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at Chicago, Chicago, Illinois, United States of America, 2 Capital One Corporation, Richmond, Virginia,
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Business, University of South Florida, Tampa, Florida, United States of America
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Abstract
Do spikes in Twitter chatter about a firm precede unusual stock market trading activity for

that firm? If so, Twitter activity may provide useful information about impending financial

market activity in real-time. We study the real-time relationship between chatter on Twitter

and the stock trading volume of 96 firms listed on the Nasdaq 100, during 193 days of trad-

ing in the period from May 21, 2012 to September 18, 2013. We identify observations featur-

ing firm-specific spikes in Twitter activity, and randomly assign each observation to a ten-

minute increment matching on the firm and a number of repeating time indicators. We exam-

ine the extent that unusual levels of chatter on Twitter about a firm portend an oncoming

surge of trading of its stock within the hour, over and above what would normally be

expected for the stock for that time of day and day of week. We also compare the findings

from our explanatory model to the predictive power of Tweets. Although we find a compel-

ling and potentially informative real-time relationship between Twitter activity and trading

volume, our forecasting exercise highlights how difficult it can be to make use of this infor-

mation for monetary gain.

Introduction
Financial firms and academic researchers have recently begun to study the predictive value of
information gathered from social media [1–3]. A recent paper [3] provides an excellent review
of related research. The study and tracking of chatter on large-scale social networks such as
Twitter has spawned new industries that aim to harness valuable information about popular
and consumer sentiment [4]. Social networks also provide channels for widespread chatter and
speculation about the financial viability and success of firms on the stock market.

Although researchers have begun to study the relationship between patterns observed on
Twitter and stock market activity at daily levels of aggregation, we do not yet have much under-
standing of intra-day responses of the stock market in relation to the spread of news on Twitter.
Such effects may be transitory and dissipate within hours or minutes, and it is precisely these
effects that many algorithmic traders would like to exploit in real time. Moreover, interesting
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details about the rates at which signals propagate and dissipate on the Twitter social network
and in the financial markets can be observed at time-resolutions of minutes; these may be
missed entirely when the data is aggregated at the daily level.

In this study, we consider the real-time relationship between chatter on Twitter and the
trading volume of 96 firms listed in the Nasdaq 100, during 193 days of trading in the period
fromMay 21, 2012 to September 18, 2013. In contrast to research in [1], in which predictions
are done at a daily level for the entire Dow Jones Industrial average, our study is at the firm
level. Further, we consider a more precise intra-day granularity of observations at the level of
ten-minute periods for each firm during trading hours, resulting in a panel time-series data set
of 618,261 observations. Over all of these 618,261 observations, we counted a total of approxi-
mately 35 million Twitter messages mentioning the 96 firms. Unlike research findings pre-
sented in [1], we do not consider the sentiment within the messages. Thus, in the scope of the
current study, we take trading volume as the dependent variable of interest, which can be sensi-
tive to the amount of social media chatter about a firm even if we are agnostic about the quali-
tative features of the sentiment expressed in the chatter. Our analysis differs from common
panel data analyses in that we are interested in spikes representing unusual Twitter activity. In
fact, while most analyses in prior information systems (IS) literature focus on the average
behavior (“regression to the mean”), we are particularly interested in events that are unusual
and that would be considered a statistical outlier by most standards. That is, in this study we
are interested in events that lead to unusually high levels of Twitter activity. We investigate
whether such Twitter spike events lead to sudden spikes in trading volumes, a common mea-
sure of market activity levels, in the stock for each firm.

Introductory textbooks of statistics often conclude that outliers might be discarded from
analysis or investigated separately from the remainder of the data [5]. The reason is that outli-
ers often unduly influence the regression model and hence skew the results [6]. In this work,
we take on a different point of view. We consider outliers and unusual events our main focus of
interest. In that sense, one of the contributions of this work is the suitable identification of
events that are unusual in nature.

The detection and analysis of unusual events is not quite as common as the investigation of
the mean behavior, and its discussion has gained more attention outside the IS literature, e.g. in
biosurveillance [7]. In fact, much of the work on outlier detection can also be found in the con-
text of anomaly detection [8], and it often focuses on areas such as financial fraud, network
intrusion, or faults in manufacturing [9]. Our focus is on social media. We emphasize that the
ultimate objective of this paper is not to merely identify unusual events; rather, our goal is to
identify such events and consequently examine their association with oncoming trading activ-
ity in the stock market within the subsequent hour (i.e. the subsequent 10 to 50 minutes); a
period of time in which actionable decisions may be possible. To that end, one of our main
challenges is the creation of a suitable test bed.

