𝑖+1, and return the coordinate of this spot as the adjusted coordinate of 𝒔𝑛𝑣,𝑖+1 (the 
implementation of this procedure in this study was as explained in Step 1). Then, consider if it would be 
feasible for the previous trip end 𝒆𝑛𝑣𝑖 to adopt the new adjusted coordinate given to 𝒔𝑛𝑣,𝑖+1. To do this, 

find the length of the shortest path between 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 on network 𝑮, and divide it by the recorded 
travel time of trip 𝑖. If the resulting speed is less than or equal to a selected upper bound speed (e.g., the 
maximum e-scooter speed) and greater than or equal to a lower bound speed, then set 𝒆𝑛𝑣𝑖 as the 
adjusted coordinate of 𝒔𝑛𝑣,𝑖+1, and return this information. Otherwise, find an adjusted coordinate for  
𝒆𝑛𝑣𝑖 by applying the previous intersection-based procedure described for 𝒔𝑛𝑣,𝑖+1. This implies that the e-

scooter was moved by the operator from the adjusted 𝒆𝑛𝑣𝑖 to the adjusted 𝒔𝑛𝑣,𝑖+1, presumably as part of 

a rebalancing operation. 
 

Step 3. Anchor coordinates based on the 𝒆𝑛𝑣𝑖 or declare a rebalanced e-scooter 
Repeat the procedure described in Step 2, but i) use  𝒆𝑛𝑣𝑖 as the anchor, instead of 𝒔𝑛𝑣,𝑖+1, ii) go to Step 
4 if the intersection procedure results in a null set, and iii) check the implied speed from the adjusted 
coordinates relative to the information of trip 𝑖 + 1. 

 
Step 4. Discard trip records 
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Assuming that the level of detail suggested by this algorithm is necessary, reaching this step means that 
no reasonable parking spot was identified for the coordinates. Therefore, the data is discarded. In this 
study, no data were discarded based on this criterion as the algorithm did not reach Step 4. Presumably, 
this would be the case in most urban areas given their roadways and sidewalk densities.  

 
Step 5. Last 𝒆𝑛𝑣𝑖 coordinate 
Note that there is no 𝒔𝑛𝑣,𝑖+1 for the last trip 𝑖, so the previous procedure does not work to adjust the 
last trip’s 𝒆𝑛𝑣𝑖 coordinate. However, the intersection procedure described in Step 2 can be applied to 
assign the final coordinate adjustment for the e-scooter.  
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Appendix B.  Predictive Accuracy of Machine Learning 
Models in the Context of MDES Operations 

 
Machine learning (ML) algorithms, including state-of-the-art deep learning algorithms, are at the core of 
the operations of emerging transportation network companies, including companies that operate 
dockless micromobility services. In academic research, these methods are commonly proposed as part of 
methods to forecast demand and, by extension, guide the rebalancing operations in micromobility 
systems. In this appendix, research to train machine learning-based models using MDES data is discussed. 
The objectives of this work were: 

i. to demonstrate the predictive power of ML algorithms in situations in which there are 
relatively small datasets available to train the models,  

ii. to support the assumption that ML algorithms could be used to generate the models required 
by the TDP. 

iii. and to generate ML models that could be used in the numerical tests. 
This appendix is divided into six sections. In the first section previous ML studies that consider 

micromobility services are reviewed. This is followed by a discussion of the prediction problems of 
interest, the available data, and the ML algorithms used in the project. The last two sections present the 
results of the prediction tests and discuss possible research directions.  

B.1. Previous Studies 
Statistical and machine learning methods, including more recent deep learning approaches, have been 
developed to understand and forecast demand for micromobility services. For SBS systems, extensive 
research has been conducted on the relationship between the sociodemographic characteristics of 
individuals – as discussed in Section 2.1. Findings from these studies have informed policy discussions and 
resulted in equity requirements for micromobility services. Beyond understanding travel behavior, models 
have also been developed to forecast station-level demand using primarily historical trip record data. For 
example, Médard de Chardon and Caruso (2015) proposed regression-based models to estimate station-
level bike trips at different levels of temporal aggregation. As part of a model to solve the dynamic 
rebalancing problem, Regue and Recker (2014) used gradient boosting machines to produce short-term 
demand predictions at the SBS station level. In addition to creating variables based on the historical trip 
data, these researchers introduced weather-related features in the prediction models. Time series 
(Kaltenbrunner, Meza, Grivolla, Codina, & Banchs, 2010), Bayesian network (Froehlich, Neumann, & 
Oliver, 2009), and neural network (Caggiani & Ottomanelli, 2012) approaches are among other types of 
models that have been applied to forecast SBS trip levels.  

