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ABSTRACT 

 

 There is a set of visual processing advantages for holistic or global information over 

detailed or local information; these advantages are known as global precedence (Navon, 1977). 

Currently, there are inconsistent results about whether selective attention can reduce global 

precedence. Our studies look into Lamb et al. (1998)’s claim about selective attention’s inability 

to reduce global precedence. We reassess Lamb and colleagues’ claim by examining whether 

consecutively repeated tasks strengthen selective attention and reduce interference or facilitation 

from irrelevant information. Our studies utilized a series of trials, or runs, to present multiple 

consecutively repeated tasks. Before each run, participants were directed to a level (global or 

local) and target (A, E, G, K, U) and tasked to confirm or deny the presence of a target at a 

focused level. Inside each trial, participants were briefly shown one hierarchical letter - a large 

letter (one of the target letters) made up of small letters (one of the same five) to represent global 

and local levels respectively. The focused level always contained the target while the irrelevant 

level switched between congruent (e.g., giant A made of small A’s) and incongruent (e.g., giant 

E made of small A’s) information at specific points in a run (trials two or six). Response times 

(RT) to complete the task were analyzed. Our primary concern was the influence of the irrelevant 

level (i.e., interference or facilitation) during globally or locally focused runs (i.e., elevation in 

RT for an incongruent stimulus relative to congruent stimulus). Experiment 1 showed that local 

interference (i.e., influence of an incongruent local level during global searches) decreased from 

multiple consecutively repeated tasks but global interference was still large during local 
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searches. Experiment 2 showed no local facilitation and an insignificant reduction in global 

facilitation. A fit to the power-function speed-up model used in Logan (1988) confirmed that 

participants switched from a general algorithm to instance-based strategies in our paradigm. 
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INTRODUCTION 

 

People must process information in the visual field to know what they are seeing. But 

visual processing research has complexities. One such complexity is understanding the order in 

which the visual system processes items and their parts. Does the visual system process an item 

first as a whole or by its parts? One hypothesis is that the visual system processes items as a 

whole and then by its parts (Navon, 1977). This extends from the global precedence effect, a 

robust phenomenon characterized by faster encoding and asymmetrical interference for holistic 

items during visual processing. Studies have examined global precedence together with cognitive 

mechanisms such as selective attention to investigate the relationship between cognitive 

mechanisms and visual processing (e.g., Hoffman, 1980; Hughes et al., 1984; Kinchla et al., 

1983; Kinchla & Wolfe,1979; Lamb et al., 1998; Miller, 1981; Paquet & Merikle, 1988; 

Pomerantz, 1983; Ward, 1982; Weinbach & Henik, 2014). Currently, there are inconsistent 

results about whether cognitive mechanisms can overcome global precedence (e.g., Hoffman, 

1980; Kinchla et al., 1983; Miller, 1981; Ward, 1982) or fail to reduce global precedence (e.g., 

Hughes et al., 1984; Lamb et al., 1998; Navon, 1981).  

The present study investigates this inconsistency by strengthening selective attention and 

seeing if this enhanced cognitive mechanism can overcome global precedence. 
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ATTENTION 

 

Attention is a finite mental resource that increases the quality of and focus on selected 

stimuli in the environment. A person’s intentions or each stimulus’ properties determine the 

distribution of attention. The visual system uses attention to increase perception (Hoffman, 1980; 

Carrasco & Barbot, 2014; Ward, 1982; Yeshurun & Carrasco, 1998). This system focuses 

attention in a region inside the visual field known as the attentional window; items outside of this 

window have a lower potential in attracting attention (Belopolsky et al., 2007; Belopolsky & 

Theeuwes, 2010; Notebaert et al., 2013; Theeuwes, 1991, 2004; Yantis & Jonides, 1990). This 

attentional window can enlarge or shrink in size to enable better visual processing (Belopolsky & 

Theeuwes, 2010; Notebaert et al., 2013).  

Attention can be utilized by both cognitive and non-cognitive mechanisms to perform 

tasks. In this paper, cognitive mechanisms are defined as goal- or task-driven mechanisms that 

allow a person to voluntarily control resource allocation and allocates resources based on a 

person’s intent. Cognitive mechanisms often allocate attention to goal-oriented tasks or targets 

(e.g., paying attention to a traffic light). This includes readjusting the attentional window and 

inhibiting the processing of irrelevant information (Belopolsky et al., 2007; Chun & Wolfe, 

2001; Eriksen & James, 1986; Eriksen & Yeh, 1985; Gaspelin & Luck, 2017; Neill, 1977; 

Notebaert et al., 2013; Verschooren et al., 2019). Non-cognitive mechanisms are mechanisms 

that are outside of a person’s control and often stimulus-driven; these mechanisms allocate 

resources based on stimulus properties such as size, color or shape regardless of a person’s 



 

3 

 

intent. When these mechanisms are in control, stimulus properties dictate resource allocation 

instead of tasks or goals. Non-cognitive mechanisms enable items inside the attentional window 

to capture attention (Gaspelin & Luck, 2017). One such example is involuntary attentional shifts 

between cars on the highway. This captured attention focuses (i.e., enlarge or shrink) the window 

as the visual system progressively encodes each item or feature. Saliency can influence this 

captured attention (Belopolsky et al., 2007; Gaspelin & Luck, 2017; Theeuwes, 1994). 

Saliency 

 For our purposes, saliency is broadly defined as an item’s ability to attract attention 

(Schubo, 2009) and initiates visual processing for that item based on the item’s features and non-

cognitive mechanisms. Saliency is a complex concept, and will be explained in relation to 

specific tasks in later sections. In general, an item’s salient properties can influence the strength 

and order of attentional allocation given to the item during attentional capture; a highly salient 

item will capture more attention than an item with low saliency (Belopolsky & Theeuwes, 2010; 

Gaspelin & Luck, 2017; Theeuwes, 1991, 1993, 1992, 1994). When control over resource 

allocation is not prioritized, saliency dictates the focusing of the attentional window such that the 

most salient item captures attention (Gaspelin & Luck, 2017; Theeuwes, 1992, 1994); this will 

involuntarily adjust the attentional window accordingly using non-cognitive mechanisms.  

 There are various different types of saliency that vary in strength. Saliency can be 

compared between categories (e.g., visual, auditory or semantics) as well as within a category. 

Semantic meaning can have stronger saliency than some visual perception features such as color 

(Stroop, 1935) and larger items have stronger saliency than smaller items (Simon et al., 2009; 

Sripati & Olsen, 2009). The former example compares saliency between two categories 

(semantic meaning vs. visual perception) while the latter compares saliency within one category 
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(size).1 Past studies have shown that selective attention can sometimes deploy cognitive control 

(i.e., control over resource allocation) to reorganize the processing order set by saliency (e.g., 

Bacon & Egeth, 1994; Dreisbach & Haider, 2008; Folk et al., 1992; Gaspelin & Luck, 2017). 

However, the setting for these occurrences and the limitations of selective attention have been 

debated amongst the attention literature.  

Selective Attention 

Selective attention is a cognitive mechanism that controls the deployment and focus of 

attention by directing attention to specific items and suppressing irrelevant information (see 

Driver, 2001 for review; Stevens & Bavelier, 2011). For example, the visual system may favor 

attending to highway signs when looking for the correct exit.  

A function of selective attention is allocating attention or reallocating captured attention 

to relevant targets or goals by manually shifting the attentional window between items 

(Belopolsky et al., 2007; Chun & Wolfe, 2001; Eriksen & James, 1986; Eriksen & Yeh, 1985; 

Notebaert et al., 2013; Verschooren et al., 2019). One example is searching for a target such as 

your car in a parking lot and shifting attention between cars with similar features. Selective 

attention can also focus the attentional window to details within an item (Wilkinson et al., 2001). 

During a visual search for your car, you may start with a car’s model type and then focus on the 

 
1 It is important to clarify that comparisons between and within categories are complex and 

hierarchical because multiple different categories can be embedded within one another. For 

example, comparison between red items and large items are comparisons within one category 

(visual perception). However, these features are also categorically different (color and size 

respectively) and comparisons can go further within each category (e.g., blue vs. red or large vs. 

small). This section is simply used to note some of the different ways that saliency can be 

compared. 
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license plates. Similarly, when looking for your friend’s flamingo-decorated house, you may 

start with the type of house and then proceed to look for flamingo decorations around the house.  

Selective attention also reduces the influence of salient irrelevant information (Kim & 

Cave, 1999; Verschooren et al., 2019) by either maintaining focus on goal-oriented tasks and 

targets (Reisenauer & Dreisbach, 2014) or inhibiting responses to irrelevant information (Neill, 

1977; Gaspelin & Luck, 2017). For example, you may direct your attention to looking for your 

custom license plate when searching for your car or ignore non-flamingo decorations to identify 

your friend’s house. However, selective attention’s efficiency depends on the level of saliency 

such that highly salient items require strong selective attention to reduce their influence (Bacon 

& Egeth, 1994; Folk et al., 1994; Theeuwes, 1992). Additionally, the intent to ignore an item can 

occasionally fail to prevent involuntary attentional attraction to that item (Remington et al., 

1992; Stoffer, 1994). In summary, selective attention can control attentional focus with its ability 

to shift, set or maintain a specific attentional window; but strong selective attention is needed to 

reduce the influence of highly salient items or features. Currently, a major portion of the 

attention literature is devoted to determining the limitations of selective attention’s abilities. This 

is especially true for selective attention’s ability to reduce the processing of salient irrelevant 

information.  

Attentional Focus 

Attentional focus is important; performance can improve when the visual system 

allocates attention to an item (e.g., faster processing; Eriksen & Yeh, 1985; Gaspelin & Luck, 

2017; Schneider & Shiffrin, 1977; better perception; Barbot & Carrasco, 2017; Barbot et al., 

2017; Carrasco & Barbot, 2014; Yeshurun & Carrasco, 1998). From this, attention is likely to be 

an important component in visual perception. There is an order in which the visual system 
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registers and processes items in the visual field (Navon, 1977, 1981) and the encoding speed for 

each item determines this order (Kinchla et al., 1983; Navon, 1981; Ward, 1982).  

Attentional feedback can occur during visual recognition or processing of items where 

this system allocates or reallocates attention to prioritized items (Ling et al., 2014). Attention can 

influence the recognition or perception for an item such that the deployment of attention, or 

additional attention, enhances the encoding speed for the attended item compared to the non-

attended item (Hoffman, 1980). The enhanced encoding speed leads to faster perception of - and 

responses to - the attended item (Hoffman, 1980). In short, attention facilitates the perception for 

an item which speeds up the item’s recognition and responses to these items compared to their 

non-attended or less attended counterparts. 
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GLOBAL PRECEDENCE 

 

One goal for visual perception research is determining the order of information 

processing. Gestalt psychology suggests that the visual system processes holistic information 

before more detailed information. Navon (1977) provides support for this idea by evaluating RTs 

to hierarchical letters (see Figure 1). Navon (1977)’s results show that objects can have at least 

two different and separate visual levels which the visual system perceives at different times. The 

findings show that the visual system encodes and perceives the features at the holistic or global 

level faster in time than the features at the detailed or local level. Additionally, Navon (1977) 

found that the global level can slow down or interfere with the encoding of the features at the 

local level. These effects have been termed global precedence. Based on his research with 

hierarchical letters, Navon (1977) argues that there is a hierarchical structure within visual 

objects as well as the visual representation of these objects.  