Unusual Twitter events (i.e. events with an unusually high number of Tweets) are rather
rare; most of the time, Tweets mentioning specific firms arrive at a moderate rate. We illustrate
this with two mini-case examples below; but the general pattern of low Twitter mentions of a
firm punctuated by well-defined and clearly visible spikes is one we see in virtually every full
time-series of Twitter activity for firms in our sample. In order to properly compare the effect
of unusual Twitter events with that of the “typical” rate of Tweets, it is necessary to create suit-
able counterfactuals. In this work, we adopt a quasi-experimental design, in which we identify
observations featuring firm-specific spikes in Twitter activity, and randomly assign each obser-
vation to a ten-minute increment matching on the firm symbol and a number of repeating
time indicators that match spikes to non-spikes to within the same day and time of week at the
half hour level. We examine the extent that unusual levels of chatter on Twitter about a firm
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portend an oncoming surge of trading of its stock within the hour, over and above what would
normally be expected for the stock in a given day of week or time of day.

Our results suggest that, through monitoring of chatter on Twitter about firms listed on the
Nasdaq 100, observing spikes of chatter affords a reliable and non-trivial amount of foresight
into oncoming surges in trading volume. Sometimes Twitter messages have causal impacts. A
recent hoax that spread on Twitter claimed that President Obama was injured by an explosion
at the White House; this caused a temporary drop of 150 points in the Dow Jones industrial
average [4]. Generally, however, we do not posit that messages on Twitter have causal impacts
on the stock market; but rather that the monitoring of chatter on Twitter can be potentially
useful for modest improvements in real-time predictions of oncoming surges in trading activ-
ity. Anomalies of chatter on Twitter can also reveal certain competitive dynamics within indus-
tries; for example, when product announcements of one firm impact their suppliers or rivals,
as we discuss below with specific examples related to Garmin and Akamai in June 2012.

This study has two primary objectives as a research contribution. First, the study represents
a microscope upon the diffusion of information in social networks that becomes observable at
a resolution of minutes. Second, our approach allows a better understanding of how social net-
works and financial markets simultaneously respond in real-time to external events, drawing
contrasts in the speed in which information is propagated in both types of spaces. Unlike tradi-
tional time-series approaches that consider spikes as anomalies in the data that need to be
removed, we treat spikes as central to the analysis because they represent real reactions to news
and have tangible impacts that should not be ignored. We ask the following research questions:
1) To what extent is there a predictive relationship between the spread of new information on
Twitter about a firm, and the reaction in the financial markets? 2) Is there a measurable and
predictable difference in the time it takes for new information to spread in Twitter and the
time it takes for that information to be absorbed in the financial markets? We also compare the
findings from our explanatory model to the predictive power of Tweets in attempt to address
some of the ongoing conundrums in the IS literature [10].

Data
We study the real-time relationship between chatter on Twitter and the trading volume of Nas-
daq 100 firms during 193 days of trading in the period from May 21, 2012 to September 18,
2013. Data was not collected during weekends and holidays, when financial markets were
closed. One author operated the data-collection program on a daily basis; but data collection
was sometimes disrupted during extended travel or disruptions in internet connectivity. Since
our emphasis is on investor rather than consumer sentiment, we excluded the most common
household names listed in the Nasdaq 100 from this study: Facebook, Microsoft, Intel, Google
and Apple. We used the Nasdaq 100 list as of May 1, 2012 (Facebook had not yet been listed).
Among Nasdaq 100 firms, these particular firms have a dominant presence on Twitter in terms
of their frequency of being mentioned. The comments we observed on Twitter mentioning
these household names are seldom directly related to their financial performance and more
often represent consumer sentiment.

During the 193 trading days, we collected a stream of continuous Twitter feeds of messages
that mention the common names of 96 firms listed in the Nasdaq 100 index (for example,
“Expedia” for “Expedia, Inc.”, “Lam Research” for “Lam Research Corporation”). We counted
the number of Twitter messages in which each firm is mentioned in each ten-minute period.
We use the open third-party application-programming interface Twitter4J to connect to Twit-
ter’s public “garden hose”, a random 1% stream. In total, we counted 35 million messages men-
tioning the 96 firms during the study period. Using an automated screen scraper, we also

Real-Time Diffusion of Information on Twitter and the Financial Markets
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gathered Yahoo! Finance data at the beginning and end of each ten-minute period, in particu-
lar for the price and trading volume of each stock. Our data collection methods comply with
the terms of service of both Twitter and Yahoo.

We restricted the sample to the hours of trading from 10 am to 4 pm eastern standard time
(EST), eliminating observations during the first half hour of trading when daily trading vol-
umes are highly irregular. Each unit of observation represents a ten-minute period during all
but the first half-hour in each day of trading, for each of the 96 firms over the 193 trading days.
This results in a total of 618,261 observations that we draw from for this study.

