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Abstract 

This study suggests two approaches to factorial invariance testing with multilevel data when the 

groups are at the within level: multilevel factor mixture model for known classes (ML FMM) 

and multilevel multiple indicators multiple causes model (ML MIMIC). The adequacy of the 

proposed approaches was investigated using Monte Carlo simulations. Additionally, the 

performance of different types of model selection criteria for determining factorial invariance or 

in detecting item noninvariance was examined. Generally, both ML FMM and ML MIMIC 

demonstrated acceptable performance with high true positive and low false positive rates, but the 

performance depended on the fit statistics used for model selection under different simulation 

conditions.    
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Within-level Group Factorial Invariance in Multilevel Data: Multilevel Factor Mixture Model 

and Multilevel MIMIC Model 

For the last several decades, the area of factorial invariance (or measurement invariance 

in broader contexts) has received great attention. Not only has extensive methodological work 

been conducted on this topic but testing factorial invariance has become common practice before 

comparing latent means in applied research (Raykov, Marcoulides, & Li, 2012). However, there 

are still unresolved issues in this area: for example, locating a truly invariant variable for a 

reference variable (French & Finch, 2008), establishing partial invariance (e.g., Millsap & Kwok, 

2004), and developing practical criteria in determining a lack of factorial invariance, especially 

with a mean structure (e.g., Fan & Sivo, 2009). With advances in methodology, issues involved 

in certain analytic methods arise in addition to the previously mentioned general concerns related 

to factorial invariance testing. For example, special model specification issues occur in factorial 

invariance testing with multilevel data. This study is particularly interested in model 

specification issues related to testing factorial invariance for within-level groups in multilevel 

modeling. 

It is well known among social scientists that a single level statistical approach to 

multilevel data underestimates standard errors in statistical significance testing, which may lead 

to incorrect statistical inference, that is, Type I error. Recently, Kim, Kwok, and Yoon (2012) 

studied both within-level and between-level factorial invariance testing. In evaluating weak 

factorial invariance across between-level groups, they conducted multilevel confirmatory factor 

analysis for multiple groups (i.e., multilevel multigroup CFA; Muthén, 1989). Their simulation 

results supported the suitability of multilevel multigroup CFA with acceptable power and 

adequate Type I error control whereas the single-level multigroup CFA yielded inflated Type I 
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error rates as a function of the intraclass correlation (ICC) and cluster size. Thus, they 

recommended multilevel multigroup CFA for factorial invariance testing with multilevel data. In 

conducting within-level factorial invariance testing, however, Kim et al. suggested a design-

based approach (Muthén & Satorra, 1995; Wu & Kwok, 2012) using the TYPE = COMPLEX 

option in Mplus (Muthén & Muthén, 2012) because constructing multigroup multilevel models 

for within-level groups is not feasible when the group indicator (e.g., females and males within 

schools) is crossed across higher-level clusters. For each within-level group they generated a 

single factor model at both the within- and between-levels with an identical set of factor loadings 

for both levels. When noninvariance was simulated in one of the factor loadings in the within-

level groups, the design-based approach perfectly detected the violation of weak factorial 

invariance (power = 1.0). Under complete invariance, Type I error rates were around the nominal 

level (.04 ~ .07).  

The design-based approach to multilevel data is in fact a single level CFA, but corrects 

the underestimated standard errors of parameter estimates due to data dependency. Of note is that 

the design-based approach implicitly assumes factorial invariance across levels (i.e., cross-level 

factorial invariance) by constructing a single-level CFA model. Cross-level factorial invariance
1
 

is referred to as the equivalence of factor loadings with the same number of factors across the 

between and within levels (Dedrick & Greenbaum, 2011). However, cross-level factorial 

invariance is not always warranted for the application of the design-based approach. Wu and 

Kwok (2012) studied the performance of the design-based approach in a single group context 

when the between-level factor structure was different from the within-level factor structure. 

When cross-level factorial invariance was violated especially with a simple within factor 

structure (e.g., a one-factor model) and a complex between factor structure (e.g., a two-factor 
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model), the design-based approach showed poor model fit to the data and yielded biased 

estimates of both fixed and random effects.  

Given the stringent assumptions of the design-based approach, the purpose of this study 

is to propose two potential approaches to factorial invariance testing with multilevel data when 

the groups are at the within level: multilevel factor mixture model for known classes (ML FMM) 

and multilevel multiple indicators multiple causes model (ML MIMIC). To this end, we 

conducted three Monte Carlo studies. First, we investigated the adequacy of ML FMM in testing 

weak and strong factorial invariance across within-level groups at the scale level. Next, the 

performance of ML MIMIC in detecting a noninvariant item at the item level was examined. 

Note that ML FMM and ML MIMIC were used for slightly different purposes: the first to 

establish weak or strong factorial invariance, the latter to detect a particular noninvariant variable. 

We do not purport to compare the two methods but rather we explore their performance under 

the circumstances in which they are typically employed for factorial invariance testing. In the 

third study, the proposed multilevel approach to factorial invariance testing, specifically, ML 

FMM was compared to the single level design-based approach when between and within factor 

structures were not identical. Throughout these Monte Carlo studies, different types of model 

selection criteria were examined with respect to their performance in determining a level of 

factorial invariance (e.g., weak invariance) or in detecting a noninvariant item. Finally, the 

proposed methods of factorial invariance testing across within-level groups were illustrated with 

the mathematics self-efficacy measure from the Programme for International Student Assessment 

(PISA) 2003 data (OECD, 2005).  

Multilevel factor mixture model for known classes 
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Factor mixture modeling is used to analyze unobserved population heterogeneity and 

identify latent classes underlying the observed data. In addition, factor mixture models can be 

used for observed classes, which are, in effect, analogous to multiple group analysis because all 

latent classes identified in the model correspond to the observed groups. However, multiple 

group analysis under the factor mixture framework expands modeling capabilities beyond the 

conventional SEM. Some of the modeling issues as discussed in the previous section (modeling 

factorial invariance across within-level groups in multilevel data) can be solved by incorporating 

categorical latent variables into the analysis.  

In factor mixture models, the observed random variable y is modeled conditional on the 

latent class variable, C (C = 1, 2, …, c) (Asparouhov & Muthén, 2008; Lubke & Muthén, 2005):  

[  |    ]                     

[  |    ]                     

In Equation 1, Λ is the factor loading matrix expressing the relations of the observed outcome 

variables y with the latent variables η,  Γy is the pattern coefficients of y regressed on observed 

covariates x, and ν and ε are intercepts and residuals, respectively. Equation 2 shows the relations 

of the endogenous latent variables η to exogenous latent variables η (Β) and to observed 

covariates x (Γη) with μ and ζ as intercepts and residuals, correspondingly.  Conditional on the 

latent classes, y is assumed to be multivariate normally distributed.  

Because the latent classes are unordered categories, the latent class membership can be 

defined as a multinomial variable (or a binary variable for two classes) by  

  [
 (     |   )

 (     |   )
]             

where the log odds of the probability of being in a specific latent class c over a reference class k 

is a function of the regression coefficients of the covariates (Γcj) and the intercepts (λcj). With the 

(1) 

(2) 

(3) 
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known class option, instead of modeling the latent class membership using Equation 3, the 

unknown classes are replaced by observed groups. The sample units with the known class 

membership are called training data (Muthén, 2002). When all sample units fall into training data, 

the latent class membership is simply the observed group membership.  