Structurally, these letters present two distinctly different levels for visual processing: 

global and local. The global level refers to the grouped or large letter and the smaller letters 

express the local level (Kimchi, 1992; Navon, 1977,1981). Principally, the global level has the 

broadly defined item created from grouping other, often smaller, items or details. The local level 

contains the individual items that create the larger or broadly defined item. Global precedence 

causes local letters to lose their individual properties and groups them together to create the 

global letter (Kimchi, 1992).  
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Studies have used hierarchical letters to show that the visual system forms the visual 

representation of these levels over time (e.g., Kinchla & Wolfe, 1979; Navon, 1977; Paquet & 

Merikle, 1988; Sripati & Olsen, 2009). It may be that the order of visual representation depends 

on the order of level perception (see figure 2); the visual representation of a hierarchical letter 

starts with the first perceived level’s features followed by the next perceived level’s features. 

This order of level perception depends on the time course of each level’s encoding process; 

shorter time courses lead to earlier encoding and perception of the level. Encoding speed 

determines the length of this time course. Therefore, the order of visual representation for a 

hierarchical letter ultimately depends on the encoding speed for each level. This order of visual 

representation for levels within a hierarchical letter is similar to the order of visual representation 

for items in the visual field; items that are prioritized (i.e., have faster encoding speeds) are 

visually represented before other, less prioritized, items.2  

Global precedence implies that baseline order of visual representation for hierarchical 

letters is biased. This bias is that the global level forms the initial visual representation of 

hierarchical letters, followed by the local level (Navon, 1977, 1981). 

Global precedence arises from two advantages for the global level during visual 

processing, global dominance and global interference. Global dominance is when the visual 

system perceives features at the global level before the features at the local level (Navon, 1977, 

1981), causing faster responses to the global level (Navon, 1977; Poirel et al., 2008). This may 

occur because features at the global level have faster encoding speeds than features at the local 

level. Global interference is an asymmetrical interference effect that occurs with letters that are 

 
2 It is important to note that the encoding for both levels occur concurrently. However, the visual 

system completes the encoding for the global level before the local level because the encoding 

speed for the global level is faster than the local level. 
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incongruent between levels (e.g., giant ‘A’ made from small ‘E’; Navon, 1977, 1981). This is a 

separate effect that depends on the relation between global and local levels and the ability to 

inhibit or promote one of the levels.  

When congruent (e.g., giant ‘A’ made from small ‘A’s), the two levels can facilitate the 

encoding of their counterpart level because there is no conflicting information to process 

(Hoffman, 1980).  For example, determining the presence of the letter ‘A’ at the local level is 

easier when the global level forms the letter ‘A’. However, incongruencies cause features at the 

global level to heavily interfere with the encoding of features at the local level (Hoffman, 1980; 

Navon, 1977; Poirel et al., 2008); the visual system must process and resolve conflicting 

information, reducing the ability to properly and quickly respond to the local level (Dreisbach & 

Haider, 2009; Hoffman, 1980). It is difficult to determine the presence of the letter ‘A’ at the 

local level when the global level forms the letter ‘E’. Contrastingly, features at the local level 

cause less interference with the encoding of features at the global level (Navon, 1977; Paquet & 

Merikle, 1988; Poirel et al., 2008). The identity of the local letter barely affects the difficulty of 

determining the presence of the letter ‘A’ at the global level. These two advantages (global 

dominance, global interference) arise from a biased order of visual processing where the visual 

recognition of item features is likely to favor and start at the global level and progress toward the 

local level. 
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Figure 1. Hierarchical letters. Congruent global “G” and local “G” (left), Incongruent global 

“G” and local “A” 

Figure 2. Theoretical model and visual representation of hierarchical letter processing. 

 Model of the time course for the encoding process of a hierarchical letter (A); Visual 

 representation of a hierarchical letter “G” over time (B).  
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GLOBAL PRECEDENCE AND ATTENTION 

 

The cause of global precedence remains unclear. However, one explanation that fits 

existing data is that the advantages for the global level exists due to its built-in superior saliency. 

The global level is a large item while the local level is a small detail (e.g., the global house vs. 

the local bricks); this size difference indicates that the global level has more salient features, 

especially for hierarchical letters (Navon, 1981; Sripati & Olsen, 2009).  More precisely, the 

global level generally has clearer and more optimal absolute size and visual angle than the local 

level (Kinchla & Wolfe, 1979). Therefore, acuity should be better for the global level than the 

local level. Furthermore, there is a disproportionate number of elements between the global and 

local levels. Inside a hierarchical letter, there are multiple local elements while there is only one 

global element. Although all the local letters in the hierarchical letter are identical, the local level 

is susceptible to crowding which makes it harder to perceive the local level (Whitney & Levi, 

2011). These differences in level feature give the global level inherent visual advantages over the 

local level. Local precedence can be manufactured by manipulating saliency (e.g., adjusting 

features such as clarity) to favor the local level (Mevorach et al., 2006; Weinbach & Henik, 

2014) but the global level frequently has more naturally occurring salient features for visual 

processing (see Kimchi, 1992 for review). This enables global precedence to occur more 

regularly than local precedence. Therefore, the global level often receives an advantage (e.g., 

faster or earlier encoding, asymmetrical interference) during visual processing.  
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Encoding Speed 

Interestingly, encoding speeds for the global and local levels are equal when attentional 

influences are minimized (Hoffman, 1980). Hoffman (1980) utilized a method where participants 

searched for targets in one of three possible conditions: global, local, or either level. The either 

level conditions created divided attention and Hoffman (1980) found that participants are equally 

fast at locating the target at either level in this condition. For incongruent stimuli conditions, 

responses were faster in the specific level focus conditions (both global and local) than in the 

divided attention condition. 

Studies have also shown that visual processing for each level start at the same time and 

occurs in parallel (e.g., Miller, 1981; Shedden & Reid, 2001). Therefore, it is possible that Navon 

and others’ observation of saliency’s advantage for the global level requires attentional 

allocation.  

Saliency and Attention 

In a feedback loop, the strong saliency of the global level captures and allocates more 

attention to the global level than the local level through the use of non-cognitive mechanisms. 

This captured attention increases the encoding speed for the global level more than the encoding 

speed for the local level (Hoffman, 1980). In doing so, the captured attention directly enhances 

the perception of the features at the global level. Therefore, one potential explanation for global 

precedence is that saliency captures more attention for the global level thereby providing this 

level an attentional advantage. Thus, the order of visual processing occurs from the most salient 

(i.e., global) level down to the least salient (i.e., local) level.  

The present view is that saliency itself may not directly increase encoding speeds but 

saliency can be a driving component for an item to capture attention. During scene or item 
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recognition, an unbiased baseline visual processing has equal encoding speeds and encoding time 

courses for all items in the visual field (Hoffman, 1980). However, an attentional feedback 

occurs where attention is allocated to items in the attentional window thereby boosting the 

encoding speed for each item. One possibility is that, saliency affects this feedback, here forth 

known as the saliency-feedback hypothesis. An item’s salient property captures and allocates 

involuntary attention to that item.  

Global precedence coincides with this notion. Because the salient global level captures 

more attention than the local level, the visual system encodes the global level faster than the 

local level and causes an earlier or faster visual representation of the global level (global 

dominance). With an incongruent global level, saliency attracts attention to process conflicting 

information which can disrupt the ability to process and respond to the local level (global 

interference).3 Therefore, saliency provides captured attention for the global level. Global 

precedence is likely to occur directly from the attention given to the global level; but the global 

level’s superior saliency is responsible for this captured attention. 

  

 
3 It is currently debated whether interference occurs during encoding, decision-making or 

response processes. Our current designs do not look at which process causes interference and 

therefore provide limited information in identifying when interference occurs. 
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CURRENT RESEARCH 

 

The importance of global precedence research is its exploration of visual perception with 

objects that have multiple visual levels.  

A critical issue is the extent to which voluntary attentional control (i.e., selective 

attention) can affect visual perception and global precedence. As previously discussed, voluntary 

attentional control can weaken the influence of salient properties (Kim & Cave, 1999; 

Verschooren et al., 2019), but some strong salient items or features can overrule attentional 

control (Theeuwes, 2004). Thus, the question becomes whether cognitive mechanisms such as 

selective attention are strong enough to overcome the global level’s salient features or if the 

global level is too salient to overcome with attentional control.  

Currently, the answer remains unclear. Some studies have found that global precedence 

can occur even with cognitive mechanisms directing attention to the local level (e.g., Navon, 

1977; Paquet & Merikle, 1988) and have argued that selective attention has minimal influence on 

global precedence (e.g., Hubner, 2000; Lamb et al., 1998). Other studies have found that 

cognitive mechanisms can mitigate global precedence (e.g., Hoffman, 1980; Kinchla et al., 1983; 

Ward, 1982). Global precedence literature uses repeated exposure tactics to explore this issue 

(Hubner, 2000; Lamb et al., 1998; Ward, 1982). 
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REPEATED EXPOSURE 

 

Repeated exposure tactics can involve sequential presentations of similar items (e.g., a 

picture of a car followed by another picture of a car). Global precedence research utilizes 

repeated exposure tactics by presenting hierarchical letters sequentially (Hubner, 2000; Lamb et 

al., 1998; Ward, 1982). Ward (1982) found that these tactics can reduce global precedence for 

subsequent hierarchical letters when the target is repeatedly shown at one level. Results provide 

evidence that shrinking the attentional window to the local level reduces the global level’s 

saliency for subsequent hierarchical letters. However, saliency still influences the perception and 

hierarchical structure of the first item. If the global level is the most salient level, the visual 

system will attend and process the features at the global level before the features at the local 

level for the first stimulus; the visual system then focuses on the last attended level (i.e., local 

level) for the following stimulus unless otherwise directed (Ward, 1982).  

Repeated exposure tactics show that previous exposures can influence subsequent 

exposures (Hubner, 2000; Lamb et al., 1998; Ward, 1982). This is known as the level-readiness 

effect or level-repetition effect within the global precedence literature (Lamb et al., 1998; Ward, 

1982). The level-repetition effect lessens global precedence during attempts to process features 

at the local level (Hubner, 2000; Lamb et al., 1998; Ward, 1982). Previous exposures adjust the 

attentional window for attentional allocation and reduces saliency. An important assumption of 

this explanation is that previous exposures prepare the visual system by presetting the attentional 

window for following exposures. However, it is currently unknown whether cognitive 
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mechanisms (i.e., selective attention) or non-cognitive mechanisms are producing the level-

repetition effect (Hubner, 2000; Lamb et al., 1998; Ward, 1982).  Lamb et al. (1998) uses the 

repeated exposure tactic to address this issue. 
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LAMB ET AL. (1998) 

 

Lamb et al. (1998) proposed the mechanism-activation hypothesis as a possible account 

of the level-repetition effect instead of cognitive mechanisms. The mechanism-activation 

hypothesis states that the visual representation of a specific level activates the respective level-

specific neural mechanism (Lamb et al., 1998). The recently activated mechanisms facilitate the 

visual representation of the following item or feature. Lamb et al. (1998) suggests that the 

mechanism-activation hypothesis is consistent with the idea that non-cognitive mechanisms are 

the cause for the level-repetition effect (see Lamb et al., 1998 for more detail). 