Adopting a quasi-experimental design, we identified observations featuring firm-specific
spikes in Twitter activity (which we call henceforth a Twitter spike), and assigned each Twitter
spike to a randomly selected ten-minute increment matching on the firm and a number of
repeating time indicators. This resulted in a final data sample of 11,241 observations in 5,480
treatment-control group pairings for 94 firms (two out of 96 firms did not have sufficient Twit-
ter activity to form such pairings). Table 1 shows an example of a treatment-control group
pairing taken directly from our final data sample. On February 14, 2013, our procedure deter-
mines the 80th, 90th, and 99th percentile levels for the firm Adobe to be 0.185, 0.248 and and
0.802 Twitter mentions per second (TPS), respectively. As we elaborate below, percentile calcu-
lations are calculated with reference to an expanding training-period window that ends prior
to the week of measurement. Between 10:59 AM and 11:10 AM of that day, we observe 1.028
Twitter messages per second (TPS) mentioning Adobe, a level that exceeds the 99th percentile
threshold for that firm. Thus, this ten-minute period represents a Twitter spike event that we
define as an instance of the treatment. As this time period falls on a Thursday morning, our
procedure selects randomly among all other observations for Adobe that occur on some other
Thursday morning between 11 and 11:30 am. In this case, the selected control instance was
January 17, 2013 beginning at 11:02 am; where the observed Twitter mentions per second
(TPS) is below Adobe’s 99th percentile TPS threshold, for the training-window period that
ended in the week prior (Jan. 11, 2013)

Case Studies in the Data
To provide insight into the measurable effects contained in the data, we consider some case
studies that we extracted from the data early in the study period in June 2012. These examples,
among many others, provide some guidance in operationalizing constructs related to Twitter
activity and financial markets reactions at the appropriate levels of granularity in time.

Akamai: June 5, 2012
On June 4, 2012, NetFlix announced that it would develop its own content delivery network
(CDN) that it called “Open Connect” (openconnect.netflix.com). The news had a sudden
impact upon the price and trading volume of stock for Akamai Technologies (AKAM). Akamai
is a leading provider of content delivery network services to NetFlix [11]. The prospect of Net-
Flix becoming no longer reliant on Akamai’s services triggered a burst of trading activity,
momentarily bringing down the price of the stock by more than 10%. Within hours, the stock
price recovered entirely and the volume of trading resumed to its normal daily cyclical pattern.

Table 1. Example of a treatment-control group in our data sample.

Symbol Treatment-group ID Treatment Start End Tweets /second
(TPS)

TPS 80th pctile TPS 90th pctile TPS 99th pctile

ADBE 18 0 1/17/13 11:02 AM 1/17/13 11:13 AM 0.175 0.183 0.243 0.878

ADBE 18 1 2/14/13 10:59 AM 2/14/13 11:10 AM 1.028 0.185 0.248 0.802

doi:10.1371/journal.pone.0159226.t001
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Several features of the associated Twitter and trading spikes are noteworthy. The spikes of
Twitter activity (in blue) are relatively sharp in that they occur over a compressed time frame,
as seen in Fig 1. The first spike in Twitter activity precedes the change in stock price or trading
volume by approximately ten minutes. A larger spike appears within the hour, after which
another flurry of trading activity takes place that restores Akamai to about its original trading
price prior to the NetFlix announcement. In comparison to Twitter spikes, the reaction of the
financial markets is more gradual and appears to have required a larger amount of time to pro-
cess and react to new information. Since the reaction of the stock market is transitory, it can be
missed entirely at the aggregation level of daily financial returns.

Garmin: June 11, 2012
On June 11, 2012, at approximately 2:40 pm Eastern time, Apple announced the launch of new
mapping software for its iO6 devices, leading to speculation that its next versions of the iPhone
would be equipped with its own voice-enabled GPS service with turn-by-turn navigation [12].
Within minutes, this had a direct impact on Garmin’s stock price and trading volume. Just as
in the Akamai case, it is worthwhile to note the difference in the duration and timing between
the spike in Twitter mentions and the spikes representing stock price and trading volume. The
spike in Twitter activity mentioning Garmin occurs shortly after the announcement and is
compressed in a relatively small duration of time, as seen in Fig 2. The frequency of Twitter
mentions for this stock quickly returns to normal levels. The reaction in the financial markets
takes approximately ten minutes, and it takes at least an hour for the reaction to this news to
fully register in both trading volume and price of that stock.

Empirical Model
The two case examples highlighted above are among many in the dataset that we studied to
gain a better understanding of the effects that are present in the data. Exploration of the data
suggests that spikes of Twitter activity are much more pronounced over smaller durations of
time, whereas the financial market reactions take longer to register the effects and result in
more gradual slopes.

Fig 1. Twitter mentions, stock price, and trading volume for Akamai, June 3–6, 2012.

doi:10.1371/journal.pone.0159226.g001
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Modeling the Occurrence of a Spike
Guided by visual exploration of the data, we define a spike in Twitter activity for a firm as the
99th percentile in the mentions of the common name of the firm per minute, which is calcu-
lated with reference to an expanding training-period window that ends prior to the week of
measurement. While events exceeded the 99th percentile threshold are probably most salient
for identifying spikes, our analysis is broadly consistent when applied at 80th and 90th percen-
tile thresholds. We consider stock market reactions in the forty minutes immediately after a
spike in Twitter activity. To capture trading volume spikes, we identify instances in which trad-
ing volume reaches the 99th percentile level, as defined based on prior activity for each firm.
We illustrate these definitions in Fig 3.