General discussions and information related to multilevel common factor models are 

applicable to multilevel factor mixture models for known classes. By allowing random effects 

across j clusters, the total covariance matrix (  ) of the observed outcome vector (   ) is 

decomposed into within- and between-cluster components: 

         

where subscripts W and B denote within and between, respectively.    represents the variability 

of individuals within cluster;    corresponds to the variability across clusters. Correspondingly, 

the linear relations between the latent factors and the observed outcomes are expressed by within 

and between components: 

            
     

      
    

 

where residuals at each level are assumed to be normally distributed with a mean of zero and 

independent of the latent variables and the residuals at the other level: 

    
  (     

)    
  (     

)    (   )       (     )     

Under these assumptions, the variance covariance matrix at each level is derived as follows: 

         
              

     

where ΦW and ΦB denote the variance covariance matrix of latent variables at the within and 

between levels, respectively.  

(5) 

(6) 

(4) 
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Factorial invariance testing across within-level groups requires a separate common factor 

model for each group at the within level. For each latent class representing a respective observed 

group, a factor mixture model is constructed as: 

[   |     ]            
     

      
    

  

 Thus, factorial invariance refers to the equivalence of a set of parameters across groups 

including             and                . Note that in the current multilevel 

SEM framework, intercepts are estimated at the between level only because the within-level 

model is analyzed with deviation scores from cluster means. Although the mean structure is 

incorporated for group comparison at the within level, the intercepts of observed variables (y) are 

estimated at the between level only and so is the intercept invariance.  

Considering that there is no specific term for intercepts at the within level, Ryu (2014) 

suggested a method for within-level factorial invariance testing using multigroup single-level 

CFA. To estimate the intercepts at the within level, she specified within and between models 

separately for each group using Muthén’s maximum likelihood estimation (MUML, Muthén, 

1994) and conducted a 2*k group single-level CFA where k equals the number of comparison 

groups. On the other hand, ML FMM for known classes allows for the free estimation of the 

intercepts across within-level groups at the between level. Thus, the mean or intercept difference 

across within-level groups can be tested at the between level under ML FMM.  

Multilevel MIMIC Model 

MIMIC modeling (Jöreskog & Goldberger, 1975; Muthén, 1989) is one of several 

methods used to test factorial invariance and population heterogeneity (e.g., Kim, Yoon, & Lee, 

2012). MIMIC models employ an observed variable as a covariate of latent factors. The presence 

of the vector of observed covariates (x) in common factor models indicates MIMIC modeling.  

(7) 
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The inclusion of a grouping covariate allows testing group differences via a regression-type 

analysis. Thus, a regression coefficient (Γη) associated with the grouping covariate x in Equation 

9 represents the effect of group membership on the corresponding latent factor (η), specifically, 

factor mean difference between groups when the grouping covariate is dummy coded. The 

inclusion of the effect of a grouping covariate on the observed outcome variable (Γyxi) over and 

above the effect of the grouping covariate on the latent factor (Γη) in Equation 8 allows factorial 

invariance testing of the intercept (also called uniform invariance). In other words, the regression 

coefficient of x on y (Γy) indicates the status of intercept invariance of the corresponding variable 

y between groups.  

Nonuniform invariance can be tested using MIMIC modeling by including an interaction 

between the observed covariate and the latent factor (Barendse, Oort, Werner, Ligtvoet, & 

Schermelleh-Engel, 2012; Woods & Grimm, 2011). Then, Equation 8 expands as 

                        

The regression coefficient of the observed covariate (Γy) represents intercept invariance or 

uniform invariance; the regression coefficient of the interaction (Γηy) represents factor loading 

invariance or nonuniform invariance. There are different ways to create an interaction term 

between a latent factor and an observed covariate
2
. In this study, we adopted the XWITH 

statement in Mplus to model the interaction of a latent variable with an observed covariate.   

The MIMIC model can be extended to a multilevel framework by including subscript j 

for clusters, which indicates that a certain effect of interest can vary across clusters. When 

factorial invariance is tested across within-level groups, a grouping covariate and its interaction 

(8) 

(9) 

(10) 
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with the within-level factor are entered at the within level. Thus, a multilevel MIMIC model is 

expressed as 

            
              

         
     

    
 

where     is an observed covariate indicating group membership of individual i in cluster j. The 

within-level regression coefficient Γy represents the difference or noninvariance in intercepts 

between groups. Again factor loading invariance can be examined by testing the regression 

coefficient of the interaction between the observed covariate and the latent factor (Γηy) at the 

within level. In this exposition of multilevel common factor models, of note is that the two 

regression coefficients representing factorial invariance (   and    ) are estimated as fixed 

effects under the assumption that the status of factorial invariance between groups does not vary 

across clusters, which is realistic with a reasonably developed measure.  

Study 1: Testing Scale-Level Factorial Invariance Using Multilevel Factor Mixture Model 

Method 

Data Generation 

The adequacy of ML FMM for scale-level factorial invariance testing was examined 

through a Monte Carlo simulation. To create population heterogeneity, two sets of data were 

generated separately and then combined for data analyses. Each set of data corresponded to each 

group of the study, and the group size was balanced across simulation conditions. The same sets 

of clusters were generated in both groups so that two groups existed within cluster. Within- and 

between-level factor structures were identical. That is, each group had eight variables that loaded 

on a single factor with factor loadings .3 to .9 and residual variances .25 for both within- and 

between-levels. Intercepts and factor means were simulated at zero at both levels for both groups. 

(11) 
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In data generation the following design factors were considered in investigating the performance 

of ML FMM under various circumstances researchers possibly encounter in practice.   

Simulation Design Factors 

The design factors of this simulation study include: (a) intraclass correlation, (b) number 

of clusters, (c) cluster size, (d) location of noninvariance, and (e) size of noninvariance (Hox & 

Maas, 2001; Kim, Kwok, et al., 2012; Yoon & Millsap, 2007). Three levels of ICC were 

simulated by varying the between-level factor variance while fixing the within-level factor 

variance at 1.00. The between-level factor variances of 0.10, 0.25, and 0.50, yield three ICC 

levels:  .09, .20, and .33, respectively. Such ICCs are commonly observed in educational 

research. It is of note that the ICCs are computed on the basis of latent factor variance as follows: 

        (     ) 

where    and    are two components of the total latent factor variance (  ). 

Two cluster size (CS) levels were examined: 10 and 20. Accordingly, the balanced group 

size within cluster was 5 and 10. Cluster sizes between 5 and 50 are commonly used in 

multilevel simulation studies (Finch & French, 2011; Hox & Maas, 2001; Jak, Oort, & Dolan, 

2013). The number of clusters (CN) had three levels: 60, 100, and 160. The combination of the 

number of clusters and cluster size produced total sample sizes that varied between 600 and 3200. 

The noninvariance across within-level groups was simulated for either the factor loading or 

intercept. Only a single item (y7) out of eight was noninvariant. The size of noninvariance 

associated with the factor loading consisted of two levels: 0.25 and 0.50; the size of 

noninvariance associated with intercept was also 0.25 and 0.50, representing small and large 

noninvariance (i.e., differential item functioning or DIF), respectively (French & Finch, 2008; 

Kim, Kwok, et al., 2012). Other than the parameter of noninvariance, the two groups have 

(12) 
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identical population parameters. When noninvariance is simulated to evaluate power to detect 

noninvariance, 3 ICC x 3 CN x 2 CS x 2 DIF location x 2 DIF size, 72 conditions are created. In 

addition, data under complete invariance conditions (3 ICC x 3 CN x 2 CS = 18) are generated to 

examine Type I error when there is no DIF variable. For each condition, 1000 replications are 

generated. Each replication is analyzed for factorial invariance using ML FMM following the 

factorial invariance testing procedures explicated in the next section. Data generation and all 

subsequent analyses are conducted with Mplus version 6.11. 