Lamb et al. (1998)’s design involved participants identifying which target (H or S) was 

presented at a specified level in a stimulus. Lamb et al. (1998) used repeated exposure tactics and 

manipulated the predictability of which level would contain the target. Predictability tests 

whether cognitive or non-cognitive mechanisms are utilized during repeated exposures to 

produce the level-repetition effect. To do this, Lamb et al. (1998) created three different blocks 

of trials: random, alternating and constant. Each block had sixty-four trials. For the random 

block, the target level varied randomly and participants did not know which level contained the 

target, reducing the predictability of the target level. In doing so, participants could not 

voluntarily “preset” their attention to either level for visual advantages.  

In the alternating blocks, participants knew that the target would alternate between levels 

(e.g., target would be at the global level for the first stimulus and then the local level in the next 

stimulus), producing a high predictability. This block allowed participants to voluntarily preset 
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their attentional window using selective attention while preventing the activation of level-

specific neural mechanisms to influence results.  

The constant blocks had participants know that the target level remained the same 

throughout the entire block (e.g., target is always at the local level), producing a high 

predictability of the target level comparable to the alternating block. This allowed for an 

advantage for the directed level, similar to past repeated exposure studies (e.g., Ward, 1982).  

Results showed that the alternating condition had the slowest performance. Participants 

performed no better and sometimes worse in this condition than the random condition despite 

knowing where to set their attentional window.4 Participants could preset their attention and 

shrink or widen the attentional window as needed; however, selective attention failed to 

effectively preset the attentional window, leading to slower responses. Contrastingly, the 

constant condition had the fastest performance. The main difference between these two 

conditions is that the constant condition allowed for the non-cognitive activation of level-specific 

mechanisms while the alternating condition did not. Although selective attention may have been 

utilized in both conditions, only the constant condition showed the level-repetition effect. This 

performance difference between the two conditions supports the mechanism-activation 

hypothesis. From these results, Lamb et al. (1998) proposes that the activation of level-specific 

mechanisms is likely to be the cause of the level-repetition effect instead of selective attention 

 
4 Lamb et al. (1998) also looked at the random condition data after collapsing it into two 

categories; Rr (random-repeating) contained performance data from random trials that had 

targets presented at the same level as the previous trial, and Rc (random-changed) contained 

performance data from trials that had targets presented at a different level from the previous trial. 

Performance for Rr was reliably faster than performance for Rc. 
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presetting the attentional window. This provides support that cognitive mechanisms have little 

influence on reducing global precedence for hierarchical letters. 

Lamb et al. (1998) performed a second experiment to examine if the level-repetition 

effect increased gradually with each consecutive repetition. This experiment was similar to the 

first but each block had eight trials and RTs were examined for each trial within the block. 

Interestingly, results showed that the level-repetition effect increased (i.e., faster RTs) with each 

consecutive repetition for both globally focused and locally focused blocks. 
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FACTORS INVOLVED WITH SELECTIVE ATTENTION 

 

Lamb et al. (1998) concluded that presetting the attentional window – with selective 

attention - has little to no effect on visual perception for hierarchical letters. However, there are 

several variables that need to be addressed before making this claim. For one, Lamb et al. 

(1998)’s design may not entirely measure selective attention’s influence on global precedence. 

Lamb and colleagues make their claim from the differences in RTs between the alternating and 

constant condition. However, Lamb et al. (1998)’s result section did not show an interaction 

between the focused level (global, local) and the block types (random, constant, alternating). 

This indicates that level focus is not responsible for the performance differences between the 

constant and alternating conditions. Presetting to a level may have been difficult regardless of 

level focus. Therefore, this design does not effectively portray selective attention’s influence on 

global precedence. From this, it would be reasonable to conclude that Lamb et al. (1998)’s 

design may have only examined selective attention’s ability to adjust the attentional window 

between the current level and the previously exposed level.  

Additionally, closer examination is warranted of the factors involved with the level-

repetition effect and selective attention’s influence on visual perception for hierarchical letters. 

Lamb et al. (1998)’s claim requires the assumption that selective attention causes level-repetition 

only from presetting the attentional window. However, selective attention also reduces the 

influence of irrelevant information.  
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Lamb and colleague’s method may fail to address this function of selective attention. The 

alternating condition requires multiple attentional presetting throughout the condition while the 

constant condition enables strengthened attentional focus at one level throughout the condition. 

Switching between tasks can reduce performance. This decrease in performance due to task 

switching is known as switching costs (Dreisbach & Haider, 2008; Monsell, 2003). The 

alternating condition is similar to task switching; participants must shift their attention and 

reorient themselves to a different feature. Hence, the constant condition allows for attention to 

become better set to a level while the alternating condition requires selective attention to rapidly 

and continuously change focus - never becoming set to one level (Monsell, 2003). It could be 

that repeating a level strengthens selective attention, increasing the ability to reduce the influence 

of irrelevant information (Reisenauer & Dreisbach, 2014).5 In other words, the constant 

condition strengthens selective attention while the alternating condition does not (Dreisbach, 

2012); Strengthening selective attention is necessary to maintain focus on the task-relevant level 

and inhibit the processing of irrelevant information (Dreisbach & Haider, 2009). Task shielding 

literature provides further evidence for this idea. 

  

 
5 Moreover, continually shifting the attentional window may be fatiguing and dampen selective 

attention’s effectiveness. 
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TASK SHIELDING 

 

Task shielding is an effect that can be defined as enhanced attention to relevant 

information or reduction of influence from irrelevant information (Dreisbach, 2012). This effect 

is thought to occur through participants using cognitive mechanisms to better filter relevancy. 

Numerous studies look at developing task shielding or the ability to separate different tasks or 

features (e.g., Dreisbach & Haider, 2008; Reisenauer & Dreisbach, 2014). A fundamental 

principle of task shielding methods is the implementation of task sets. Tasks sets or rules are 

defined as cognitively represented rules used to distinguish relevance in a given stimulus 

(Dreisbach & Haider, 2008). Selective attention uses these rules to maintain focus on relevant 

information or inhibit the processing of irrelevant information.  

Task shielding research focuses on comparing selective attention’s ability to reduce 

influence from irrelevant information between task switching and task repetition; this is done by 

looking at different tasks for one stimulus type (e.g., Dreisbach & Haider, 2008; Reisenauer & 

Dreisbach, 2014). Specifically, task shielding research uses Stroop-like interference to assess 

how shielding affects selective attention.  

Stroop-like Interference and Task Shielding 

Stroop-like interference is an asymmetrical interference that occurs from encoding and 

responding to two separate features of an item (e.g., the meaning of a word interferes with the 

encoding of the color of the word; Stroop, 1935). Saliency is an important aspect of Stroop-like 

interference; encoding order is dependent on each item feature’s saliency (i.e., ability to attract 
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attention) and occurs using non-cognitive mechanisms. Stroop-like interference arises when 

participants are tasked with identifying one feature in a stimulus. For example, if the word 

“black” is written in the color “blue”, the meaning of the word “black” interferes when the task is 

to attend to the color of the word “blue”. However, the color of the word has little effect when 

the task is to attend to the meaning of the word. In short, the main characteristic of Stroop-like 

interference is that a salient feature - the meaning of a word - interferes with the processing of, 

and response to a different, less salient, feature - color of the word. This characteristic is also 

fundamental for global interference such that the global level interferes with the processing of 

the local level.  

Task shielding methods are known to reduce Stroop-like interference by strengthening 

selective attention (i.e., increase selective attention’s ability to focus and filter relevancy). In 

other words, task shielding allows for participants to become more familiar with or better utilize 

task rules and effectively filter relevant information. These methods often involve tasks where 

selective attention is used to focus on a task or inhibit the responses to irrelevant tasks or 

information. For example, tasks may have participants attend either to the color or meaning of 

the word. Afterwards, participants view a series of different words in different colors and must 

respond according to the given task. This method forces participants to stay attentive to the task 

and also reduces the influence of the irrelevant task or information (Dreisbach & Haider, 2009). 

Dreisbach & Haider (2008) proposes that increase in task-rule activation is the cause for task 

shielding. Selective attention activates these rules to distinguish relevance. With enough 

exposures or practice, selective attention becomes stronger which strengthens the activation of 

these task-rules. This increases attention to relevant information and shielding against irrelevant 

information when directed to a task, especially when the same task is repeated (Dreisbach, 2012; 
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Dreisbach & Haider, 2008, 2009; Dreisbach & Wenke, 2011). In short, RTs improve when tasks 

are repeated because repetition strengthens selective attention’s focus to these tasks.   

 By examining Stroop-like interference with task shielding, studies found that selective 

attention can be fluid in its strength and efficiency. Specifically, task shielding literature presents 

evidence that task repetitions can strengthen selective attention and reduce the influence of 

irrelevant information.  Importantly, Stroop-like interference is an asymmetrical interference that 

closely resembles global interference. Both types of interference rely on saliency and attentional 

capture. Therefore, it may be worth investigating whether task shielding is also possible for 

hierarchical stimuli (i.e., global precedence) and responsible for the level-repetition effect. 

Lamb et al. (1998) and Task Shielding 

Lamb et al. (1998)’s design is similar to task shielding methods. The alternating and 

constant conditions are parallel to the task switching and task repetition conditions respectively. 

The alternating and task switching conditions require the ability to switch focus to different 

information while the constant and task repetition conditions require the ability to maintain focus 

on repeated information. Lamb and colleagues present rules in their design by having 

participants focus on particular levels. This is similar to the rules in task shielding studies 

(Dreisbach & Haider, 2008; Reisenauer & Dreisbach, 2014). Therefore, selective attention is 

likely to be involved in both the alternating and constant conditions. The mechanism-activation 

hypothesis is also similar to the task-rule activation hypothesis. Both hypotheses claim that tasks 

or stimuli activate some mechanism; this mechanism strengthens when repeated. Lamb et al. 

(1998) interprets their results based on the mechanism-activation hypothesis but their design is 

also similar to task shielding methods.  
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In summary, Lamb et al. (1988) posits that non-cognitive mechanisms are responsible for 

level-repetition effect. However, an alternative explanation for Lamb et al. (1998)’s results could 

be that cognitive mechanisms are producing and increasing task shielding. Faster responses in 

the constant conditions may be due to stronger selective attention producing task shielding. The 

stronger selective attention increases focus to the constantly repeated level by providing 

additional attention allocation to that level or better inhibition of processing irrelevant 

information. This increases the encoding speeds for relevant information or reduces the amount 

of attention captured by irrelevant information. In doing so, relevant information is encoded 

earlier or interference is lessened from slowing down the processing of the irrelevant 

information. In short, consecutive task repetitions strengthen selective attention which increases 

focus to relevant information; this decreases interference from irrelevant information. 

Stroop-like interference vs. Global interference 

 The limits and functionality of selective attention have been tested with a variety of 

different effects including Stroop-like interference (e.g., Dreisbach & Haider, 2008, 2009; 

Dreisbach & Wenke, 2011; Reisenauer & Dreisbach, 2014) and global precedence (e.g., 

Hoffman, 1980; Paquet & Merikle, 1988). 