To identify spikes in Twitter activity or changes in trading volume, we used a procedure to
determine the percentile thresholds beginning with an initial training period comprised of the
first month of data. These thresholds are firm-specific; that is, our procedure determines a
unique threshold level for each firm that changes each week of the study period based on the
trading history of data for that firm ending in the prior week. The training window then
expands one week at a time, to determine the percentile threshold levels for each subsequent
week. This method ensures that we use only past data to determine the threshold values for
spikes in Twitter as well as future financial trading activity. In Fig 4, we illustrate the timeline
for the training period and determination period for spike events. The training period expands
one week at a time, to identify spikes in the determination period. In Fig 5, we show how Ado-
be’s 99th percentile thresholds changed each week from June 21, 2012 to September 17, 2013.
As shown, the threshold definitions for Adobe are sensitive to two particularly large spikes that
occurred in the middle of the study period.

Changes in trading volume
We define changes in trading volume over the subsequent forty-minutes, which we define in
four distinct units of ten-minute increments as in Fig 3. Thus, the subsequent change in trading

Fig 2. Twitter mentions, stock price, and trading volume forGarmin, June 10–12, 2012.

doi:10.1371/journal.pone.0159226.g002
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Fig 3. Measurement of spikes in Twitter activity and trading volume for a firm. Each period represents a 10-
minute increment of time. The straight dashed-line represents the change in trading volume (which we denote as
ΔTradingVolume40min) in the 40-minute period subsequent to the period in which the Twitter spike event is observed.

doi:10.1371/journal.pone.0159226.g003

Fig 4. Training and determination periods for 99 percentile spike events.

doi:10.1371/journal.pone.0159226.g004
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PLOS ONE | DOI:10.1371/journal.pone.0159226 August 9, 2016 7 / 16



volume is represented by the following formula:

ΔTradingVolume40mini;t ¼ TradingVolumei;tþ4 � TradingVolumei;t ð1Þ

Similarly, we defined the quantities ΔTradingVolume30mini,t, ΔTradingVolume20mini,t,
and ΔTradingVolume10mini,t as changes in trading volume over the subsequent three, two,
and single 10-minute increments respectively.

Our general estimation model is a within-estimator (i.e. fixed-effects) to implement a differ-
ences-in-differences analysis, in which groups are defined through random treatment-control
assignment. To create treatment-control groups, we identified Twitter spike events as treat-
ments and randomly assigned each such observation to a control observation in which Twitter
activity was observed to be under the 99th percentile for the firm; consider, for example, how
this pairing was done for the Twitter spike listed in Table 1.

Control observations were drawn from past data, and the method for determining the 99th

percentile thresholds for eligible controls is based on the expanding training-period window
that ends in the week prior to each observation. Random control selections were done condi-
tional on matching of the firm symbol, as well as multiple repeating time indicators such as day
of week, hour of day, and half hour. Our four-step procedure for identification of treatment-
control groups is outlined in Table 2. This procedure resulted in identification of 5,480 Twitter
spike events randomly assigned (with replacement) to control-group observations sharing time

Fig 5. Adobe’s 99th percentile thresholds, from June 21, 2012 through September 17, 2013. The thresholds are updated
each week based on all collected past history of data beginning in May 21, 2012. These thresholds are then used to identify spikes
for the following week.

doi:10.1371/journal.pone.0159226.g005
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of day and day of week indicators at the resolution of a half-hour. In this procedure, a Twitter
spike event defines a treatment event. We use a fixed-effects panel model to implement a differ-
ences-in-differences approach; fixed-effects are incorporated at the level of the firm and all of
the stated time variable indicator units.

We used a lagged-model framework, such that the levels of Twitter activity are measured for
the ten-minute increments immediately preceding the periods in which the dependent variable
measures begin:

DTradingVolume40mini:t ¼
Constant þ b1TwitterSpikei;t�1þ
b2ðNasdaqAvgStockPricei;t�1 � NasdaqAvgStockPricei;t�2Þ=NasdaqAvgStockPricei;t�2 þ
b3ðNasdaqAvgVolumei;t�1 � NasdaqAvgVolumei;t�2Þ=NasdaqAvgVolumei;t�2 þ ui þ εi;t

ð2Þ

We begin with this specific model because overall changes in stock market activity are con-
sidered to be strongly associated with the activity for each specific firm. The finance literature
has explored time-series patterns in stock market volumes and trading activity in depth; and
thus, we do not attempt to replicate that line of scholarship here. We are motivated primarily
by how Twitter activity may portend oncoming changes in trading volume. Note that in Eq (2),
the subscript i represents a treatment-control group, and t represents a ten-minute interval.
The model in Eq (2) enables us to interpret the estimate of the coefficient β1 as the effect of a
Twitter spike event in any ten-minute time increment on trading volume in the periods of 40,
30, 20, and 10 minutes beginning in the subsequent ten-minute time increment. The effect is
stated as a difference over what may otherwise be expected in the matched control time peri-
ods. In other words, the model measures the extent that a Twitter spike for a firm signals an
oncoming surge in trading volume, over and above the level that is normally expected for the

Table 2. Procedure for Identifying Twitter Spike Events for a Firm.