Scale-Level Factorial Invariance Testing Procedures 

The simulated data were fitted to the proposed model. In ML FMM, a single-factor CFA 

model with eight indicators was constructed at both within and between levels and for both 

groups as known classes. For identification purposes, the factor variance at each level was fixed 

at the corresponding population parameter. Although this identification strategy is not realistic in 

practice without knowing population variances, we adopt this strategy with known variances to 

recover the parameter estimates in the scale of population parameters. The factor mean of one 

group at the between level was also fixed at zero for identification.  

Factorial invariance is often established hierarchically: configural invariance (i.e., the 

equivalence between groups in the number of factors and the pattern of indicator loadings on 

each factor), weak or metric invariance (the equality of factor loadings, in addition), strong or 

scalar invariance (the equality of intercepts added), and strict invariance (additional residual 

variance equality). For factor loading noninvariance conditions in this study, weak invariance 

was examined because configural invariance was already established in the simulation. To test 

weak invariance a model with all factor loadings constrained equal between classes was 

compared to a model with such a constraint removed (i.e., factor loadings were freely estimated 
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except the first variable for identification). Two competing models were evaluated based on 

model selection criteria (see the following section for details). Strong invariance was tested 

similarly. For model estimation, robust maximum likelihood (MLR), the Mplus default, was used.  

Given the identification strategy adopted in this study with knowledge of population 

variances and the invariance of the first observed variable, the aforementioned hierarchical 

approach to factorial invariance is appropriate. The limitations of this approach in real research 

settings were discussed in Raykov, Marcoulides, and Li (2012). Because one of the variables, 

called a reference variable, is conventionally constrained equal between groups for identification 

purposes, the invariance of the full set of variables cannot be tested in the widely used factorial 

invariance testing procedures (i.e., from configural to strict invariance) unless the reference 

variable is known to be invariant without testing. Interested readers are encouraged to read 

Raykov et al.’s full discussions on this matter.  

Model Selection Criteria 

For factorial invariance testing, we conducted likelihood ratio tests comparing two nested 

models (constrained and relaxed ones) under the null hypothesis of no difference between the 

two models. When MLR is utilized for model estimation, Satorra-Bentler scaled likelihood ratio 

(SB LR) tests are recommended for model comparison (for details see Satorra & Bentler, 1994). 

When the SB LR yields a negative chi-square difference or negative likelihood ratio, additional 

adjustment is required to ensure the positive chi-square statistic (Asparouhov & Muthén, 2012a; 

Satorra & Bentler, 2010). The SB LR is asymptotically chi-square distributed with the difference 

in degrees of freedom between the two models. When the null hypothesis is rejected, the relaxed 

model is selected whereas the constrained model is favored otherwise. 
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We also examined alternative model fit statistics: Akaike Information Criterion (AIC; 

Akaike, 1987), Bayesian Information Criterion (BIC; Schwarz, 1978), and sample-size adjusted 

BIC (ssBIC, Sclove, 1987).  These model fit statistics can be used to compare the nonnested 

models. When two models are compared, the model associated with the smaller alternative 

model fit statistic is considered a better model. Recent studies have examined the performance of 

such model fit statistics in mixture modeling contexts (e.g., Chen, Kwok, Luo, & Willson, 2010; 

Henson, Reise, & Kim, 2007). However, the performance in the context of multilevel factorial 

invariance testing is unknown. In summary, we considered the SB LR tests, AIC, BIC, and 

ssBIC for model selection in determining factorial invariance for the currently conducted studies. 

Analysis of Simulation Results  

To evaluate the adequacy of the proposed models as factorial invariance tests, we 

investigated the proportions of inadmissible solutions, true positive (TP) rates, and false positive 

(FP) rates throughout the studies.  In addition, bias for the parameter estimate of interest (i.e., 

magnitude of noninvariance) was evaluated when the model was correctly specified. Due to 

space limits inadmissible solutions are reported in Study 1 only. 

TP refers to the detection of noninvariance in testing weak factorial invariance when the 

factor loading is not invariant and the detection of the violation of strong invariance under 

intercept noninvariance conditions at α = .05. Accordingly, the TP rate is defined as the 

proportion of replications in which the level of noninvariance is correctly determined. On the 

other hand, the FP rate is computed as the proportion of replications in which weak invariance is 

falsely rejected when factorial invariance holds in the true population. 

Raw bias  ( ) and relative bias   ( ) of parameter estimates are estimated as follows: 

 ( )     ∑ ( 
    ̂   ) and   ( )     ∑

( ̂   )
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where  ̂  is the parameter estimate for replication r,   denotes the population parameter, and R is 

the total number of replications. When raw bias is close to zero and relative bias is below .05 

(Hoogland & Boomsma, 1998), the parameter estimate of interest is considered unbiased. The 

parameter estimate evaluated for bias is the size of noninvariance in the factor loading or the 

intercept of one DIF variable (y7). In ML FMM, the group difference in factor loadings (or 

intercept) of y7 corresponds to factor loading (or intercept) noninvariance.  

Results 

Inadmissible Solutions 

 Inadmissible solutions include cases in which there are error messages or the statistics of 

interest such as the AIC, BIC, or ssBIC are not produced in the output. The inadmissible solution 

rates of ML FMM were zero or near zero in many cases and the highest rate was 1.6% (16 out of 

1000 replications) indicating that ML FMM generally found mathematically proper solutions.  

 The SB LR tests occasionally yielded negative likelihood ratios that required an 

adjustment proposed by Satorra and Bentler (2010) to ensure positiveness. The negative SB LR 

rates were quite small for intercept noninvariance (0% ~ 9%) or in complete invariance 

conditions (4% ~ 7%) of ML FMM. However, factor loading noninvariance conditions yielded 

sizable negative SB LR rates for both small DIF (8% ~ 26%) and large DIF (11% ~ 56%). In 

general, the rates were positively associated with the ICC. In this study the adjustment for 

positive SB LR (Asparouhov & Muthén, 2012a, Mplus webnote 12) was not applied
3
. 

Accordingly, it should be noted that the results of SB LR tests reported in the subsequent 

sections are based only on the cases with the positive SB LR.  

True Positive and False Positive Rates 



Within-level Group Factorial Invariance  16 

 

The FP rates varied considerably depending on fit statistics. The FP rates for the SB LR 

tests ranged between .08 and .17 above the nominal level across simulation conditions. For the 

AIC, the FP rates were unacceptably high with the minimum of .12 and maximum of .59. The FP 

rates for the AIC also depended on the ICC and cluster size in a positive direction. The BIC and 

ssBIC reasonably controlled the FP rates around or below .05. For the BIC, the FP rates were 

almost zero regardless of the ICC and sample size. The FP rates of the ssBIC were in general 

about .05, but showed slight inflation with large ICCs and large cluster size conditions (e.g., .16 

when CN = 60, CS = 20 under large ICC).  

The TP rates markedly depended on the size of noninvariance in relation to the location 

of noninvariance. When simulated noninvariance was large, the TP rates were moderate to high 

irrespective of fit indices whereas the power to detect the small size noninvariance dropped 

considerably across fit indices, particularly for factor loading noninvariance. When the 

noninvariance of factor loading was small, unacceptably low TP rates were observed for the BIC 

even with very decent sample sizes (e.g., TP = .13 when CN = 100, CS = 20 with medium ICC). 