Stroop-like interference occurs from saliency differences between features (meaning vs. 

color) that are within the same item but between different processing categories (semantic 

meaning vs. visual perception). Strengthening selective attention with task shielding can reduce 

Stroop-like interference (Reisnauer & Dreisbach, 2014). But this reduction only applies to 

weakening the influence of irrelevant information when two item features are from significantly 

different categories. Unlike Stroop-like interference, global interference occurs from saliency 

differences between features (large vs. small) that reside within the same item, feature category 
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(size) and processing category (visual perception). In other words, global interference occurs 

from feature comparisons that are within a niche category unlike Stroop-like interference. 

Differentiating nuances between two categories is easier than within one category 

(Jonides & Gleitman, 1972). The difference in feature comparisons between Stroop-like 

interference and global interference could influence task shielding’s effectiveness (Reisenauer & 

Dreisbach, 2014). Compared to Stroop-like interference, global interference requires a more 

difficult or careful filtration of irrelevant information (i.e., a more selective focus). Therefore, it 

is currently unknown whether task shielding methods affect global precedence and are 

responsible for the level-repetition effect seen in Lamb et al. (1998). 
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OVERVIEW 

 

Lamb et al. (1998) show that presetting attention does not alter the order of encoding set 

by saliency in hierarchical letter processing; Lamb and colleagues interpret their results as 

support for the mechanism-activation hypothesis and conclude that non-cognitive mechanisms 

are responsible for the level-repetition effect on global precedence. However, it is unclear if 

Lamb et al. (1998)’s methods fully examine selective attention. This is because the methods in 

Lamb et al. (1998)’s studies do not measure selective attention’s ability to inhibit the processing 

of irrelevant information (i.e., the interference effects between the two levels throughout the 

block or run). Because Lamb et al. (1998)’s methods are similar to task shielding methods, this 

inability to measure selective attention’s inhibitory features limits Lamb et al. (1998)’s claims.  

Our paradigm assigns tasks on situations and stimuli that exhibit global precedence. The 

stimuli and tasks in our paradigm differ based on focus level and relevant information. This 

requires participants to be task-driven and use selective attention to distinguish relevancy. These 

methods allow us to observe selective attention’s ability to inhibit the processing of irrelevant 

information within a specific category. Because strengthening selective attention enhances the 

ability to mitigate saliency’s influence, participants should become better at maintaining 

attention to the target level or inhibiting processing of the irrelevant level with each 

consecutively repeated exposure. This would provide evidence that selective attention’s ability to 

suppress or focus on information is possible between features within niche categories and 

somewhat responsible for the level-repetition effect.  
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Following our experiments, we fit our data to models and perform model fit comparisons 

similar to those used in Logan (1988). This is done to further explore our data and apply Logan’s 

instance theory of automatization to our data. Specifically, we perform these model fits and 

comparisons to examine if participants are learning from previous exposures. 

Experiment 1 

Task shielding may be key to understanding selective attention’s relationship with global 

precedence. Our studies use a design similar to Lamb et al. (1998)’s constant condition in their 

second experiment but we manipulate congruency and look at how interference from incongruent 

information changes over multiple consecutive repeated tasks. In doing so, we reexamine Lamb 

et al. (1998)’s claim and look at whether task shielding is possible for hierarchical letters and an 

alternative explanation for Lamb et al. (1998)’s results. 

 Our tasks used stimuli with the target consistently present at the relevant level while the 

irrelevant level changed between congruent and incongruent information at specific trials. 

Reduction in interference from incongruent information would indicate that selective attention is 

being enhanced. This would show that Lamb et al. (1998)’s constant condition used some form 

of selective attention. More importantly, if global precedence is affected by selective attention, 

then strengthening this attention should reduce global interference. Reduction in global 

interference would provide evidence that selective attention can influence global precedence. 

Experiment 1 provides preliminary data on these ideas.6 

 

 

 
6 A second study (experiment 3) was also conducted. Experiment 1 is an improved design of 

experiment 3; therefore, experiment 3 is mainly referenced and reported in Appendix A. 
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Participants 

Experiment 1 had a total of 37 participants. Participants were recruited from the 

University of South Florida SONA pool and ran in IRB-approved protocol. Participants received 

extra credit for their participation. Seven participants in experiment 1 were removed due to high 

proportion of errors. Therefore, we analyzed the data of thirty participants. 

Stimuli 

There was a total of five different letters (A, E, G, K, U) used for the hierarchical letters 

at both the global and local levels with six different font styles for each letter. Each font style 

was chosen based on the differentiating quality of the letters compared to the other font styles. 

The same six font styles were used for all the letters.7 The stimulus bank consisted of 150 unique 

hierarchical items (Global letter x local letter x font style). These hierarchical items have similar 

conditions and properties (e.g., visual angle, number of elements, etc.) as past studies (e.g., 

Kinchla & Wolfe, 1979; Lamb et al., 1998; Poirel et al., 2008; Ward, 1982) to ensure global 

advantages with the stimuli (see Figure 1). Each global letter is created from 40 identical local 

letters. The local letters have a slight variation of vertical visual angles between the letter ranging 

from .5 to .8 degrees and the global letter have a slight variation of vertical visual angles between 

the letters ranging from 7 to 9 degrees. 

Design and Task 

The experiment was organized by runs. Each run was a series of seven trials that 

participants completed without a break period. The task for each trial was to search a given 

stimulus and identify if a target letter was present. The critical manipulations involved the trial 

 
7 Fonts used: Biz UDPmincho medium, Cambria, Lucida Calligraphy, Rockwell, MV Boli, and 

Courier New. 
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number within runs.  Each trial is identified by their sequential order in a run, otherwise known 

as ‘position’ (e.g., the first trial is position one, the second trial is position two…the last trial is 

position seven). Most trials had a congruent stimulus; the focused and irrelevant levels both 

contained the target letter. But we manipulated congruency for trials at position two and six (see 

figure 5); these trials contained either congruent or incongruent stimuli. An incongruent stimulus 

had the target letter in the focused level while the irrelevant level contained a non-target letter. 

None of the stimuli were presented twice in a run before the critical position 

In the beginning of each run, participants were directed to a level (global or local) and 

given a target letter (A, E, G, K, U). Then participants were presented with a hierarchical letter 

and required to respond accordingly (i.e., “yes” or “no”). RT (msec) to correctly respond to the 

presence of the target was used to measure participants’ performances along with accuracy on 

detecting the presence or absence of the target. Every participant completed 10 practice runs and 

180 experimental runs which were broken down into a total of 1,330 trials. Practice runs were 

used to get participants familiarized with the stimuli, instructions and procedure as well as 

exposure to each condition and target letter. 

The primary concern for experiment 1 was the amount of interference on trials within 

globally focused and locally focused runs. This was assessed by the RT difference between the 

congruent stimulus and the incongruent stimulus at a given position (two or six). 

We planned six comparisons to assessed whether multiple repeated exposures would 

reduce interference from the irrelevant level. Four of our comparisons looked at interference 

effects at position two and six for globally focused and locally focused runs. The remaining two 

comparisons looked at the difference in interference effects between position two and six for the 

two focused level conditions (e.g., the change in interference from position two to position six 
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for locally focused conditions). If Lamb and colleagues are correct, there should be little to no 

difference in interference between positions two and six for either focused level conditions. 

However, if selective attention is a factor, then multiple repeated exposures should increase task 

shielding and reduce interference for both focused level conditions. In other words, the 

difference in RTs between congruent and incongruent stimulus at position six should be smaller 

than this difference at position two. 

Experiment 1 was a 2 (Focused level; global or local) x 3 (Run type; all congruent, 

incongruent at two or incongruent at six) within subject designs. There were six different type of 

runs (Focused level; 2 x Run type; 3). Each participant saw every type of run twenty times. 

Additionally, there were filler runs to create noise or uncertainty of target presence in the task.8 

Procedure 

Participants sat in front of a 24 in. LCD Macintosh computer screen and pressed keys 

(“P” for “yes” and “Q” for “no”) on a keyboard throughout each study. Participants could adjust 

the height of the chair but the distance between the chair and the monitor remained fixed. 

Researchers instructed participants to seat themselves comfortably with their back to the chair 

and remain in that position throughout the experiment. Participants could move the mouse and 

keyboard to desired positions. Participants pressed the [spacebar] key to progress through 

instructional and break periods. The experiment provided two instruction pages before the start 

of the practice sessions. These instruction pages gave a brief description of hierarchical letters, 

the objective and procedure of a trial (see figure 3). A run began by initially assigning a target 

letter to locate at a specified level (e.g., large A); participants voluntarily proceeded through 

 
8 There were sixty filler run (33% of total experimental runs) which randomized and presented 

the critical position multiple times in the run or not at all. 
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these pages at their own pace similar to the instruction pages. Afterwards, the run progressed 

automatically with required responses after each stimulus presentation until the end of the run. 

Inside every trial, participants were presented a blank screen for 150 msec, followed by a 

fixation cross for 150 msec, and then another blank screen for 150 msec. Then, a hierarchical 

letter appeared for 150 msec which was followed by a blank screen until a response was made.9 

After each response, there was a 500 msec wait period before the start of the next trial (see figure 

4). If participants did not respond in 2000 msec after the stimulus presentation, a buzzer noise 

played to indicate a ‘timed out’ response and the next trial commenced.10 

 

  

 
9 Stimulus duration was 200 msec for the first ten trials of the practice block to familiarized 

participants with brief presentations.  

10 In the practice trials, participants received unique feedback to indicate correct, incorrect and 

timed-out responses. In the experimental trials, participants did not receive any feedback apart 

from the timed-out responses. 

Figure 3. Instruction slides. Description of hierarchical letters (A), description of design and 

 task (B) 
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Results 

We used mean RT (msec) as the primary dependent variable for analysis and 

participants’ accuracy as a secondary measure. Before analyzing RTs, we removed incorrect and 

timed out responses. No outliers were taken out due to the 2000 msec cutoff in the experiment. 

The resulting RTs were averaged by condition for each participant. There were roughly twenty 

observations in every condition per participant. The final number of observations per participant 

were divided by the total number of observations (n = 20) and aggregated to obtain overall 

accuracy rates (see figure 7). We used dependent sample t-tests to analyze all the planned 

comparisons. Congruent or baseline runs show a general logarithmic decrease in RTs throughout 

a run for both globally focused and locally focused conditions. In our graph, black lines represent 

this condition (see figure 6).  

 

Figure 4. Trial procedure of paradigm. Breakdown of one trial and run.  
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Figure 5. Example of runs within Experiment 1. This shows example sequences of critical 

 stimuli presented in a run. Globally focused run with incongruent stimuli at position 

 six (A); Locally focused run with incongruent stimuli at position two (B); Locally 

 focused run with congruent stimuli throughout the run (C). 
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Locally Focused Runs. Relative to baseline, position two had significantly elevated RTs 

(i.e., slower responses) with an incongruent stimulus (Mean difference = 34, SE = 9.34); t(29) = 

3.64, p = .001, Cohen’s d = .66. Position six also had significantly elevated RTs with an 

incongruent stimulus (Mean difference = 25, SE = 8.57); t(29) = 2.86, p = .008, Cohen’s d = .52. 