Step Description

1) Definition of training and
determination period windows

Initial training period window is May 21, 2012 through June 20,
2012. This training window is used to determine Twitter, and stock
trading volume spikes at 80th, 85th, 90th and 99th percentiles in the
initial determination period from June 21, 2012 through June 27,
2012. The training window subsequently expands one week at a
time, for identification of spike events in the determination period in
the following week; thus the training period window for the
subsequent week of June 28, 2012 through July 3, 2012 expands
to May 21, 2012 through June 27, 2012; and so on. (see Fig 4)

2) Definition of Twitter spike events If the number of Twitter mentions in any ten-minute increment
exceeds the 99th percentile threshold for the firm in the current
week of the study period, based on the training period that ends in
the previous week, it is recorded as a Twitter spike event.

3) Control group pool specification For each firm, we identified a set of historical ten-minute
increments during trading hours in which Twitter mentions did not
exceed the 99th percentile threshold for that firm, based on the
expanding training period window ending in the prior week.

4) Random assignment of treatment to
control groups

We matched all of the ten-minute increments in which a Twitter
spike event occurred to a ten-minute increment from the control
group pool, randomly selecting from matches on the symbol, day of
week, hour of day, and half-hour indicators.

Treatment and control groups are defined at ten-minute increments during trading hours between June 21,

2012 and September 18, 2013.

doi:10.1371/journal.pone.0159226.t002
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firm in the given day of week and time of day. We also control for movements in the stock
price and trading volume in the prior ten-minute period, averaged over all Nasdaq 100 firms
included in the sample.

While we do not posit any kind of causal relationship between chatter on Twitter and move-
ments in the stock market, our model allows us to examine whether chatter on Twitter pertain-
ing to a firm can serve as a signal to predict unusually high levels of trading volume in
subsequent minutes within the next hour. Because trading activity for a given firm can be
unusually high in regularly occurring intervals, for example in a time of the day for a particular
day of the week (for example, Tuesdays between 10 and 10:30 am), our model accounts for this
through the treatment-control group matching.

We also code the dependent variable as a binary indicator representing unusually high
increases in trading volume or changes in stock market price, at the 99th percentile based on an
expanding training-period window. To identify trading volume events, we used the same
expanding training-period window that was used to identify spikes in Twitter activity, again to
ensure that only past data was used to define the thresholds that mark these events. We used
firm-specific thresholds at the 99th percentile to define unusual upward surges in trading vol-
ume. Here again we use a within-estimation empirical framework, this time implementing a
differences-in-differences model through a logistic fixed-effects panel estimator appropriate
for binary dependent variables. Eq (3) expresses this model:

logðodds of trading volume surgeÞi:t ¼ Constant þ b1TwitterSpikei;t�1þ
b2ðNasdaqAvgStockPricei;t�1 � NasdaqAvgStockPricei;t�2Þ=NasdaqAvgStockPricei;t�2 þ
b3ðNasdaqAvgVolumei;t�1 � NasdaqAvgVolumei;t�2Þ=NasdaqAvgVolumei;t�2 þ ui þ εi;t

ð3Þ

Dependent variable definitions are presented in Table 3, and control variables are presented
in Table 4.

Main Findings
Table 5 shows the results of paired t-tests comparing the magnitude in changes in trading vol-
ume within each treatment-control group pairing. The differences between Twitter spike events

Table 3. Dependent Variables.

Variable Name Variable Construction/ Definition Data
Source

ΔTradingVolume [40min, 30 min,
20min, 10min]i,t

Change in total number of shares traded of the stock from the beginning of the subsequent ten minute
time increment, measured over periods of 10, 20, 30, and 40 minutes.

Yahoo!
Finance

Trading Volume Event: 99th pctile Binary variable indicating an excess of the 99th percentile in ΔTradingVolume; based on expanding
training window ending in the prior week. A value of one means that a spike in trading volume occurs
in that ten-minute period.

Yahoo!
Finance

doi:10.1371/journal.pone.0159226.t003

Table 4. Control Variables: Definitions and Data Sources.

Variable Name Variable Construction/ Definition Data Source

Nasd100 avg. trading volume
change (t-1)

Prior period percentage change in average Nasdaq 100 trading volume: [(NasdaqAvgVolumet-1-
NasdaqAvgVolumet-2)/ NasdaqAvgVolumet-2].