In many small sample size conditions, the BIC showed near zero TP rates. The TP rates of the 

ssBIC also deteriorated notably when DIF was small for the factor loading in combination with 

small sample size. On the other hand, the TP rates of the AIC and SB LR were relatively high 

with small DIF for the factor loading. When the factor loading was noninvariant, the TP rates 

were slightly negatively related to the ICC for all fit statistics examined (for the SB LR, when 

CN = 60, CS = 10, and DIF = large, TP = .95 under small ICC; TP = .89 under large ICC). This 

slightly negative relation of the TP rates with the ICC was not seen in the intercept noninvariance 

conditions. Overall, the TP rates of intercept noninvariance were higher than those of factor 

loading noninvariance with less impact of DIF size. In summary, when noninvariance was large, 
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the BIC and ssBIC showed good performance with acceptable Type I error control and sufficient 

power. In testing strong invariance, the ssBIC is particularly recommended. However, to detect 

small size noninvariance of factor loadings, the SB LR and AIC are potentially better options. 

The TP and FP rates of ML FMM for the small ICC conditions are presented in Table 1
4
.    

Bias of Parameter Estimates 

The estimated size of factor loading noninvariance appears biased in ML FMM (see 

online supplement Table 3s). The bias ranged from -.093 to -.033 for large DIF and from -.049 to 

-.015 for small DIF, which led to relative bias between -.195 and -.064 irrespective of DIF size. 

This magnitude of relative bias was above the cutoff in absolute value (i.e., .05). Two salient 

points emerged in factor loading noninvariance conditions. First, the size of factor loading 

noninvariance was consistently underestimated across simulation conditions. Second, 

underestimation became more serious as the ICC increased. For example, when noninvariance 

was simulated large in factor loading, the relative bias associated with a large ICC was between -

.186 and -.154 as opposed to -.072 and -.065 with a small ICC. In contrast, the size of intercept 

noninvariance was unbiased regardless of simulation conditions.  

Study 2: Testing Item-Level Factorial Invariance Using Multilevel MIMIC Model 

Method 

Item-Level Factorial Invariance Testing Procedure 

ML MIMIC was applied to the data generated in Study 1 (except the complete invariance 

conditions) to identify any noninvariant variable at the item level.  Instead of modeling a separate 

CFA for each group, ML MIMIC constructs a single model with the grouping variable as a 

covariate, assuming strict invariance between groups. This constrained model was compared to a 

relaxed model with two directional effects of a selected variable that tested the invariance of the 
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intercept and factor loading of the variable (Γy and Γηy in Equation 11). These two competing 

models were evaluated with respect to the same model selection criteria employed in Study 1. 

The selection of the relaxed model with the covariate and interaction terms indicates the 

noninvariance of the variable. This process is repeated for all variables in the model. ML MIMIC 

with the factor and observed covariate interaction requires the use of the integration algorithm 

with robust maximum likelihood estimation. 

Analysis of Simulation Results  

The same set of simulation outcomes used for ML FMM was evaluated for ML MIMIC. 

However, the definitions of TP and FP rates in Study 2 were slightly different from those in 

Study 1 because factorial invariance was tested at the item level in Study 2. The TP rate is 

computed as the proportion of cases in which the simulated noninvariant variable is correctly 

identified as functioning differentially (i.e., DIF); the FP rate is defined as the proportion of cases 

in which any of invariant variables is falsely detected as DIF. It should be noted that the 

significance level was adjusted with a Bonferroni correction (α = .05/8 = .00625) for the ML 

MIMIC analysis because the LR test was conducted for each variable (i.e., eight times per 

replication). Further, when FP rates were inflated due to baseline model misspecification in the 

LR tests, we considered Oort adjustment (1998).  For bias, the estimates of two directional 

effects on y7 (Γy and Γηy in Equation 11) were compared to the corresponding population 

parameters. The results of bias are similar to those of ML FMM and not reported in the paper 

(see Table 3s). 

Results  

True Positive and False Positive Rates 
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When there was noninvariance for the factor loading only, the FP rates were different 

across the fit statistics as presented in Table 2. For the BIC, the FP rates were all below .02. The 

ssBIC also controlled the FP rates close to zero except in a couple of conditions of large DIF (.09 

for CN = 160, CS = 20, ICC = medium; .12 for CN = 160, CS = 20, ICC = large). In contrast, the 

SB LR and AIC frequently misidentified the invariant variables as noninvariant (FP = .12 ~ .30 

for the SB LR; FP = .02 ~ .45 for the AIC). In addition, the behaviors of these two fit statistics 

were positively associated with the ICC, number of clusters, and cluster size. In summary, the FP 

rates of the BIC and ssBIC in detecting factor loading noninvariance were generally close to zero; 

those of the SB LR and AIC were overall inflated, especially in the large sample size and large 

ICC conditions. In regard to the TP rates, all fit statistics generally showed decent performance 

in correctly detecting a noninvariant variable (e.g., TP rates of the ssBIC were above .96 across 

all simulation conditions). Interestingly, the serious power reduction in the BIC and ssBIC with 

small size DIF was not obvious in item-level factorial invariance tests using ML MIMIC 

although the TP rates slightly decreased as the DIF size became smaller.  

When there was noninvariance in the intercept, factorial invariance testing with ML 

MIMIC showed appreciable inflation in the FP rates (see Table 2 for the small ICC conditions 

and Table 2s for the complete conditions). All four fit statistics investigated in this study yielded 

inadequately high FP rates. For example, the FP rates of the AIC ranged from .40 to .88 for large 

intercept noninvariance; those of the BIC were between .06 and .56. Simulation factors – DIF 

size, ICC, number of clusters, and cluster size were positively related to the FP rates. Although 

the TP rates of all four fit statistics were fairly high in most conditions, ML MIMIC appeared 

inadequate for detecting noninvariance in the intercept with highly inflated FP rates. That is, an 

invariant variable is likely to be misidentified as DIF. However, high FP rates of the SB LR tests 
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in ML MIMIC are not surprising because it is reported that the equality-imposed baseline 

MIMIC model with DIF (namely, a misspecified baseline model) possibly leads to Type I error 

inflation in factorial invariance testing (Kim, Yoon, et al., 2012). 

To control the Type I error inflation due to an inflated baseline model chi-square and 

inflated chi-square difference, we applied Oort-adjusted critical chi-square to the likelihood ratio 

tests when testing factorial invariance of the intercept using uniform ML MIMIC that does not 

include the interaction term
5
. The results of uniform ML MIMIC with Oort adjustment are 

presented in Table 2 for the small ICC conditions (see Table 2s for the complete conditions). As 

expected, the FP rates were controlled below or around .05 while the TP rates were sufficiently 

high across the ICC and sample size levels. To sum up, when nonuniform invariance is tested 

with a factor by observed variable interaction, the BIC and ssBIC could be reasonable indices in 

identifying a variable with factor loading noninvariance. Of the two measures, the ssBIC is more 

susceptible to Type I error when sample size is large (e.g., 3200) whereas power loss is 

substantial with the BIC when sample size is small (e.g., 600). In detecting the intercept 

noninvariance of a variable, the SB LR with Oort adjustment is strongly recommended given the 

Type I error inflation in ML MIMIC with the constrained baseline model.   