The large-scale datasets generated by dockless micromobility services have enabled the application 
of deep learning methods to generate dynamic, short-term demand forecasts. For example, Xu et al. 
(2018) developed long short-term memory neural networks (LSTM-NN) to forecast DBS trip production 
and attraction at the traffic zone level. The model considered time intervals as short as 10 minutes. A 
convolutional LSTM-NN was used by Ai et al. (2019) to forecast SBS trips in Chengdu, China. The city was 
divided into a grid of equally sized cells of size 4 km × 4 km, and the temporal dimension was divided into 
six time periods. He and Shi (2020) proposed a graph-based neural network to predict DES flows between 
city zones. Using deep neural networks, Yan and Howe (2019) proposed a model that predicts the value 
of a linear combination of demand and a fairness metric. They propose two fairness metrics that quantify 
the gap between the vehicles assigned to an advantaged group and the vehicles assigned to a 
disadvantaged group. In a different type of application, Pan et al. (2019) developed a deep reinforcement 
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learning framework that determines how much users should be paid to help in the rebalancing of a 
dockless bike-sharing system.  

B.2. Data Description 
Two types of data were used for the ML training and testing task: MDES observed and simulated data. 
The source of the observed data, as discussed in Section 2.3.1, was the MDES operator; Skootel provided 
records on approximately 66,000 e-scooter trips completed during the 2019-2020 academic year. These 
data were processed to correct GPS errors (see Appendix A). As part of the ML database preparation, for 
each 5-minute period and each day of operation, counts of trip arrivals and departures for each zone in 
the 12-zone system presented in Figure B1 were generated; the 12-zone system is called the B1 system 
hereafter. To complement the trip record data, information on UPRM course sections (e.g., class start and 
end times, classroom location), the number of students enrolled in each section, and the dates of holidays 
were collected. Lastly, data on rain events during the period of analysis was also collected. 

 
B1. Zonal system used in the ML algorithm tests 

The simulated data was generated using the output of the activity-based model (ABM) discussed in 
Section 3.3.1. The ABM was run 120 times (akin to 120 days of observation). In each trial run, an ad-hoc 
rebalancing plan (i.e., plan based on knowledge of selected simulation parameters) was used to adjust 
vehicles during the run. As with the observed MDES data, the ABM simulation generates trip information 
that was processed to generate zonal level counts of trip arrivals and departures for each 5-minute period 
in each model run (instead of each day). In addition, the AUC-based system-wide inequality indicator was 
computed for each 5-minute period in each model run. Simulated revenue information was also collected. 

B.3. Prediction Problems and Feature Engineering   
The prediction problems of interest are: 

i. Prediction of trips at the service area (SA) level using observed data. 
ii. Prediction of trip arrivals and departures at the B1 zonal system level using observed data. 
iii. Prediction of trip arrivals and departures at the ABM zonal system level using simulated data. 
iv. Prediction of AUC-Atkinson indicator (hereafter, the AUC) and revenue generation at the ABM 

zonal system level using simulated data. 
The initial set of tests focused on the prediction of trip departures at the SA and B1 zonal levels. This 

initial set of tests was performed to identify the most accurate ML algorithms to use in the rest of the 
prediction problems and the numerical tests discussed in Section 3.3. For the initial tests, the SA models 
were developed to predict the hourly number of trips generated in the MDES service area. In the case of 
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the B1 models, trip departures were estimated for each of the 12 zones in the B1 zonal system and each 
of the eight consecutive two-hour periods in a day of operation. The start of the first two-hour period was 
set at 5:45 AM. The features considered in the model development process are reported in Table B1. In 
general, dummies were included for days of the week, time of day, zones, rainfall events, and holidays. 
Historical averages, moving averages, and trip count observations from previous days were among the 
continuous variables incorporated in the models. 

 
Table B1. Features used in Model Training 

 

IDs Feature Description Type 
Model 

SA B1 

1 Day of Week D X X 

2 Time period (e.g., hour, two-hour period) D X X 

3 Level 1 zone D  X 

4 Month D  X 

5-7 Historical averages of trip productions for prior two-, three-, and four-hour periods Q X X 

8, 9 Seven-day averages of trip productions for the prior two- and three-hour periods Q X X 

10, 11 Moving averages of trip productions considering prior two- and three-hour periods Q X X 

12 Mean number of trip productions observed three days prior on same zone and period Q  X 

13 Mean number of trip productions observed two weeks prior on same zone, period, and day-of-
week 

Q  X 

14 Number of trip attraction in prior period and in the same zone Q  X 

15 Number of students enrolled in classes starting in periods after period of analysis Q X X 

16 Number of students enrolled in classes ending during period of analysis Q X X 

17 Rain event during period D X X 

18 Rain event in next 15 minutes (assuming weather forecasts can be used) D  X 

19 Rain event before trip on the same day D  X 

20 Rain event 15 minutes before period D  X 

21 Holiday D X  

22 Fall semester D X X 

23 Number of scooters deployed on the day Q  X 

24 Number of scooters in the zone during period Q  X 

Note: D stands for dummy (binary) variable, Q stands for continuous variable and X indicates that the variable was 
included in the model associated with the column. 