Yahoo!
Finance

Nasd100 avg. stock price (t-1) Prior period percentage change in average Nasdaq 100 stock price: [(NasdaqAvgStockPricet -1-
NasdaqAvgStockPricet -2)/ NasdaqAvgStockPricet -2].

Yahoo!
Finance

Fixed-effects units in treatment-
control groups

Firm, day of week, hour of day, and half-hour

doi:10.1371/journal.pone.0159226.t004
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and their matched control group counterparts are statistically significant (at p< 0.0001). The
paired t-test results suggest that a Twitter event is associated with an increase in trading volume
of about 562,141 shares, on average. This is significant in magnitude, as the median in trading
volume during the sample periods is 1,191,554 shares; thus the average effect represents about
47% of the median in total shares traded. We took steps to address the concern that statistical
significance is not an artifact of the large sample size, by random selection of sub-samples of
250 treatment-control group pairs; see e.g. [13]. We conducted the same t-tests several dozen
times using different sub-samples each time, and one example is shown in the bottom row of
Table 5. We found that the t-test statistics for trading volume remained strongly significant in
every sub-sample instance. Our random sub-sample results suggest that the average treatment
effects (ATE) for trading volume are robust and insensitive to sample size.

We next consider the results of the fixed-effects panel implementations of the difference-in-
differences, which we present in Tables 6 and 7. Because the panel units in the fixed-effects
models are the same treatment-control groups based upon indicators of firm, day of week, and
half-hour of day, they are basically the same as the paired t-tests, except that they incorporate
additional controls for one-period lagged movements in overall average Nasdaq trading vol-
ume and stock price. These control variables are important because overall movements in the
stock market can influence the trading of any particular stock. The results in Tables 6 through
8 also show side-by-side comparisons of the different effects for 40, 30, 20 and 10 minutes.
Trading volume increases are greater following a Twitter spike event than they would otherwise
be: About 116,000 shares greater over the course of ten minutes, to about 509,000 shares over
forty minutes, as indicated in Table 6 results. As expected, these magnitudes are in line with

Table 5. Comparison of changes in trading volume following Twitter Spike Events and Non-Event Control periods: Paired t-tests.

Twitter Spike Event
(Treatment)

No Twitter Spike (Control) Difference Comparison test

Mean (m_t) Std. Err. Mean (m_c) Std. Err. m_t—m_c (std. err.) Paired t-test of Ha: |m_t—m_c| > 0

Main Sample: 5,480 treatment-group pairs

ΔTradingVolume40min 1,067,836 47,648 505,694 13,849 562,141 (45,152) t = 12.4; p < 0.0001

Randomly selected sub-sample: 250 treatment-group pairs

ΔTradingVolume40min 826,132 95,769 522,726 70,889 303,406 (95,120) t = 3.19; p < 0.0001

doi:10.1371/journal.pone.0159226.t005

Table 6. Effect of Twitter Event on Subsequent Trading Volume: Differences-in-differences with treatment-control group fixed-effects.

(1) (2) (3) (4)

Subsequent time period: 40 minutes 30 minutes 20 minutes 10 minutes

Twitter event (t-1) 509,018*** 392,807*** 262,407*** 116,204***

(41,999) (34,390) (23,800) (8,850)

Nasd100 avg. stock price chg (t -1) 3.679e+08*** 2.982e+08*** 1.693e+08*** 1.073e+08***

(5.832e+07) (4.776e+07) (3.305e+07) (1.229e+07)

Nasd100 avg. trading volume chg (t -1) -1,291 -912.5 -814.5 -638.5

(2,921) (2,392) (1,655) (615.6)

Observations 10,960 10,960 10,960 10,960

Treatment-control groups 5,480 5,480 5,480 5,480

F stat 63.11*** 57.31*** 49.93*** 84.29***

Fixed-effects panel regressions within treatment-control groups, created by matching ten-minute time increments randomly by firm, day of week, hour of day,

and half-hour units.

Standard errors in parentheses. Significant at *10%, **5%, and ***1% level for two-tailed t-tests.

doi:10.1371/journal.pone.0159226.t006
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the results of the paired t-test. Just as we did with the paired t-tests, we conducted the same
panel regressions on a number of randomly selected sub-samples of 250 treatment-group pairs.
The observed Twitter spike effects on subsequent trading volume are invariably statistically sig-
nificant at p< 0.01 in the dozens of randomly selected sub-samples that we have tested. One
example of the small sub-sample results for trading volume is reported in Table 7. We find
results consistent to those reported in Table 7 among many randomly selected sub-samples,
alleviating concerns that the observed effect upon trading volume may be an artifact of the cen-
tral limit theorem for large samples [13].

Table 8 shows the fixed-effects panel logistic regression estimation results for the model in
Eq (3), where the dependent variable is defined as a binary indicator representing an unusual
surge in subsequent trading volume over forty minutes; using the same spike-identification
method detailed in Table 2. Sample size is smaller in this model, because it requires both a zero

Table 7. Small-sample Effect of Twitter Event on Subsequent Trading Volume: Differences-in-differences with treatment-control group fixed-
effects.