Study 3: Multilevel Factor Mixture Model vs. Design-Based Multigroup CFA  

Method 

 In Study 3, ML FMM was compared to design-based multigroup CFA (MG CFA) in 

terms of the detection of factorial noninvariance when between and within factor structures were 

different. Wu and Kwok (2012) observed bias and poor model fit of the design-based approach 

to multilevel data under complex (i.e., two factors) between and simple (i.e., one factor) within 

factor structures. Based on this finding, a one-factor model with eight indicators at the within 
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level and a two-factor model with four indicators each at the between level were simulated for 

two within-level groups. The correlation between the two factors at the between level was set 

at .30 (Wu & Kwok, 2012). All eight observed variables had .80 factor loadings with residual 

variances of .36 at the within level. A factor loading of .80 is considered moderately high with a 

factor variance of 1.00. The between-level factor loadings were 1.20 with residual variances 0 

assuming no measurement error at the between level (e.g., Heck & Thomas, 2009; Jak et al., 

2013; Ryu, 2014). Zero residual variance at the between level is also the default of ML FMM 

specification in Mplus 7 (Muthén & Muthén, 2012).  

 The simulation design factors of Study 1, with the exception of noninvariance size, were 

considered in Study 3 (3 ICC x 3 CN x 3 CS x 2 DIF location). Only small size noninvariance 

(i.e., .25) of the factor loading or intercept was simulated. A bigger cluster size of 50 was 

included in addition to 10 and 20. Complete invariance conditions (3 ICC x 3 CN x 3 CS) were 

also included to evaluate the FP rates. Per condition 500 replications were generated with Mplus 

7 (Muthén & Muthén, 2012). For factorial invariance testing two data analytic models were 

employed: ML FMM and design-based MG CFA. Note that in design-based MG CFA, an overall 

one-factor model with eight indicators was specified ignoring the complex factor structure at the 

between level (a two-factor model with four indicators per factor). Weak (or strong) factorial 

invariance between two groups at the within level was evaluated by comparing two competing 

models using the SB LR tests, AIC, BIC, and ssBIC as explained in Study 1.  

Results  

True Positive and False Positive Rates 

Compared to the design-based MG CFA, ML FMM showed slightly superior 

performance across simulation outcomes irrespective of design factors (see Table 3 for the CN = 
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60 conditions; see Tables 4s and 5s for the complete conditions).  The FP rates of ML FMM 

were controlled about or below .05 regardless of simulation conditions for all fit statistics 

investigated.  The FP rates of the BIC and ssBIC were zero for all conditions. Overall, no design 

factor appeared related to the FP rates for ML FMM. Additionally, the TP rates of the SB LR and 

AIC were exactly 1.00 in most simulation conditions. When design-based MG CFA was used for 

factorial invariance testing, the FP rates of the SB LR and AIC were somewhat inflated ranging 

from .06 to .15 and .05 to .12, respectively. Again, the BIC and ssBIC yielded zero or near zero 

FP rates across simulation conditions. The TP rates in detecting the violation of weak or strong 

invariance were fairly decent with the SB LR and AIC, but less optimal than those of ML FMM. 

Importantly, the negative impact of ICC on the performance of the design-based MG CFA was 

evident. As an example, for the AIC the FP rates increased from .07 to .12 and the TP rates of 

factor loading noninvariance decreased from .92 to .01 as the ICC increased from small to large 

when CN = 60 and CS = 10.  

As observed in the small DIF conditions of Study 1, the BIC and ssBIC showed 

extremely low TP rates when sample size was small irrespective of the method used. The low 

power was more serious with the BIC than the ssBIC and with the design-based approach than 

ML FMM. For design-based MG CFA, the BIC showed poor performance even with large 

sample sizes over 3000, especially under large ICC conditions. In contrast, the TP rates of the SB 

LR tests were 1.00 in nearly all simulation conditions. The AIC with ML FMM also showed high 

TP rates of over .95 across simulation conditions. In summary, for Study 3 in which between-

level residual variances were simulated at zero, all four fit indices of ML FMM were able to 

determine the level of factorial invariance well especially when sample size was sufficiently 

large (i.e., over 3000).  
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Bias of Parameter Estimates 

Similar to the patterns observed in Study 1, the size of noninvariance in the factor loading 

was underestimated as a function of ICC although the degree of underestimation depended on the 

analytic method used
 
as shown in Table 4 (see also Table 6s). For ML FMM the underestimation 

was not very serious and was below the cutoff of relative bias (.05; Hoogland & Boomsma, 1998) 

when the cluster size equaled 50. Relative bias of design-based MG CFA was generally higher 

than that of ML FMM. The association of relative bias with ICC was also apparent. That is, 

relative bias of design-based MG CFA was about -.06, -.13, and -.26 for small, medium, and 

large ICC, respectively. In contrast, bias in the size of intercept noninvariance was literally zero 

in both ML FMM and design-based MG CFA. 

Demonstration 

Factorial invariance testing is demonstrated with the PISA 2003 data (OECD, 2005). Five 

items measuring mathematics self-efficacy (see online supplement
6
 Appendix Bs) were selected 

to fit ML FMM and ML MIMIC. There were 4270 students nested within 159 schools in Turkey. 

The number of students per school ranged from 2 to 35 (mean = 27, SD = 7.94).  Gender was a 

within-level grouping variable (1855 females, 2415 males). This research setting is similar to the 

simulation condition of CN = 160 and CS = 20 although the total sample size is larger in the 

PISA data. 

Multilevel Factor Mixture Model for Known Classes 

ICCs of the observed variables ranged from .06 to .11. Three nested models were 

evaluated to determine weak and strong invariance (see Appendix Cs for the parameter estimates 

and fit indices of the three models). In the configural invariance model, factor loadings and 

residual variances at the within-level and intercepts at the between-level were freely estimated 



Within-level Group Factorial Invariance  24 

 

between groups. For identification, the factor loading and intercept of the first variable were 

constrained equal across groups (see Appendix As for Mplus syntax). Next, within-level factor 

loadings were constrained to be the same for boys and girls to test weak invariance and in 

addition, between-level intercepts were constrained to be the same across groups to test strong 

invariance.  

When evaluating factorial invariance between boys and girls, we applied the SB LR tests, 

AIC, BIC, and ssBIC. All four indices supported weak invariance but rejected strong invariance 

(Appendix Cs). Given large sample sizes over 3000 (i.e., 4270) and near zero residual variances 

at the between-level (obtained from a ML MIMIC without an interaction term or numerical 

integration), all four indices were informative of factorial invariance. Thus, we conclude that the 

PISA 2003 mathematics self-efficacy measure meets the weak invariance assumption but fails to 

meet strong invariance.  

Multilevel MIMIC Model 

For each item, a set of nested ML MIMIC models were compared to test factorial 

invariance. First, two direct effects on each observed variable were constructed to test factorial 

invariance of the intercept and factor loading (e.g., y1 regressed on gender and interaction). This 

model with two direct effects on each observed variable was compared to a model in which both 

effects were constrained to be zero assuming invariance of the intercept and factor loading of the 

variable (see Mplus syntax in Appendix As). Again the SB LR, AIC, BIC, and ssBIC were 

evaluated in model selection.  