There was no significant decrease in interference effects from position two to position six (Mean 

difference = 9, SE = 9.39); t(29) = 1.00, p = .32, Cohen’s d = .18.  

Globally Focused Runs. Relative to baseline, position two had significantly elevated 

RTs with an incongruent stimulus. (Mean difference = 28, SE = 7.84); t(29) = 3.59, p = .001, 

Cohen’s d = .66. Position six did not have a significant elevation in RTs with an incongruent 

stimulus (Mean difference = -4 SE = 8.00); t(29) = .50, p = .62, Cohen’s d = -.09. Lastly, there 

was a significant decrease in interference effects from position two to position six (Mean 

difference = 32, SE = 12.33); t(29) = 2.61, p = .01, Cohen’s d = .48.  

Trimmed Data. To ensure that our results were not compromised by left-skewed RTs, 

we trimmed RTs below 50 msec – under 4% of correct responses - and reanalyzed our data.11 

Only the reduction of interference effects from position two to position six changed between the 

two data sets. This reduction did not reliably decrease but became unreliable with the trimmed 

data. However, we speculate that this loss of reliability arises from the study becoming 

underpowered from trimming the data. Future studies will address this potential issue. 

Discussion 

For both globally focused and locally focused runs, results show that presenting an 

incongruent stimulus at position two increased RTs (i.e., local and global interference, 

respectively). By position six, this interference effect only occurred for locally focused runs. For 

 
11 Trimmed data for experiment 1, 2 and model fit comparisons are listed in Appendix B 
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globally focused runs, one interpretation is that the local level managed to capture some attention 

at position two because participants are still new to the task (i.e., level focus and target), leading 

to some local interference. By position six, participants became better at focusing on the global 

level and inhibiting local level processing (i.e., strengthened selective attention; Dreisbach & 

Haider, 2008) thereby reducing local interference. Contrastingly, for locally focused runs, task 

repetition was unable to reduce global interference or the amount of attention captured by the 

global level. Therefore, one conclusion is that tasking participants to attend to one level and 

consecutively presenting congruent stimuli in a run can reduce interference when searching the 

global level but not when searching the local level. This supports Lamb et al. (1998)’s claims; 

cognitive mechanisms (e.g., selective attention) are unable to reduce global precedence. 

However, there are some issues that may prevent task shielding from efficiently 

improving selective attention, especially for locally focused runs. The key issue is the study 

design. The runs in the design present a consecutive series of congruent stimuli until the critical 

position, which presents an incongruent stimulus. Participants continually search for the same 

target letter in a single run. Therefore, participants are seeing the same general shape throughout 

a run until the critical position in the observed conditions. The critical position shows an 

incongruent stimulus which is different from the previous stimuli in terms of shape. Because the 

global level has stronger saliency, changes in the global shape would have a stronger visual 

impact than changes in the local shape; this could limit task shielding’s ability to strengthen 

selective attention for the locally focused conditions. After repeated exposures of similar shaped 

congruent stimuli, the sudden presentation of a differently shaped stimuli can produce an abrupt 

change. This can be problematic as abrupt changes can disrupt focus and capture attention 

(Krumhansel, 1982). The abrupt change in global structure could focus attention to the changed 
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feature while also jarring participants. Originally, our study used different font styles to address 

this issue. We provided various font styles for each letter and stimulus presentation to increase 

variation in stimulus shape and prevent participants from perceiving the same object for each 

congruent stimulus throughout a run, However, simply changing font styles may not add enough 

variation to accomplish this goal. This may be a potential explanation to the continued 

interference effect for the locally focused conditions. Locally focused runs had reduced shielding 

effects because selective attention had to refocus attention to the target level when participants 

were presented with an incongruent stimulus.  

Another potential problem with this design is the constant presence of congruent 

information at the irrelevant level. An alternative explanation for our results may be that 

presenting a congruent stimulus (i.e., target at the irrelevant level) prevents participants from 

focusing on task rules and reduces the need to develop shielding of the irrelevant level for 

subsequent positions. Specifically, when presented with a congruent stimulus, participants may 

fail to inhibit the processing of the irrelevant level. This is because congruent stimuli facilitate 

performance (Hoffman, 1980). Furthermore, inhibition requires spending limited attentional 

resources (Engle et al., 1995); therefore, participants may not allocate limited resources to inhibit 

information processing that facilitates performance. This congruence effect may adversely affect 

locally focused runs more than globally focused runs. For globally focused runs, participants 

attend to both the global and local levels at the start of a run, but eventually adhere to task rules 

because local level processing is unnecessary due to baseline (i.e., global to local) order of 

hierarchical letter processing. For locally focused runs, participants start a run similar to globally 

focused runs but do not adhere to task rules and fail to inhibit global level processing because the 

global level facilitates local level processing. Accordingly, participants attend to the global level 
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and never learn to ignore this level; when presented with an incongruent stimulus, participants 

are unable to inhibit global level processing because efficient task shielding did not develop. The 

purpose of the consecutive repeated task exposure is providing additional time to set selective 

attention and develop shielding of the irrelevant level. By providing a congruent stimulus, 

participants may not develop efficient task shielding of the irrelevant global level for locally 

focused runs. Therefore, this design may not allow participants to properly utilize the repeated 

task exposures. The following study will address this potential issue. 

 

 

Figure 6. RT results from Experiment 1. Highlighted data points represent concerned or 

 examined observations; black lines represent congruent runs; error bars represent 

 within subject standard errors.5 
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Experiment 2 

This experiment reverses the design of experiment 1 by altering the runs while using the 

same stimuli, task and procedure. This design repeatedly presents incongruent stimuli in a run 

with a congruent stimulus at the critical positions (see figure 9) instead of repeatedly presenting 

congruent stimuli and then an incongruent stimulus at the critical positions (see figure 5). This 

change in the design addresses the potential issues in experiment 1. The locally focused or 

globally focused runs show a variety of different global or local shapes respectively and enables 

participants to become accustomed to sudden shape changes. Additionally, participants learn to 

ignore the irrelevant level, strengthening selective attention’s focus on the relevant level or 

Figure 7.  Accuracy rate results. (A) Average percentage of accuracy rates per participant 

 after removing incorrect or timed out responses in experiment 1. (B) Average 

 percentage of accuracy rates per participant after removing incorrect or timed out 

 responses in experiment 2.  
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inhibition of the irrelevant level. Lastly, this design looks at dampened facilitating effects rather 

than interference effects. If the influence of irrelevant level decreases, then both facilitating and 

interfering aspects of the irrelevant level should be reduced.  

Participants 

Experiment 2 had a total of 23 participants. Participants were recruited from the 

University of South Florida SONA pool and ran in IRB-approved protocol. Participants received 

extra credit for their participation. Three participants in experiment 2 were removed due to high 

proportion of errors. Therefore, we analyzed the data of twenty participants. 

Results 

For experiment 2, results were analyzed in a similar manner as experiment 1.12 

Incongruent or baseline runs show a general logarithmic decrease in RTs throughout a run for 

both globally focused and locally focused conditions. In our graph, black lines represent this 

condition (see figure 8).  

Locally Focused Runs. Relative to baseline, position two had significantly lower RTs 

(i.e., faster responses) with a congruent stimulus (Mean difference = 22, SE = 9.85); t(19) = 2.26, 

p = .04, Cohen’s d = .51. Position six did not have significantly lower RTs with a congruent 

stimulus (Mean difference = 14, SE = 10.1); t(19) = 1.41, p = .17, Cohen’s d = .32. There was no 

significant decrease in facilitation effects from position two to position six (Mean difference = 8, 

SE = 10.9); t(19) = .64, p = .47, Cohen’s d = .17.  

 
12 It is worth noting that, for the purposes of this master’s defense, this experiment was analyzed 

with half the desired number of participants (n = 40). Therefore, these analyses are preliminary 

and underpowered.  
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Globally Focused Runs. Relative to baseline, RTs were not significantly lower with a 

congruent stimulus at position two (Mean difference = 10, SE = 8.1); t(19) = 1.19, p = .25, 

Cohen’s d = .27, or position six (Mean difference = 5, SE = 8.1); t(19) = .64, p = .53, Cohen’s d 

= .14. There was also no significant decrease in facilitation effects from position two to position 

six (Mean difference = 4.5, SE = 10.17); t(19) = .44, p = .66, Cohen’s d = .10. 

Trimmed Data. Similar to experiment 1, we looked at the differences between trimmed 

data (under 4% of correct responses) and untrimmed data. No differences were found. 

Discussion 

Results from experiment 2 differed from experiment 1. For globally focused runs, a 

congruent stimulus provided no facilitation effects at positions two or six. In other words, RTs 

did not reliably become faster at either positions with a congruent stimulus. Likewise, there were 

minimal differences in facilitation effects between the two positions. Unlike experiment 1, 

results from experiment 2 show that the local level had little influence at either positions two or 

six. It is likely that the incongruent stimulus at the first position informs participants to ignore the 

irrelevant (i.e., local) level for subsequent trials within the run. This provides support for our 

suspicions regarding the influence of congruent stimulus presentation in experiment 1.  

The results for locally focused runs are similar to the results for globally focused runs in 

experiment 1. Therefore, similar interpretations are made for the locally focused runs in 

experiment 2. The faster RTs at position two for locally focused runs signifies that congruent 

global levels facilitate performances. The disappearance of this effect at position six suggests 

weaker global level influences at this stage in a run. However, unlike the results for globally 

focused runs in experiment 1, the difference (i.e., decrease) in facilitation effects between 

positions two and six was not reliable. Therefore, we tentatively conclude that task shielding had 
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little effect on reducing the global level’s influence. Experiment 2 provides further evidence that 

are consistent with Lamb et al. (1998)’s conclusions; selective attention has little effect on 

reducing global precedence.  

The differences between the results for experiments 1 and 2 provide support for the 

potential issues raised for experiment 1. The irrelevant level only contained the target during the 

manipulated positions (two or six). Therefore, a possible explanation is that participants learned 

to focus only on the relevant level throughout the runs. In other words, participants were able to 

more easily apply task rules because participants did not receive facilitation from the irrelevant 

level in positions preceding the critical position. 

 

Figure 8. RT results from Experiment 2. Highlighted data points represent concerned or 

 examined observations; black lines represent incongruent runs; error bars represent 

 within subject standard errors. 
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Figure 9. Example of runs within Experiment 2. This shows example sequences of 

 critical stimuli presented in a run. Globally focused run with congruent stimuli at

 position two (A); Locally focused run with congruent stimuli at position six (B); 

 Globally focused run with incongruent stimuli throughout the run (C). 
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Instance Theory of Automatization 

The basis of our position manipulation (critical stimulus at position two vs. six) relies on 

the assumption that participants are learning from previous exposures or tasks (i.e., becoming 

more familiar with task sets or rules) and utilizing these task sets or rules. To evaluate these 

assumptions in a formal manner, we look to Logan (1988)’s instance theory of automatization. 

The instance theory of automatization states that people first complete tasks with a general 

algorithm that is sufficient to perform and finish the task; this is eventually replaced by a more 

specific set of solutions or strategies that are based on past experiences or memories (Logan, 

1988). In other words, people first use a generalizable or generic set of actions and decisions that 

are flexibly applicable to all tasks, but, with repetition, people eventually learn to utilize more 

optimal and specific strategies – often from memory retrieval - to complete these tasks.  