(1) (2) (3) (4)

Subsequent time period: 40 minutes 30 minutes 20 minutes 10 minutes

Twitter event (t-1) 340,376*** 216,821*** 125,694*** 51,526**

(98,738) (71,855) (37,436) (20,389)

Nasd100 avg. stock price chg (t -1) 2.913e+08 1.940e+08 1.281e+08* 4.151e+07

(1.794e+08) (1.305e+08) (6.801e+07) (3.704e+07)

Nasd100 avg. trading volume chg (t -1) -4,512 -1,433 -4,416 -3,560*

(9,843) (7,163) (3,732) (2,032)

Observations 500 500 500 500

Treatment-control groups 250 250 250 250

F stat 4.9*** 3.9** 5.3*** 3.3**

Fixed-effects panel regressions within treatment-control groups, created by matching ten-minute time increments randomly by firm, day of week, hour of day,

and half-hour units. Standard errors in parentheses. Significant at *10%, **5%, and ***1% level for two-tailed t-tests.

doi:10.1371/journal.pone.0159226.t007

Table 8. Effect of Twitter Event on Likelihood of Subsequent Spikes in Trading Volume: Logistic
panel fixed-effects onmain sample.

Main Sample Trading Volume Event: 99th pctile

Twitter event (t-1) 2.219***

(0.157)

Nasd100 avg. stock price 209.9

change (t-1) (214.0)

Nasd100 avg. trading volume change (t-1) 0.00230

(0.00778)

Observations 942

Treatment-control groups 471

Chi-sqr stat 357.7***

Differences-in-differences through logistic panel fixed-effects model within control groups assigned randomly

by the firm, day of week, hour of day, and half-hour units. Final subsample includes only identified treatment-

control groups that feature at least one trading volume event and one non-event; where the event is defined

as a 99th percentile Trading Volume change, based upon prior trading activity of the firm. Thus, this is a

smaller sample than in Table 6. Standard errors in parentheses. Significant at *10%, **5%, and ***1% level

for two-tailed t-tests.

doi:10.1371/journal.pone.0159226.t008
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and one outcome (in trading-volume spike events) in each treatment-control group. According
to the estimation results in Table 8, periods featuring a spike in Twitter mentions of a firm
have a greater odds of being followed by an upsurge in trading volume by a factor of exp
(2.219), representing approximately a 9-fold increase in the odds ratio.

Predictive Power of Tweets
In order to compare the explanatory analyses from the previous section to the predictive power
of Tweets, we conducted forecasting exercises to predict trading volume changes in the subse-
quent forty minutes for each time period during the trading day. For time period t representing
a ten-minute interval, the models predict the change in trading volume from periods t + 1 to t +
4. Forecasting was done with OLS regression models that were trained upon expanding one-
week windows. We built an initial model on a training period that began on July 1, 2012 and
ended on March 31, 2013, and that expanded one-week at a time to form predictions in each
subsequent week. This model is specified below in Eq (4).

The forecasting model includes an indicator variable for each firm to account for firm fixed-
effects; and separate binary indicators representing Twitter spike events at the 80th, 90th, and
99th percentiles. These Twitter spikes are identified using the methods detailed in Table 2,
ensuring that the definition of these spikes is based only on events that would have occurred
prior to each time period. We also include levels of Twitter activity as well as the square, cube
and logarithm of these Twitter messaging levels. The model also includes the prior forty-min-
ute change in trading volume; for any ten-minute interval t, this is the change in trading vol-
ume from period t– 5 through period t– 1. We include the square and the log of this term. We
also included binary indicators for day of week (DayOfWeek), hour of day (HourOfDay), and
half hour (FirstHalfHour, coded as 1 if time period t is within the first thirty minutes of the
hour, 0 otherwise).

DTradingVolume40minðtþ1 to tþ5Þ; i ¼
b1TwitterSpike99pctilei;t�1 þ b2TwitterSpike90pctilei;t�1þ
b3TwitterSpike80pctilei;t�1 þ b4TweetsPerSecondi;t�1 þ b5TweetsPerSecondi;t�1

2 þ
b6TweetsPerSecondi;t�1

3 þ b7 lnðTweetsPerSecondi;t�1 þ 1Þþ
b8DTradingVolume40minðt�5 to t�1Þ; i þ b9ðDTradingVolume40minðt�5 to t�1Þ; iÞ2þ
b10lnðDTradingVolume40minðt�5 to t�1Þ; i þ 1Þ þP