As presented in Appendix Ds, item 4 and item 5 were flagged as DIF by all four fit 

indices when we tested both the factor loading and intercept. Then, the factor loading and 

intercept were tested separately to locate the source of noninvariance for item 4 and item 5. For 



Within-level Group Factorial Invariance  25 

 

factor loadings, all four indices were evaluated but the BIC and ssBIC received more weight 

based on the simulation results (high Type I error with the SB LR and AIC). Because (a) the SB 

LR, BIC, and ssBIC supported the invariance of item 4; the BIC and ssBIC supported invariance 

of item 5, and (b) the size of noninvariance of item 4 was 0.056; the size of noninvariance of 

item 5 was 0.127 (both smaller than what we simulated as small DIF [0.25]), we concluded that 

all five item factor loadings were invariant between boys and girls. For intercepts, both item 4 

and item 5 were detected as noninvariant by all indices. However, we observed substantially high 

Type I error in detecting intercept noninvariance for all indices. Thus, we conducted regular ML 

MIMIC without the interaction and applied Oort adjustment to control Type I error inflation 

when conducting SB LR tests. The results supported the invariance of item 4 but item 5 was 

detected as DIF in the intercept, χ
2
(1) = 22.62 for item 4, χ

2
(1) = 86.18 for item 5 with the 

adjusted critical value of 47.38. In addition, the DIF size in the intercept of item 4 was 0.107 and 

that for item 5 was 0.202.  

In summary, weak factorial invariance (i.e., equality of the factor loadings of the items) 

was supported. However, strong invariance was rejected. The item-level factorial invariance 

testing revealed that item 5 exhibited DIF with the noninvariance in the intercept with a 

magnitude of 0.202.  

Discussion 

Multilevel Factor Mixture Model 

When ML FMM was utilized for within-level factorial invariance testing, the behaviors 

of the BIC and ssBIC were heavily influenced by the degree of noninvariance. With complete 

invariance, both BIC and ssBIC generally controlled the FP rates below the nominal level. In 

particular, the BIC showed an over-control of FP rates (e.g., .00 ~ .01 in ML FMM). When the 
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size of factor loading noninvariance was large, both fit statistics correctly detected the violation 

of weak or strong factorial invariance almost all the time. However, neither fit statistic was 

sensitive enough to detect small DIF involving the factor loading when the total sample size was 

small. This insensitivity to small DIF was more striking with the BIC where TP rates across 

simulation conditions were below 20% except for a sample size of 3200 (i.e., the largest sample 

size in Study 1). The BIC prefers a parsimonious model and penalizes a model with a larger 

number of free parameters (e.g., a relaxed model allowing noninvariance in factorial invariance 

testing). When amplified by sample size, the penalty of the BIC on the free estimation of small 

noninvariance appears excessive in comparison to the improvement in log likelihood due to free 

estimation. In Studies 1 and 3, when there was only one factor loading with small DIF, relaxing 

seven factor loadings (Δdf = 7) did not improve the log likelihood appreciably while the penalty 

for seven degrees of freedom was severe. In ML MIMIC (Study 2) when testing the factor 

loading and intercept of a single variable (Δdf = 2), the BIC and ssBIC showed decent TP rates 

for small DIF. 

The SB LR tests in ML FMM showed reasonably high TP rates throughout the simulation 

conditions. However, two major issues should be addressed in the use of the SB LR for within-

level factorial invariance testing. First, the FP rates were slightly inflated across the conditions of 

Study 1. The frequent occurrence of negative SB LR is also an issue. Importantly, the negative 

SB LR appears associated with the ICC. Of note is that the reported TP rates counted only 

positive SB LR cases in this study. Although a correction method to warrant the positiveness of 

the SB LR (Asparouhov & Muthén, 2012a; Satorra & Bentler, 2010) is available, this additional 

step for positive SB LR could be a demanding and challenging task for applied researchers in 

conducting factorial invariance testing. In terms of TP rates, the AIC was superior to other fit 
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statistics with high consistency across simulation conditions though unacceptably high FP rates 

should be taken into consideration in the use of the AIC. 

The excellent performance of ML FMM in Study 3, especially for the SB LR and AIC, is 

worthy of note in comparison to the results of Study 1. In Study 3, the SB LR and AIC of ML 

FMM showed proper Type I error control and almost perfect power in detecting the violation of 

weak or strong factorial invariance throughout the simulation conditions. When simulation 

settings were compared between Studies 1 and 3, the better performance of ML FMM could be 

attributed to two prominent features: (a) equally high factor loadings for items especially at the 

between level (1.2 for all items in Study 3; from .3 to .9 in Study 1), and (b) relatedly, zero 

residual variance at the between level (.25 in Study 1). It is noted that ML FMM in the current 

version of Mplus does not allow residual variance of the indicators at the between level assuming 

perfect relations between the indicators and the latent factors. In Study 1, a considerable amount 

of residual variance was simulated at the between level with occasionally less ideal factor 

loadings. When these residual variances were fixed at zero, the performance of ML FMM in 

testing factorial invariance deteriorated to the extent of model misspecification. In summary, 

when the between-level factors and indicators are highly related with near zero residuals, ML 

FMM is expected to show its optimal behavior in detecting factorial noninvariance at the within 

level. However, substantial unexplained variance present at the between level could lead to a less 

favorable performance of ML FMM as a method of within-level factorial invariance testing. 

Multilevel MIMIC Model 

In detecting a noninvariant variable at the item level, ML MIMIC by and large exhibited 

moderate to high TP rates. However, the FP rates were substantially higher in identifying 

noninvariance of the intercept. All fit statistics observed in Study 2 including the BIC and ssBIC 
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failed to control the FP rates properly near the nominal level. This is consistent with the findings 

of previous studies on single-level MIMIC (e.g., Kim, Yoon, et al., 2012; Oort, 1998). Kim and 

colleagues explained the high FP rates in detecting intercept noninvariance using MIMIC as due 

in part to the likelihood ratio tests. MIMIC modeling inherently assumes complete invariance 

between groups by constructing a single model for both groups. When a MIMIC model has a 

noninvariant variable (i.e., misspecified), the model chi-square statistic is likely inflated due to 

model misspecification. In the subsequent likelihood ratio test with a misspecified baseline 

model, the chi-square difference is also inflated resulting in larger Type I error rates (Yuan & 

Bentler, 2004).   

In such cases, statistical adjustment taking into account model misspecification at the 

baseline model, for example, the Oort adjustment is expected to reduce the Type I error inflation. 

However, this supposition was not directly tested for nonuniform ML MIMIC in this study. 

Alternatively, uniform ML MIMIC without the interaction between a factor and a grouping 

covariate was run with the same data, and the likelihood ratio was tested with the Oort adjusted 

chi-square critical value. The results were consistent with the literature: FP rates were controlled 

near zero irrespective of simulation conditions. Therefore, ML MIMIC can be used for item DIF 

detection across within-level groups when the chi-square inflation due to the misspecification of 

a constrained baseline model is properly adjusted. It should be noted that the free baseline 

approach in the LR test
7
 is possible with ML MIMIC and is expected to control the FP rates 

reasonably well though an invariant reference item between groups should be selected first for 

identification. An iterative specification search (e.g., Yoon & Millsap, 2007) is also a viable 

option. These alternative approaches to Type I error control in MIMIC models need further 

investigation under the framework of multilevel modeling.  
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Of note is that ML MIMIC has great potential in factorial invariance testing with 

multilevel data due to its flexibility in modeling within- and between-level covariates. As 

demonstrated in this study, intercept invariance testing can be easily implemented at the within 

level by including a within-level grouping covariate. Furthermore, testing factorial invariance for 

both within- and between-level groups simultaneously will be possible with ML MIMIC whereas 

such model specification could be challenging in multiple group analysis. The advantages of 

MIMIC in multilevel modeling has been discussed and illustrated in general multilevel CFA 

contexts (e.g., Finch & French, 2011). Future research on ML MIMIC for factorial invariance 

testing under various research circumstances is called for. 