Logan (1988) explains the instance theory of automatization in terms of a race between 

instances retrieved from memory and a general algorithm; the process that finishes first 

completes the task. Initially, the algorithm finishes first but with each task repetition, more 

instances are encoded and introduced into the race, increasing the likelihood of an instance 

overtaking and finishing before the algorithm (Logan, 1988). Instances winning this race 

represent task performance methods “switching” from general algorithms to the strategies based 

on learned instances retrieved from memory. This theory predicts that both RTs to complete a 

task and the standard deviations (SD) associated with these RTs follow a power-function speed-

up model (RT = a + bN-c) and decrease in a similar manner (see Logan, 1988 for more details). 

“RT” represents the time required to complete a task, “N” is the number of practice trials, and 

“a”, “b” and “c” are constants; “a” represents the asymptote or the limit of learning, “b” is the 

difference between initial performance and asymptotic performance (i.e., the amount learned) 
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and “c” is the rate of learning. The theory states that a good model fit with an equal rate of 

learning between mean RTs and mean SDs is an indication that learning or practice effects have 

occurred and people have switched strategies. Logan simulated and examined participant task 

performance on lexical decision and alphabet arithmetic tasks to verify this theory and found 

results confirming his ideas (Logan, 1988). 

In order to determine whether participants are learning from past tasks, we fit our data 

(experiments 1 and 2) to the power-function speed-up model and use Logan (1988)’s instance 

theory of automatization to interpret the results. To do this, we apply Logan (1988)’s methods; 

we fit our mean RT and mean SD data to two different versions of the power-function speed-up 

model and compare the overall (averaged values based on mean RT and mean SD values) and 

individual (solely mean RT or mean SD values) goodness of fits (r2 or rmsd; root-mean-squared 

deviation) between these versions (see tables 1 and 2). The first version uses separate rate of 

learning values for mean RTs and mean SDs while the second version constrains the rate of 

learning values to be identical; these models will be referred to as the separate fit model and 

constrained fit model, respectively. 

Model Fits 

To fit the two versions (separate rate of learning vs. constrained rate of learning) of the 

power-function speed-up model, we performed a minimization loop to obtain near optimal 

parameter values for each of our conditions. This was done by repeatedly fitting different values 

for each parameter until acceptable sums of squared errors (SSE) were found. In our 

minimization loop, we constrained parameters “a” and “b” to prevent the model from settling at 

local minimas or global maximas. Parameter “a” values were constrained to be within “70” msec 

below parameter “b” values. Parameter “b” values were constrained to be greater than zero. 
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Lastly, we constrained parameter “c” values to be between “0” and “6”. In order for the model to 

produce a decreasing power-function, the exponential value “c” needs to be above “0”. We set 

the upper limit for the rate of learning values to be “6” because values above this number did not 

further affect the goodness of fit values for our data but increased the chances of the model 

settling at local minimas and global maximas. This analysis was programmed and examined 

within Rstudio.  

Results 

 The results show that the constrained fit model produced similar values as the separate fit 

model within both experiments 1 (see table 1) and 2 (see table 2). Model fit comparisons 

between the separate and constrained models show that the two models produced similar SSEs 

for every condition in both experiments 1 and 2 (see table 3); this indicates that the separate 

model did not outperform the constrained model.  

Goodness of Fit. For every condition in experiments 1 and 2, overall r2 values had little 

to no differences between the separate and constrained model fits; therefore, only the constrained 

fit values are reported. For mean RTs, r2 was above .95 in every condition for both experiment 1 

and 2 (see tables 1 and 2). Experiments 1 and 2 both had lower r2 for mean SDs compared to 

mean RTs. Experiment 1 also had worse r2 than experiment 2; r2 for mean SDs ranged 

between .2 - .9 for experiment 1 and.6 - .9 for experiment 2 

Additionally, overall rmsd values were similar between the separate and constrained fits 

for every condition in experiments 1 and 2; therefore, only the rmsd values for the constrained 

model fit are reported. For mean RTs, rmsd values were relatively small (between 4 - 17 msecs 

for data that ranged between 250 - 550 msec). For mean SDs, rmsd values were comparably 
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larger than mean RTs (between 9 - 25 msec for data that ranged between 100 - 180 msec) in both 

experiments 1 and 2. 

Rate of Learning Parameter.  For every condition in experiment 1, separate and 

constrained fits for mean RTs had similar rate of learning values. For experiment 2, the 

“congruent at two” condition for globally focused runs (“c” difference = 2.524) had the largest 

difference in rate of learning values between the separate and constrained model fits.  

The separate and constrained fits for mean SDs produced relatively different rate of 

learning values in multiple conditions for both experiments 1 and 2. For experiment 1, the 

“congruent” (“c” difference = 1.075) condition for locally focused runs had the largest difference 

in rate of learning values between separate and constrained model fits. For experiment 2, the 

“incongruent” (“c” difference = 2.943) condition for globally focused runs and the “congruent at 

two” (“c” difference = 2.096) and “congruent at six” (“c” difference = 2.241) conditions for 

locally focused runs had relatively large differences. Notably, the “incongruent” condition for 

globally focused runs and “congruent at two” condition for globally focused and locally focused 

runs in experiment 2 had reached the ceiling of our parameter constraints. This indicates that the 

differences between rate of learning values for mean RTs or mean SDs in these conditions are 

likely to be higher.  

Trimmed Data. To ensure that our results were not compromised by left-skewed RTs, 

we looked at the model fits and the model fit comparisons for the trimmed RTs in experiments 1 

and 2. We found no differences between the trimmed and untrimmed data. 

Discussion 

The model fit comparisons show that the separate and constrained model produced 

similar SSEs. Normally, this would suggest that mean RTs and mean SDs had similar rates of 
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learning and that participants were switching to instance-based strategies or utilizing information 

from previous exposures (e.g., Logan, 1988). However, a critical aspect of Logan’s instance 

theory of automatization is the progressive performance of mean RT and mean SD with each 

instance (i.e., task presentation and completion) and whether they follow the power-function 

speed-up model. This is assessed with goodness of fits. 13 For both experiments 1 and 2, 

goodness of fit values (specifically r2) show that both the separate and constrained models had 

great fits (r2 > .75) to observed mean RTs (see figures 10 and 12), indicating a power-function 

speed-up pattern. For mean SDs, the models were able to adequately fit to most of the conditions 

in experiments 1 and 2 but some conditions showed comparably low model performances (r2 

< .65). These low r2 values could be an indication that performance does not follow a power-

function speed-up pattern and participants did not switch to instance-based strategies in these 

conditions. An alternative interpretation is that performance does follow a power-function speed-

up pattern but our manipulations interfere with this pattern. To better interpret these r2 values, we 

look at the visual representation (i.e., the figures) for mean SD and its progression throughout a 

run within each experiment and condition.  

Experiment 1. For mean SDs, separate and constrained models had similar goodness of 

fits (see table 1). However, nearly every condition (with the exception of the “congruent” 

condition in locally focused runs; r2 = .89) had relatively low r2. 

For globally focused runs, Figure 11 provides support that observed mean SD runs did 

not follow power-function speed-up patterns and participants did not switch to instance-based 

strategies in these conditions. Specifically, Figure 11 shows that observed mean SDs oscillated 

 
13 It is worth noting that the relative distinction of good vs. bad or low r2 was made post hoc and 

based solely on the researcher’s interpretation of good or bad r2 values.   
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above and below the model mean SDs and did not reach asymptote performance. These results 

are agreeable with the global precedence literature; participants did not have to use a new 

strategy past the general algorithm because the general algorithm already prioritizes the global 

level.  

For locally focused runs, Figure 11 provides support that observed mean SD runs 

exhibited a power-function speed-up pattern; however, the presentation of an incongruent 

stimulus (i.e., our manipulations) disrupts these patterns. For the “incongruent at two” condition, 

mean SD is highest at position two (~165 msec) and asymptote performance is delayed. This is 

likely due to global interference caused by the incongruent stimulus presented at position two. 

One indication of this is the large portion of the SSE for mean SD (SSE = 1167 msec) accrued at 

this position (squared errors = 597 msec).  For the “incongruent at six” condition, the observed 

mean SD runs look similar to a power-function speed-up pattern until position six where mean 

SD increases (~160 msec). Similar to the “incongruent at two” condition, this increase in mean 

SD is likely due to global interference caused by the incongruent stimulus presented at position 

six. Once again, a large portion of the SSE for mean SD (SSE = 1452 msec) is accrued at this 

position (squared errors = 886 msec). Figure 10 provides additional support by showing an 

increase in observed mean RT at position six. 

 The results from the model fit comparisons, interpretations based on Logan’s instance 

theory of automatization, and Figure 11 all provide support for the conclusions in experiment 1. 

For globally focused runs, participants do not alter from the baseline order of hierarchical letter 

processing (i.e., general algorithm). For locally focused runs, participants switch to instance-

based strategies after multiple task exposures (i.e., by position six) but an incongruent stimulus 

still affects RTs; this implies that the global level is still processed despite switching strategies 
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and suggests that multiple task exposures – or at least six repeated task exposures – do not enable 

effective task shielding for locally focused runs.  

Interestingly, the “congruent” and “incongruent at six” conditions have a relatively large 

difference in mean SDs at position two for locally focused runs (see figure 11). Currently, there 

are no theoretical explanation for this difference since no manipulation occurred by this position 

in either conditions. However, large SEs suggest that this is due to noisy participant data. 

Experiment 2. Separate and constrained models had similar and good fits to mean SDs 

with the exception of the “congruent at two” (r2 = .58) condition in locally focused runs. This 

indicates that participants relied on instances in every globally focused run and most of the 

locally focused runs. These results are consistent with our conclusions for experiment 2. For 

globally focused runs, participants learned to ignore the irrelevant level based on the first 

position. For locally focused runs, participants only learned to ignore the irrelevant level after 

multiple repeated exposure (i.e., position six). However, Figure 13 presents inconsistent 

information to some of the conclusions made for experiment 2 and the results from the model fit 

and model fit comparisons for experiment 2. 

In globally focused runs, Figure 13 presents inconsistent information for the “congruent 

at two” and “congruent at six” conditions. For the “congruent at two” condition, Figure 13 shows 

that observed mean SD decreased considerably at position two – likely due to the level-repetition 

effect - but continually increased afterwards with each subsequent position until position seven. 

Although r2 is good for this condition (r2 = .78), the continually increasing observed mean SDs 

shows that performance did not follow a power-function speed-up pattern. For the “congruent at 

six” condition, Figure 13 shows that the observed mean SD run followed a power-function 

speed-up pattern until position seven where observed mean SD increased. One interpretation for 
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the increase in mean SDs in these two conditions is that the congruent stimulus attracts 

participants’ attention to the irrelevant local level and causes attentional focus to the incongruent 

local level for subsequent positions. This would indicate that participants did not learn to ignore 

the local level, even when they switched to instance-based strategies.  