B.4. Machine Learning Algorithms Applied 
The size of the available dataset suggests, as a preliminary step, the use of standard ML  algorithms, as 
opposed to more advanced deep learning approaches that generally require large-scale datasets (Scikit-
Learn, 2020). Besides the classical linear regression model, the Bayesian ridge, 𝜖-support vector machines 
(SVM), random forest, gradient boosting, AdaBoost, and XGBoost regression methods were applied for 
the prediction of trip productions at the SA and B1 models.  

Next, a brief introduction is provided for the applied methods. Bayesian ridge regression is a method 
in which the output variable is assumed to be normally distributed, the regressor coefficients have a 
multivariate Gaussian prior, and the priors of the regularization parameters are Gamma distributed 
(Tipping, 2001). The basic objective of the applied SVM method is to attempt to find a function that 
produces deviations that are, at most, an 𝜖 value for all values being predicted in the training data (Smola 
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and Scholkopf, 2004). The multi-layer perceptron is a simple class of feed-forward neural network that 
can be applied for regression (Jain, Mao, & Mohiuddin, 1996). The random forest, gradient boosting, 
AdaBoost, and XGBoost (T. Chen & Guestrin, 2016) methods are examples of ensemble algorithms that 
can be used for both classification and regression; ensemble here refers to their ability to combine the 
predictions of multiple, individual ML models (e.g., the random forest algorithm creates ensembles of 
decision trees). These methods were implemented using Python’s scikit-learn library (Pedregosa et al., 
2011).  

B.5. Results 
As standard practice suggests, the data were split into training datasets (used to train the models) and 
testing datasets (used to test the application and accuracy of the models). The coefficient of 
determination (𝑅2; computed by comparing observed versus predicted values), mean absolute error 
(MAE) and mean square error (MSE) were selected as the performance metrics for the regression models. 
For the first tests using the observed data, the data splits were performed by dividing the data into two 
discrete, time-contiguous blocks, with a single time point serving as the training/testing split boundary 
(i.e., the convenience sampling approach commonly used with time series (Reitermanová, 2010)). For 
both the SA and B1 models, a 70/30 split was used (70% training, 30% testing). Observations before August 
28, 2019, were removed as they correspond to the first weeks of MDES operations, and therefore contain 
patterns driven by the novelty of the service. In Table B2, the performance metrics obtained by the 
regression models trained with the selected ML algorithms are presented. Among the SA models, the best 
performing model was the random forest model, in terms of 𝑅2 (0.97), and the multi-layer perceptron 
model, in terms of MAE (6.18) and MSE (75.12) values. In terms of the 𝑅2, MAE, and MSE values, the best 
performing B1 departure model was generated by the random forest algorithm, while XGBoost, random 
forest, and AdaBoost produced models with the best 𝑅2, MAE, and MSE values. 

 
Table B2. Performance Metrics for Models Trained with Observed Data 
 

Algorithm 
SA Model B1 Model - Departures B1 Model - Arrivals 

𝑹² MAE MSE 𝑹² MAE MSE 𝑹² MAE MSE 

Bayesian Ridge 0.81 6.18 78.0 0.86 1.61 7.91 0.68 2.39 16.64 

Random Forest 0.97 6.33 88.0 0.95 0.89 2.80 0.85 1.57 7.33 

Linear 0.81 6.34 79.2 0.86 1.61 7.91 0.68 2.39 16.63 

Gradient Boosting 0.79 6.43 88.6 0.93 1.06 3.68 0.80 1.92 10.36 

Multi-Layer Perceptron 0.82 6.18 75.1 0.86 2.03 7.92 0.58 2.78 21.45 

AdaBoost 0.79 6.34 88.0 0.77 2.96 12.4 0.87 1.62 6.25 

XGBoost 0.78 6.59 90.3 0.93 1.07 3.70 0.87 1.58 6.60 

 
 