In this study, ML FMM was used for the scale-level factorial invariance testing to 

establish either weak or strong factorial invariance. On the other hand, the performance of ML 

MIMIC was demonstrated for the item-level factorial invariance testing. However, both ML 

FMM and ML MIMIC can be used either to establish the level of factorial invariance (e.g., 

strong invariance) or to identify one or more noninvariant variables. 

Multilevel Factor Mixture Model and Design-Based Multigroup CFA 

In Study 3, the performance of ML FMM was compared to that of design-based MG CFA 

when the within model was simple with a single factor but the between model was complex with 

two factors. Although the behaviors of design-based MG CFA ignoring the complex factor 

structure at the between level were generally decent and not strikingly different from those of 

ML FMM, the MG CFA was obviously less optimal with higher FP rates across conditions and 

lower TP rates when the sample size was small. Moreover, the ICC emerged as a major factor 

associated with the lower performance of design-based MG CFA. For example, for bias 

estimates the size of factor loading noninvariance was substantially underestimated as a function 
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of ICC. When the ICC was large, the relative bias of design-based MG CFA was much higher 

(about -.26) than the cutoff of .05. Although not reported in the Results, the model fit of design-

based MG CFA was usually unacceptable with the CFI below .90, RMSEA above .10, and 

extremely high chi-square relative to its degrees of freedom. Hence, for within-level factorial 

invariance testing in multilevel data with different factor structures at between- and within-levels, 

a multilevel approach that allows level-specific model specifications is recommended over a 

design-based approach.  

Impact of ICC 

Across the studies, ICC emerged as a factor associated with the performance of factorial 

invariance testing with multilevel data. The major simulation outcome related to ICC was bias or 

relative bias. Interestingly, the relation between ICC and bias depended on the location of 

noninvariance. When noninvariance was simulated for the factor loading, for both ML FMM and 

ML MIMIC a positive relation between bias and ICC was observed with the underestimation of 

factor loading noninvariance becoming more serious as ICC increased. Of particular concern is 

that even the large size of noninvariance of the factor loading was consistently underestimated. 

Furthermore, the underestimation of factor loading noninvariance possibly leads to lower TP 

rates in detecting the factor loading noninvariance as ICC increases. Intercept noninvariance bias 

was estimated near zero across ICC levels and the negative relation between the TP rates and 

ICC was not observed. 

The estimation of factor loadings is based on the variance-covariance structure while 

intercepts are estimated on the basis of mean structure (Raykov et al., 2012).  The negative 

relations of ICC with bias and TP rates were apparent only in the factor loading noninvariance 

conditions because ICC is the ratio of between-level factor variance to total factor variance, 
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which is derived from the variance-covariance structure. As ICC increased, that is, the proportion 

of within-level factor variance became smaller relative to total factor variance, it was observed 

that the factor loading noninvariance estimated at the within level was negatively biased showing 

lower TP rates. The relation between ICC and factor loading noninvariance needs further 

investigation especially when the noninvariance is simulated at the between level. 

Software Requirement 

For the current studies, Mplus was utilized to demonstrate and evaluate the two proposed 

methods for within-level factorial invariance testing. For alternative SEM software programs, 

several features are needed to implement the proposed methods. For ML FMM, latent categorical 

variables should be incorporated in at least two-level models. For ML MIMIC, the interaction 

between a latent variable and an observed variable is required to test nonuniform invariance. If 

these features are either readily available or can be implemented in the programs (along with 

adequate estimation methods), such SEM packages are expected to work for the proposed 

models to test within-level factorial invariance.  

Limitations 

Although the simulation conditions of this study were selected to reflect the 

characteristics of multilevel data common in education and the social sciences, certain conditions 

were intentionally restricted for the simplicity of  discussion (for example, a single noninvariant 

variable, a single factor model at the within level, etc.). Thus, the findings of this simulation 

study are applicable to the simulation conditions that were included. 

Asparouhov and Muthén (2012b) recently discussed multiple group analysis with 

multilevel data using Mplus. Specifically, when grouping occurs at the within level, they suggest 

a two-level factor mixture model with the knownclass option that allows multiple random effects 
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for multiple groups within cluster that can be correlated. In Mplus the multiple random effects of 

within-level groups and the correlation between them are specified at the between level as latent 

variables. We call for future research expanding the discussions of the use of multigroup 

multilevel analysis for factorial invariance testing that takes into account the correlation between 

groups within cluster.  

Conclusions 

Factorial invariance testing in multilevel data can be challenging due to model 

complexity. This study addressed modeling issues in factorial invariance testing with multilevel 

data and proposed two approaches when within-level groups are compared for invariance: 

multilevel factor mixture model and multilevel MIMIC model. Overall, the Monte Carlo 

simulation supported the adequacy of the proposed models. In practical evaluations of scale-level 

factorial invariance ML FMM, the BIC and ssBIC are recommended either (a) when small DIF is 

not of great concern or (b) when the total sample size is sufficiently large (over 3000 for the BIC; 

over 2000 for the ssBIC if the research situations are similar to the simulation settings). For 

strong factorial invariance testing, the ssBIC is particularly recommended. If the relations 

between indicators and latent factors are substantial with near zero residuals at the between level, 

the SB LR and AIC are expected to determine the level of factorial invariance with great 

precision regardless of DIF size. In using ML MIMIC, the invariance of factor loading of each 

variable (i.e., nonuniform invariance) can be tested by including the factor by group interaction 

in the model. In this case the BIC and ssBIC are optimal fit statistics in model comparison. 

However, when the intercept invariance of each variable is tested using ML MIMIC with a 

constrained baseline model in the LR test, uniform ML MIMIC with Oort adjusted LR tests is 

recommended.  
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Footnotes 

1
 The first step for cross-level factorial invariance is to examine if the factor structure is 

configurally invariant across levels (i.e., the same number of factors and the same locations of 

zero and nonzero loadings). Once the factor structure is configurally invariant across levels, the 

invariance of factor loadings can be tested by comparing two models in which all factor loadings 

(except one for identification) are first relaxed for free estimation and then constrained equal 

across levels. 

2
Barendse, Oort, Werner, et al. (2012) introduced latent moderated structures (LMS; 

Klein & Moosbrugger, 2000) and random slope parameterization (RSP; Muthén & Asparouhov, 

2003). The LMS allows the interaction effect between two latent variables on an observed 

variable. Because two latent variables are required for an interaction in LMS, for an observed 

covariate Barendse and colleagues created a latent variable on which the observed covariate 

loaded as a single indicator with a unit factor loading and near zero residual variance. In RSP, 

the interaction effect is estimated by specifying a random slope of the observed covariate which 

is in turn regressed on the latent factor. 

3
The correction method for positive SB LR demands considerable time and complexity in 

simulation (e.g., ensuring zero iteration in running a relaxed model with the baseline model 

parameter estimates) but the additional procedure is not expected to yield noticeably different 

results in the SB LR performance.  

4
The table of complete conditions (Table 1s) is available at 

http://www.coedu.usf.edu/main/faculty/ekim/supple_MLFI.html. 

5
Currently in the case of nonuniform ML MIMIC with numerical integration for the 

interaction between a factor and an observed variable Mplus does not produce sufficient 
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information for Oort adjustment which requires a baseline model chi-square statistic (see Oort, 

1998, for the formula). 