In locally focused runs, Figure 13 supports the conclusions for the “congruent at two” 

condition but provides inconsistent information for the “congruent at six” condition. For the 

“congruent at two” condition, Figure 13 shows that the observed mean SD run pattern is similar 

to the one shown in Figure 11 (i.e., experiment 1) for the “incongruent at two” condition in 

globally focused runs; observed mean SDs oscillated above and below the model mean SDs and 

do not show an asymptote performance. Therefore, the low r2 for mean SDs and Figure 13 

indicate that participants did not switch to instance-based strategies in this condition; this 

provides support that participants were unable to ignore the global level, causing a congruent 

global level at position two to facilitate performance. For the “congruent at six” condition, Figure 

13 shows that observed mean SDs reached asymptote performance by position six but mean SD 

increased at position seven. The large increase in observed mean SDs in Figure 13 provides 

further support that the congruent stimulus at position six drew attention to the irrelevant level 

and reduced performance at position seven when the global level became incongruent. 

Interestingly, this pattern is similar to the increase in mean SD at position three for the 

“congruent at two” condition; this suggests that a similar effect occurred in the “congruent at 

two” condition.  

For some conditions, one explanation for the inconsistent interpretations from the visual 

representations may be linked to the rate of learning values. High rate of learning values indicate 

instant asymptote performance. However, these values can produce inaccurate models by fitting 
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to the data averages. For example, if performance oscillates between high and low RTs or SDs, 

the model may indicate an asymptote performance between these values to minimize SSE 

despite observed mean RTs or SDs not reaching asymptote performance. This is likely the case 

for the “congruent at two” conditions for both globally and locally focused runs in experiment 2. 

It is also likely that these oscillating behaviors and inconsistent model fits may be due to the 

underpowered nature of experiment 2. Therefore, we cautiously make these conclusions. 

 

Table 1. Model fit data table for Experiments 1. The table presents parameters a, b, and c and 

 goodness of fit (r2, rmsd) values for mean RT and mean SD. The table also presents 

 overall (average values between mean RT and SD) goodness of fit values. 
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Table 2. Model fit data table for Experiments 2. The table presents parameters a, b, and c and 

 goodness of fit (r2, rmsd) values for mean RT and mean SD. The table also presents 

 overall (average values between mean RT and SD) goodness of fit values. 

Table 3. Model fit comparisons for Experiments 1 and 2. The table presents the model fit 

 comparisons for experiments 1 and 2 between the separate (SSE – Full) and 

 constrained (SSE – Reduced) models. 
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Figure 10. Model fits for mean RTs in Experiment 1. Predicted constrained and separate 

 model values for mean RTs compared with participant data from experiment 1. Each 

 prediction and participant data are separated by condition. 
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Figure 11. Model fits for mean SDs in Experiment 1. Predicted constrained and separate 

 model values for mean SDs compared with participant data from experiment 1. Each 

 prediction and participant data are separated by condition. 
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Figure 12. Model fits for mean RTs in Experiment 2. Predicted constrained and separate 

 model values for mean RTs compared with participant data from experiment 1. Each 

 prediction and participant data are separated by condition. 
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Figure 13. Model fits for mean SDs in Experiment 2. Predicted constrained and separate 

 model values for mean SDs compared with participant data from experiment 1. 

 Each prediction and participant data are separated by condition. 
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GENERAL DISCUSSION 

 

Experiment 1 shows a decrease in RT with repeated tasks. This is similar to results from 

the second experiment in Lamb et al. (1998). Experiment 1 also shows that global interference 

persisted even after consecutive repeated tasks. Experiment 2 shows that global facilitation 

disappeared at position six but the reduction of global influence from position two to position six 

is not reliable. Due to the underpowered nature of experiment 2, it is difficult to make conclusive 

inferences regarding cognitive mechanisms’ role with the level-repetition effect during task 

repetition and global precedence. However, these results from experiments 1 and 2 currently 

provide evidence that cognitive mechanisms have little influence on the level-repetition effect 

and do not reduce global precedence. 

Overall, the fit of power-function speed-up model to our experiments and the model fit 

comparisons revealed that participants can learn from past tasks and switch strategies in our 

paradigm. The results were consistent to the conclusions made for experiments 1 and 2. 

However, Figure 13 presents conflicting evidence to the results of the model fit for experiment 2 

and the conclusions drawn from experiment 2. Therefore, we tentatively conclude that switching 

to a more effective strategy within five repeated exposures did not reliably reduce the global 

level’s influence.  

Attention and Visual Processing 

Presently, there are opposing theories regarding attentional processes and visual 

perception. Some studies claim that cognitive control occurs after attentional processing of 
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salient items (e.g., Theeuwes, 1992) and responses are sometimes solely based on the salience-

based processing (e.g., Schubo, 2009). Other studies argue that salience-based processing can be 

modulated by goals and intentions (i.e., cognitive mechanisms) at early visual processing stages 

(e.g., Bacon & Egeth, 1994; Folk et al., 1992; Kim & Cave, 1999).  

The task shielding literature provides evidence that salience-based processing can be 

modulated by cognitive control (e.g., Reisenauer & Dreisbach, 2014). However, our current 

results suggest limits in selective attention’s ability to reduce saliency’s influence. Experiment 1 

shows that selective attention cannot prevent some attentional processing of salient items while 

experiment 2 shows unreliable results. The reason and implication for selective attention’s 

inability to reduce global precedence may be tied to the stage of processing used in our studies.  

Stages of Processing 

There are a number of factors that are worth considering for future studies. One important 

consideration is identifying the stages of processing (e.g., detection, identification or response) 

involved with global precedence. Our current studies are limited in determining the stages 

required to complete - and consequently affected by - the tasks. In other words, it is unclear 

which stages of processing determine global precedence and which of these stages are influenced 

by task shielding or additional attentional allocation. Knowledge regarding the stages of 

processing can help specify the cause for selective attention’s inability to reduce global 

interference. Additionally, this information can further elucidate the relationship between the 

stages of processing involved and selective attention in the context of task shielding (i.e., 

strengthening cognitive control) and visual perception. This distinction between stages of 

processing is important to clarify because attentional influences and utility can change depending 

on the stage (Flowers & Wilcox, 1982; Taylor, 1977). Our tasks require participants to determine 
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target presence while ignoring irrelevant information. Therefore, it is likely that several stages of 

processing may be involved in our studies and cause global interference. I first consider earlier 

perceptual stages. 

Detection and Identification Stages 

Detection and identification tasks produce responses at different stages of processing. 

Both tasks utilize attentional resources but detection requires less information and resources than 

identification (Broadbent & Broadbent, 1987; Kawahara et al., 2001). Identification tasks are 

more complex and require more time to deploy attentional resources to relevant stimuli 

(Kawahara et al., 2001). Although detection does not always require attention to focus on a task 

(Bravo & Nakayama, 1992), some detection tasks can utilize attention (Kawahara et al., 2001). 

Our tasks require quick attentional deployment and responses to briefly presented stimuli. 

Results from experiment 1 and 2 show high accuracy and fast RT performance. During the brief 

period of stimuli presentation, participants were able to quickly deploy attentional resources and 

gather enough information to respond correctly. This indicates that our tasks require detection 

(Broadbent & Broadbent, 1987; Kawahara et al., 2001). However, participants are also required 

to search each stimulus for a target. One strategy would be for participants to create a search 

template and respond based on whether the stimulus at focused level match the template. This 

could indicate that our tasks also require identification. Task shielding could affect all or only 

one of these processes.  

One possible explanation for our results regarding task shielding’s inability to enhance 

filtration of irrelevant information could be from the difference in feature comparisons involved 

with Stroop-like interference and global interference. Cognitive mechanisms (i.e., selective 

attention) are able to modulate salience processing but selective attention has more trouble with 
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shielding against, or reducing the influence of, closely related features. This could be due to a 

rise in task difficulty for distinguishing search templates (Schmidt & Zelinsky, 2017; Treisman 

& Gelade, 1980). 

Previous task shielding studies (i.e., studies involving Stroop-like interference) only 

require simple search templates to compare easily discriminable features (colors vs. meaning); 

these qualities lead to easier inhibition of irrelevant information. By comparison, our tasks 

require a more complex search template to perform nuanced discrimination (specific letter at a 

specific level); these qualities lead to a more difficult or time-consuming process for selective 

attention to filter relevancy (Schmidt & Zelinsky, 2017). This would imply that global 

interference arises during the detection and identification stage (Schmidt & Zelinsky, 2017) and 

that selective attention may be limited in its ability to filter information when the visual search 

templates require discrimination based on level focus.   

Response Stage 

Another possibility is that the difficult set up and application of the search template 

causes a delay in filtrating relevancy. During this delay, some saliency-based processing could 

occur and bring about global interference during the decision-making or response stages. 

Because selective attention is unable to completely filter relevancy, the search templates would 

have activated the processing of salient and irrelevant or mismatched information. This would 

cause interference and slow decision-making or response processes by providing evidence for the 

other response (Hommel, 1995; Mewaldt et al., 1980). Alternatively, the difficult search template 

strategy may present a more difficult task in our experiments compared to past task shielding 

studies. As tasks difficulty increases, participants may become less confident in their decisions 

and have conflicting or slowed decision-making or response processes (Grubert & Eimer, 2015).   



 

62 

 

In summary, it is important to consider determining the stages of processing involved in 

our tasks to better understand and reduce global precedence. Global interference could arise 

during the identification stage (from the difficult and time-consuming filtration due to complex 

search templates) or during the decision-making or response stages (from response conflicts). 

Ultimately, it may be that the task - or stages involved with the task - determine or influence 

where global interference occurs. By determining the stage of processing in which global 

interference occurs, future studies can further examine the mechanisms surrounding global 

precedence. The current studies did not manipulate stages of processing and therefore these 

studies are limited in identifying the stages associated with global interference and which stages 

are affected by task shielding. However, these studies show that continuous or repeated level 

focus does not strengthen selective attention enough to reduce global precedence in tasks related 

to determining target presence with dichotomized (e.g., yes/no) responses. Therefore, our results 

provide restricted evidence that selective attention is unable to reduce global precedence - 

specifically global interference. 

Data-limited vs. Resource-limited 

Another important consideration is the idea of data-limited and resource-limited tasks. In 

short, data-limited tasks are when allocating additional processing resources does not improve 

task performance. Resource-limited tasks are when task performance improves with increasing 

amounts of processing resources (see Norman & Bobrow, 1975 for review). In our studies, 

performance started with relatively long RTs, but then quickly improved, reaching asymptote in 

later run positions. It may be that initially, our tasks were resource-limited; performance 

improves as more attention is allocated to the task. Yet after consecutive exposures, the tasks 

become data-limited; performance does not improve from further allocation of attention to the 
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task. These performance trends suggest that our paradigm shifts from resource-limited to data-

limited across a run. After some repeated exposure, participant either stop allocating additional 

attentional resources to the task or additional resources no longer help with performance. Our 

paradigm may strengthen selective attention but the influences of resources and resource 

allocation are minimized near the end of each run. 

Exposure Duration 

One important factor to consider for future studies is exposure duration. Experiment 3 

provides exploratory data on the impact of exposure duration. This experiment is identical to 

experiment 1 with the exception that the presented stimulus remained on the screen until 

responses were given. Results shows that participants were unable to reduce the influence of the 

irrelevant level for both globally focused and locally focused conditions (see Appendix A for 

results and further discussion). 