βdDayOfWeekd þ
P

βhHourOfDayh þ FirstHalfHour þ ui þ εi;t

ð4Þ

In the above, the individual firm fixed effect is modeled as ui. We also run forecasting mod-
els that omit Twitter-related predictors represented by coefficients β1 through β7, but include
all other predictors listed in Eq (4). Inclusion of the seven Twitter-related predictors has no
effect on the adjusted R2 in regression estimates of Eq 4. Values of R2 and adjusted R2 are the
same, both at approximately 0.71, whether or not the seven terms are included in the model.
This is probably because of the large number of regressors already in the model: Note that the
fixed effect ui is short-hand notation referring to 95 additional coefficient terms in the regres-
sion model, one for each firm in the sample except a reference unit, in addition to indicator
variables for day of week and hour/half-hour of day. With one observation for each ten-minute
period for each firm, the sample size of the first training window period ending on March 31,
2013 is 321,796 data points, and subsequently grows each week as the training window
expands. We use the resulting training model coefficient estimates to produce running fore-
casts in the subsequent week.
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The results are shown in Fig 6. The plot of actual versus predicted values of ΔTradingVolu-
me40mini,(t+1 to t + 5) show a rather well-defined scatter around the diagonal line. This suggests
that there is no systematic bias in our predictions. The values of RMSE and MAPE suggest that
inclusion of the Twitter-related predictors into our forecasting model results in slightly
improved predictions. The level of improvement, in the order of magnitude of 0.2%, does not
appear very large. However, day traders and high frequency traders might find even a 0.2%
advantage per trade quite lucrative. Yet, our results may also suggest that in order to forecast
more accurately, one may have to steer away from interpretable linear models to more black-
box algorithmic models; see also [10]. We did attempt to use more flexible functional forms for
forecasting, by expanding Eq (4) with non-linear interaction terms and higher-order powers of
the terms, and rather than seeing improvements in the forecasts, we started to see indications
of over-fitting that made the predictions less accurate. Thus, while we find a compelling and
potentially informative relationship between Twitter activity and trading volume in real-time,
our forecasting exercise highlights how difficult it can be to make use of this information for
monetary gain. Perhaps more can be done by exploiting the sentiment in the content of the
Twitter messages, combined with more sophisticated algorithmic models (but which may also
be more of a black box and allow for less insight than the models that we are employing). This
is an opportunity for future research.

Fig 6. Actual vs. Predicted trading volume change, Log-Log scale: 134,072 observations comprising
ten-minute periods during trading hours in the forecasting period between April 1, 2013 and June 7,
2013.

doi:10.1371/journal.pone.0159226.g006
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Discussion
In practice, it is extremely difficult for individual investors to capitalize on newly released pub-
lic information by trading in the stock markets. The speed of information exchange, ever-faster
financial trading networks, and liquidity of financial markets, all ensure that market prices
almost instantly absorb news as it is released to the public, denying arbitrage opportunities to
all but exclusive groups of institutional traders [14]. For all practical purposes as far as common
investors are concerned, the efficient market hypothesis is robust in denying arbitrage opportu-
nities in the stock market based upon newly released public information [15].

Nevertheless, news can spread on Twitter much more quickly than it can be absorbed in the
financial markets. For an individual person, the act of sending or relaying a message on Twitter
is often fast and effortless, without immediate financial consequences. Executing a trade on the
stock market based on the same information can be a cognitively and emotionally taxing pro-
cess that requires more time. Thus, information may spread on large social networks such as
Twitter before the financial markets can process it.

Our results suggest that a spike in chatter on large-scale social networks such as Twitter
about any firm may signal an impending surge in trading activity of the firm’s stock, whether
or not the Twitter spike is causal. This not only presents an opportunity to harness valuable
information for participants in financial markets; but also provides greater insight into the
types of information that spread on large-scale social networks such as Twitter. We observe the
potential for distinct speeds at which information diffuses in Twitter in comparison to the time
it takes for financial traders to process and act upon that information. We observe effects that
are statistically significant, transitory, and require finite amounts of time. As such, signals
propagating in Twitter may be useful to traders seeking to exploit small delays in the diffusion
of news and the relatively slow responsiveness of the markets. We believe that statistical models
employing real-time data from large social networks can apply not just to the financial markets,
but also to other areas of electronic commerce in which consumer sentiment can have measur-
able effects in real-time, such as in online auctions or online merchandising. Moreover, from
the perspective of industry research, it is possible to reveal and quantify more clearly the depen-
dencies between firms in an industry ecosystem.

Supporting Information
S1 Dataset. Data sets used in the final analysis. A compressed.zip file containing two comma
delimited files. The file named TwitterYahooFinalSample_PLoSOne.csv contains data used for
Tables 5–8. The file named TwitterYahooPredictRangeDec2015_forPLoSOne.csv contains
data for Fig 6.
(ZIP)

S1 List of Firms. An Excel file (.xlsx) containing the stock tickers of the 96 firms tracked in
this study and the common names used to identify them within the Twitter messages.
(XLSX)

S1 Mapping of Variable Names to Data Fields. A document that maps the key variables in
the paper to the corresponding field names in the dataset.
(DOCX)
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