6
http://www.coedu.usf.edu/main/faculty/ekim/supple_MLFI.html. 

7
Factor loadings and intercepts of all items but one are freely estimated and this free 

baseline model is subsequently compared to a model with the equality constraints on the factor 

loading and intercept of each item.
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Table 1 

True Positive (TP) and False Positive (FP) Rates of Multilevel Factor Mixture Model (Small ICC) 

DIF size No (FP) Small (TP) Large (TP) 

Location  Factor loading Intercept Factor loading Intercept 

CN CS SB
a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS 

60 10 .12 .13 .00 .01 .96 .49 .01 .09 .70 .95 .19 .78 .95 .98 .85 .97 .97 1.00 .99 1.00 

 20 .13 .27 .00 .01 .95 .99 .05 .55 .69 1.00 .71 .95 .96 .99 .98 .99 .99 1.00 1.00 1.00 

100 10 .10 .14 .00 .01 .98 .99 .04 .21 .88 .99 .40 .92 .97 .98 .96 .97 .97 1.00 1.00 1.00 

 20 .10 .24 .01 .01 .98 .99 .13 .99 .91 1.00 .92 .99 .98 .99 .98 .99 .98 1.00 1.00 1.00 

160 10 .08 .12 .00 .01 .99 .99 .07 .98 .95 1.00 .76 .99 .99 .99 .98 .99 .97 1.00 1.00 1.00 

 20 .10 .26 .00 .00 .99 .99 .99 .99 .97 1.00 .99 1.00 .98 .99 .98 .98 .98 1.00 1.00 1.00 

Note. DIF = differential item functioning or noninvariance, CN = number of clusters, CS = cluster size within a group, SB = Satorra-

Bentler scaled likelihood ratio test, SS = sample-size adjusted BIC. aSB LR is computed only for the cases with positive Satorra-

Bentler scaled likelihood ratio.  
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Table 2 

True Positive and False Positive Rates of Multilevel MIMIC Model (Small ICC) 

   Factor loading DIF Intercept DIF 

   False positive True positive False positive True positive 

DIF CN CS SB
a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS Oort

b
 SB

a
 AIC BIC SS Oort

b
 

Small  60 10 .14 .02 .00 .01 .90 .99 .77 .99 .08 .21 .01 .09 .02 .79 1.00 .87 .98 .90 

  20 .13 .04 .00 .01 .90 .99 .99 .99 .08 .38 .06 .18 .06 .83 1.00 .97 .99 .95 

 100 10 .16 .03 .01 .01 .97 .98 .98 .98 .09 .28 .02 .10 .02 .87 1.00 .99 1.00 .99 

  20 .17 .07 .01 .01 .96 .99 .99 .99 .10 .48 .08 .21 .04 .90 1.00 1.00 1.00 1.00 

 160 10 .19 .04 .00 .01 .98 .99 .99 .99 .13 .38 .03 .13 .01 .90 1.00 1.00 1.00 1.00 

  20 .21 .11 .01 .01 .98 .99 .99 .99 .15 .58 .12 .27 .04 .94 1.00 1.00 1.00 1.00 

Large 60 10 .14 .03 .00 .01 .91 1.00 1.00 1.00 .14 .40 .06 .23 .01 .93 1.00 1.00 1.00 1.00 

  20 .14 .09 .01 .02 .91 1.00 1.00 1.00 .16 .59 .18 .37 .03 .95 1.00 1.00 1.00 1.00 

 100 10 .25 .06 .01 .01 .94 1.00 .99 1.00 .20 .55 .10 .31 .01 .93 1.00 1.00 1.00 1.00 

  20 .22 .17 .01 .03 .93 1.00 1.00 1.00 .24 .73 .29 .50 .01 .95 1.00 1.00 1.00 1.00 

 160 10 .29 .10 .01 .02 .97 1.00 1.00 1.00 .29 .70 .19 .42 .00 .96 1.00 .99 .99 1.00 
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  20 .33 .33 .01 .05 .97 1.00 1.00 1.00 .36 .85 .42 .62 .00 .96 1.00 1.00 1.00 1.00 

Note. DIF = differential item functioning or noninvariance, CN = number of clusters, CS = cluster size within a group, SB = Satorra-

Bentler scaled likelihood ratio test, SS = sample-size adjusted BIC. aSB LR is computed only for the cases with positive Satorra-

Bentler scaled likelihood ratio.  bMultilevel MIMIC model for uniform noninvariance (i.e., without the interaction term between a 

factor and an observed grouping variable) was conducted. 
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Table 3 

True Positive and False Positive Rates of Multilevel Factor Mixture Model (ML FMM) and Design-Based Multigroup CFA (MG CFA) 

When Population Within and Between Factor Structures Are Different  

   Complete invariance (FP) Factor loading noninvariance (TP) 

   ML FMM MG CFA ML FMM MG CFA 

ICC CN CS SB
a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS SB

a
 AIC BIC SS 

Small 60 10 .06 .06 .00 .00 .07 .07 .00 .01 1.00 .99 .00 .08 1.00 .92 .00 .01 

  20 .06 .04 .00 .00 .06 .06 .00 .00 1.00 1.00 .01 1.00 1.00 1.00 .00 .98 

  50 .05 .05 .00 .00 .06 .05 .00 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Med 60 10 .07 .06 .00 .00 .10 .09 .00 .03 1.00 .98 .00 .01 1.00 .06 .00 .00 

  20 .09 .08 .00 .00 .11 .09 .00 .02 1.00 1.00 .00 1.00 1.00 1.00 .00 .06 

  50 .07 .06 .00 .00 .10 .08 .00 .00 1.00 1.00 1.00 1.00 1.00 1.00 .58 1.00 

Large 60 10 .05 .04 .00 .00 .15 .12 .00 .03 1.00 .95 .00 .01 .99 .01 .00 .00 

  20 .07 .07 .00 .00 .12 .12 .00 .02 1.00 1.00 .00 1.00 1.00 .38 .00 .00 

  50 .04 .03 .00 .00 .13 .10 .00 .00 1.00 1.00 1.00 1.00 1.00 1.00 .01 .36 

Note. ICC = intraclass correlation, CN = number of clusters, CS = cluster size within a group, SB = Satorra-Bentler scaled likelihood 

ratio test, SS = sample-size adjusted BIC. aSB LR is computed only for the cases with positive Satorra-Bentler scaled likelihood ratio. 
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Table 4 

Bias and Relative Bias of Factor Loading Noninvariance for Multilevel Factor Mixture (ML 

FMM) Model and Design-Based Multigroup CFA (MG CFA) When Population Within and 

Between Factor Structures Are Different 

   ML FMM MG CFA 

ICC CN CS Bias Rel. bias Bias Rel. bias 

Small 60 10 -.021 -.086 -.015 -.061 

  20 -.013 -.052 -.016 -.063 

  50 -.006 -.024 -.015 -.061 

Med 60 10 -.027 -.109 -.034 -.138 

  20 -.014 -.058 -.034 -.134 

  50 -.006 -.026 -.033 -.133 

Large 60 10 -.031 -.123 -.067 -.266 

  20 -.016 -.065 -.066 -.263 

  50 -.007 -.027 -.065 -.260 

Note. ICC = intraclass correlation, CN = number of clusters, CS = cluster size within a group, 

Rel. bias = relative bias. Bias and relative bias of intercept noninvariance are all zero. 
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