Congruence 

 Another important consideration for future studies is the possible confound of 

congruence. In our studies, we did not separate the influence of congruence from letter 

relevance. Reduced task performance may partly be due to a congruence change (e.g., change 

from congruent to incongruent) instead of the shift in target presence for the irrelevant level (e.g., 

global letters changing between target and non-target letters). An argument against this claim is 

that the congruence change had different effects on performance in experiment 1 than in 

experiment 2. In experiment 1, the congruence changes interfered and reduced performance 

while the congruence changes in experiment 2 facilitated or increased performance. However, it 

is still possible that the congruence change indirectly causes these effects by drawing attention to 

the changed (i.e., irrelevant) level. Therefore, one possible direction for future studies is 
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controlling for this factor and reexamining selective attention’s influence on the level-repetition 

effect and global precedence. 

Alternative Interpretations for Instances 

An important issue and limitation to address with our model fit is that our studies are 

limited in identifying the instances being stored. Task shielding literature would indicate that 

previous exposures are providing instances of following task rules. The mechanism activation 

hypothesis suggest that previous exposures are providing instances of the most recently activated 

mechanisms. A third possibility is that previous exposures are providing instances of congruence 

type (congruent, or incongruent). This would provide an alternate explanation for the interfering 

or facilitating effects in our studies. It may be that participants encode instances based on the 

congruence type in previous tasks and switch strategies accordingly. This congruence change 

causes participants’ attention to be attracted to the irrelevant level. Furthermore, it is unclear 

whether these instance-based strategies rely on non-cognitive processes or cognitive processes. 

In other words, participants may be using processes that do not require voluntary cognitive 

mechanisms when they switch to instance-based strategies and the congruence changes (i.e., 

study manipulations) cause participants to revert back to voluntary cognitive processes. This 

switch to the voluntary cognitive processes - in addition to the congruence change - may be the 

reason for the difference in performance at the critical position compared to previous positions. 

We aim to investigate these issues in future studies. 

Number of Exposures 

The results from our experiments and the model fit comparisons suggest that task- or 

goal-driven participants are unable to use cognitive mechanisms such as selective attention to 

prevent non-cognitive mechanisms from processing salient irrelevant information. However, 
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Logan’s instance theory of automatization provides an alternate interpretation. This theory 

indicates that participants require a number of exposures before switching to instance-based 

strategies. It may be that participants need the first couple of exposures (two - seven in our 

studies) to switch strategies and rely on task rule sets for task completion; task shielding can only 

occur and strengthen after this switch. Therefore, our design may only present enough exposures 

to switch strategies but not enough exposures to strengthen task shielding. Future studies can 

address this by including more exposures and comparing the interference effect between 

positions after an asymptote is reached. 
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CONCLUSIONS 

 

Visual perception is an important aspect in many daily activities (e.g., driving, watching 

TV, etc.). These activities sometimes require fast decisions or actions that rely on information 

based on the visual perception of items involved with the activities. Biases allow for fast visual 

processing but these biases can often be wrong and promote inaccurate perceptions and 

decisions. Cognitive mechanisms can adjust these biases but the limitations of adjusting or 

controlling these biases have not been fully explored. To develop methods and strategies that 

optimize these abilities, it is important to understand the limitations of cognitive mechanisms 

such as selective attention and visual biases like global precedence. Our method and paradigm 

investigate the fluidity and limitations of strengthening selective attention by examining its 

ability to focus on or suppress information within specific categorical dimensions. Specifically, 

we looked at whether strengthening selective attention can reduce global interference. The 

current findings seem to show support for Lamb and colleagues’ claim. Strengthening selective 

attention does not reduce global interference. While all these studies are limited in their claims, 

they pose interesting questions and foundation for future studies.  
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APPENDIX A: SUPPLEMENTAL EXPERIMENT 

 

Experiment 3 

Experiments 1 and 3 used the same stimuli, design and procedure but differed in stimulus 

duration. Within experiment 3, each stimulus remained in view until participants gave a 

response. One potential issue is that participants may have a complete visual representation of 

the entire hierarchical letter before making a response, thereby perceiving both the global and 

local level. Perceptual load theory suggests that attention can spill over to irrelevant information 

with simple stimuli or tasks - even with an efficient selective attention. This could be 

problematic as interference would always occur, regardless of the strength of selective attention. 

Experiment 1 addresses this issue. The stimulus duration in experiment 1 allows for a limited 

amount of time to perceive the stimulus, forcing participants to attend only to the relevant 

information and reducing the chance for attention to spill over to irrelevant information. 

Participants 

There were 41 participants in experiment 3. Participants were recruited from the 

University of South Florida SONA pool and ran in IRB-approved protocol. Participants received 

extra credit for their participation. Three participants in experiment 3 were removed due to 

having high proportion of errors. Thus, we examined the data of 38 participants. 

Results 

 Congruent or baseline runs show a generally logarithmic decrease in RTs throughout a 

run for both globally focused and locally focused conditions (see figure 11).  
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Relative to baseline, position two had elevated RTs with an incongruent stimulus for both 

locally focused conditions(Mean difference = 104, SE = 11.14); t (37) = 9.32, p <.001, partial eta 

squared = .70, and globally focused conditions (Mean difference = 46, SE = 8.5); t (37) = 5.37, p 

<.001, partial eta squared = .44.  

Position six also had elevated RTs with an incongruent stimulus for both locally focused 

conditions (Mean difference = 136, SE = 13.15); t (37) = 10.36, p <.001, partial eta squared = .74 

and globally focused conditions (Mean difference = 34, SE = 13.26); t (37) = 2.55, p  = .02, 

partial eta squared = .15.  

No significant differences were found for the comparisons between the interference 

effects at position two and position six for either globally focused or locally focused conditions. 

Discussion 

It is worth noting the different RT functions in the incongruent conditions compared to 

the congruent conditions between experiments 1 and 3. Additionally, the globally focused 

conditions had different responses to an incongruent stimulus at position six than the locally 

focused conditions in both experiments (see figure A). In experiment 3, the interference effect 

was similar at position six as the interference effect at position two for globally focused 

conditions. Yet the interference effect at position six was larger than the interference effect at 

position two for locally focused conditions. In experiment 1, globally focused conditions had a 

small interference effect at position two but no interference effect at position six. At position six, 

locally focused conditions had similar interference effects as position two.  

As stated earlier, the difference of RT functions with incongruent conditions between 

experiments 1 and 3 may be explained by the perceptual load theory and worth investigating in 

future studies.  



 

77 

 

 

  

Figure A. RT comparison between Experiments 1 and 3. RT results of experiment 3. (Top) 

 compared to results of experiment 1 (Bottom); Highlighted data points represent 

 concerned or examined observations); black lines represent congruent runs; error  

bars represent within subject standard errors. 
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APPENDIX B: SUPPLEMENTAL MODEL FIT DATA 

 

Trimmed Data Results for Experiment 1 

Locally Focused Runs. Relative to baseline, position two had significantly elevated RTs 

(i.e., slower responses) with an incongruent stimulus (Mean difference = 35, SE = 9.83); t(29) = 

3.51, p = .002, Cohen’s d = .62. Position six also had significantly elevated RTs with an 

incongruent stimulus (Mean difference = 28, SE = 8.16); t(29) = 3.40, p = .002, Cohen’s d = .29. 

There was no significant decrease in interference effects from position two to position six (Mean 

difference = 7, SE = 10.13); t(29) = .67, p = .51, Cohen’s d = .02.  

Globally Focused Runs. Relative to baseline, position two had significantly elevated 

RTs with an incongruent stimulus. (Mean difference = 25, SE = 7.47); t(29) = 3.27, p = .003, 

Cohen’s d = .44. Position six did not have a significant elevation in RTs with an incongruent 

stimulus (Mean difference = 0 SE = 8.49); t(29) = .02, p = .98, partial eta squared = 0. Lastly, 

there was no significant decrease in interference effects from position two to position six (Mean 

difference = 25, SE = 13); t(29) = 1.91, p = .07, Cohen’s d = .34.  

Trimmed Data Results for Experiment 2 

Locally focused runs. Relative to baseline, position two had significantly lower RTs 

(i.e., faster responses) with a congruent stimulus (Mean difference = 22, SE = 9.85); t(19) = 2.26, 

p = .04, Cohen’s d = .51. Position six did not have significantly lower RTs with a congruent 

stimulus (Mean difference = 14, SE = 10.1); t(19) = 1.41, p = .17, Cohen’s d = .32. There was no 
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significant decrease in facilitation effects from position two to position six (Mean difference = 8, 

SE = 10.9); t(19) = .64, p = .47, Cohen’s d = .17.  

Globally focused runs. Relative to baseline, RTs were not significantly lower with a 

congruent stimulus at position two (Mean difference = 10, SE = 8.1); t(19) = 1.19, p = .25, 

Cohen’s d = .27, or position six (Mean difference = 5, SE = 8.1); t(19) = .64, p = .53, Cohen’s d 

= .14. There was also no significant decrease in facilitation effects from position two to position 

six (Mean difference = 4.5, SE = 10.17); t(19) = .44, p = .66, Cohen’s d = .10. 

Trimmed Data Model Fit Results in Experiment 1 and 2 

Goodness of Fit. For every condition in experiments 1 and 2, overall r2 values had little 

to no differences between the separate and constrained model fits; therefore, only the constrained 

fit values are reported. For mean RTs, r2 was above .95 in every condition for both experiment 1 

and 2 (see tables 1 and 2). Experiments 1 and 2 both had lower r2 for mean SDs compared to 

mean RTs. Experiment 1 also had worse r2 values than experiment 2; r2 for mean SDs were 

around .3 - .9 for experiment 1 and around .6 - .9 for experiment 2. 

Additionally, overall rmsd values were similar between the separate and constrained fits 

for every condition in experiments 1 and 2; therefore, only the rmsd values for the constrained 

model fit are reported. For mean RTs, rmsd were relatively small (about 4 -17 msecs for data that 

ranged between 250 – 550 msec). For mean SDs, rmsd values were comparably larger (between 

9 - 26 msec for data that ranged between 100 - 180 msec) in both experiments 1 and 2. 

Rate of Learning Parameter. For every condition in experiments 1, separate and 

constrained fits for mean RTs had similar rate of learning values. For experiment 2, the 

“incongruent” (“c” difference = .668) condition for globally focused runs and the “congruent at 
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two” condition for both globally focused runs (“c” difference = .630) and locally focused runs 

(“c” difference = .629) had the largest differences. 

The separate and constrained fits for mean SDs produced relatively different rate of 

learning values in multiple conditions for both experiments 1 and 2. For experiment 1, the 

“congruent” (“c” difference = 1.035) condition for globally focused runs, and the “incongruent at 

six” (“c” difference =.896) condition for locally focused runs had large differences in rate of 

learning values between separate and constrained model fits. For experiment 2, the 

“incongruent” (“c” difference = 2.842) and “congruent at two” (“c” difference = 1.786) 

conditions for globally focused runs and the “congruent at two” (“c” difference = 2.067) and 

“congruent at six” (“c” difference = 2.8) conditions for locally focused runs had relatively large 

differences. Notably, the “incongruent” condition for globally focused runs and “congruent at 

two” for both globally focused and locally focused runs had reached the ceiling of our parameter 

constraints, indicating that these differences are likely to be higher. 
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