In Table B3, the results for additional tests performed with the XGBoost algorithms are reported. In 

these tests, the performance of the departure model was examined using two dynamic data splitting 
approaches that simulate real-life model applications. In the first approach, the training data grow as time 
progresses and the information of more trips is processed. With this expanding dataset, the model was 
trained. The model performance was tested using the data for the week following the last date in the 
training dataset. This is labeled as the expanding window approach. In the tests, the model was applied 
to make predictions over two-hour time horizons on each day of the test week. In the second approach, 
the training data has a fixed size, and the time window from which the training data is selected moves (or 
slides) as the model is trained and tested (again, using the data from the next week); this second approach 
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is labeled the sliding window approach. The results suggest that in this system, and with the amount of 
data available, the explaining window approach results in better models. In Figure B1, the 𝑅2 metric values 
obtained by the two departure models for the weeks in the analysis period are presented. This figure 
again shows that the performance of the model trained using an expanding data window was better and 
that the performance of both models degraded significantly during the winter break period when there 
were significantly fewer trips.  
 
Table B3. Performance of XGBoost Departure Models Trained under Dynamic Data Splitting 

 

Statistic  
Expanding Window Sliding Window 

𝑹² MAE MSE 𝑹² MAE MSE 

Mean 0.86 0.98 3.31 0.80 1.09 4.30 

Standard Deviation 0.12 0.31 2.14 0.18 0.33 2.58 

Min 0.49 0.36 0.31 0.14 0.43 0.45 

Max 0.95 1.73 9.28 0.93 1.73 9.49 

 

 
Figure B1. 𝑹𝟐 values (score) in time for XGBoost departure models trained under dynamic data splitting 

 
The models trained using simulated data had even better performance metrics, which is not surprising 

as there are no unknown events in the simulation, and the trip behavior that is recorded is the product of 
an algorithm whose output, although not deterministic, is still bounded by a set of clearly defined rules. 
In all tests with the simulated data, the XGBoost algorithm was used given its good performance with the 
observed data and the fact that there are easy-to-use tools to tune the parameters of this algorithm. The 
𝑅2 values obtained for all the models trained with the simulated data (departure, attraction, AUC, and 
revenue models) were over 0.95. Figures B2 and B3 are presented as examples of the performance 
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obtained for the AUC and revenue models using simulated data. Each data point is a prediction made for 
the value of interest (i.e., average AUC-based Atkinson index and total revenue) for a two-hour time 
horizon. As can be observed, there was a close relationship between the predicted and observed values 

in the simulation. The 𝑅2, MSE, and MAE values for the AUC tests were 0.99, 2E-3, and 0.01, respectively, 
while for the revenue tests the metrics had values of 0.97, 62.7, and 5.7, respectively. 

 

 
Figure B2. Predicted AUC versus observed AUC in the simulation 
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Figure B3. Predicted revenue versus observed revenue in the simulation 

B.6. Closing Remarks 
The results for the prediction tests reported in this appendix suggest that, even with limited data, like in 
the case of the MDES and simulation databases, standard ML algorithms generate accurate models. This 
supports the contention made in this project and in the reviewed literature that ML algorithms can be 
used as part of micromobility decision frameworks. This includes the use of models to predict the level of 
inequality in access in the system, as suggested in Chapter 3. 
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Appendix C.  Heuristic for the Target Distribution 
Problem 

 
A heuristic based on the differential evolution (DE) algorithm is proposed for the TDP. The DE algorithm 
is a type of evolutionary algorithm originally proposed for continuous optimization problems. Several 
extensions have been proposed for DE (Zhang & Sanderson, 2009), including DE approaches to solve 
integer programming problems. The DE-based heuristic presented here was designed with search 
strategies that effortlessly satisfy the TDP constraints.  

 As in other evolutionary algorithms, the DE algorithm generates a set of candidate solutions 
(offspring) by combining information from a set of previously evaluated solutions (parents). A solution in 
the TDP context refers to a vehicle distribution that satisfies the problem constraints. In each iteration of 
the proposed algorithm, an offspring solution is generated by applying two mutation operations. Let there 
be 𝑁𝑃 parent solutions, with the 𝑤-th parent information contained in vector 𝒔𝑤 For each parent 𝑤 in 
iteration 𝑛, an offspring 𝒚𝑤 is generated by randomly selecting another parent solution 𝑣 (𝑤 ≠ 𝑣) from 
the pool of parent solutions and then applying the rule: 

 
𝒚𝑤 = 𝒔𝑛𝑤 + 𝑓𝑛 ∙ (𝒔𝑛𝑣 − 𝒔𝑛𝑤)  (C1) 

 
where 𝑓𝑛  (𝑓𝑛 ∈ 𝚼) is a combination factor whose value iteratively cycles through set 𝚼. This strategy is 
used to gradually shift the heuristic from exploitative search to explorative search (e.g., 𝚼 =
{0.1, 0.15, 0.2, 0.5}). Function (C1) shifts values (vehicle quantities) from the locations indicated by 𝒔𝑛𝑤 to 
the location indicated by 𝒔𝑛𝑣. Low values of 𝑓𝑛  imply small changes to the distribution 𝒔𝑛𝑤 in direction to 
𝒔𝑛𝑣, whereas large values of 𝑓𝑛  create larger mutations in the direction of  𝒔𝑛𝑣. After each 𝒚𝑤 is generated, 
a rounding function is used to ensure that all values in the vector are integers. If the sum of values in 𝒚𝑤 
is greater than the fleet size ℎ, then a vehicle unit is removed from a randomly selected location 
(coordinate of 𝒚𝑤) until the sum of 𝒚𝑤 is equal to ℎ. Alternatively, if the sum of values in 𝒚𝑤 is less than 
ℎ, then a vehicle unit is added to a randomly selected location until the sum of 𝒚𝑤 is equal to ℎ. Call this 
first set of mutation strategies the combination operation.  

 Having ensured that the values in 𝒚𝑤 are integers and that they sum to the fleet capacity, the 
algorithm performs the second set of mutation strategies (the swapping operation) with probability 
𝑝𝑠𝑤𝑎𝑝. If the swapping operation is activated, coordinate 𝑖 (𝑖 ∈ 𝑱) is randomly selected among locations 

that have vehicles, coordinate 𝑗 (𝑖 ≠ 𝑗, 𝑗 ∈ 𝑱) is randomly selected among all possible locations, and then 
the vehicle quantities in each coordinate are updated according to: 

 
𝛿 = ⌈𝜑𝑦𝑤𝑖⌉  (C2) 

𝑦𝑤𝑖 ≔ 𝑦𝑤𝑖 − 𝛿  (C3) 
𝑦𝑤𝑗 ≔ 𝑦𝑤𝑗 + 𝛿  (C4) 

 
where 𝜑 is a parameter that determines the magnitude of the vehicle swap between coordinates 𝑖 and 𝑗. 

 Once the 𝒚𝑤 is produced, it is evaluated using the objective function 𝐹𝑧(𝒚𝑤) The final offspring 
𝒚𝑤 replaces the parent 𝒔𝑛𝑤 if 𝐹𝑧(𝒚𝑤) > 𝐹𝑧(𝒔𝑛𝑤); otherwise, the solution 𝒔𝑛𝑤 remains in the pool of 
parent solutions that are used to generate the offspring in the next generation. To summarize, the main 
steps of the proposed algorithm are presented in Table C1. 
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Table C1. Pseudocode of DE algorithm for TDP  
 

Line  Procedure  
01 Begin 
02 
03 
04 

 Set 𝑛 = 0. 
Create a random population 𝒔𝑛𝑤  (𝑤 = {1,2, … , 𝑁𝑃} and evaluate each solution using 𝐹𝑧(𝒔𝑛𝑤) 
For 𝑛 = 1 𝑡𝑜 𝑁: 

05   For 𝑤 = 1 𝑡𝑜 𝑁𝑃: 
06 
07 

   Generate 𝒚𝑤 offspring based on the combination operation. 

If 𝑟𝑎𝑛𝑑(0,1) ≤ 𝑝𝑠𝑤𝑎𝑝: 
08     Mutate 𝒚𝑤 using the swapping operation.  
09    End If 
10    If 𝐹(𝒚𝑤) > 𝐹(𝒔𝑛𝑤): 
11     𝒔𝑛𝑤 ≔ 𝒚𝑤 
12    End If 
13   End For 
14  End For 
15 End 

 
In the simulation tests discussed in section 3.3.2, the parameters were set as: 

• 𝑁 =  40 
• 𝑁𝑃 = 60 
• 𝚼 = {0.15,0.2, 0.2, 0.3, 0.55} 
• 𝑝𝑠𝑤𝑎𝑝 = 0.05 

• 𝜑 = 0.5 
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Appendix D.  Inputs for PDP Tests 
 

Zone 𝒔 𝝀 𝝁 

0 0 0 0 
1 10 9 10 
2 19 19 11 
3 8 1 10 
4 6 6 6 

5 16 17 18 
6 9 20 15 
7 20 10 12 
8 14 20 10 
9 18 15 15 

10 5 5 5 
11 7 10 10 

12 20 20 15 
13 13 25 11 
14 17 17 8 
15 9 9 18 
16 2 1 10 
17 4 4 12 

18 3 1 8 
19 7 9 7 
20 13 2 9 
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